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Adopting deep learning methods for human activity recognition has been 

effective in extracting discriminative features from raw input sequences 

acquired from body-worn sensors. Although human movements are encoded 

in a sequence of successive samples in time, typical machine learning 

methods perform recognition tasks without exploiting the temporal 

correlations between input data samples. Convolutional neural networks 

(CNN) address this issue by using convolutions across a one-dimensional 

temporal sequence to capture dependencies among input data. However, the 

size of convolutional kernels restricts the captured range of dependencies 

between data samples. As a result, typical models are unadaptable to a wide 

range of activity-recognition configurations and require fixed-length input 

windows. In this thesis, we propose the use of deep recurrent neural networks 

(DRNN) for building recognition models that are capable of capturing long-
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range dependencies in variable-length input sequences. We present 

unidirectional, bidirectional, and cascaded architectures based on long short-

term memory (LSTM) DRNN and evaluate their effectiveness on 

miscellaneous benchmark datasets. Experimental results show that our 

proposed models outperform methods employing conventional machine 

learning, such as support vector machines (SVM) and k-nearest neighbors 

(KNN). Additionally, the proposed models yield better performance than 

other deep learning techniques, such as deep believe networks (DBN) and 

CNN.  
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Chapter 1: Introduction 

1.1  Motivation 

Human activity recognition (HAR) has recently attracted increased attention 

from both researchers and industry with the goal of advancing ubiquitous 

computing and human computer interactions. It has many real-world 

applications, ranging from healthcare to personal fitness, gaming, tactical 

military applications, and indoor navigation. There are two major types of 

HAR: systems that use wearable sensors and systems that use external devices, 

such as cameras and wireless RF modules. In sensor-based HAR, wearable 

sensors are attached to a human body and the human activity is translated into 

specific sensor signal patterns that can be segmented and identified.  

The application of deep learning for HAR has led to significant enhancements 

in recognition accuracy by overcoming many of the obstacles encountered by 

traditional machine learning methods. It provides a data-driven approach for 

learning efficient discriminative features from raw data, resulting in a 

hierarchy from low-level features to high-level abstractions. The strength of 

deep learning lies in its ability to automatically extract features in a task 

dependent manner. It avoids reliance on heuristic hand-crafted features and 

scales better for more complex behavior-recognition tasks. 

The widespread use and availability of sensing technologies is generating an 

ever-growing amount of data, which along with enhanced computation power 

have contributed to more feasible applications of deep learning methods. 

These methods can be utilized to extract valuable contextual information from 
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physical activities in an unconstrained environment. Furthermore, many 

researchers have employed deep learning approaches to build HAR models in 

an end-to-end fashion, thereby achieving superior performance compared to 

previous conventional methods. This strategy has been effective in handling 

complex human activities and taking advantage of the proliferating data.  

Recently, various deep learning and machine learning methods have been 

adopted for building activity recognition systems. These systems have 

considerably matured and performed with sufficient quality.  However, it is 

always desirable to improve HAR systems more by exploring approaches not 

commonly tried before. 

1.2  Objectives 

The major objective of this research is to study the state-of-art methods used 

in HAR and identify potentials for improvements. We also aim to suggest and 

evaluate novel deep learning methods that can improve the overall accuracy 

and performance of HAR systems. 

1.3  Contributions 

In this thesis, we propose the use of long short-term memory (LSTM)-based 

deep recurrent neural networks (DRNN) to build HAR models. These models 

can classify activities mapped from variable-length input sequences. We 

develop architectures based on deep layers of unidirectional and bidirectional 

RNN, independently, as well as a cascaded architecture progressing from 

bidirectional to unidirectional RNN. These models are then tested on various 

benchmark datasets to validate their performance and generalizability for a 
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Chapter 2: Background 

2.1  Human Activity Recognition System 

HAR system is a system that focuses on the automatic recognition of physical 

activities performed by a subject. The system aims to provide accurate and 

valuable contextual information on people activities and behaviors. There are 

mainly two types of HAR: video-based and Sensor-based. Video-based HAR, 

an active research area in computer vision, analyzes image sequences or 

videos containing human motions for gestures and activities recognition. 

However, video-based HAR suffers from the constrained settings imposed by 

requiring a subject to perfume actions in front of a camera placed at a 

predefined position.  

The focus of this thesis will be on Sensor-based HAR system. This system 

classifies human activities into a predefined set of classes based upon readings 

from wearable sensors placed on a monitored subject. It analyzes an input data, 

which are streams of time-series corresponding to frames of movement data, 

and predicts class labels for each frame.  

The process of building sensor-based HAR pipeline is summarized in four 

steps as shown in figure 1. The first step is to collect data from multiple IMU 

sensors, and preprocess them with various signal-preprocessing techniques to 

remove noise and synchronize sensor measurements. Then segment the 

collected data into contiguous windows through a sliding-window approach. 

The segmentation step enables the system to look at longer segments of data 

rather than evaluating each data point separately. Thirdly, various time-

domain or frequency-domain features are extracted from each window.  These 
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features contains abstraction or reduced representation of the raw data and it 

is crucial to extract discriminative features that clearly separate between 

different activities. Lastly, an activity classifier is built using either machine 

learning or deep learning methods.   
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Figure1. Sensor-based HAR pipeline 

Traditional machine learning methods such as Support Vector Machines 

(SVM) or K-Nearest Neighbor (KNN) were the standard for building HAR 

pipeline until recently. However, these methods rely on handcrafted feature 

extraction, which is a time-consuming heuristic, designed to a specific HAR 

task. This could hinder generalization to different HAR tasks. Fortunately, 

deep learning methods make it possible to perform automatic feature 

extraction by discovering patterns in the data. Recently, various deep learning 

methods have been adopted in HAR such as Artificial Neural Networks 

(ANN), Deep Belief Networks (DBN), Stacked Autoencoders (SAE), 

Convolutional Neural Networks (CNN), or hybrid of these methods. However, 

there have not been many research efforts in embracing Deep Recurrent 

Neural Networks (DRNN) for HAR, an issue addressed by this work. 
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Chapter 3: Related Works 

3.1 Traditional Approaches 

HAR is a key research area the field of pattern recognition and has seen a 

tremendous progress in the last decade. The early work in HAR were in [9], 

but it was primitive and not practical. Decision trees, were utilized for HAR 

in [10],[11], in particular C4.5 and ID3 decision tree classifiers were used. In 

[12],[13], Bayesian Network (BN) and Naïve Bayes (NB) were adopted for 

activity recognition. In addition, K-nearest neighbors, which classify classes 

based upon the most similar class in the training set, were used in [10],[14]. 

The most common traditional method in HAR is SVM, which has been used 

extensively in the past decade such as in [15],[16],[17]. Fuzzy logic is another 

traditional approach used for HAR in [18],[19]. 

HAR has distinct research challenges that need to be addressed. In [20] a 

system was developed based on body-model derived features instead of low 

level signals, to overcome inter-person variability in systems trained for 

several people. These features are person-independent, thus robust to inter-

person variability. Authors in [21] addressed interclass similarity by analyzing 

co-occurring activities and improved recognition rate by careful selection of 

individual features for each activity.  In addition, authors in [22] used 

oversampling technique to overcome class imbalance challenge in pattern 

recognition in which samples of smaller class size are duplicated to equal the 

bigger class size. Furthermore, [23] addressed the challenge of collecting a 

large annotated training data by using semi-supervised techniques to leverage 

sparsely labeled data together with unlabeled data. 
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3.2.3 Stacked Autoencoders  

Autoencoder is another deep learning approach that recently has been used in 

HAR. In [28], Staked Autoencoders (SAE) was used for constructing 

smartphones-based system to enhance the recognition accuracy and decrease 

recognition time. Furthermore, SAE was used in  [29] to extract high level 

features form sensor data and integrate it with classifier training to build a 

jointly optimized framework for activity recognition in a Smart Home 

Environment.  

3.2.4  Convolutional Neural Networks  

The use of convolutional neural networks (CNN) for HAR was introduced in 

[30], but they used a shallow model and only a single accelerometer. Another 

model in [31] used deep CNN with only a single accelerometer. A multi-

sensor recognition framework was developed in [32], where a deep CNN 

model for two accelerometers was proposed. A new multi-channel time series 

architecture of CNN was built in [33]. The architecture proposed in [34] was 

a compact model of shallow convolutional layers applied to the spectral 

domain of inertial signals. This model was optimized for low-power devices, 

but it reintroduced the extraction of handcrafted features by using a 

spectrogram of the input data.  

The successful implementation of CNN for HAR is due to their capability for 

learning powerful and discriminative features, as well as utilizing 

convolutions across 1-D temporal sequence in order to capture local 

dependencies between nearby input samples. To capture local dependencies, 
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Figure 4. Proposed HAR system architecture. The inputs are raw signals 
obtained from multimodal-sensors, segmented into windows of length T and 
fed into LSTM-based DRNN model. The model outputs class prediction 
scores for each timestep, which are then merged via late-fusion and fed into 
the softmax layer to determine class membership probability. 
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Figure 7. Cascaded bidirectional and unidirectional LSTM-based DRNN 

model. The first layer is bidirectional, whereas the upper layers are 

unidirectional. The number of hidden unidirectional layers is a hyperparameter 

that is tuned during training. 
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required to determine height changes in an elevator and discriminate 

between the two classes (up or down in elevator).  

c) Opportunity [47]: Dataset comprised of ADL recorded in a sensor-rich 

environment. We consider only recordings from on-body sensors, which 

are seven IMUs and 12 3D-accelerometers placed on various body parts, 

as shown in Figure 8. There are 18 activity classes: opening and closing 

two types of doors, opening and closing three drawers at different heights, 

opening and closing a fridge, opening and closing a dishwasher, cleaning 

a table, drinking from a cup, toggling a switch, and a null-class for any 

non-relevant actions. 

 

 

 

 

 

 

 

 

Figure 8.  On-body sensors placement in Opportunity dataset 
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Table 1. Summary of human activity datasets used to evaluate the proposed deep learning models. Training 

window length indicates the number of samples in a window that we found to yield the best results for each 

dataset. Each dataset was divided into 80% for training and 20% for testing  

Dataset # of 
classes Sensors # of subjects Sampling 

rate 

Training 
window 
length 

# of 
training 
examples 

# of testing 
examples 

UCI-HAD 
[45] 6 

3D Acc., Gyro., and 
Magn. of a 
smartphone 

30 50 Hz 128 11,988 2,997 

USC-HAD 
[46] 12 3D Acc. & Gyro 14 

(5 sessions) 100 Hz 128 44,000 11,000 

Opportunity 
[47] 18 

7 IMU sensors (3D 
ACC, Gyro & Mag.) 

& 12 Acc. 

4 
(5 sessions) 30 Hz 24 55,576 13,894 

Daphnet 
FOG [48] 2 3 3D Acc.  10 64 Hz 32 57,012 14,253 

Skoda [49]  11 3D Acc. 1 
(19 sessions) 98 Hz 128 4411 1102 
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                               (a)                                                                     (b) 
Figure 9. Accuracy and cost of the unidirectional DRNN model for UCI-HAD 

dataset over training epochs: (a) training and testing accuracies; (b) cross-entropy 

costs between ground truth labels and predicted labels for both training and testing. 

 

 

 
 

 

 

                               (a)                                                                      (b) 
Figure 10. Accuracy and cost of the unidirectional DRNN model for USC-HAD 

dataset over training epochs: (a) training and testing accuracies; (b) cross-entropy 

costs for both training and testing. 
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                               (a)                                                                    (b) 
Figure 11. F-score and cost of the bidirectional DRNN model for Opportunity dataset 

over training epochs: (a) training and testing F-scores; (b) cross-entropy costs 

between ground truth labels and predicted labels for both training and testing. 

 

 

 

 

 

 

 
 
 

                               (a)                                                                    (b) 
Figure 12. F-score and cost of the cascaded DRNN model for Daphnet FOG dataset 

over training epochs: (a) training and testing F-scores; (b) cross-entropy costs 

between ground truth labels and predicted labels for both training and testing. 
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                               (a)                                                                     (b) 
Figure 13. Accuracy and cost of the cascaded DRNN model for Skoda dataset over 

training epochs: (a) training and testing accuracies; (b) cross-entropy costs between 

ground truth labels and predicted labels for both training and testing. 

6.2 Performance Results 

The performance results of our proposed models are presented in this section. 

The results are compared to other previously introduced methods, which are 

tested on the same datasets.  

a) UCI-HAD 

For the UCI-HAD dataset, we found that the unidirectional DRNN model with 

four layers yields best performance results in terms of per-class precision and 

recall, as shown in Figure 14a. The overall classification accuracy is 96.7%, 

outperforming other methods, such as CNN [53], support vector machines 

(SVM) [45], and sequential extreme learning machine (ELM) [54]. Figure 14b 
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presents a chart of the observed accuracy from our model in comparison with 

the accuracies achieved by other methods. 

 

 

 

 

 
 

                                                       (a) 

 

 

 

 

 

 

 

(b) 
Figure 14. Performance results of the proposed unidirectional DRNN model for the 

UCI-HAD dataset: (a) Confusion matrix for the test set containing the activity 

recognition results. The rows represent the true labels and the columns represent the 

model classification results; (b) Comparative accuracy of the proposed model against 

other methods. 
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b) USC-HAD 

We found that the unidirectional DRNN model with four layers yields the best 

results for the USC-HAD dataset. Figure 15a presents the classification results 

for the test set in the form of a confusion matrix, along with the per-class recall 

and precision results. The proposed method achieved better overall accuracy 

than other methods, such as CNN [53], least squares support vector machines 

(LS-SVM) [55], and random forest [56], as shown in Figure 15b. 
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