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INTRODUCTION

Gastrointestinal (GI) smooth muscles show phasic spontaneous
contractions that were mediated by electrical slow waves [1]. Interstitial
cells of Cajal (ICC) are pacemaker cells that generate and propagate slow
waves by producing spontaneous electrical activity that called as
pacemaker potentials [2-4]. ICC are formed the network each other and
with smooth muscle via gap junctions in GI tract. Thus, pacemaker
potentials transmitted to smooth muscle through gap junctions followed
evoke slow waves [5, 6]. The pacemaking events are due to coupling the
release of intracellular Ca®>" ([Ca’?'];) from endoplasmic reticulum with
the periodic activation of membrane pacemaker ion channels [7,8].
Although non-selective cation channels (NSCCs) or Ca®’-activated CI
channels are suggested as pacemaker channels [9-10], Anoctamin-
1(ANO1, Ca®"-activated CI' channels) are recognized as a major
pacemaker channels in now [11,12]. The evidences as pacemaker
channels of ANOI are based on absence of slow waves in ANOI1
knockout mice [13] and inhibition of Ca®*-activated CI currents by Ca*'-

activated CI channel blockers in ICC [14]. However, it has been known
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that ANO1 knockout mice have low survival rates [14]. Besides, the used
Ca’’-activated CI channel blockers like as nifulmic acid and 4,40-
diisothiocyanatostilbene-2,20-disulfonic acid (DIDS) are not specific
drugs on Ca®'-activated CI channels. DIDS inhibited NSCCs in small
intestinal ICC [9] and vascular smooth muscle [15], inhibited L-type Ca**
channels and delayed rectifier K" channels in canine colonic smooth
muscle cells [16]. Nifulmic acid also inhibited NSCCs in small intestinal
ICC [9], pancreatic cells [17], and hyperpolarization-activated cyclic
nucleotide-gated (HCN) channels in neuronal cells [18]. Recently the
new selective inhibitors of ANO1 Ca’*-activated CI" channels, T16An-
A01, CaCCinn-A01 and MONNA are reported and used in diverse tissues
[19-21]. But the effects of new selective inhibitors of ANO1 Ca*'-
activated CI” channels on pacemaker potentials in ICC were not reported
until now. Moreover, the functional study of ANO1 in ICC was almost
carried out in small intestine. Therefore, the functional roles of ANOI1
Ca’"-activated CI" channels in generating pacemaker activity were
investigated by using new selective ANOI1 blockers in cultured small

intestinal and colonic ICC.
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MATERIALS AND METHODS

Preparation of cells

The protocols and animal care used in these experiments were in
accordance with the guiding principles approved by the ethics committee
in Chosun University and the National Institutes of Health Guide, South
Korea for the Care and Use of Laboratory Animals. Mice had free access
to water, and they were fed a standard mouse diet until the day of
experimentation. Balb/C mice (5-8 days old) of either sex were
anesthetized with ether and euthanized by cervical dislocation. The small
intestine from 1 cm below the pyloric ring to the cecum was removed
from each mouse and opened along the mesenteric border. The colon
from below the cecum to the rectum was removed, and the middle
portion of the colon was used. The colon was opened along the
mesenteric border. The luminal contents were washed with Krebs—Ringer
bicarbonate solution. Tissues were pinned to the base of a Sylgard dish
and the mucosa was removed by dissection. Small strips of the colonic

muscle were equilibrated in Ca®’-free Hank’s solution for 30 min. Cells

3
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were dispersed with an enzyme solution comprising 1.3 mg/ml
collagenase (Worthington Biochemical Co, Lakewood, NJ, USA), 2
mg/ml bovine serum albumin (Sigma, St. Louis, MO, USA), 2 mg/ml
trypsin inhibitor (Sigma), and 0.27 mg/ml ATP. Cells were plated onto
sterile glass coverslips coated with murine collagen (2.5 pg/ml
Falcon/BD) in 35-mm culture dishes. Cells were cultured in smooth
muscle growth medium (SMGM; Clonetics Corp., San Diego, CA, USA)
supplemented with 2% antibiotics/antimycotics (Gibco, Grand Island, NY,

USA) and 5 ng/ml urine stem cell factor (SCF, Sigma) at 37°C/5% COa.

Patch clamp recording

The patch-clamp technique was performed using ICC that showed the
network-like structures in culture (2 — 3 days). The whole-cell
configuration of the patch clamp technique was used to record membrane
potentials (current clamp). Membrane potentials were amplified by
Axopatch 200B (Axon Instruments, Foster, CA, USA). Command pulse
was applied using an IBM-compatible personal computer and pClamp
software (version 9.2; Axon Instruments). The data were filtered at 5 kHz

and displayed on a computer monitor. Results were analyzed using
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pClamp and GraphPad Prism software (version 2.01, GraphPad Software
Inc, San Diego, CA, USA). All experiments pertaining to patch clamp

were performed at 30°C.

Reagents

Cells were bathed in a buffer comprising 5 mM KCI, 135 mM NacCl, 2
mM CaCl, 10 mM glucose, 1.2 mM, and 10 mM HEPES, with the pH
adjusted to 7.2 using Tris. The pipette solution was composed of 140 mM
KCIL, 5 mM MgCly, 2.7 mM K>ATP, 0.1 mM Na,GTP, 2.5 mM creatine
phosphate disodium, 5 mM HEPES, and 0.1 mM EGTA, adjusted to pH
7.2 with Tris. The drugs used were T16Aim-A01 (2-[(5-ethyl-1,6-
dihydro-4-methyl-6-0x0-2-pyrimidinyl) thio]-N-[4-(4-methoxyphenyl)-2-
thiazolyl]acetamide), CaCCinn-AO1 (6-(1,1-dimethylethyl)-2-[(2-furanyl-
carbonyl) amino]-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid)
and MONNA (N-((4-methoxy)-2-naphthyl)-5-nitroanthranilic acid)
which were purchased from Tocris (Abingdon, UK). Nifulmic acid, DIDS,

mibefradil, and NiCl, were purchased Sigma Chemicals.

Statistical analysis
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Data are expressed as the means + standard errors (SE). Differences in
the data were evaluated using the Student ¢ test. A P-value < 0.05 was
considered statistically significant. The n values reported in the text refer

to the number of cells used in the patch-clamp experiments.
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RESULTS

Pacemaker potentials of ICC

Under current clamp mode (/=0), periodic spontaneous pacemaker
potentials were recorded in cultured small intestinal and colonic ICC (Fig.
1A and B). The pacemaker potentials of small intestinal ICC showed
more regularity and high frequency than those of colonic ICC. In contrast,
the amplitude of pacemaker potentials was bigger in colonic ICC than in
small intestinal ICC. Under control conditions, the resting membrane
potential was —61.7 + 4.1 mV, and the amplitude of pacemaker potential
was 25.4 + 3.9 mV, and the pacemaker potential frequency was 68 + 5.7
cycles/ 5 min in small intestinal ICC (n = 38). In colonic ICC, the resting
membrane potential was —56.7 + 6.3 mV, and the amplitude of pacemaker
potential was 36.6 = 6.4 mV, and the pacemaker potential frequency was

14.2 + 3.3 cycles/5 min (n = 18, Fig. 2A-C).

Effects of ANOI channel inhibitors in ICC

To determine whether specific ANO1 channel inhibitors can modulate
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pacemaker activities of ICC, the pacemaker potentials were recorded and
tested with CaCCimn-AO1, T16Ainn-AO1, and MONNA. Under control
conditions at / = 0, CaCCinn-AO01 (10 uM, n =7), T16Aim-A01 (10 uM, n
= 8), and MONNA (10 uM, n = 7) all had no effects on the generation of
pacemaker potentials in small intestinal ICC (Fig. 3A-C). The values of
the resting membrane potential, amplitude, and frequency of pacemaker
potential by ANOI1 channel inhibitors were not significantly different
from control values in the absence of ANO1 channel inhibitors (Fig. 4A
and B). However, CaCCinn-AO1L (5 uM, n = 7), T16Aimn-A01 (5 uM, n =
7), and MONNA (5 uM, n = 8) all induced hyperpolarization of the
resting membrane potentials and inhibited the generation of pacemaker
potentials in colonic ICC (Fig. 5A-C). The values of the resting
membrane potential and frequency of pacemaker potential by ANOI
blockers were significantly different from control values in the absence

of ANOI blockers (Fig. 6A and B).

Effects of nifulmic acid and DIDS in ICC
To compare effects of classical nonspecific Ca®*-activated CI- channel

blockers with ANO1 blockers, nifulmic acid and DIDS were tested on the
8
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pacemaker potentials of ICC. Under control conditions at / = 0, nifulmic
acid (10 puM, n = 8) and DIDS (10 uM, n = 7) had no effects on the
generation of pacemaker potentials in small intestinal ICC (Fig. 7A and
B). The values of the resting membrane potential, amplitude, and
frequency of pacemaker potential by DIDS were summarized in Figure
8A and B). However, in colonic ICC, nifulmic acid (10 uM, n = 8) and
DIDS (10 uM, n = 8) markedly inhibited the generation of pacemaker
potentials (Fig. 9A and B). The values of the resting membrane potential
and frequency of pacemaker potential by nifulmic acid and DIDS were
significantly different from control values in the absence of nifulmic acid

and DIDS in colonic ICC (Fig. 10A and B).

Effects of T-type Ca** channel blockers on pacemaker activities of ICC

To evaluate whether T-type Ca** channels are involve in generating
pacemaker activities, T-type Ca*" channels blockers were tested on the
pacemaker potentials in both small intestinal and colonic ICC. During the
record of pacemaker potentials of ICC, mibefradil and low concentration
of Ni**, T-type Ca®" channel blockers, were treated. Under control
conditions at / = 0, mibefradil (10 uM, n = 8) and Ni** (30 uM, n = 7)

9
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had no effects on the generation of pacemaker potentials in small
intestinal ICC (Fig. 11A and B). The values of the resting membrane
potential, amplitude, and frequency of pacemaker potential by mibefradil
and Ni** in small intestinal ICC were summarized in Figure 12A and B.
On the contrary, low concentrations of mibefradil (5 uM, n = 7) and Ni**
(30 uM, n = 7) inhibited the generation of pacemaker potentials in
colonic ICC (Fig. 13A and B). The values of the resting membrane
potential, amplitude, and frequency of pacemaker potential by mibefradil

and Ni** were summarized in Figure 14A and B.

10
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Figure 1. Pacemaker potentials recorded in cultured interstitial cells of
Cajal (ICC) from mouse. Spontaneous pacemaker potentials recorded in

current clamping mode in small intestinal ICC (A) and colonic ICC (B).
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T16Aim-A01 and (C) MONNA at 10 uM had no effects on pacemaker

potentials in small intestinal ICC, respectively.
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Figure 5. Effects of ANOI1 Ca*'-activated CI" channel inhibitors on
pacemaker potentials in colonic ICC. (A) CaCCim-A01, (B) T16A-inh-
A01 and (C) MONNA at 5 uM all blocked the generation of pacemaker

potentials in colonic ICC.
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reduced frequency (B) of pacemaker potentials. Bars represent the means
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Figure 13. Effects of T-type Ca’" channel blockers on pacemaker
potentials in colonic ICC. (A) Mibefradil (5 uM) and (B) NiCl, (30 uM)

blocked the generation of pacemaker potentials in colonic ICC.
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DISCUSSION

Gastrointestinal ICC are spontaneous active cells that determine the
smooth muscle contractions by generating electrical pacemaker potentials.
A variety of motility disorders are related with loss of ICC functions and
reduction of ICC numbers [22-25]. Thus, understanding of underlying
pacemaking mechanism of ICC is very important in GI motility research.
Many studies candidate non-selective cation channel (NSCCs) or Ca*'-
activated Cl° channels as pacemaker ion channel in ICC [9-10].
Nevertheless, it is still controversial which ion channel is responsible for

the initiation of pacemaking activity in ICC.

Anoctaminel (ANO1) are Ca®*-activated CI channels that distributed in
diverse tissues and performed various physiological functions like as
epithelial secretion, smooth muscle contraction, regulation of neuronal
and cardiac excitability [26-28]. ANOI are selective marker of ICC in GI
tract and involved in regulating proliferation of ICC [29, 30]. In now,
ANOL1 are strongly suggested as pacemaker channels in ICC. However,
the used drugs to identify Ca®"-activated CI channels in studies of ANO1

from ICC were very low specificity. Thus, the role as pacemaker

25
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channels of ANOI1 in ICC is still unclear. Recently, new selective ANO1
blockers (T16Ainn-A01, CaCCinn-AO01, and MONNA) are found and used

on study of Ca**-activated CI" channels [19-21].

In the present study, it showed that T16Aim-A01, CaCCim-AO1, and
MONNA had different effects on pacemaker activity between small
intestinal ICC and colonic ICC. T16Ainn-A01, CaCCin-AO1, and
MONNA all had no effects on the generation of pacemaker potentials in
small intestinal ICC. These drugs did not change the resting membrane
potential, amplitude and frequency of pacemaker potentials. In contrast,
at low concentrations of T16Ainn-A01, CaCCimn-A01, and MONNA than
those of small intestinal ICC all suppressed and abolished the generation
of pacemaker potentials in colonic ICC. Taken together, classical non-
specific Ca*"-activated CI channel blockers nifulmic acid and DIDS did
not suppress the spontaneous pacemaker potentials in small intestinal
ICC, whereas they abolished the spontaneous pacemaker potentials in
colonic ICC. The study of underlying pacemaking mechanism has been
carried out almost in small intestine until now. The underlying
pacemaking mechanisms of small intestinal ICC are explained as follows;

2+]i

inositol triphosphate dependent [Ca release from endoplasmic

26
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reticulum coupled with membrane ANO1 pacemaker channels, leading to
chloride efflux, results in depolarization of the membrane [31]. However,
our results provide evidence that ANOl may do not contribute to
generate pacemaker potentials in small intestinal ICC in basal state and
may play a different role between small intestinal ICC and colonic ICC
even though presence of ANOI1 in both small intestinal and colon.
Namely, ANO1 may be involved in initiating pacemaking potentials in
colonic ICC, but not in small intestinal ICC. In intact small intestinal
tissues of mouse, slow waves were still generated in the presence of
T16Ainn-AO01 and CaCCinn-A01 [32], which are consistent with our data.
It has been reported that ANO1 were activated by Gg-coupled receptor
stimulation through IP3-dependent Ca”" release from intracellular Ca*"
store [33]. This it seems that ANOI1 in small intestinal ICC may can be
activated by receptor activation rather than initiate to generate pacemaker
potentials. However, the further study is required to elucidate the precise

roles of ANOI1 in small intestinal ICC.

In contrast, from our results, it seems that ANOl may be act as
pacemaker channels in colonic ICC. However, we could not explain the

difference of drug effects by Ca®" activated CI" channel blockers on

27
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pacemaker potentials between small intestinal ICC and colonic ICC. The
configuration of pacemaker potentials was different in small intestinal
ICC and colonic ICC. The generations of pacemaker potential in small
intestinal ICC are more regular, high frequency and low amplitude
compared with colonic ICC, suggesting that the ionic mechanisms may
can be different. Actually it has been reported that hyperpolarization-
activated cyclic nucleotide-gated (HCN) channels are participate in
generating pacemaker potentials in colonic ICC [34], but not in small
intestinal ICC. Moreover, ATP-sensitive K" channels that comprised with
Kir 6.2 and SUR 2B subunits are expressed in ANOI1 positive colonic
ICC and maintain the resting membrane potentials by basal activation.
However, in ANOl-positive small intestinal ICC, ATP-sensitive K*
channels are comprised with Kir 6.1 and SUR 2B subunits and did not
represent basal activation [35]. These results showed that even though
ATP-sensitive K' channels are exist in both small intestinal ICC and
colonic ICC, ATP-sensitive K" channels can be play different roles
between in small intestine and in colon. Thus we think that this different
ion channel contributions or different ion channel subunits may be one
possible explanation about the difference effects by ANO1 blockers in

small intestinal and colonic ICC.
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The depolarization of the membrane potential by activation of pacemaker
channels leads to influx of external Ca®" through activation of T-type
Ca?" channels, which were expressed in ICC [36-37]. In the present study,
T-type Ca** channel blockers mibefradil and Ni*" suppressed the
generation of pacemaker potentials in colonic ICC but not in small
intestinal ICC. Together with basal activation of HCN channels also
implicated in generating pacemaker potentials of colonic ICC [34]. Thus,
we think that the combination of ANO1, HCN channels, and T-type Ca*"

channels comprise of generating pacemaker potentials in colonic ICC.

In conclusion, ANO1 Ca?"-activated CI channels are not active in small
intestinal ICC. However, ANO1 Ca*'-activated CI' channels are tonic
active in colonic ICC and may play an important role in generating

pacemaker potentials with T-type Ca*" channels.
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