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Adopting deep learning methods for human activity recognition has been 

effective in extracting discriminative features from raw input sequences 

acquired from body-worn sensors. Although human movements are encoded 

in a sequence of successive samples in time, typical machine learning 

methods perform recognition tasks without exploiting the temporal 

correlations between input data samples. Convolutional neural networks 

(CNN) address this issue by using convolutions across a one-dimensional 

temporal sequence to capture dependencies among input data. However, the 

size of convolutional kernels restricts the captured range of dependencies 

between data samples. As a result, typical models are unadaptable to a wide 

range of activity-recognition configurations and require fixed-length input 

windows. In this thesis, we propose the use of deep recurrent neural networks 

(DRNN) for building recognition models that are capable of capturing long-
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range dependencies in variable-length input sequences. We present 

unidirectional, bidirectional, and cascaded architectures based on long short-

term memory (LSTM) DRNN and evaluate their effectiveness on 

miscellaneous benchmark datasets. Experimental results show that our 

proposed models outperform methods employing conventional machine 

learning, such as support vector machines (SVM) and k-nearest neighbors 

(KNN). Additionally, the proposed models yield better performance than 

other deep learning techniques, such as deep believe networks (DBN) and 

CNN.  
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한글요약 
 

깊은 순환 신경망을 이용한 웨어러블 센서 

기반 인간 행동 인식 

압둘마지드 무라드  

지도교수 :변재영  

조선대학교대학원,

정보통신공학과  

 

인간 행동 인 식을 위하여 심화 학습 방법들을 선택하는 것은 신체에 

착용한 센서로부터 획득한 원시 입력 시퀀스로부터 차별된 특징을 

추출하는데 효과적이다. 인간의 움직임은 시간경과에 따라 연속적인 

샘플들로 인코딩되지만, 일반적인 기계 학습 방법들은 시간적 입력 

데이터 샘플들 간의 상관관계를 활용하지 않고 인식 작업들을 

수행한다. 컨볼루션 신경망 (Convolutional neural networks: CNN)은 

입력 데이터간의 종속성을 획득하기 위해 1 차원 시간적 시퀀스에 

따른 컨볼루션을 사용하여 이문제를 해결하지만, 컨볼루션 커널의 

크기는 획득한 데이터 샘플간의 종속성 범위를 제한한다. 결과적으로, 
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일반적인 모델은 광범위한 행동인식 구성에 적합하지 않으며 고정된 

길이의 입력창을 필요로한다. 본 연구에서, 저는 가변적인 길이를 

갖는 입력 시퀀스에서 긴 범위의 종속성을 획득할수 있는 인식모델 

설계를 위하여 깊은 순환 신경망 (Deep recurrent neural networks: 

DRNN)을 이용하는 것을 제안한다. 저는 단방향, 양방향 및 계단식 

아키텍쳐를 기반으로하는 LSTM(Long short-term memory) DRNN 을 

제안하고, 다양한 벤치마크 데이터셋들의 효율성을 평가한다. 

실험결과는 제가 제안하는 모델들이 기존 SVM (Support Vector 

Machines)과 KNN (k-nearest neighbors)같은 기계학습 방법을 

사용하는 것보다 성능이 우수함을 보여준다. 추가적으로, 제안하는 

모델은 DBN (Deep Believe Neworks)와 CNN 같은 다른 심화 학습 

기술보다 우수한 성능을 제공한다. 
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Chapter 1: Introduction 

1.1  Motivation 

Human activity recognition (HAR) has recently attracted increased attention 

from both researchers and industry with the goal of advancing ubiquitous 

computing and human computer interactions. It has many real-world 

applications, ranging from healthcare to personal fitness, gaming, tactical 

military applications, and indoor navigation. There are two major types of 

HAR: systems that use wearable sensors and systems that use external devices, 

such as cameras and wireless RF modules. In sensor-based HAR, wearable 

sensors are attached to a human body and the human activity is translated into 

specific sensor signal patterns that can be segmented and identified.  

The application of deep learning for HAR has led to significant enhancements 

in recognition accuracy by overcoming many of the obstacles encountered by 

traditional machine learning methods. It provides a data-driven approach for 

learning efficient discriminative features from raw data, resulting in a 

hierarchy from low-level features to high-level abstractions. The strength of 

deep learning lies in its ability to automatically extract features in a task 

dependent manner. It avoids reliance on heuristic hand-crafted features and 

scales better for more complex behavior-recognition tasks. 

The widespread use and availability of sensing technologies is generating an 

ever-growing amount of data, which along with enhanced computation power 

have contributed to more feasible applications of deep learning methods. 

These methods can be utilized to extract valuable contextual information from 
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physical activities in an unconstrained environment. Furthermore, many 

researchers have employed deep learning approaches to build HAR models in 

an end-to-end fashion, thereby achieving superior performance compared to 

previous conventional methods. This strategy has been effective in handling 

complex human activities and taking advantage of the proliferating data.  

Recently, various deep learning and machine learning methods have been 

adopted for building activity recognition systems. These systems have 

considerably matured and performed with sufficient quality.  However, it is 

always desirable to improve HAR systems more by exploring approaches not 

commonly tried before. 

1.2  Objectives 

The major objective of this research is to study the state-of-art methods used 

in HAR and identify potentials for improvements. We also aim to suggest and 

evaluate novel deep learning methods that can improve the overall accuracy 

and performance of HAR systems. 

1.3  Contributions 

In this thesis, we propose the use of long short-term memory (LSTM)-based 

deep recurrent neural networks (DRNN) to build HAR models. These models 

can classify activities mapped from variable-length input sequences. We 

develop architectures based on deep layers of unidirectional and bidirectional 

RNN, independently, as well as a cascaded architecture progressing from 

bidirectional to unidirectional RNN. These models are then tested on various 

benchmark datasets to validate their performance and generalizability for a 
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large range of activity recognition tasks. The major contributions of our work 

are as follows: 

a) We demonstrate the effectiveness of using unidirectional and bidirectional 

DRNN for HAR tasks without any additional data preprocessing or 

merging with other deep learning methods. 

b) We implement bidirectional DRNN cascaded architectures for HAR 

models. To the best of our knowledge, this the first work to do so. 

c) We introduce models that are able to classify variable-length windows of 

human activities. This is accomplished by utilizing RNN’s capacity to read 

variable-length sequences of input samples and merge the prediction for 

each sample into a single prediction for the entire window segment. 

 

1.4  Thesis Layout 

The reminder of this thesis is organized as follows. Chapter 2 provides 

background overview of HAR system, RNN, LSTM, and performance metrics 

commonly used in activity recognition. Chapter 3 discusses relevant previous 

work in the field of HAR. Chapter 4 describe the architectural structure of our 

proposed HAR system and the three DRNN models. Chapter 5 provide an 

overview of the experimental data that are used to train and evaluate our 

proposed models. Chapter 6 presents our experimental results where we apply 

the proposed models in different activity recognition domains and compare 

the models with other state-of-the-art HAR methods. Finally, chapter 7 

concludes the thesis and presents summary of further research based on the 

presented work. 
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Chapter 2: Background 

2.1  Human Activity Recognition System 

HAR system is a system that focuses on the automatic recognition of physical 

activities performed by a subject. The system aims to provide accurate and 

valuable contextual information on people activities and behaviors. There are 

mainly two types of HAR: video-based and Sensor-based. Video-based HAR, 

an active research area in computer vision, analyzes image sequences or 

videos containing human motions for gestures and activities recognition. 

However, video-based HAR suffers from the constrained settings imposed by 

requiring a subject to perfume actions in front of a camera placed at a 

predefined position.  

The focus of this thesis will be on Sensor-based HAR system. This system 

classifies human activities into a predefined set of classes based upon readings 

from wearable sensors placed on a monitored subject. It analyzes an input data, 

which are streams of time-series corresponding to frames of movement data, 

and predicts class labels for each frame.  

The process of building sensor-based HAR pipeline is summarized in four 

steps as shown in figure 1. The first step is to collect data from multiple IMU 

sensors, and preprocess them with various signal-preprocessing techniques to 

remove noise and synchronize sensor measurements. Then segment the 

collected data into contiguous windows through a sliding-window approach. 

The segmentation step enables the system to look at longer segments of data 

rather than evaluating each data point separately. Thirdly, various time-

domain or frequency-domain features are extracted from each window.  These 
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features contains abstraction or reduced representation of the raw data and it 

is crucial to extract discriminative features that clearly separate between 

different activities. Lastly, an activity classifier is built using either machine 

learning or deep learning methods.   
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Figure1. Sensor-based HAR pipeline 

Traditional machine learning methods such as Support Vector Machines 

(SVM) or K-Nearest Neighbor (KNN) were the standard for building HAR 

pipeline until recently. However, these methods rely on handcrafted feature 

extraction, which is a time-consuming heuristic, designed to a specific HAR 

task. This could hinder generalization to different HAR tasks. Fortunately, 

deep learning methods make it possible to perform automatic feature 

extraction by discovering patterns in the data. Recently, various deep learning 

methods have been adopted in HAR such as Artificial Neural Networks 

(ANN), Deep Belief Networks (DBN), Stacked Autoencoders (SAE), 

Convolutional Neural Networks (CNN), or hybrid of these methods. However, 

there have not been many research efforts in embracing Deep Recurrent 

Neural Networks (DRNN) for HAR, an issue addressed by this work. 
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2.2  Recurrent Neural Networks 

In the field of deep learning, there is a growing interest in recurrent neural 

networks (RNN), which have been used for many sequence-modeling tasks. 

They have achieved promising performance enhancements in many technical 

applications, such as speech recognition [1], language modeling [2], video 

processing[3], and many other sequence labeling tasks [4]. The rationale 

behind their effectiveness for sequence-based tasks is their ability to exploit 

contextual information and learn the temporal dependencies in input 

sequences. RNN exploits temporal information by mapping the input into 

hidden states which are recurrently connected to itself  [5]. 

2.2.1 Traditional RNN 

An RNN is neural network architecture that contains cyclic connections, 

which enable it to learn the temporal dynamics of sequential data. A hidden 

layer in an RNN contains multiple nodes. As shown in Figure 2, each node 

has a function for generating the current hidden state ℎ𝑡 and output 𝑦𝑡 by using 

its current input x𝑡  and the previous hidden state h𝑡−1 according to the 

following equations:  

ℎ𝑡 = ℱ(𝑊ℎℎ𝑡−1 +  𝑈ℎ𝑥𝑡 + 𝑏ℎ)  (1) 

𝑦𝑡 = ℱ(𝑊𝑦ℎ𝑡 + 𝑏𝑦),  (2) 

where Wℎ , 𝑈ℎ , and 𝑊𝑦  are the weight for the hidden-to-hidden recurrent 

connection, input-to-hidden connection, and hidden-to-output connection, 

respectively. bℎ  and 𝑏𝑦  are bias terms for the hidden and output states, 

respectively. Additionally, there is an activation function ℱ associated with 
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each node. This is an element-wise non-linearity function, commonly chosen 

from various existing functions, such as the sigmoid, hyperbolic tangent, or  

rectified linear unit (ReLU). 

 

 

 

 

Figure 2. Schematic diagram of an RNN node where ℎ𝑡−1 is the previous 

hidden state, x𝑡 is the current input sample, ℎ𝑡 is the current hidden state, 𝑦𝑡 

is the current output, and ℱ is the activation function. 

2.2.2 LSTM-based RNN 

Training regular RNN can be challenging because of vanishing or exploding 

gradient problems that hinder the network’s ability to backpropagate gradients 

through long-range temporal intervals [6]. This precludes modeling wide-

range dependencies between input data for human activities when learning 

movements with long context windows. However, LSTM-based RNN can 

model temporal sequences and their wide-range dependencies by replacing the 

traditional nodes with memory cells that have internal and outer recurrence. 

A memory cell contains more parameters and gate units, as shown in Figure 

3. These gates control when to forget previous hidden states and when to 

update states with new information. The function of each cell component is as 

follows: 
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 Input gate i𝑡  controls the flow of new information to the cell. 

 Forget gate 𝑓𝑡  determins when to forget content regarding the internal 

state. 

 Output gate 𝑜𝑡  controls which information flows to the output. 

 Input modulation gate 𝑔𝑡  is the main input to the cell. 

 Internal state 𝑐𝑡 handles cell internal recurrence. 

 Hidden state ℎ𝑡  contains information from previously seen samples 

within the context window: 

 𝑖𝑡 = 𝜎(𝑏𝑖 +  𝑈𝑖𝑥𝑡 + 𝑊𝑖ℎ𝑡−1 ) (3) 

 𝑓𝑡 =  𝜎 (𝑏𝑓 +  𝑈𝑓𝑥𝑡 + 𝑊𝑓𝑥𝑡−1) (4) 

 𝑜𝑡 =  𝜎 (𝑏𝑜 + 𝑈𝑜𝑥𝑡 + 𝑊𝑜ℎ𝑡−1) (5) 

 𝑔𝑡 =  𝜎 (𝑏𝑔 +  𝑈𝑔𝑥𝑡 + 𝑊𝑔ℎ𝑡−1) (6) 

 𝑐𝑡  =  𝑓𝑡𝑐𝑡−1 + 𝑔𝑡 𝑖𝑡 (7) 

 ℎ𝑡 = tanh(𝑐𝑡)𝑜𝑡 (8) 

 

 

 

 

 

 

Figure 3. Schematic of LSTM cell structure with an internal recurrence 𝑐𝑡 and 

an outer recurrence  ℎ𝑡 . Cell gates are the input gate  i𝑡 , input modulation 

gate 𝑔𝑡, forget gate 𝑓𝑡, and output gate 𝑜𝑡. In contrast to an RNN node, the 

current output 𝓎𝑡 is considered equal to current hidden state ℎ𝑡. 
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The training process of LSTM-RNN is essentially focused on learning the 

parameters 𝑏 , 𝑈, and 𝑊  of the cell gates, as shown in Equations (3–6). 

However, RNN, and neural networks in general, suffer from overfitting 

training data. There are many techniques to deals with overfitting; the most 

common is dropout, which is a technique that randomly drop nodes and their 

connections during training [7]. Dropping out nodes reduces overfitting by 

preventing nodes from co-adapting too much. The choice of which nodes to 

drop is random and based upon dropout probability 𝓅.  

2.3  Performance Metrics 

To verify the performance of the proposed models, we employed four widely 

used evaluation metrics for multi-class classification [8]: 

a) Precision: Measures the number of true samples out of those classified as 

positive. The overall precision is the average of the precisions for each 

class: 

 𝑃𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 =  
𝑡𝑝𝑐

𝑡𝑝𝑐 + 𝑓𝑝𝑐
 (9) 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝒞
(∑

𝑡𝑝𝑐

𝑡𝑝𝑐 + 𝑓𝑝𝑐

𝒞

𝑐=1

) (10) 

where 𝑡𝑝𝑐 is the true positive rate of a class 𝑐, 𝑓𝑝𝑐 is the false positive rate, 

and 𝒞 is the number of classes in the dataset. 

b) Recall (Sensitivity): Measures the number correctly classified samples out 

of the total samples of a class. The overall recall is the average of the 

recalls for each class: 
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 𝑃𝑒𝑟 − 𝑐𝑙𝑎𝑠𝑠 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 =  
𝑡𝑝𝑐

𝑡𝑝𝑐 + 𝑓𝑛𝑐
 (11) 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑅𝑒𝑐𝑎𝑙𝑙 =
1

𝒞
(∑

𝑡𝑝𝑐

𝑡𝑝𝑐 + 𝑓𝑛𝑐

𝒞

𝑐=1

) (12) 

where 𝑓𝑛𝑐 is the false negative rate of a class 𝑐. 

c) Accuracy: Measures the proportion of correctly predicted labels over all 

predictions: 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (13) 

where 𝑇𝑃 = ∑ 𝑡𝑝𝑐
𝒞
𝑐=1  is the overall true positive rate for a classifier on all 

classes, 𝑇𝑁 = ∑ 𝑡𝑛𝑐
𝒞
𝑐=1   is the overall true negative rate, 𝐹𝑃 = ∑ 𝑓𝑝𝑐

𝒞
𝑐=1  

is the overall false positive rate, and 𝐹𝑁 = ∑ 𝑓𝑛𝑐
𝒞
𝑐=1  is the overall false 

negative rate. 

d) F1-score: A weighted harmonic mean of precision and recall: 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 = ∑ 2 (
𝑛𝑐

𝑁
) ×  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 ×  𝑟𝑒𝑐𝑎𝑙𝑙𝑐

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑐

𝒞

𝑐=1

  (14) 

where 𝑛𝑐  is the number of samples of a class 𝑐 and 𝑁 = ∑ 𝑛𝑐
𝒞
𝑐=1  is the 

total number of samples in a set with 𝒞 classes. The F1-score is typically 

adopted for imbalanced datasets that have more samples of one class and 

less of another. Using accuracy as a performance metric in imbalanced 

datasets can be misleading, because any classifier can perform well by 

correctly classifying the majority class even if it wrongly classifies the 

minority class. 
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Chapter 3: Related Works 

3.1 Traditional Approaches 

HAR is a key research area the field of pattern recognition and has seen a 

tremendous progress in the last decade. The early work in HAR were in [9], 

but it was primitive and not practical. Decision trees, were utilized for HAR 

in [10],[11], in particular C4.5 and ID3 decision tree classifiers were used. In 

[12],[13], Bayesian Network (BN) and Naïve Bayes (NB) were adopted for 

activity recognition. In addition, K-nearest neighbors, which classify classes 

based upon the most similar class in the training set, were used in [10],[14]. 

The most common traditional method in HAR is SVM, which has been used 

extensively in the past decade such as in [15],[16],[17]. Fuzzy logic is another 

traditional approach used for HAR in [18],[19]. 

HAR has distinct research challenges that need to be addressed. In [20] a 

system was developed based on body-model derived features instead of low 

level signals, to overcome inter-person variability in systems trained for 

several people. These features are person-independent, thus robust to inter-

person variability. Authors in [21] addressed interclass similarity by analyzing 

co-occurring activities and improved recognition rate by careful selection of 

individual features for each activity.  In addition, authors in [22] used 

oversampling technique to overcome class imbalance challenge in pattern 

recognition in which samples of smaller class size are duplicated to equal the 

bigger class size. Furthermore, [23] addressed the challenge of collecting a 

large annotated training data by using semi-supervised techniques to leverage 

sparsely labeled data together with unlabeled data. 
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3.2  Deep Learning Approaches 

3.2.1  Artificial Neural Networks 

Recently, various deep learning methods have been adopted for building 

activity recognition systems. The simplest form of these methods is the 

traditional Artificial Neural Networks (ANN). The authors in  [24] used deep 

layers of ANN, which are fed with extracted hand-engineered features from 

wrist-worn sensor, to construct a recognition system of  users’ complex 

activities. Similarly, in [25], ANN were used in combination with Principle 

Component Analysis (PCA) to build a classifier for HAR using mobile 

sensors. The PCA was used for dimensionality reduction of hand-engineered 

features and ANN were used as a classifier.  

3.2.2  Deep Belief Networks 

Deep Belief Networks (DBN) were the first deep learning method used in 

HAR. In [26],  DBN were built by stacking multiple layers of restricted 

Boltzmann machine (RBM). Subsequent DBN-based models exploited the 

intrinsic temporal sequences in human activities by implementing hidden 

Markov models (HMM) above the RBM layers [27]. They performed an 

unsupervised pre-training step to generate intrinsic features and then used the 

available data labels to tune the model. However, HMM are limited by their 

numbers of possible hidden states, and could become impractical when 

modeling long-range dependencies in large context windows.  
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3.2.3 Stacked Autoencoders  

Autoencoder is another deep learning approach that recently has been used in 

HAR. In [28], Staked Autoencoders (SAE) was used for constructing 

smartphones-based system to enhance the recognition accuracy and decrease 

recognition time. Furthermore, SAE was used in  [29] to extract high level 

features form sensor data and integrate it with classifier training to build a 

jointly optimized framework for activity recognition in a Smart Home 

Environment.  

3.2.4  Convolutional Neural Networks  

The use of convolutional neural networks (CNN) for HAR was introduced in 

[30], but they used a shallow model and only a single accelerometer. Another 

model in [31] used deep CNN with only a single accelerometer. A multi-

sensor recognition framework was developed in [32], where a deep CNN 

model for two accelerometers was proposed. A new multi-channel time series 

architecture of CNN was built in [33]. The architecture proposed in [34] was 

a compact model of shallow convolutional layers applied to the spectral 

domain of inertial signals. This model was optimized for low-power devices, 

but it reintroduced the extraction of handcrafted features by using a 

spectrogram of the input data.  

The successful implementation of CNN for HAR is due to their capability for 

learning powerful and discriminative features, as well as utilizing 

convolutions across 1-D temporal sequence in order to capture local 

dependencies between nearby input samples. To capture local dependencies, 
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CNN use parameter sharing across time—applying the same convolutional 

kernel at each time segment—and local connectivity—neurons receiving 

inputs from small groups of input samples—between adjacent layers [35]. 

However, sharing parameters across time is insufficient for capturing all of the 

correlations between input samples. Additionally, local connectivity limits the 

output to a function of a small number of neighboring input samples. 

3.2.5  Hybrid Models 

CNN and RBM we combined in [36] into a hierarchical architecture to extract 

common bases of motion sensing data. In addition, CNN was combined with 

SAE in [37] , where CNN performs feature extraction and SAE, as a generative 

model, speeds up the training process. 

3.2.6 Recurrent Neural Networks 

Recurrent Neural Networks (RNN) have been used in many sequence 

modeling tasks such as speech recognition [1], language modeling [2], video 

processing[3], and many other sequence labeling tasks [4]. Furthermore, RNN 

showed promising results in video-based activity recognition [38]`[39]. 

However, the use of RNN in sensor-based HAR has not been investigated 

thoroughly. In [40], and integrated model of CNN and unidirectional RNN 

have been built, but it added complexity of combining multiple deep learning 

approaches in a single framework. 
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Chapter 4: Proposed HAR System 

In this work, we propose the use of DRNN for HAR models in order exploit 

their internal memories for capturing the temporal dynamics of activity 

sequences. In contrast to [40], where CNN and RNN were used in a unified 

framework for activity recognition, our models are based only on DRNN, 

meaning we avoid the complexity of combining multiple deep learning 

approaches in a single framework. Additionally, by using only DRNN, our 

models are more flexible for classifying variable-length windows, in contrast 

to the fixed-length windows required by CNN. Bidirectional DRNN have been 

used in many domains, such as speech recognition and text-to-speech 

synthesis [1], [41], but, as far as we know, we are the first to use them in HAR 

models. 

4.1 System Architecture 

A schematic diagram of the proposed HAR system is presented in Figure 4. It 

performs direct end-to-end mapping from raw multi-modal sensor inputs to 

activity label classifications. It classifies the label of an activity performed 

during a specific time window. The input is a discrete sequence of equally 

spaced samples (𝑥1, 𝑥2, … , 𝑥𝑇) , where each data point 𝑥𝑡  is a vector of 

individual samples observed by the sensors at time t. These samples are 

segmented into windows of a maximum time index T then fed to an LSTM-

based DRNN model.  
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Figure 4. Proposed HAR system architecture. The inputs are raw signals 

obtained from multimodal-sensors, segmented into windows of length T and 

fed into LSTM-based DRNN model. The model outputs class prediction 

scores for each timestep, which are then merged via late-fusion and fed into 

the softmax layer to determine class membership probability. 
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The model outputs a sequence of scores representing activity label predictions 

in which there is a label prediction for each time step (𝓎1
𝐿 ,   𝓎2

𝐿 , … , 𝓎𝑇
𝐿 ), where 

𝓎𝑡
𝐿  ∈ 𝑅𝒞 is a vector of scores representing the prediction for a given input 

sample 𝑥𝑡 and 𝒞 is the number of activity classes. There will a score for each 

time-step predicting the type of activity occurring at time 𝑡. The prediction for 

the entire window 𝑇 is obtained by merging the individual scores into a single 

prediction. We have used late-fusion technique in which the classification 

decision from individual samples are combined for the overall prediction of a 

window. Using the “sum rule” in Equation (15) as the fusion scheme yields 

better results than other schemes, which is theoretically justified in [42]. We 

applied a softmax layer over 𝒴 to convert prediction scores into probabilities: 

 𝒴 =  
1

𝑇
∑ 𝓎𝑡

𝐿𝑇
𝑡=1     (15) 

In order to convert the prediction scores into probabilities, we used a softmax 

layer over 𝒴 to determine the estimated class membership probability 𝑝𝑘 for 

a multi-class classification with 𝒞 alternative classes: 

 𝑝𝑘 =
exp (𝑊𝑘 𝒴 + 𝑏𝑘)

∑ exp (𝑊𝑘′𝒴 + 𝑏𝑘′)𝐶
𝑘′=1

  (𝑘 = 1,2, … 𝒞) (16) 

where 𝑊𝑘 and 𝑏𝑘 are the weight and bias parameters for the softmax layer, 

respectively. The final prediction (labeling) for a segment window 𝑇 is chosen 

based on the maximum posterior probability. 
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We have developed architectures for three DRNN models, which are as 

follows: 

4.2 Unidirectional LSTM-Based DRNN Model 

The first model is built using a unidirectional LSTM-based DRNN, as shown 

in Figure 5. Using sufficient number of DRNN layers can result in a very 

powerful model for transforming raw data into a more abstract representation, 

as well as for learning the temporal dependencies in time series data [1]. The 

input is a discrete sequence of equally spaced samples (𝑥1, 𝑥2, … , 𝑥𝑇), which 

are fed into the first layer at time 𝑡 (𝑡 = 1, 2, … , 𝑇). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Unidirectional LSTM-based DRNN model consisting of an input 

layer, several hidden layers, and an output layer. The number of hidden layers 

is a hyperparameter that is tuned during training. 
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First, the hidden state h0
ℓ  and internal state 𝑐0

ℓ of every layer ℓ are initialized 

to zeros. The first layer uses the input sample 𝑥t at time 𝑡, previous hidden 

state ℎ𝑡−1
1 , and previous internal hidden state 𝑐𝑡−1

1  to generate the first layer 

output 𝓎𝑡
1 given its parameter 𝜃1 as follows:  

𝓎𝑡
1, ℎ𝑡

1, 𝑐𝑡
1 = 𝐿𝑆𝑇𝑀1(𝑐𝑡−1

1 , ℎ𝑡−1
1 , 𝑥𝑡;  𝜃1) (17) 

where 𝜃ℓ represents the parameters (𝑏, 𝑈, 𝑊) of the LSTM cells for layer ℓ, 

as shown in Equations (3–6). Any layer ℓ in the upper layers uses the output 

of the lower layer 𝓎𝑡
ℓ−1 as its input: 

𝓎𝑡
ℓ, h𝑡

ℓ, 𝑐𝑡
ℓ = LSTMℓ(c𝑡−1

ℓ , h𝑡−1
ℓ , 𝓎𝑡

ℓ−1;  𝜃ℓ). (18) 

The top layer 𝐿  outputs (𝓎1
𝐿 ,   𝓎2

𝐿 , … , 𝓎𝑇
𝐿 ) , which is a sequence of scores 

representing the predictions at every time step in the window T.  

4.3 Bidirectional LSTM-Based DRNN Model 

The second model architecture is built by using a bidirectional LSTM-based 

DRNN, as shown in Figure 6. It includes two parallel LSTM tracks: forward 

and backward loops for exploiting context from the past and future of a 

specific time step in order to predict its label [43]. In the first layer, the forward 

track (𝐿𝑆𝑇𝑀𝑓1)  reads the input window 𝑇  from left to right, whereas the 

backward track (𝐿𝑆𝑇𝑀𝑏1) reads the input from right to left according to: 

𝓎𝑡
𝑓1

, ℎ𝑡
𝑓1

, 𝑐𝑡
𝑓1

= 𝐿𝑆𝑇𝑀𝑓1(𝑐𝑡−1
𝑓1

, ℎ𝑡−1
𝑓1

, 𝑥𝑡;  𝑊𝑓1) (19) 

𝓎𝑡
𝑏1, ℎ𝑡

𝑏1, 𝑐𝑡
𝑏1 = 𝐿𝑆𝑇𝑀𝑏1(𝑐𝑡−1

𝑏1 , ℎ𝑡−1
𝑏1 , 𝑥𝑡;  𝑊𝑏1) (20) 
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The top layer 𝐿 outputs a sequence of scores at each time step for both forward 

LSTM (𝓎1
𝑓𝐿

,   𝓎2
𝑓𝐿

, … , 𝓎𝑇
𝑓𝐿

)  and backward LSTM (𝓎1
𝑏𝐿 ,   𝓎2

𝑏𝐿, … , 𝓎𝑇
𝑏𝐿) . 

These scores are then combined into a single vector 𝒴 ∈ 𝑅𝒞  representing 

classes prediction for the window segment T. The late-fusion in this case will 

differ from that used in the unidirectional DRNN, Equation (15), because there 

are two outputs resulting from the forward and backward tracks, which are 

combined as follows: 

𝒴 =  
1

𝑇
∑ (𝓎𝑡

𝑓𝐿
+ 𝓎𝑡

𝑏𝐿)𝑇
𝑡=1   (21) 

 

 

 

 

 

 

 

 

 

Figure 6. Bidirectional LSTM-based DRNN model consisting of an input 

layer, multiple hidden layers, and an output layer. Every layer has a forward 

𝐿𝑆𝑇𝑀𝑓ℓ and a backward 𝐿𝑆𝑇𝑀𝑏ℓ track, and the number of hidden layers is a 

hyperparameter that is tuned during training. 
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4.4 Cascaded Bidirectional and Unidirectional LSTM-based 

DRNN Model 

The third model architecture, shown in Figure 7, is motivated by [44]. It is a 

cascaded structure, in which the first layer is a bidirectional RNN and the 

upper layers are unidirectional. The first layer has a forward LSTM track 

𝐿𝑆𝑇𝑀𝑓1 that generates an output (𝓎1
𝑓1

,   𝓎2
𝑓1

, … , 𝓎𝑇
𝑓1

) and a backward LSTM 

track 𝐿𝑆𝑇𝑀𝑏1 that generates an output (𝓎1
𝑏1,   𝓎2

𝑏1, … , 𝓎𝑇
𝑏1), according to: 

𝓎𝑡
𝑓1

, ℎ𝑡
𝑓1

, 𝑐𝑡
𝑓1

= 𝐿𝑆𝑇𝑀𝑓1(𝑐𝑡−1
𝑓1

, ℎ𝑡−1
𝑓1

, 𝑥𝑡;  𝑊𝑓1) (22) 

𝓎𝑡
𝑏1, ℎ𝑡

𝑏1, 𝑐𝑡
𝑏1 = 𝐿𝑆𝑇𝑀𝑏1(𝑐𝑡−1

𝑏1 , ℎ𝑡−1
𝑏1 , 𝑥𝑡;  𝑊𝑏1) (23) 

These two types of outputs are concatenated to form a new output 

(𝓎1
1,   𝓎2

1, … , 𝓎𝑇
1 ), which is fed into the second unidirectional layer 

𝓎𝑡
1 = 𝓎𝑡

𝑓1
+ 𝓎𝑇−𝑡+1

𝑏1  (24) 

The second layer only has one LSTM track (forward), which uses 𝓎𝑡
1 as its 

input according to: 

𝓎𝑡
2, h𝑡

2, 𝑐𝑡
2 = LSTM2(c𝑡−1

2 , h𝑡−1
2 , 𝓎𝑡

1;  𝜃2). (25) 

The upper layers uses the same functionality as the unidirectional model: 

𝓎𝑡
ℓ, h𝑡

ℓ, 𝑐𝑡
ℓ = LSTMℓ(c𝑡−1

ℓ , h𝑡−1
ℓ , 𝓎𝑡

ℓ−1;  𝜃ℓ). (26) 

The top layer 𝐿  outputs (𝓎1
𝐿 ,   𝓎2

𝐿 , … , 𝓎𝑇
𝐿 ) , which is a sequence of scores 

representing the predictions at every time step in the window T.  
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Figure 7. Cascaded bidirectional and unidirectional LSTM-based DRNN 

model. The first layer is bidirectional, whereas the upper layers are 

unidirectional. The number of hidden unidirectional layers is a hyperparameter 

that is tuned during training. 
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Chapter 5: Experimental Data 

In order to train and evaluate the proposed models, we considered five public 

benchmark datasets for HAR. The datasets contain diverse movement data, 

captured by on-body sensors. They contain various activities performed in 

different environments and are used to validate the applicability and 

generalization of our models for a large variety of activity recognition tasks. 

Table 1 summarizes the experimental datasets and the following are brief 

descriptions of them:  

a) UCI-HAD [45]: Dataset for activities of daily living (ADL) recorded by 

using a waist-mounted smartphone with an embedded 3-axis 

accelerometer, gyroscope, and magnetometer. All nine channels from the 

3-axis sensors are used as inputs for our DRNN model at every time step. 

This dataset contains only six classes: walking, ascending stairs, 

descending stairs, sitting, standing, and laying. 

b) USC-HAD [46]: Dataset collected by using a high performance IMU (3D 

accelerometer and gyroscope) sensor positioned on volunteers’ front right 

hips. The dataset contains 12 basic human activities: walking forward, 

walking left, walking right, walking upstairs, walking downstairs, running 

forward, jumping up, sitting, standing, sleeping, in elevator up, and in 

elevator down. We considered 11 classes by combining the last two 

activities into a single “in elevator” activity. The reason for this 

combination is that the model is unable to differentiate between the two 

classes using only a single IMU sensor. Additional barometer readings are 
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required to determine height changes in an elevator and discriminate 

between the two classes (up or down in elevator).  

c) Opportunity [47]: Dataset comprised of ADL recorded in a sensor-rich 

environment. We consider only recordings from on-body sensors, which 

are seven IMUs and 12 3D-accelerometers placed on various body parts, 

as shown in Figure 8. There are 18 activity classes: opening and closing 

two types of doors, opening and closing three drawers at different heights, 

opening and closing a fridge, opening and closing a dishwasher, cleaning 

a table, drinking from a cup, toggling a switch, and a null-class for any 

non-relevant actions. 

 

 

 

 

 

 

 

 

Figure 8.  On-body sensors placement in Opportunity dataset 
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d) Daphnet FOG [48]: This dataset corresponds to a the medical application 

of activity recognition in gait analysis of patients with Parkinson’s disease 

(PD). The dataset contains movement data from participants who suffer 

from a typical motor complication in PD and exhibit freezing of gait 

(FOG) symptoms. Three 3D-accelerometers were used to record the 

movement and they were attached to the shank, thigh, and lower back of 

the patients. Two classes (freeze and normal) were considered depending 

on whether or not the gait of a patient was frozen when the sample was 

recorded. We used this dataset to train our model to detect FOG episodes 

in PD patients and prove the suitability of our model for gait analysis using 

only wearable sensors. 

e) Skoda [49]: Dataset containing activities of an employee in a car 

maintenance scenario. We consider recordings from a single 3D 

accelerometer, which is placed on the right hand of an employee. The 

dataset contains 11 activity classes: writing on a notepad, opening hood, 

closing hood, checking gaps on front door, opening left front door, closing 

left front door, closing both left doors, checking trunk gaps, opening and 

closing trunk, and a null-class for any non-relevant actions. 
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Table 1. Summary of human activity datasets used to evaluate the proposed deep learning models. Training 

window length indicates the number of samples in a window that we found to yield the best results for each 

dataset. Each dataset was divided into 80% for training and 20% for testing  

Dataset 
# of 

classes 
Sensors # of subjects 

Sampling 

rate 

Training 

window 

length 

# of 

training 

examples 

# of testing 

examples 

UCI-HAD 

[45] 
6 

3D Acc., Gyro., and 

Magn. of a 

smartphone 

30 50 Hz 128 11,988 2,997 

USC-HAD 

[46] 
12 3D Acc. & Gyro 

14 

(5 sessions) 
100 Hz 128 44,000 11,000 

Opportunity 

[47] 
18 

7 IMU sensors (3D 

ACC, Gyro & Mag.) 

& 12 Acc. 

4 

(5 sessions) 
30 Hz 24 55,576 13,894 

Daphnet 

FOG [48] 
2 3 3D Acc.  10 64 Hz 32 57,012 14,253 

Skoda [49]  11 3D Acc. 
1 

(19 sessions) 
98 Hz 128 4411 1102 
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Chapter 6: Experimental Results and Discussion 

6.1 Training Proposed Models 

We trained our DRNN models on each dataset using 80% of the data for 

training and 20% for testing. The weights (parameters) of the models were 

initialized randomly and then updated to minimize a cost function ℒ. We used 

the mean cross entropy between the ground truth labels and the predicted 

output labels as the cost function. The ground truth labels are given in the 

datasets and indicate the true classes (labels) for the segmented windows. They 

are provided as a one-hot vector 𝒪 ∈ 𝑅𝒞 with a value 𝑜𝑘 associated with each 

class 𝑘. The predicted label 𝒪̂ ∈ 𝑅𝒞 contains the probability of every class 𝑝𝑘 

generated by our model: 

ℒ(𝑂, 𝑂̂) =  − ∑ 𝑜𝑘  log 𝑝𝑘
𝐶
𝑘=1   

(27) 

We used an optimization algorithm called Adam that minimizes the cost 

function by backpropagating its gradient and updating model parameters [50]. 

Training was conducted on a GPU-based TensorFlow framework in order to 

utilize the parallel computation power of a GPU [51]. The dropout technique 

was used to avoid overfitting in our model [52]. Although dropout is typically 

applied to all nodes in a network, we followed the convention of applying 

dropout to the connections between layers (not on recurrent-connections or 

intra-cell connections). The probability of dropping a node during a training 

iteration is determined by the dropout probability 𝓅 , which is a 

hyperparameter tuned during training and represents the percentage of units to 

drop. Adopting dropout regularization technique led to a significant 

improvement in performance by preventing overfitting.  
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During training, the datasets were segmented with different window lengths, 

as outlined in Table 1. The optimal window length of a dataset depends on the 

sampling rate and the type of activities performed. We tested various lengths 

by “trial-and-error” method, then chose the window length that gave better 

performance results. Training was performed using the raw data without any 

further data preprocessing or intermediate intervention. The training and 

testing are generally performed using fixed-length windows, but the inputs of 

models may be using variable-length windows in the real-time data acquisition 

scenarios. In real-time application of HAR, data are captured over the course 

of time and the delay in DRNN is not fixed. Instead, the network can emit the 

corresponding label for a variable-length input segment. This is in contrast to 

other methods, such as CNN, in which the network must wait until a given 

fixed-length input segment is complete, before emitting the corresponding 

label. 

Figure 9 to 13 present recognition accuracy and cross-entropy cost of training 

and testing processes for the proposed models using five different datasets. 

The gaps between training and testing accuracies, as well as the gaps between 

training and testing costs are small. This indicates that the dropout technique 

is very effective at forcing the model to generalize well and be resilient to 

overfitting. 
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                               (a)                                                                     (b) 

Figure 9. Accuracy and cost of the unidirectional DRNN model for UCI-HAD 

dataset over training epochs: (a) training and testing accuracies; (b) cross-entropy 

costs between ground truth labels and predicted labels for both training and testing. 

 

 

 

 

 

 

                               (a)                                                                      (b) 

Figure 10. Accuracy and cost of the unidirectional DRNN model for USC-HAD 

dataset over training epochs: (a) training and testing accuracies; (b) cross-entropy 

costs for both training and testing. 
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                               (a)                                                                    (b) 

Figure 11. F-score and cost of the bidirectional DRNN model for Opportunity dataset 

over training epochs: (a) training and testing F-scores; (b) cross-entropy costs 

between ground truth labels and predicted labels for both training and testing. 

 

 

 

 

 

 

 

 
 

                               (a)                                                                    (b) 

Figure 12. F-score and cost of the cascaded DRNN model for Daphnet FOG dataset 

over training epochs: (a) training and testing F-scores; (b) cross-entropy costs 

between ground truth labels and predicted labels for both training and testing. 
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                               (a)                                                                     (b) 

Figure 13. Accuracy and cost of the cascaded DRNN model for Skoda dataset over 

training epochs: (a) training and testing accuracies; (b) cross-entropy costs between 

ground truth labels and predicted labels for both training and testing. 

6.2 Performance Results 

The performance results of our proposed models are presented in this section. 

The results are compared to other previously introduced methods, which are 

tested on the same datasets.  

a) UCI-HAD 

For the UCI-HAD dataset, we found that the unidirectional DRNN model with 

four layers yields best performance results in terms of per-class precision and 

recall, as shown in Figure 14a. The overall classification accuracy is 96.7%, 

outperforming other methods, such as CNN [53], support vector machines 

(SVM) [45], and sequential extreme learning machine (ELM) [54]. Figure 14b 
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presents a chart of the observed accuracy from our model in comparison with 

the accuracies achieved by other methods. 

 

 

 

 

 

 

                                                       (a) 

 

 

 

 

 

 

 

(b) 

Figure 14. Performance results of the proposed unidirectional DRNN model for the 

UCI-HAD dataset: (a) Confusion matrix for the test set containing the activity 

recognition results. The rows represent the true labels and the columns represent the 

model classification results; (b) Comparative accuracy of the proposed model against 

other methods. 



- 33 - 
 

b) USC-HAD 

We found that the unidirectional DRNN model with four layers yields the best 

results for the USC-HAD dataset. Figure 15a presents the classification results 

for the test set in the form of a confusion matrix, along with the per-class recall 

and precision results. The proposed method achieved better overall accuracy 

than other methods, such as CNN [53], least squares support vector machines 

(LS-SVM) [55], and random forest [56], as shown in Figure 15b. 
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(b) 
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Figure 15. Performance results of the proposed unidirectional DRNN model for 

USC-HAD dataset: (a) Confusion matrix for the test set displaying activity 

recognition results with per-class precision and recall; (b) Comparative accuracy of 

proposed model against other methods.    

c) Opportunity 

The Opportunity dataset is very complex and contains a wide range of 

activities. Therefore, the bidirectional DRNN model with three layers yields 

the best performance results. The confusion matrix in Figure 16a summarizes 

the classification results of the proposed model for the test set, along with the 

per-class precision and recall results. The proposed method outperforms other 

methods, such as those based on deep believe networks (DBN) [33], SVM 

[33], and CNN [40]. It also outperformed the state-of-the-art method, which 

is a combination of CNN and unidirectional RNN [40], for the opportunity 

dataset. Figure 16b presents a performance comparison between the F1 score 

of the proposed method and those reported by other methods. We used the F1 

score as a basis for comparison because the Opportunity dataset is imbalanced, 

manifested by the dominance of the Null class.  

d) Daphnet FOG 

For the Daphnet FOG dataset, we found that the cascaded DRNN model with 

one bidirectional layer and two upper unidirectional layers yields the best 

results. Figure 17a summarizes the classification results for the test set. The 

low values of recall and precision for the “Freeze” class are caused by the 

dominance of the “Normal” class. However, our proposed method still 

outperforms  other methods, such as k-nearest neighbors (KNN) [57] and CNN 

[58], in terms of F1 score, as shown in Figure 17b. 
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(a) 

 

 

 

 

 

 

 

 

(b) 

Figure 16. Performance results of the proposed bidirectional DRNN model for the 

Opportunity dataset: (a) Confusion matrix for the test set as well as per-class 

precision and recall results; (b) Comparative F1 score of proposed model against 

other methods. 
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(b) 

Figure 17. Performance results of the proposed cascaded DRNN model for the 

Daphnet FOG dataset: (a) Confusion matrix for the test set, along with per-class 

precision and recall; (b) F1 score of the proposed method in comparison with other 

methods.  

e) Skoda 

We found that the cascaded DRNN model yields the best results for the Skoda 

dataset. The model is built using one bidirectional layer and two upper 

unidirectional layers. Figure 18a presents the classification results for the test 

set in the form of a confusion matrix, along with the per-class recall and 

precision results. The proposed method results in an overall accuracy of 
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92.6%, outperforming other methods such as HMMs [49], DBNs [27], and 

CNN [34], as shown in Figure 18b. 
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(b) 

Figure 18. Performance results of the proposed cascaded DRNN model for the Skoda 

dataset: (a) Confusion matrix for the test set as well as per-class precision and recall 

results; (b) Comparative accuracy of proposed model against other methods. 
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7.3 Discussion 

The performance results of the proposed models clearly demonstrate that 

DRNN are very effective for HAR. All of the architectures performed very 

well on all of the datasets. These datasets are diverse, which proves that our 

models are effective for a broad range of activity recognition tasks. The 

unidirectional DRNN model yielded the best results for the UCI-HAD and 

USC-HAD datasets, the bidirectional DRNN model gave better results for the 

Opportunity dataset, and the cascaded DRNN model performed better on the 

Daphnet FOG and Skoda dataset. Table 2 contains a performance summary 

for the four datasets.  

There are two main reasons for the superb performance of the proposed 

models for HAR tasks [59]. First, including sufficient deep layers enabled the 

models to extract effective discriminative features. These features are 

exploited to distinguish between classified activities and scale up for more 

complex behavior recognitions tasks. Second, employing DRNN to capture 

sequential and time dependencies between input data samples provided a 

significant improvement in performance compared to other methods. 
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Table 2. Performance summary for the proposed DRNN on five diverse 

datasets. 

Model Dataset 
Overall 

Accuracy 

Average 

Precision 

Average 

Recall 

F1 

score 

Unidirectional 

DRNN 
UCI-HAD 96.7%. 96.8%, 96.7% 0.96 

Unidirectional 

DRNN 
USC-HAD 97.8% 97.4.0% 97.4% 0.97 

Bidirectional 

DRNN 
Opportunity 92.5% 86.7% 83.5% 0.92 

Cascaded  

DRNN 
Daphnet FOG 94.1% 84.7% 78.9% 0.93 

Cascaded  

DRNN 
Skoda 92.6% 93.0% 92.6% 0.92 
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Chapter 7: Conclusion 

In this thesis, we have presented a novel HAR system that performs direct end-

to-end mapping from raw sensors data to activity label classifications. The 

system is built using LSTM-based DRNN with three viable architectures: 

unidirectional, bidirectional, and cascaded DRNN models. The proposed 

models are based only on DRNN, meaning we avoid the complexity of 

combining multiple deep learning approaches in a single framework. 

Additionally, by using only DRNN, our models are more flexible for 

classifying variable-length windows, in contrast to the fixed-length windows 

required by CNN. 

We empirically evaluated our models by conducting experiments on five 

miscellaneous benchmark datasets. Experimental results revealed that the 

proposed models outperform other state-of-the-art methods. The reason for 

this improvement in performance is that our models are able to extract more 

discriminative features by using deep layers in a task-dependent and end-to-

end fashion. Furthermore, our models are able to capture the temporal 

dependencies between input samples in activity sequences by exploiting 

DRNN functionality. 

Future research in HAR based on the work presented in this thesis includes 

experimentation on large-scale and complex human activities, as well as 

exploring transfer learning between diverse datasets. Investigating resource 

efficient implementation of a DRNN for low-power devices is also a 

promising future research direction. In addition, further work would focus 

more on extracting qualitative information assessing the quality of an activity. 
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