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Abstract 

Automated Methods for Analysis of Three-Dimensional 
Morphology and Dynamics in Living Cells with a Label-Free 

Digital Holographic Microscope 
 
 
 
By: Keyvan Jaferzadeh Khorramabadian  

Advisor: Shin Seok-Joo 

Department of Computer Engineering 

Graduate School of Chosun University 

The most common type of microscope is the optical two-dimensional (2D) 

microscope. This is an optical device containing one or more lenses producing an enlarged 

image of a sample placed in the focal plane of the first lens. Optical microscopes 

have refractive glass and occasionally of plastic or quartz, to focus light into the eye or 

another light detector. The usage of the light microscopes has been around and will be. 

However, there is a big flaw in using 2D microscopes. This microscopic system suffers 

from losses of quantitative detailed information about 3rd dimension (thickness) of 

transparent or semitransparent microscopic samples. The problem is not limited only to 

this one. There are cases in which samples are transparent or semi-transparent. In these 

cases the light can not be reflected thus a high contrast image will not be produced. This 

can falsify cell studies and results to incorrect outputs. To overcome these problems, three-

dimensional imaging techniques are suggested. Among these techniques, digital 

holographic microscopy (DHM) has been successfully applied in a range of application 

areas. Indeed, DHM is not destructive for specimens and sample can be investigated many 

times and by any other optical methods while the electron microscopy methods are 

destructive. Another advantage of using DHM is that we can investigate the cells in single-

cell level. Moreover, quantitative phase image obtained by DHM enables one to measure 



 

 

 

characteristic properties of cells such as thickness, volume, surface area and projected 

surface area. The usage of DHM can be extended to time-lapse imaging (four dimensional 

imaging; last dimension is the time). Time lapse imaging enables us to study cell changes 

or growths in different time stamps and monitor it.  

In this dissertation, we would like to address different automated techniques and 

methods which can enable us to study live cells in non-destructive manner and single-cell 

level. Several approaches for studying and analyzing live cells are proposed and applied. 

To do so, two subject cells are concerned. The first cell type is red blood cell (RBC) and 

the second one is cardiomyocyte. Each type of these cells has different cell structure. In the 

case of RBC, DHM is perfectly suited for different experiments and it can provide 

thickness of the cell in nanometer accuracy. The reason is that cell has no nuclei and 

organelles. So, we are able to study different characteristic of the cell. Cardio cell is well 

suited for time-lapse studies. The reason is that optical path difference can be measured by 

DHM device. This can help us studying cell structure changes during different states of 

beating. Several experimental results are conducted and in some cases results are compared 

with the chemical experiments to show the feasibility of the proposed methods. 

 

 

 
[KEYWORDS]: Human Cell Analysis, Digital Holographic Microscopy, Red Blood 

Cell, Cardio Cell 
 



 

1 

 

1 Introduction  

Most of the biological cells, as well as red blood cells or cardiomyocytes, are transparent 

or semi-transparent thus the amplitude of the light which interacts with them is minimally 

affected. Different staining methods have been developed that enable cells to absorb light but 

they cannot solve this issue in general. For example, in some cases different dyes are used in 

order to enhance the contrast of transparent samples [1] in light-filed microscopy. Dark field 

microscopy can also be used to image transparent cells [1]. Another thing is that the 

conventional techniques are unable to provide 3D images or sometime the accuracy is not 

enough. Also, these methods are invasive and will manipulate the specimen. Confocal laser 

scanning microscopy can also be used to measure 3d volume of the specimen. Three-

dimensional volume image can be built up by stacking the 2D optical sections for a range of 

specimen planes [1]. Therefore, it is hard to quantitatively examine images of these cells 

obtained by these microscopy techniques. The search for a method to study cells accurately 

without labeling or staining them has resulted in several interferometric quantitative 

microscopy techniques utilizing the phase properties of coherent light to image a sample. One 

of them is digital holography. In 1948, Dennis Gabor invented a way to encode the phase of the 

light both as information and as a record containing all the information in a single recording, 

i.e. the hologram. Holograms are commonly used as pieces of art and are displayed as 

illuminated 3-D images. Therefore, imaging techniques measuring changes in the phase of light 

like digital holographic microscopy (DHM) can quantitatively visualize the 3D shape of those 

cells in non-invasive manner [2-8]. Using DHM it is possible to measure cell shape, volume 

and dry mass without any labeling and with a very low intensity light source where the 

intensity is well below what is considered photo-toxic. As it is mentioned above, DHM is not 

destructive for specimens and it can be investigated once more and by any other optical. 

Moreover, quantitative phase image obtained by DHM enables one to measure characteristic 
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properties such as volume, projected surface area, mean corpuscular hemoglobin (MCH) and 

MCH surface density (MCHSD) of the biological cell specially RBC. Digital holographic 

microscopy (DHM) is a promising tool for real-time 3D cell imaging owing to its capability for 

non-invasive visualization and for quantifying transparent biological cells [9-12]. DHM has 

been utilized in various kinds of cell studies (protozoa, bacteria, plant cells, blood cells, nerve 

cells, or stem cells)[13-21], and also human red blood cells [22-27], in the absence of labeling. 

Since the images are recoded by a CCD camera and holograms are reconstructed by a 

numerical reconstruction technique [28-30], the output is a digital image. Therefore, lots of 

image processing techniques can be used to enhance and evaluate quantitative parameters 

related to cell studies. The techniques should be automated, fast and accurate enough to be used 

in life science researches. In this dissertation, we would like to focus on studies of live cells 

and monitor them in an automated manner. Also, results are quantitative thanks to digital 

holographic microscopy.  

Also, two subject samples are studied here. The first one is red blood cells. Red blood 

cells (RBCs) are composed of water, proteins (the most abundant of which is hemoglobin), 

lipids, and carbohydrates. Also, RBC contains hemoglobin which binds to either oxygen or 

carbon dioxide. This allows oxygen to be transported to tissues and organs and carbon dioxide 

to be taken away during microcirculation. The biconcave shape of the erythrocyte is extremely 

important in the functionality of RBCs. It allows the membrane to have a high surface area to 

volume (SA/V) ratio facilitating large reversible elastic deformation of the RBC while 

squeezing through the tiny capillaries [31-33]. Mature erythrocytes, which are sometimes also 

referred to as discocytes, are the main cell type in the blood circulation. Their biconcave shape 

is formed by a flexible membrane that allows significant deformation. This configuration has 

the maximum surface area for a given volume and allows rapid deformations while passing 

through small capillaries during microcirculation. Such a biconcave shape is assumed to have 

resulted from the minimization of the free energy of the membrane under area and volume 
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constraints, since there are no complex internal structures within an RBC. RBCs must adapt to 

a wide range of capillary sizes, and deform while maintaining their cellular integrity and 

function. This is made possible by the absence of a three-dimensional (3D) cytoskeleton in 

RBCs. Their shape and mechanical integrity are maintained instead by a two-dimensional (2D) 

hexagonal lattice formed of flexible spectrin tetramers, which are linked by actin oligomers. 

Since the side length of actin (70-80 nm) is much smaller than the contour length of a spectrin 

tetramer (approximately 200 nm), it is believed that spectrins are the principal contributors to 

the bending of membranes or curvature modulus [33, 34]. Accordingly, it has drawn 

considerable attentions into the pathology research in the clinical relevant blood diseases. 

Pathological disorders can modify RBCs and lead to significant alterations in its original shape 

[34]. The consequences of modified RBC often are observed as clinical symptoms ranges from 

obstruction of capillaries and restriction of blood flow to tissues to necrosis and organ critical 

damages [34-39]. Also, counting cell types in the blood sample is another important task for 

investigating clinical status which can be evaluated by well-known methods such as complete 

blood count (CBC) or RBC distribution width (RDW) which are part of cytometry field. 

Because an automated cell counter samples and counts so many cells, the results are reliable in 

most of the cases [40]. However, certain abnormal cells in the blood may not be identified 

correctly, requiring manual review and identification of any abnormal RBCs the instrument 

could not categorize. This information can be very helpful regarding identifying the cause of a 

patient's anemia. Abnormal increases or decreases in RBC counts as revealed in a complete 

RBC count may indicate that you have an underlying medical condition that calls for further 

evaluation.  

The second study subject is cardiac muscle cells or cardiomyocytes or so-called 

myocardiocytes. There are two types of cells within the heart: the cardiomyocytes and 

the cardiac pacemaker cells. Cardiomyocytes make up the atria which is the chambers blood 

enters the heart and the ventricles where blood is collected and pumped out of the heart. These 
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cells must be able to shorten and lengthen their fibers and the fibers must be flexible enough to 

stretch. The primary function of the heart is to pump blood efficiently by virtue of an 

orchestrated contraction–relaxation cycle of the working cardio muscles. The human heart 

contains an estimated 2 to 3 billion cardiomyocytes cells. By coordinated contraction, these 

cells control blood flow through the blood vessels of the circulatory system. During the 

cardiomyocyte contraction, the whole cell changes its 3D shape rapidly, with meaningful 

intermediate events taking place on the short intervals (milliseconds) [41]. Also, the beating 

attributes such as beating frequency and peak changes are related to the cellular response to 

various stimuli and also to differentiation/maturation status. Cardiomyocytes respond to drugs 

and naturally occurring hormones and it alters the heart-beat rate. Drug development requires 

the testing of new chemical entities for adverse effects. Adverse drug side effects, such as 

cardiotoxicity is a major concern in drug development and a major cause of drug withdrawal 

from the market [42]. Therefore, safety assessments should be performed during drug 

development to see the possible side effects of the drug; especially those ones which interfere 

with the well-choreographed and elaborate movement of ions across cardiomyocytes 

membrane disrupting the electrical activity and beating of the heart [43]. Accordingly, 

pharmaceutical companies and researchers should ensure that the effects of lead candidate 

compounds on cardiac function strictly satisfy safety criteria. Therefore, it is highly important 

to establish more quantitative examination during drug developments and its effects on 

cardiomyocytes in vitro using data analysis algorithms for preventing late stage failure [42]. 

A. Motivations 

As it has been mentioned previously, most of the biological cells are transparent or semi-

transparent thus the amplitude of the light which interacts with them is minimally affected. 

Therefore, only amplitude recording cannot help in studying different aspects of these cells. 
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Also, it is hard to quantitatively examine images of these cells obtained by the conventional 

microscopy techniques.  

By the invention of Gabor holograms in 1984 a new way to encode the phase of the light 

both as information and as a record containing all the information in a single recording 

hologram was introduced. Thus, these holograms can be used to study transparent or 

semitransparent human and animal living cells. Also, digital holographic microscopy (DHM) 

can quantitatively visualize the 3D shape of those cells in non-invasive manner. Using DHM it 

is possible to measure cell shape, volume and dry mass without any labeling and with a very 

low intensity light source where the intensity is well below what is considered photo-toxic. As 

it is mentioned above, DHM is not destructive for specimens and it can be investigated again 

and by any other optical technique. When we need to observe fine changes occurring in 

sensitive cells, any intervention (washing step, addition of a label, high light intensity imaging, 

etc.) strongly alter their natural state and can lead to falsify results. DHM can preserve the cell 

natural state and thus offer physiologically relevant measurement.  

 

Moreover, quantitative phase image obtained by DHM enables one to measure 

characteristic properties such as volume, projected surface area, mean corpuscular hemoglobin 

(MCH) and MCH surface density (MCHSD) of the biological cell specially RBC. Digital 

holographic microscopy (DHM) is a promising tool for real-time 3D cell imaging owing to its 

capability for non-invasive visualization and for quantifying transparent biological cells [9-12]. 

DHM has been utilized in various kinds of cell studies (protozoa, bacteria, plant cells, blood 

cells, nerve cells, or stem cells)[13-21], and also human red blood cells [22-27], in the absence 

of labeling. Overall, the motivations can be listed as below: 

1- DHM can provide a new method to study transparent or semitransparent cells since it 
uses phase shift rather than amplitude changes. 

2- It is non-invasive thus cells can be study in a safe manner.  
3- It is a label-free mean thus cells are not treated by dyes. 
4- The laser source is weak so cells cannot be damaged.  
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5- It can provide 3-dimensional shape of cells for insight investigation.  
6- It can be used as a method for time-lapse imaging (4D- imaging).  

B. Objectives of Research 

The objectives of this research are to find automated methods for analyzing 3- 

dimensional morphological changes of human RBC and heart muscle cells. Also, monitoring 

the cell changes in different times, for example dynamic and fluctuations as a function of time.  

The objectives can be listed as: 

◦ To study automated method of RBC analysis.  

◦ To study different aspect of RBC like volume, shape and surface area 

changes in different time. 

◦ To propose new techniques for RBC classification according to the 

abilities of DHM. 

◦ To measure different changes in RBC as a function of time (day changes). 

◦ To study effects of different antiarrhythmic drugs on cardio cells.  

C. Organization of the Research 

The organization of this thesis is as follows. Chapter 2 gives an overview of digital 

holographic microscopy method. Chapter.3 will discuss studying of red blood cell and different 

automated techniques that can be helpful for RBC analysis. Chapter 4 discusses the automated 

technique to study heart muscle cells in normal cells and drug treated samples. Chapter 5 

provides concluding remarks and future research opportunities. 
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2 Digital Holographic Microscopy 

Microscopy is one of the main research and application areas of digital holography. Direct 

access to the phase as well as amplitude profiles makes quantitative phase microscopy by 

digital holography (DH-QPM) particularly powerful and versatile. Digital holographic and 

interferometric principles are the basis of many other techniques of QPM with novel 

capabilities. The story of holography started by the Gabor when he invented a new microscopic 

technique [44-46]. His holograms suffer from the problem of twin image. In 1965, a successful 

holographic microscope was demonstrated by E. Leith and J. Upatnieks. However, the use of 

holographic microscopy is limited by its inconvenient chemical developing procedures. This 

drawback is apparently disappearing in the era of digital holography. In DHM, some effort 

must be made to achieve micrometer or sub-micrometer resolution [47].  

Figure 6.1 depicts the setup of a typical transmission-type microscope-based digital 

holographic microscope. The mirror (M) in the reference arm can be tilted for off-axis 

holographic recording, or can be movable for phase-shifting recordings. In the specimen arm, a 

microscope objective (MO) is used to produce a magnified image of the specimen. The digital 

holographic recording geometry can also be realized as a reflection-type setup, as shown in 

Fig. 6.2. In the reflection type setup, the object light is back-scattered to provide the object 

field to the CCD. Because the MO is in the path of the back-scattered object field, lens L is 

used additionally to provide uniform illumination of the specimen. 

DHM is a full field imaging of the phase of the light incident on the sensor. It can be used 

to image solid samples in reflection, or, which is most common in the case of biological 

samples, to image transparent samples in transmittance. The most commonly used system for 
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DHM today uses an optical setup common to that of a Mach-Zender interferometer, but with 

the reference light at a slight angle to the light passing through the sample, and the image 

calculation is then performed using a Fresnel approximation. The outcome of the 

reconstruction of a digital hologram is two images, one representing the amplitude of the light 

and one representing the phase changes of the light. The amplitude image is similar to an image 

of the sample captured in ordinary white light. The resolution in the direction of the incident 

light is very high, down to the order of nanometers. By combining the phase imaging technique 

with physical rotation of the sample, a high resolution, label-free tomographic image can be 

obtained. One of the advantages of DHM is that the object that is studied will always be in 

focus, and the image can be recalculated many times if necessary to find the best focus. Images 

can be captured of both single cells and populations, and the images can be presented as 

traditional cell images as well as 3-D representations. DHM can most likely compete with 

many of the other methods used today within the area of cell biology and microscopy. The 

technique is easy to learn and simple to use, it is cheap and gives both qualitative and 

quantitative results [1, 47].  

The coherent laser source with wavelength of λ = 684.5 nm is divided into object and 

reference beam using beam splitter. The object beam illuminates the specimen and creates the 

object wave front. A microscope objective collects and magnifies the object wave-front, and the 

object and reference wave fronts are joined by a beam collector to create the hologram. It 

should be noted that there is a small tilt angle between the object wave front and reference 

wave to construct “off-axis” holograms. At the end point interfrograms are recorded by a CCD 

camera and the data is transmitted to a PC for numerical reconstruction algorithms [My cardio 

paper]. 
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Figure 2.1: A general Presentation of Digital Holographic Microscope 
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3 Red Blood Cell study by digital holographic 
microscopy technique: 

 

A typical human red blood cell has a disk diameter of approximately 6.2–8.2 µm and a 

thickness at the thickest point of 2–2.5 µm and a minimum thickness in the center of 0.8–1 µm, 

being much smaller than most other human cells. These cells have an average volume of 

about 90 fL with a surface of about 136 μm2, and can swell up to a sphere shape containing 

150 fL, without membrane distension. Adult humans have roughly 20–30 trillion red blood 

cells at any given time, comprising approximately 70% all cells by number. Women have about 

4–5 million red blood cells per microliter (cubic millimeter) of blood and men about 5–6 

million; people living at high altitudes with low oxygen tension will have more. Red blood 

cells are thus much more common than the other blood particles: there are about 4,000–

11,000 white blood cells and about 150,000–400,000 platelets per microliter. Human red blood 

cells take on average 60 seconds to complete one cycle of circulation [48].  

RBCs are transparent, thus, they are one of the best case studies for DHM technique. The 

images or so called holograms (interfrograms) are recorded by a CCD camera and then 

reconstructed by the numerical reconstruction algorithm. Since the values are the phase shift 

between sample and surrounding medium, the thickness of the sample can be obtained and 

quantitative analysis can be conducted. In some analysis phase value is only considered. 

Throughout this research all the reported values are in either thickness unit or optical path 

length (OPL). Figure.3.1 shows the recorded hologram, amplitude and phase images. As it can 

be observed easily, the amplitude image can not reveal the RBC structure easily but phase 

image shows RBC nicely. It should be noted that phase values should be unwrapped before any 

further analysis. There are several techniques for unwrapping but we will not explain them in 
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detail. Also, reconstruction algorithm will be explained below briefly. The focus of this 

dissertation is to explain different methods and techniques for automatic analysis of RBC and 

cardiomyocytes.  

In off-axis digital holography a small tilt angle is introduced between reference wave and 

object wave. This small angle can separate virtual image, real image and DC term. By choosing 

a proper Fourier filter we can filter unwanted zone and have a clear image of the sample. As the 

digital hologram is recorded, the complex field ω0(x,y) at the CCD plane can be retrieved with 

the Fourier filtering procedures. Subsequently, the complex field at the image plane ωs(x,y) can 

be obtained directly by Fresnel diffraction [47]. 
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One of the most important merits of digital holography is that the phase of the sample can 

be determined quantitatively. This may find important applications in microscopy for biological 

specimens. We assume that the complex field at the sample plane is ωs=|𝜔𝜔𝑠𝑠|exp (𝑗𝑗𝑗𝑗𝑠𝑠)), which 

can be retrieved from a complex hologram obtained by digital holography. Consequently, the 

phase of ωs can be obtained by: 

𝜑𝜑𝑤𝑤 = tan−1 �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜔𝜔𝑠𝑠)
𝐼𝐼𝐼𝐼(𝜔𝜔𝑠𝑠)

�                      (2) 
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(a) 

 
(b) 

 
(c) 

Figure 3.1: (a) Holographic image of RBC sanple(white line is 50μm in CCD plan), (b) intensity image, (c) 

phase image(red line is 10 μm in image plan);  

 

To study cells we can study them in three measurement units. The first one is the phase 

value which can be used directly from Eq.2. The second way to measure the cell changes is to 

use OPD values which can be expressed by:  
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      ( ) ( ) ( ), , , ,c mOPD x y d x y n x y n= × −                        (3) 

In which d(x,y) denotes the cell thickness, nc(x,y) is the mean intracellular refractive index 

integrated along the optical axis at the (x,y) position and nm is the refractive index of the 

surrounding culture medium. Simply put, Eq. (3) means that the OPD signal is proportional to 

both the cell thickness and the intracellular refractive index, a property linked to the protein 

and water content of the cells [20, 49]. The last measurement unit is the real thickness of cell. 

Converting OPD or phase values to thickness values requires knowing refractive index of the 

specimen and the surrounding medium. It has been shown that for certain cells, such as red 

blood cells, in which a constant refractive index can be assumed for the entire cell contents, the 

thickness profile can be directly obtained from the phase profile or OPD profile. The reason is 

that RBC has no nucleus and must of it is the protein called hemoglobin [50]. The conversion 

can be done by following: 

         
( ),

( , ) ,
2 ( )rbc m

i j
h i j

n n
ϕ λ
π

×
=

−                          (4) 

Where λ is wavelength of light source, φ(i,j) is phase value in radians, and the refractive 

index of RBCs, nrbc, has been measured with a dual-wavelength digital holographic 

microscopy. Here, nrbc is 1.396 with no significant difference between groups of different ages. 

The index of refraction of the HEPA medium, nm, is 1.3334[23]. 
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A. Quantitative investigation of red blood cell three-dimensional 
geometric and chemical changes in the storage lesion using 
digital holographic microscopy 

a. Abstract:  

Quantitative phase information obtained by digital holographic microscopy (DHM) can 

provide new insight into the functions and morphology of single red blood cells (RBCs). Since 

the functionality of a RBC is related to its three-dimensional (3-D) shape, quantitative 3-D 

geometric changes induced by storage time can help hematologists realize its optimal 

functionality period. We quantitatively investigate RBC 3-D geometric changes in the storage 

lesion using DHM. Pathological changes in blood during storage, often called the blood storage 

lesion, is a rapidly growing area of biomedical research. Stored red blood cells undergo 

morphologic changes, metabolic alterations, and some degree of hemolysis during storage. 

During storage, red blood cells undergo depletion of potassium, 2,3-diphosphoglycerate, ATP, 

lipids and membrane, with increased red cell rigidity and impaired oxygen delivery. The stored 

units accumulate microvesicles derived from red cells, free hemoglobin and biologically active 

lipids, demonstrating increased pro-inflammatory and procoagulant activity. Modern blood 

bank preservative solutions provide glucose and other stabilizing substances to minimize these 

undesirable changes that might adversely affect the transfusion recipient [51]. Our 

experimental results show that the substantial geometric transformation of the biconcave-

shaped RBCs to the spherocyte occurs due to RBC storage lesion. This transformation leads to 

progressive loss of cell surface area, surface-to-volume ratio, and functionality of RBCs. 

Furthermore, our quantitative analysis shows that there are significant correlations between 

chemical and morphological properties of RBCs. 
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b. Motivations: 

 

In the human body, red blood cells (RBCs) serve many purposes, but one of the most 

important functions of RBCs is to transport oxygen and carbon dioxide between the lungs and 

the rest of the body’s tissues. Every aspect of a RBC, including metabolism, size, and shape, is 

adapted to maximize functionality. Importantly, the RBC’s shape should be optimal for 

maximal deformation, maximum surface at a given volume, rapid changes, and survival of the 

cell during its many repeated passages through the narrow channels. In fact, surface area is one 

of the most important properties of RBCs, since the exchange of oxygen and carbon dioxide 

takes place at their surface; larger surface area allows for an increased exchange of oxygen and 

carbon dioxide in the lungs and within the body cells. These conditions are satisfied by a 

biconcave disk shape, which is considered the medical norm for RBCs. The biconcave RBC 

has a flexible membrane with a high surface-to-volume ratio (SVR) that facilitates large, 

reversible, elastic deformation of the RBC as it repeatedly passes through small capillaries 

during microcirculation. In particular, the biconcave shape of RBCs is regarded as the result of 

minimizing the free energy of membranes under area and volume constraints, since there are no 

complex inner structures within RBC. However, during the storage period, RBCs and their 

preservative media suffer metabolic, biochemical, biomechanical, and molecular changes, 

commonly referred to as storage lesions. Furthermore, a large range of adverse effects related 

to RBC storage have been reported in critically ill patients when the RBC storage period 

exceeds 4 weeks. These effects include increased mortality, nosocomial infections, multiple 

organ failure, renal failure, and deep vein thrombosis. Much scientific evidence, however, 

supports that during the storage period, the RBC structure undergoes essential changes in 

shape: from biconcave disc to flat disk, and finally to a spherocyte, which leads to the inability 

of the RBCs to carry oxygen. Although a number of studies in recent years have analyzed 

changes in RBCs throughout their lifespan, most have not specified accurate quantitative 
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morphological and surface-to-volume rate-related changes, which are considered vital in terms 

of the performance of RBCs [23, 31-33]. 

In this section, the morphological and chemical parameters of individual RBCs are 

simultaneously obtained by using noninvasive and label-free DHM technique. The 

morphological and chemical parameters of RBCs in single-cell level with different ages are 

automatically quantified. We investigate 3-D geometric features of RBCs including surface 

area, sphericity index, morphological functionality factor, sphericity coefficient, and SVR in 

storage lesion. In addition, the correlation analysis between chemical parameters of 

MCH/MCH concentration and morphological parameters of RBCs in different ages is 

presented. The datasets utilized for our study consist of healthy blood samples stored for 8, 13, 

16, 23, 27, 30, 34, 37, 40, 47, and 57 days and are divided into 11 classes of RBCs stored in 11 

different periods. The 11 classes, overall, have more than 3300 RBCs, with more than 300 

RBCs per each class. To calculate 3-D geometric parameters of RBCs, a marker-controlled 

watershed segmentation algorithm is utilized, which removed the unnecessary background, 

segmenting reconstructed images into many single RBCs(See Fig.3.2). Finally, morphological 

and chemical parameters of each single RBC for the various storage times are calculated, and 

the results are compared against each other. Our findings show that in storage lesion, the 

structure of an RBC goes through essential changes in terms of shape, i.e., from a biconcave 

disc to a spherocyte. Interestingly, our experimental results indicate that the surface area values 

of normal RBCs obtained through DHM approximately agree with the values reported by other 

methods. These experimental results can contribute to the understanding of the changes in 3-D 

geometric features of RBCs during the storage period and can provide quantitative information 

to support the work of hematologists [23]. 
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c. RBC preparations and mathematics 

RBC preparations  

 

The blood sample was donated by a healthy person and was stored in a transfusion bag. 

These RBCs were obtained from the Service Régional Vaudois de Transfusion Sanguine in 

Switzerland. The RBCs were stored at 4°C during the storage period. The RBC concentrate 

was extracted from the blood transfusion bag and diluted in HEPA buffer (15-mM HEPES pH 

7.4, 130-mM NaCl, 5.4-mM KCl, 10-mM glucose, 1-mM CaCl2, 0.5-mM MgCl2, and 1-mg∕

mL bovine serum albumin) at a concentration of approximately 0.15%. Then, 0.2 mL of the 

RBC suspension were introduced into the experimental chamber, which itself consisted of two 

coverslips separated by spacers 1.2-mm thick. In order to allow for the sedimentation of the 

cells on the bottom coverslip, cells were incubated for 30 min at a temperature of 37°C before 

mounting the chamber on the DHM stage. All experiments were conducted at room 

temperature [23]. 

Equations: 

 

To characterize the 3D geometric quantities of erythrocytes at different storage periods, a 

sphericity coefficient k, a ratio of the erythrocyte thickness at the center dc to the thickness at 

half of its radius dr (dimple area), is determined as follows:  
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=                           (5) 

The sphericity coefficient k can determine three types of erythrocytes. A value of k less 

than unity leads to biconcave erythrocytes, a value around unity denotes a flat disk erythrocyte, 

and a value greater than unity specifies a spherocyte. A k factor of around 0.35 has been 

reported for healthy erythrocytes and around 1.12 for the sick ones. 

Surface area is the area of a surface or collection of surfaces bounding a solid. There are 

different formulas for calculating the surface area of regular shapes. Generally, the surface area 

with the form of a function z=f(x,y) can be calculated as follows: 
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where the integral is taken over the entire surface. For irregular shapes, like the ones of 

RBCs, however, many methods have been proposed. These methods typically split and divide 

irregular surfaces into smaller regular areas and add these smaller areas to give the entire 

surface area. Understandably, the accuracy of such a calculation is dependent on the smaller 

area chosen. In most cases, covering the entire surface area of an RBC by small triangles can 

provide a high accuracy (Error is less than 5%). The surface area of any of these triangles can 

be calculated easily by some popular methods, such as the Heron formula, which uses the 

length of each side of a triangle, using the base and height side, using one side of an equilateral 

triangle, or using the lengths of two sides and the included angle. If we have a triangle whose 

sides have lengths a, b, and c, the Heron formula states that: 

( )( )( ),Surface Area s s a s b s c= − − −                    (7)  
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where s is 2
a b c+ +

. In this research, the surface area of each triangle is calculated by 

Eq. (3). Our experimental results show that Eq. (3) is accurate enough for the RBC surface area 

calculation. The total surface area of an RBC in DHM consists of the surface area of the top 

view summed with the projected surface area of the top view. The projected surface area (PSA) 

is defined to be as follows: 

                2PSA Np= ,                                 (8)
 

where p denotes the pixel size in the DHM phase image (here p = 0.159 μm) and N is the 

total number of pixels within an erythrocyte. PSA is reported to be around 45±5 μm² for normal 

RBCs [31], and can also be used to estimate the radius of an RBC. The RBC radius (r) has 

been estimated here by considering the radius of a circle having the area of the PSA of a RBC: 

                      
PSAr
π

≅ ,                             (9) 

The surface area for the top view of an RBC (see Fig. 3.2) can be computed by different 

methods; for the purpose of our study, the top view is partitioned into small triangles as 

mentioned earlier, and a summation of the areas of all the small triangles determines the 

surface area of the top view.  
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Figure 3.2: 3-D view of an RBC obtained by the DHM method 

 

Accordingly, the total surface area of a single RBC can be computed as follow:  

                                                        

SA PSA TVSA= + ,                         (10) 

where PSA is the projected surface area and TVSA is the surface area of the top view. Our 

measurement of the surface area is within the range of the previously reported value. Fig.4 

shows some sample at different storage time and their respective surface area’s histogram. It 

shows the variation in size and shape of red cells stored. By days 40 and 57 of storage (Fig.3.3 

(i)-(k)) the RBCs range from large and misshapen to small spherocyte cells. Indeed, leftward 

shift of the normal distribution implies that RBC’s surface area is dropping while storage time 

is increasing. 

X axis [μm]0
1 2 3

4 5 6 7 8

Y axis [μm]

8

6
4

2
0
0

0.5

1

1.5

2

2.5

3

3.5

4

Z
ax

is
 [μ

m
]



 

21 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

 

(c) 

 

 

 

 

 

 

 

(d) 

 

(e) 

 

 

 

 

 

 

 

(f) 



 

22 

 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

 

(k) 

 

(l) 



 

23 

 

Figure 3.3:Different storage time and histogram of the surface area; (a), (c), (e), (g), (i) and (k) are RBC’s with 

8, 16, 23, 30, 40 and 57 days of storage, respectively. (b), (d), (f), (h), (j) and (k) are surface areas’ histograms 

at the same storage time. 

With the calculated surface area for an erythrocyte, we can estimate the morphological 

functionality factor f of the erythrocyte, which is the ratio of the RBC surface area to the 

surface area of a spherocyte with the same volume:  

                                                         

24s

SA SAf
S rπ

= = ,                          (11)
 

Where SA can be calculated by Eq. (10) and Ss is the surface area of the sphere with radius 

r. An f value around unity characterizes a spherocyte. Moreover, taking into consideration Eq. 

(10), we can calculate the total surface area of all the blood erythrocytes St, which determines 

oxygen capacity of blood. The St is equal to the product of the number of erythrocytes in blood 

M and the arithmetic mean surface area SAm of RBCs:  

                 t mS M SA= × .                          (12) 

Eq. (10) can be applied to obtain the SVR, which is a critical parameter for an erythrocyte 

because the higher the SVR, the more material a cell can exchange with its surroundings. The 

volume of RBC in a DHM phase image is denoted as:  
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where p denotes the pixel size in the DHM phase image, k and l are the width and height 

of the phase image, λ is wavelength of the light source, φ(i,j) is the phase value in radians, and 

refractive indices nrbc and nm are 1.396 and 1.3334, respectively. Another important parameter 

related to the shape of the RBCs is the sphericity index (dimensionless). Basically, it is the 
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measure of how spherical an object is, thereby giving an indication of how relatively rigid the 

RBC is. In addition, the sphericity index of each cell determines the degree of tolerance of that 

cell to deformation, for example, in passing through a narrow cylindrical channel. This 

parameter, also, can be useful in discriminating between healthy and pathological cells; for 

example, in identifying pathological cells in some hereditary diseases like spherocytosis. 

Deformability of cells can also be identified by measuring RBC mechanical parameters of 

fluctuations rate and shear stress. It has been shown that deformability of cells gradually 

decreases as cells are aging utilizing DHM technology. Thus, a determination of RBC 

deformability is the sphericity index, defined as follows:  

     ( )

2 / 3

2 / 3

4
4 / 3

VSP
SA

π
π

= .                     (14) 

The mean value of the sphericity index of normal cells has been reported to be 0.79±0.026 

at room temperature using interference microscopy. A similar value (0.73±0.02) has also been 

obtained using a micro-pipetting method. According to Eq. (14), the sphericity index is a 

dimensionless measurement from 0 to 1 where 0 is infinitely planar and 1 is perfectly spherical. 

d. Results and discussions: 
  

Morphological parameters measurements: 

After segmenting and extracting the RBCs from the quantitative phase images, the surface 

area, volume, SVR, morphological functionality factor f, cell diameter, sphericity coefficient k, 

sphericity index SP, and oxygen capacity for all samples in the storage time as well as standard 

deviations were calculated. To reduce noise and increase the accuracy in Eq. (5), dc and four 

adjacent values were averaged; dr is the average of the some values (each one was chosen from 
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a different portion of dimple). Table.3.1 shows the calculated mean and standard deviation for 

all the 3-D geometric properties of RBCs with different ages. Figure 3.4 and Fig.3.5 show the 

morphological changes versus time. 

Table 3.1: 3D geometric quantities of RBC in different storage days estimated by our proposed method 

Property 
Storage time[Days] 

8 13 16 23 27 30 34 37 40 47 57 

Surface Area 
(μm2) 

Mean 126 127 136 128 131 127 127 122 120 113 107 

STD 11 14 16 16 17 16 11 12 13 14 15 

Volume (μm3) 
Mean 91 92 102 94 98 88 86 93 98 98 94 

STD 9 12 14 14 15 20 12 11 12 13 11 

SVR (μm-1) 
Mean 1.38 1.38 1.33 1.36 1.34 1.44 1.48 1.31 1.22 1.15 1.13 

STD 0.19 0.22 0.19 0.20 0.21 0.26 0.21 0.22 0.20 0.20 0.16 

Cell Diameter 
(μm) 

Mean 7.76 7.77 7.76 7.63 7.70 7.45 7.65 7.52 7.25 6.73 6.04 

STD 0.49 0.55 0.53 0.58 0.58 0.69 0.75 0.75 0.86 0.89 0.68 

k factor 
Mean 0.88 0.78 0.66 0.84 0.70 0.69 0.93 0.93 1.03 1.20 1.35 

STD 0.18 0.19 0.21 0.22 0.23 0.25 0.30 0.24 0.34 0.36 0.41 

f factor 
Mean 0.66 0.69 0.72 0.70 0.70 0.73 0.69 0.69 0.73 0.79 0.93 

STD 0.07 0.09 0.10 0.10 0.10 0.13 0.17 0.14 0.15 0.16 0.16 

Sphericity 
Index 

Mean 0.78 0.78 0.78 0.78 0.79 0.75 0.74 0.81 0.86 0.91 0.94 

STD 0.07 0.08 0.07 0.08 0.07 0.08 0.08 0.09 0.09 0.10 0.09 
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Figure 3.4: Changes of different morphological parameters 

 

 
 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.5: Box plot representation of the Morphological changes regarding storage time: (a) Surface area to 

volume ratio, (b) diameter changes, (c) functionality factor changes and (d) sphericity index changes. The box 

represents the median and the 25th and 75th percentile of the values; the whiskers represent the 10th and 90th 

percentile. 

During the storage time, volume is only changing with a slight fluctuation that is 



 

27 

 

consistent with the previous clinical findings [53]. In contrasts while the diameter (Fig3.5(b)) 

decreases under almost fixed volume, the thickness value is increasing, which is consistent 

with previous findings [22]. Our measurement of the cell diameter is consistent with the 

previous findings (7.7±0.5 µm) [24]; however, while the cell diameter for the first five weeks is 

within this reported range, it begins to decrease when the storage time exceeds five weeks 

(Fig3.5(b)). Noted that in Fig3.5(b) and Fig3.5(c) the median value in 40 and 47 days is not 

around the center of the box representation. It mentions that there are two groups of cell in the 

respective storage time since it is the transition time for RBCs (42 days). Even though there is a 

small cell-cell variation within each class, the t-test showed no significant difference (p<0.01 

for all samples). The SVR (Fig3.5(a)), which is an important characteristic for RBCs, is 

decreasing, since its volume remains relatively constant while its surface area is dropping. 

Most biological cells maximize the SRV to preserve their biological processes. It is noted that 

the SVR in the RBC within the first four weeks of storage is approximately 1.59±0.12. Aside 

from the presence of hemoglobin, the cell surface area or SVR is one important factor in the 

oxygen-carrying processes of erythrocytes. The effect of a smaller available surface area is 

clearly seen in terms of the oxygen capacity, which can be estimated using the averaged surface 

area values for different storage periods according to Eq. (12). We found that the oxygen 

capacity for RBCs within a thirty-day storage period is approximately 15% larger than that for 

RBCs with a storage period over six weeks, assuming an equal number of RBCs for each 

storage day (data not shown). 

The k factor (sphericity coefficient) starts from a value less than one and increases 

gradually to a value greater than one. This means erythrocytes are biconcave initially and as 

storage time exceeds five weeks, they become flat disks and finally transform into spherocytes. 
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In contrast, the functionality factor f has the same trend as the sphericity coefficient in the way 

that f approaches unity. This means that the surface area of erythrocytes is almost equal to a 

sphere having the same radius. The sphericity index, which determines deformability, has the 

same trend as the functionality factor and the sphericity coefficient, since it rises after the first 

five weeks of storage. As it has been mentioned, if red cells are spherical, any deformation at 

all increases the surface area, and therefore nonsphericity is essential to the tolerance of 

erythrocytes to deformation in the circulation [31-33, 53]. Our finding about sphericity index 

says that during storage time sphericity index rises which implies less tolerance during passing 

through narrow channels. Modifications in the morphological functionality factor f, along with 

the sphericity coefficient k, consistently say that erythrocytes transform from biconcave into 

spherocyte. The morphological functionality factor f, sphericity coefficient k, and sphericity 

index are very important since they can specify the shape, type, and deformability of RBCs 

under aging, respectively. Variations in k in the first five weeks of the storage period may have 

been due to either inaccuracies in finding the accurate values of rc and rd,, although some pixels 

were averaged (each single cell contains maximum 70x70 pixels), or existence of stomatocyte 

RBCs. In many studies, it has been established that the normal RBCs (biconcave) undergo 

transformations in shapes toward stomatocytes upon variations in some of their chemical 

components; for example, increases in the medium’s pH and additions of amphiphiles or even 

changes in temperature [58]. Findings about k and f and sphericity index are consistent in this 

research, and mentions that erythrocytes are transforming into spherocytes that causes a 

decrease in the functionality with respect to materials exchange between the tissues and lungs.  

2D correlation analyses between the morphological and chemical parameters: 
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 The promising ability of DHM technique is not limited only to measuring morphological 

parameters. Previously, it is shown that mean corpuscular hemoglobin (MCH) of RBCs can be 

measured by calculating dry mass of the RBCs since RBCs are mainly composed of 

hemoglobin [23]. 

Hb

PSAMCH
πα
ϕλ
2

10
=                                 (15) 

Where ϕ is the mean phase shift induced by the whole cell, λis the wavelength of the 

light source of the setup, PSA is the projected cell surface, and Hbα =0.00196 dl/g is a constant 

known as the specific refraction increment (in m3/kg or dl/g) related mainly to the protein 

concentration [23]. 

The mean corpuscular hemoglobin concentration (MCHC), a measure of the concentration 

of hemoglobin in a given volume can be measured by the following: 

MCV
MCHMCHC =                           (16) 

It turns out that MCH and MCHC do not have significant changes during the storage time 

changes. They just fluctuate around their mean value (data not show). Our results indicate that, 

while cells can undergo small morphological changes during storage, they do not lose 

hemoglobin into the storage solution. 

Since the chemical and morphological parameters are measured simultaneously at the 

single-cell level, we can evaluate correlation analysis between these parameters. We divided 

our samples into two different groups according to their storage time for the sake of clear 

visualization. Former contains two classes of 8 and 30 days and latter includes 47 and 57 days 

DHM data. Fig.3.6 presents the correlation analyses between the morphological and chemical 
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parameters of the groups. The correlations between the RBC parameters enable understanding 

of the cellular physiology of RBCs in detail.  

(a) (b) (c) 

(d) (e) (f) 
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Figure 3.6: Correlation between Chemical-Morphological and Morphological-Morphological properties (The 

gray lines show linear relationship): (a) surface area and MCH, (b) volume and MCH, (c) SVR and MCH, (d) 

SVR and MCH, (e) surface area and MCHC, (f) volume and MCHC 

MCH and MCHC correlation with morphological parameters: 

Our correlation analyses exhibit that there is a positive correlation between MCH and 

surface area (p<0.01) (Fig.3.6 (a)), and a significantly strong positive correlation (p<0.01) 

between MCH and volume (Fig.3.6 (b)) consistent to the previous finding [59, 60]. It is worth 

to say that correlation coefficient has small fluctuations and the slope of regression line 

changes in the stored lesion. It is interesting to observe that RBCs with higher MCHC 

exhibited lower values in their surface areas and volumes (Fig.3.6(e)&(f)) in all ages, which is 

consistent with the previous research undertaken for populated cells [35]. Noted that 

correlation coefficient of surface area and MCHC value is smaller than the respective volume 

and MCHC at the same time. Moreover, our analysis shows that there is no significant 

correlation between functionality factor-MCH and functionality factor-MCHC while RBCs are 

aging (p>0.01). Furthermore, it turns out that sphericity index follows the same trend of 

functionality factor similar to the previous finding [35]. Interestingly, RBCs with higher MCH 

exhibited lower values in their SVRs in all ages (Fig.3.6 (c)). However, higher MCHC RBCs 

exhibit higher values in their SVR (Fig.3.6 (e)).   

Correlation between Morphological Parameters: 
 

The correlations between the RBCs’ morphological parameters also demonstrated that 

they could enable us into better understanding of storage lesion. It has been shown in the 

previous research that there is a significant positive correlation between volume-diameter and 



 

32 

 

surface area-diameter [57]. Correlation analysis in this research reveals the same trend (data 

not shown). However, unlike Canham et.al [57] we realized that relation is not linear and tends 

to follow a nonlinear relation similar to the cell geometry. It means that for both area and 

volume plotted against diameter, the data are better presented by a quadratic and cubic 

equation, respectively. We also realized that correlation between surface area and diameter is 

significant (p<0.01) compared to the correlation between volume and diameter. We also found 

out that surface area and volume have significant positive correlation that implies that cells 

with higher volume can have bigger surface area. Interestingly, when storage time is 57 days 

we can see that correlation coefficient between volume and surface area is higher than other 

days (Table3.2).  

Table 3.2: Regression results: p<0.01 for all data 

Property 
Storage time[Days] 

8 13 16 23 27 30 34 37 40 47 57 

Surface area 
vs.  

Diameter 
0.71 0.67 0.57 0.61 0.62 0.51 0.69 0.65 0.70 0.71 0.57 

Volume vs. 
Diameter 0.25 0.33 0.35 0.28 0.43 0.14 0.27 0.14 0.16 0.27 0.23 

Volume vs. 
Surface area 0.41 0.46 0.55 0.54 0.58 0.47 0.60 0.40 0.48 0.55 0.64 

 

The sphere has a low SVR, whereas a high SVR is required to promote rapid diffusion of 

oxygen and carbon dioxide. The biconcave, however, allows the RBCs large surface area for 

exchanging metabolic products across the membrane and cytoskeleton, and results in their 

slight deformation. The RBCs need to be deformable so that they can stretch as they undergo 

distortions under mechanical stress during their circulation through narrow channels. However, 

spherocytes with less surface area suffer from less deformability. Besides this, the viscosity of 

the spherocytic cells is higher than that of the biconcave RBCs, which causes high resistance 
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during their passage through narrow channels. Significant chemical evidence can support this 

alteration during storage lesion. ATP levels fall away from the first week onwards and reactive 

oxygen species (ROS) levels rapidly increase to a maximum by the second week of storage 

lesion. Oxidation, correlated to vesicle release, is shown to reduce the spectrin interactions 

during storage lesion. Gathering of the mobile pool 3-band agrees with elevated ROS and 

oxidation of the RBCs and occurs before vesiculation. As much as RBCs lose membrane and 

become spherical throughout storage, deformability of stored RBCs decreases [60]. The 

findings in this research show that erythrocytes become spherocytes, lose surface area, and are 

around 20% and less deformable (elevated sphericity index) as their storage time exceeds five 

weeks. 

e. Conclusion 

We have estimated the 3D geometric quantities related to the shape, type, and 

functionality of RBCs in storage lesion using digital holography microscopy. Interestingly, the 

surface area values measured through our method are in approximate agreement with the 

surface area reported by the other techniques in the past. In addition, the 3D geometric changes 

of erythrocytes in storage lesion have been investigated using the surface area value of RBCs. 

The investigation into the sphericity coefficient and morphological functionality factor along 

with the sphericity index shows that RBCs transform from biconcave to spherical as the storage 

time exceeds five weeks. The transition from biconcave to spherocyte is accompanied by a 

significant loss of surface area in a dramatic increase in the sphericity index and subsequently 

less functionality with respect to the exchanging of materials between tissues and organs. Our 

correlation analysis between chemical and morphological properties exhibits that surface area 

has significant negative correlation with MCHC value. Interestingly, sphericity index has no 

correlation with either MCH or MCHC value similar to the functionality factor. Furthermore, 

correlation between surface area and diameter is stronger than volume and diameter. In 
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addition, understanding these morphological and mechanical transitions is fundamental to 

membrane biology, RBC circulation, and basic studies of cellular mechanics. 

B. Human red blood cell recognition enhancement with three-
dimensional morphological features obtained by digital 
holographic imaging 

 

 

a. Motivations: 

Human blood contains different type of cells; however, red blood cells (RBC) or 

erythrocyte are the most abundant cell type. RBC contains hemoglobin which binds to either 

oxygen or carbon dioxide. This allows oxygen to be transported to tissues and organs and 

carbon dioxide to be taken away during microcirculation. The biconcave shape of the 

erythrocyte is extremely important in the functionality of RBCs. It allows the membrane to 

have a high surface area to volume (SAV) ratio facilitating large reversible elastic deformation 

of the RBC while squeezing through the tiny capillaries. According to its importance, it has 

drawn considerable attentions into the pathology research in the clinical relevant blood 

diseases. Pathological disorders can modify RBCs and lead to significant alterations in its 

original shape. The consequences of modified RBC often are observed as clinical symptoms 

ranges from obstruction of capillaries and restriction of blood flow to tissues to necrosis and 

organ critical damages [31-39]. Also, counting cell types in the blood sample is another 

important task for investigating clinical status which can be evaluated by well-known methods 

such as complete blood count (CBC) or RBC distribution width (RDW) which are part of 

cytometry field. Because an automated cell counter samples and counts so many cells, the 

results are reliable in most of the cases [40]. However, certain abnormal cells in the blood may 
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not be identified correctly, requiring manual review and identification of any abnormal RBCs 

the instrument could not categorize. This information can be very helpful regarding identifying 

the cause of a patient's anemia. Abnormal increases or decreases in RBC counts as revealed in 

a complete RBC count may indicate that you have an underlying medical condition that calls 

for further evaluation.  

In the case of RBC, biconcaves are substantial type in a healthy person, but there are other 

RBCs types with the different percentage varying between healthy and non-healthy persons. It 

has been shown that the percentages of different types of RBCs will be distinct according to the 

RBC diseases type [40]. Accordingly, it is essential to measure the percentage of each RBC 

type in a blood sample consists of multiple RBCs for diagnosis and drug testing subjects. 

Typically, the diagnosing is performed by a human expert, and it shows some drawbacks such 

as time-cost consuming and inaccuracy. Generally, experts visualize the sample, in the images 

through microscope based on their subjective knowledge from the viewpoint of intensity, 

morphology, texture etc. based features. Usually, small-scale differences in the features are 

overlooked by human eyes especially for the border-line diagnostic scenario. 

However, the situation has changed completely by emerging of automatic classification 

algorithms. These techniques have been applied to problems in biology and have shown 

promising results for automatic recognition, classification of various micro-organisms [7-10]. 

Among the classification methods, the pattern recognition neural network (PRNN) has been 

suggested in non-linear classification problems such as RBC classification and counting [61-

63]. The fundamental benefit of artificial neural network (ANN) is nothing but it does not use 

any mathematical model since ANN learns from data sets and identifies patterns in a sequence 

of input and output data without any previous assumptions about their type and interrelations. 

Also, ANN eliminates the drawbacks of the conventional methods by extracting the wanted 

information using the input data.  

In conventional RBC classification problems, the experts deal with two-dimensional (2D) 



 

36 

 

erythrocyte images obtained by conventional microscopes and cameras [64-67]. These methods 

generally have good performance but most of them have a significant number of features since 

they need to discriminate groups by utilizing 2D features. However, in the case of RBC which 

is transparent or semi-transparent, we cannot take advantages of conventional intensity-based 

microscopes. Therefore, we believe that to obtain a satisfied level of accuracy, the classification 

and recognition should also take into account three-dimensional (3D) shape of RBCs. Among 

the techniques that can provide 3D images of transparent or semi-transparent cells digital 

holographic microscopy (DHM) has shown promising results. Also, the DHM technique has 

been utilized in the classification of RBC using 2D and 3D feature since DHM can provide 

quantitative phase image. In studying RBC, DHM enables the measurement of 3D features, 

such as mean corpuscular volume (MCV), surface area, surface area to volume (SAV) ratio, 

functionality factor, sphericity index and sphericity coefficients. Chemical parameters of MCH 

and MCHSD can also be obtained thanks to DHM. Accordingly, we believe that any automated 

RBC classification that can distinguish different RBC types accurately should take into 

accounts the benefits of DHM imaging technique. Figure3.7 shows a reconstructed phase 

image of a sample consists of biconcave, flat-disc, and stomatocyte shape RBCs. This image 

shows that in a single sample it is possible to see RBC with different morphologies.  
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Figure 3.7: Reconstructed image and three different RBCs inside. A is a flat disc RBC, B is a biconcave RBC 

and C is a stomatocyte. White bar is 10µm. 

 

In this study, four main types of RBC shapes, biconcave (doughnut shape), flat discs, 

stomatocyte and echino-spherocyte are interested RBCs for the quantitative determination of 

the percentage of RBC types in multiple human RBCs (See Fig.3.7). The reason for 

differentiating doughnut-shaped and flat-disc RBCs is that it can help in the applications of 

separating old cells versus young cells. It has been shown that during the stages of biconcave-

echinocyte transformation in so-called storage lesion, biconcave cells become flat discs (loss of 

ATP results in a stiffer cytoskeleton that pulls the bilayer) after a few weeks of storage in blood 

bank. Transfusion of these old samples might have critical consequences according to the 

previous studies [38, 68]. 

At first, RBCs are visualized by off-axis DHM and the quantitative phase images are 

reconstructed by the numerical algorithm [30, 38]. Then, single RBCs are extracted from 

images with multiple RBCs using watershed algorithm [69]. At the next step, following 2D 

features of projected surface area (PSA), perimeter, radius, elongation, and PSA to perimeter 

rate are extracted. In this research, we have ignored extracting 2D features related to the inner 
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section of RBC, unlike the previous method proposed by [11-27], since flat-disc and echino-

spherocyte RBCs do not have the inner section. Also, volume, surface area, SAV ratio, average 

RBC thickness, sphericity index, sphericity coefficient and functionality factors, and MCH and 

MCH surface density (chemical properties of RBC) are extracted from single RBCs. The latter 

feature-set is related to the morphological and biochemical properties of RBC 3D profile. 

Along with the 3D features, two new features related to the ring section of RBC are introduced. 

These features add significant information to the classification model and increase the 

discrimination power of the classifier. Then, each feature set is fed into PRNN, separately, and 

the classification results are compared using 10-fold cross validation (CV) technique. Since we 

are involved in a classification model with non-linear decision boundary, we have decided to 

use PRNN strategy. In PRNN, the training algorithm is Bayesian regulation back-propagation 

which updates the weights according to Levenberg-Marquardt optimization technique and the 

activation function for mid-level layers is hyperbolic tangent sigmoid. 

Finally, to propose the best feature set, concerning both 2D and 3D features, sequential 

forward feature selection (SFFS) is utilized here. It has been shown that the best performance 

of a classification model can be achieved by selecting the most informative features and 

remove noisy ones that are either redundant or irrelevant [70]. Indeed, reducing the number of 

features can shorter training time, reduce the complexity of classifier and simplifies the model 

for interpretation goals. SFFS technique tries to select a subset of variables that best predict the 

data by sequentially selecting features until there is no improvement in the prediction.  

In this research, we have extracted 108 biconcave RBCs from a healthy sample stored for 

1 day in the blood bank, 106 samples of stomatocyte shape from a sample with predominantly 

of stomato cells, 38 samples of flat-disc shape and 71 samples of echino-spherocyte shape for 

training and testing PRNN. Flat-disc and echino-spherocyte cells are extracted from RBC 

samples stored in the blood bank for 40 days and 57 days, respectively. Performance 

comparison is evaluated by calculating miss-classification rate of 10-fold CV technique. It is 
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often claimed that leave-one-out-cross-validation (LOOCV) has higher variance than k-fold 

CV, and that it is because the training sets in LOOCV have more overlap. This makes the 

estimates from different folds more dependent than in the k-fold CV, hence increases the 

overall variance [71].  

Our experimental results demonstrate that the PRNN trained by 3D features gives a good 

performance in classifying and counting RBCs in multiple human RBCs in an automated 

manner in comparisons with the 2D features. In addition, we introduce the best set of features 

which combines 2D and 3D features to improve the RBCs classification accuracy. We believe 

that the final feature set evaluated with the presented neural network classification strategy can 

provide better discrimination results. 

b. Feature Extraction 

Two-dimensional (2D) Features 

After segmentation step and extracting many single RBCs, features can be extracted. We 

first start with 2D features. Following features are extracted in 2D case. 

 

Table 3.3: 2D features descriptions. 

 Feature Name Description 

2D-F1 
Projected surface area 

(PSA) 

PSA=N×p2 (p is pixel size in holographic image and N is 

number of pixels within RBC) 

2D-F2 Perimeter (Pr) Length of the RBC boundary 

2D-F3 Circularity (Ci) 
2PrCi

PSA
=

 

2D-F4 Elongation (El) Orientation of chain code in the cell boundary 
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2D-F5 Radios (R) 

Radius is estimated by considering the radius of a circle 

having the area of the PSA 

/R PSA π=  

2D-F6 PSA/Perimeter (PSP) 
PSAPSP
Pr

=
 

 

Elongation of the RBC is a measure of the ratio of width to length for oblong RBCs. It can 

be computed from the chain code by summing the number of each type of element 0 to 7 and 

combining 0 and 4, 1 and 5, 2 and 6, and 3 and 7 [64].  

Three-dimensional (3D) Features 

Since some 3D features required thickness of the RBC, we first need to convert phase 

image into thickness image. Accordingly, the thickness value h(i,j) for each pixel of (i,j) with 

phase value φ(i,j) in a phase image can be expressed by Eq.4. Surface area is another important 

property and has the main contribution in different 3D features. Generally speaking, the surface 

area of the RBC is the surface area of the membrane mesh plus projected surface area. The 

method in this reseach splits and divides RBC surfaces into smaller regular areas (triangles 

here) and adds these smaller areas to give the entire surface area. Understandably, the accuracy 

of such a calculation is dependent on the smaller area chosen [23]. 
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Figure 3.8: 3D representation of four RBC categories and points on the ring section, (a) shows a typical 

biconcave sample, (b) shows a flat disc in which center raised up, (c) shows a stomatocyte RBC and (d) is a 

spherocyte RBC. 

3D features listed in Table 3.4 are extracted in this research. We only give a short 

description of the eight features related to the morphological properties of RBC, but interested 

readers can refer to [25, 27] for the detail of each feature. Regarding the calculation of three 

features (F9-F11), we obtained many points over the ring section of RBC by applying two 

techniques. First, we estimate the ring section (blue points in Fig. 3.8) by calculating the radius 

of a circle having the area of the projection of RBC on X-Y plane (the ring is around three 

fourth of the RBC radius). Then, we update the position of each point on estimated ring (blue 

points) by finding the thickest point in a 3×3 neighbor (red points in Fig. 3.8). From now on we 

name the red points as RPs. Single green point shows the center of RBC regarding the 

calculation of sphericity coefficient. In this study, we have decided to obtain 30 RP points. The 

reasons is that the total number of points on the ring section for the stomatocyte RBCs is 

between 90-120 points according to our calculation. Also, since we are looking at a 3x3 

(a)                                                        (b)

(c)                                                        (d)
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neighborhood around the blue point to find the point on the ring (red point) there is high 

possibility of overlapping between red points. For example, Fig.3.9 shows the position of red 

and blue points when we increase the number of points. We can see that by increasing the 

number of red points many of them overlap.  

 
(a)  

 
(b) 

Figure 3.9: 3D representation of RBC ring section with red and blue points on it. (a) number of points is 60, (b) 

number of points is 600. 

 

Table 3.4: 3D features descriptions 

 Feature name Description 

3D-F1 
Average thickness 

(AT) 
1 1

( , )
k l

i j
h i j

AT
k l

= ==
×

∑∑
 (h(i,j) is the thickness at (i,j)th pixel) 

3D-F2 Volume (V) 2

1 1
( , )

k l

i j
MCV p h i j

= =

≅ ∑∑  

3D-F3 
Top view surface 

area (TVS) 

Surface area of the upper view of erythrocyte calculated 

by dividing surface into small triangles and then the 

summation of each triangle’s surface area. 
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3D-F4 
Top view surface 

area volume ratio 

TVSTVSV
V

=  

3D-F5 
Total surface area 

(SA) 
SA TVS PSA= +  

3D-F6 
surface area 

volume ratio (SAV) 

SASAV
V

=  

3D-F7 
Sphericity index 

(SI) ( )

2 / 3

2 / 3

4
4 / 3

VSI
SA

π
π

=  

3D-F8 
Functionality factor 

(FF) 
24

SAf
Rπ

=  

3D-F9 
Sphericity 

coefficient (SP) 

c

r

d
SP

d
= (dc and dr are thickness values in RBC center 

and ring section, respectively) 

3D-F10 
STD of thickness in 

ring section 

This feature measures variation in the thickness of RPs 

in the ring of RBC 

3D-F11 

Upper side of the 

ring/ lower side of 

ring 

This feature is calculated by dividing four maximum RPs 

by four minimums 

3D-F12 
Mean hemoglobin 

(MCH) 

10 ( )
2

PSAMCH ϕ
πα

= (ϕ  is the average phase value, λ is 

the wavelength of the light source of the setup and α 

=0.00196 dl/g is a constant known as the specific 

refraction increment related to the protein concentration) 
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3D-F13 
MCH surface 

density (MCHSD) 

MCHMCHSD
PSA

=  

 

We believe that above 3D features can distinguish between different RBCs since they are 

related to the 3D profile of RBC. The statistic t-test using two-sample Kolmogorov-Smirnov 

test revealed that some of these features are independent (data not shown). Table3.5 shows 

average and STD values of each feature for each RBC type. 

 

Table 3.5: 3D feature values (Mean±STD) 

 
Biconcave Flat-disc Stomatocyte 

Echino-

spherocyte 

Average thickness (µm) 2.18±0.3 2.27±0.25 2.75±0.36 4.47±0.36 

Volume (μm3) 93.23±13 103.29±14.72 95.85±11.52 101.91±16.4 

Top view surface area 

(μm2) 
103.85±15 94.50±9.62 106.04±12.39 95.65±10.6 

Top view surface area 

volume ratio(μm-1) 
1.12±0.09 0.92±0.05 1.11±0.1 0.95±0.06 

Total SA (μm2) 148.32±16.38 143.21±12.48 147.32±16.11 120.76±11.79 

SA volume ratio (μm-1) 1.61±0.17 1.40±0.13 1.55±0.18 1.19±0.09 

Sphericity Index (SI) 0.40±0.18 0.74±0.04 0.69±0.06 0.87±0.032 

Functionality Factor (FF) 0.86±0.16 0.74±0.07 0.93±0.19 1.21±0.14 

Sphericity Coefficient (SP) 0.67±0.05 0.82±0.06 0.5799±0.21 1.16±0.14 

STD of thickness in ring 

section 
0.0332±0.021 0.054±0.018 0.1321±0.096 0.1254±0.03 

Upper side of the ring/ 1.31±0.11 1.25±0.09 1.93±0.44 1.44±1.14 
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lower side of ring 

MCH (pg) 31.29±4.55 34.68±5.01 32.17±3.94 34.29±5.51 

MCHSD(pg/μm2) 0.68±0.1 0.71±0.08 0.85±11 1.39±0.11 

c. Pattern Recognition Neural Network 

Artificial neural networks (ANN) are highly simplified mathematical models of biological 

neural networks having the ability to learn and provide meaningful solutions to the problems 

with high-level complexity and nonlinearity. The ANN approach is faster compared to its 

conventional techniques, robust in noisy environments, and can solve a wide range of 

problems. Due to the advantages, ANNs have been used in numerous applications [61-63]. A 

typical ANN is presented in Fig. 3.10. An important application of neural networks is pattern 

recognition that can be implemented by using a feed-forward neural network with a specific 

training function and specific function in the output layer. During training, the network is 

trained to associate outputs with input patterns. When the network is used, it identifies the input 

pattern and tries to output the associated output pattern. 
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Figure 3.10: A feed-forward artificial neural network configuration with five input nodes, two output nodes, 

and two hidden layers. 

 

The information processing in the ANN strategy starts from the input layer to the hidden 

layer (from one hidden layer to another one if there are more than one) and from the last hidden 

layer to the output layer. A synaptic weight is assigned to each link to represent the relative 

connection strength of two nodes at both ends in predicting the input-output relationship. yj (the 

output) of any node j, is given as:  

   1
,

n

j i i i
i

y f W X b
=

 
= + 

 
∑                    (17) 

where Wi is the connection weight, Xi denotes the ith input of node j, n is the number inputs to 

node j and bj is the bias value. Function f or so-called activation function determines the 

response of a node to the total input signal that is received. Generally, the activation function 

for hidden layer in pattern recognition neural network is hyperbolic tangent sigmoid transfer 

function due to the following advantages: 

1- It limits the range of data to values between -1 and 1. This function is almost linear near the 

mean. It is smooth and has monotonic nonlinearity property at both extremes.  

Second hidden layerFirst hidden layer

Inputs Outputs

https://en.wikipedia.org/wiki/Smoothness
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2- It remains differentiable everywhere and the sign of the derivative is unaffected by the 

normalization. Generally, the differentiable requirement is needed for hidden layers and 

hyperbolic tangent sigmoid transfer function is often recommended as being more balanced.  

3- The 0 for hyperbolic tangent sigmoid transfer function is at the fastest point (highest 

gradient or gain) and not a trap.  

4- The hyperbolic tangent sigmoid transfer function suit the output layer to the competitive 

outputs of softmax function. 

5- Since it can be estimated by 2
1+e−2x

− 1  it can be implemented faster in MATLAB. 

For output layer in PRNN, the activation function is softmax transfer function (normalized 

exponential) that can be interpretable as posterior probabilities for a categorical target variable. 

It is highly desirable for those outputs to lie between zero and one and to sum to one. The 

purpose of the softmax activation function is to enforce these constraints on the outputs. Let the 

input to each output unit be ql, l=1,...,k, where k is the number of classes. Then the softmax 

output yl is: 

                                                                                 

1

.
l

m

q

l k
q

m

ey
e

=

=

∑
                                (18) 

According to Eq. (18) sum of all “y”s is equal to unity and can be interpreted as the 

posterior probability for the final decision. The training algorithm updates the weight and bias 

values according to Levenberg-Marquardt optimization. It minimizes a combination of squared 

errors and weights and then determines the correct combination so as to produce a network that 

generalizes well (Bayesian regularization) [72].  
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d. Experimental Results and Discussion 

 
In this experiment, 108 RBCs are labeled as biconcaves, 106 RBCs labeled as 

stomatocytes, 38 RBCs are labeled as flat-disc and 71 RBCs labeled as echino-spherocytes. 

Four samples of each group are presented in Fig. 3.11. Simulations are all executed on a 64-bit 

Windows 7 computer with a 3.60 GHz Intel Core i7- 4790 CPU, 8 GB RAM, and 8 cores. The 

performance of the classification model is assessed by utilizing 10-fold CV check. Put it 

simply, the data set is divided into 10 subsets, and the test is repeated 10 times. Each time, one 

of the 10 subsets is used as the test set and the other 9 subsets are put together to form a 

training set. Then the average miss-classification error across all 10 trials can show the overall 

miss-classification error. PRNN consists of one input, output layer and three hidden layers. 

Number of neurons in each hidden layer respectively is five, ten and five. Neuron numbers are 

obtained by trial-and-error technique. All the simulations codes are implemented in MATLAB 

2014. 

Comparison between 2D and 3D features 

In the case of 2D features (Table 3.3), 10-fold CV revealed that that the total 

misclassification rate is significantly high. In detail misclassification of each group is as 

following; flat-disc 64%, stomatocyte 13.4%, biconcave 32.3% and echino-spherocyte are 

4.2%. Only echino-spherocyte RBCs can be accurately classified by taking into account 2D 

features while other categories have significant error. According to the confusion matrix, 

PRNN confuses between biconcaves and flat-discs by using 2D features (data not shown). In 

contrast 3D features explained in Table 3.4 generate more accurate and interesting results. 

According to the results of 10-fold cross validation, misclassification rates are 0%, 1.6%, 3.2% 

and 0% for flat-disc, stomatocyte, biconcave and echino-spherocyte RBCs, respectively. 
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Table.3.6 shows the classification error for 2D and 3D features. It is noted that the presented 

neural network classification strategy was used to evaluate the discrimination power of the 

feature set based on 3D morphological properties of RBC against 2D features. The 

classification results obtained with the neural network demonstrate that the 3D features can be 

more effective in RBC classification than the 2D features. 

Table 3.6: Miss-classification results of 2D and 3D features 

 Flat-disc  Stomatocyte Biconcave Echino-spherocyte 

2D features 64% 13.4% 32.3% 4.2% 

3D features 0% 1.6% 3.2% 0% 

 

 

Table 3.7: Normalized mutual information between 2D features. 

 2D-F1 2D-F2 2D-F3 2D-F4 2D-F5 2D-F6 

2D- F1 1 0.61 0.13 0.37 0.31 0.33 

2D- F2 0.61 1 0.057 0.25 0.071 0.37 

2D- F3 0.13 0.057 1 0.12 0.7 0.014 

2D- F4 0.37 0.25 0.12 1 0.15 0.14 

2D- F5 0.31 0.071 0.7 0.15 1 0.04 

2D- F6 0.33 0.37 0.014 0.14 0.04 1 
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Figure 3.11: Samples of each RBC group used in this research; (a) four samples of flat disks, (b) four samples 

of stomatocyte morphology, (c) four samples of biconcave RBC and (d) four samples of sphero-echinocyte 

RBC. 

In another experiment, we evaluated the normalized mutual information between each 

feature in 2D and 3D features. In the case of 2D features, it turns out, as shown in Table 5, that 

there is a big mutual information between some features. Mutual information is the amount of 

information that two features share. If the mutual information between the two features is large 

(small), the two features are closely (not closely) related. If the mutual information becomes 

zero, the two features are independent. For example, 2D-F1 has significant mutual information 

with features 2D-F2, 2D-F4, 2D-F5, 2D-F6 (see first row of the Table3.7). Therefore, this 

feature is statistically redundant and can not add significant information. 

(a) 

(b)

(c)

(d)
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Combining 2D and 3D features and select the best feature-set 

We believe that the best classification model should take into account not only 3D features 

but also 2D features. However, it is worth mentioning that not any feature can add significant 

information to the classification model. Therefore, we believe that the performance of any 

classification model can be enhanced by taking advantages of feature selection (FS) strategy. In 

FS we seek to find the best set of the features that has the strongest ability (or strong) to 

distinguish each class. Generally speaking, FS preserves the original features intact; features 

deemed unimportant/irrelevant/redundant are simply eliminated from further consideration 

while selecting only those features that significantly contribute to the classification problem. 

Therefore, FS can reduce the number of features (variables) of the classification problem and 

make the model simpler (or less complex) and shorten training time [70]. We also implemented 

FS in this research by using sequential forward feature selection technique (SFFS). Generally 

speaking, in SFFS features are sequentially added to an empty candidate set until the addition 

of further features does not decrease the criterion. It has two components of an objective 

function, called the criterion, and a sequential search algorithm. In former, common criteria are 

misclassification rate for classification objects (similar in this research) and mean squared error 

for regression models. A sequential forward search algorithm adds features from a candidate 

subset while evaluating the criterion. Since an exhaustive comparison of the criterion value at 

all 2n subsets of an n-feature data set is typically infeasible (sometimes feasible but time-

consuming), sequential searches grows the candidate set. It turns out that the following features 

of average RBC thickness (3D-F1), top view surface area volume ratio (3D-F4), sphericity 

coefficient (3D-F9), the upper side of the ring divided by lower side of the ring (3D-F11) and 

perimeter (2D-F2) can better classify multiple RBCs in this research. Our experimental results 

also revealed that adding more features does not add significant discrimination ability to the 

final classification model. As it has been mentioned earlier, SFFS is responsible for adding or 

removing features from the final feature set. One component of SFFS is the objective function 
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which here is the misclassification rate. SFFS starts from an empty set and add features one by 

one to the set and evaluates the misclassification rate. If there is a significant changes in the 

objective function (misclassification rate) then feature can be added to the final feature set 

(Table.3.8).  

 

Table 3.8: Misclassification rate after adding each feature to the feature set. 

Features added to the set Criterion value 

(Misclassification rate) 

Average RBC Thickness (3D-F1) 0.252396 

RBC Perimeter (2D-F2) 0.134185 

Top view surface area-volume ratio (3D-F4) 0.0670927 

sphericity coefficient (3D-F9) 0.0607029 

The upper side of the ring divided by lower side of the 

ring (3D-F11) 

0.0511182 

Adding next feature to the feature set (6th feature) 0.479233 

Adding next feature to the feature set (7th feature) 0.479233 

Adding next feature to the feature set (8th feature) 0.479233 

 

According to Table.3.8 after adding 7th and 8th feature, the misclassification rate never 

changes. It means that they have no contribution to the final feature set. Adding 6th feature 

decreases the misclassification rate marginally but we still did not consider it as part of the 

feature set since we wanted to keep the final feature set as small as possible (Only five 

features). Figure.3.12 shows the data distribution RBCs for each selected feature. We can see 

that the distribution of average RBC thickness of echino-spherocyte RBCs has almost no 

overlap with other distributions (Fig 3.12(a)). Table 3.9 shows miss-classification rate of the 
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final feature-set and PRNN approach.  

 

Figure 3.12: Data distribution of the best feature set 
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Table 3.9: Miss-classification results for the best feature set obtained by sequential features selection 

 Flat-disc Stomatocyte Biconcave Echino-spherocyte 

Best feature set 0% 0.9% 3.1% 0% 

 

The confusion matrix of the test set shows that PRNN sometimes confuses between 

stomatocytes and echino-spherocytes because there are cases in which RBC has a morphology 

similar to both stomatocyte and echino-spherocytes (see Fig. 3.13). According to Fig. 3.13 we 

can see that RBC is similar to both stomatocyte and echino-spherocytes morphology and 

posterior probability for belonging to stomatocyte and echino-spherocyte category are 0.33 and 

0.66, respectively. Even for a human examiner it can be difficult to put it in the correct 

category. 

 

Figure 3.13: A RBC sample that confuses neural network, resemble to both stomato and spherocyte. (a) 3D 

representation and (b) representation on X-Y plane. 

 

In another experiment, we tried to count different type of RBCs in five quantitative phase 

images with multiple RBCs. Images are inspected visually by the human inspector and then 

results are presented. In Fig. 3.14(a) stomatocyte RBCs are dominant (flat discs 0/80, 

stomatocytes 58/80, biconcave 8/80 and echino-spherocyte 14/80) and in other images 

biconcave RBCs (Fig. 3.14(b) has following flat discs 2/27, stomatocytes 5/27, biconcave 

20/27 and echino-spherocyte 0/27) and echino-spherocytes are dominant (Fig. 3.14(c) has 

following RBC types of flat-disc 0/49, stomatocytes 5/49, biconcaves 6/49 and echino-

(a)                                                (b)
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spherocytes 38/49, and Fig. 9(d) has following RBC types of flat-disc 0/63, stomatocytes 3/63, 

biconcaves 1/63 and echino-spherocytes 59/63). Figure 3.14(e) shows an image with 40 days 

storage time with many flat-disc RBCs (flat-disc: 16/36, stomatocytes: 7/36, biconcaves: 5/36 

and echino-spherocytes: 8/36). The numbers in parenthesis show the number of each 

morphology obtained by the human inspector. At first, each image is segmented into many 

RBCs since feature extraction should be applied at the single cell level. Then, the percentage of 

the different types of RBCs in the RBC phase images is calculated. As expected, the classifier 

showed that at the first sample stomatocyte RBCs are dominant. In contrast in the second and 

fifth figure biconcave and flat-disc RBCs are the major types. Third and fourth figures illustrate 

that echino-spherocytes are dominant RBCs. Although there is a small error in counting non-

dominant RBCs, the main and important thing is counting and reporting the dominant type for 

further investigation. 

 

 

Figure 3.14: Five RBC samples and counting results. (a) Flat-disc: 2.5% (2/80), Stomatocytes: 76.2% (61/80), 

(d)                                                       (e)

(a)                                                    (b)                                                       (c)
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Biconcave: 11.25% (9/80) and Echino-spherocyte: 10% (8/80). (b) Flat-disc: 7.40% (2/27), Stomatocytes: 

18.51% (5/27), Biconcave: 74.07% (20/27) and Echino-spherocyte: 0%. (c) Flat-disc: 0%, Stomatocytes: 

12.24%(6/49), Biconcave: 10.2% (5/49) and Echino-spherocyte: 77.55% (38/49). (d) Flat-disc: 0%, 

Stomatocytes: 7.94% (5/63), Biconcave: 1.59% (1/63) and Echino-spherocyte: 90.4% (57/63). (e) Flat-disc: 

47.22% (17/36), Stomatocytes: 25% (9/36), Biconcave: 19.44% (7/36) and Echino-spherocyte: 8.3% (3/36). 

 

According to the results, the proposed feature set and classifier can automatically count 

and categorize different types of RBCs in human RBCs by taking advantages of 2D and 3D 

profile of RBC. The classifier is helpful to assess RBC-related abnormality since the ratio of 

the different types of RBCs is associated with certain types of diseases. There are some 

disadvantages in using NN technology regarding the classification such as there is no formula 

for the number of nodes and hidden layers. Generally, these numbers in the network are 

problem dependent and are decided by the trial-and-error method. 

We believe that DHM, by providing the quantitative phase images, allows for doing 

different analysis especially classification goals. For example, someone can easily classify 

echino-echino-spherocyte from the rest of cells easily by using a conventional binary support 

vector machine (SVM) classifier and one or two features. Figure.3.15(a), for example, shows 

the density of average cell thickness of echino-spherocytes against other RBCs. Any binary 

classifier can be used to separate these two groups. Figure.3.15 (b) shows the scattering of two 

groups based on average thickness value and surface area, and an SVM classifier with its 

boundary region. 
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Figure 3.15: (a) average thickness value distribution for echino-spherocytes and other RBCs, (b) an SVM 

classifier to separate echino-spherocytes and other cells using average thickness and total surface area. 

 

e. Conclusions  

Automatic classification of different types of RBCs in human RBC is a challenging and 

important problem for pathological diagnosis. In particular, as far as RBCs are concerned, 

classification based on their 3D profile is highly relevant. Another issue is that since demands 

on laboratories are ever increasing and funding and staffing levels are generally below the 

desired level, the implementation of a system which shortens staff time, cost-effective and non-

invasive is greatly desired. In this research, we have presented and assessed the use of pattern 

recognition neural network applied to the 2D and 3D features of RBCs obtained through DHM 

in order to categorize and count biconcave, stomatocyte, flat-disc and echino-stomatocyte 

RBCs in an RBC sample with multiple types. Six 2D features and thirteen 3D features have 

been extracted and classification results are compared right after. Our experimental results 

show that the 3D features have more useful information in RBC classification. In addition, 

feature selection shows that average RBC thickness, top view surface area volume ratio, 

sphericity coefficient, the upper side of the ring divided by lower side of the ring and RBC 
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perimeter can better classify RBCs into the desired categories. The experimental results and the 

performance imply that the final feature set can help in classifying and counting RBCs which is 

substantially important in analyzing RBC abnormality and shape-related diseases. 

C. Automated quantification of red blood cell fluctuations by time-
lapse holographic cell imaging 

f. Motivations and introductions: 

The functionality of human red blood cells (RBCs) has clinical relevance for hematology 

and depends on RBC dynamics and morphology. We propose automated methods to 

quantitatively calculate fluctuations rate with nanometric axial and millisecond temporal 

sensitivity at the single-cell level by using time-lapse holographic cell imaging. For this 

quantitative analysis, cell membrane fluctuations (CMFs) were measured for RBCs stored at 

different storage times. Measurements were taken over the whole membrane for both the ring 

and dimple sections separately. The measurements show that healthy RBCs that maintain their 

discocyte shape become stiffer with storage time. The correlation analysis demonstrates a 

significant negative correlation between CMFs and the sphericity coefficient which 

characterizes the morphological type of erythrocyte. In addition, we show the correlation 

results between CMFs and other morphological and chemical properties such as projected 

surface area, mean hemoglobin content, mean corpuscular volume, and surface area. 

g. Introductions and Sample Preparations: 

Red blood cells (RBCs) are composed of water, proteins (the most abundant of which is 

hemoglobin), lipids, and carbohydrates [73]. Mature erythrocytes, which are sometimes also 

referred to as discocytes, are the main cell type in the blood circulation. Their biconcave shape 
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is formed by a flexible membrane that allows significant deformation. This configuration has 

the maximum surface area for a given volume and allows rapid deformations while passing 

through small capillaries during microcirculation. Such a biconcave shape is assumed to have 

resulted from the minimization of the free energy of the membrane under area and volume 

constraints, since there are no complex internal structures within an RBC [33]. RBCs must 

adapt to a wide range of capillary sizes, and deform while maintaining their cellular integrity 

and function. This is made possible by the absence of a three-dimensional (3D) cytoskeleton in 

RBCs. Their shape and mechanical integrity are maintained instead by a two-dimensional (2D) 

hexagonal lattice formed of flexible spectrin tetramers, which are linked by actin oligomers. 

Since the side length of actin (70-80 nm) is much smaller than the contour length of a spectrin 

tetramer (approximately 200 nm), it is believed that spectrins are the principal contributors to 

the bending of membranes or curvature modulus [74, 75]. Two kinds of effects have been 

suggested as driving agents of cell-membrane fluctuations (CMFs). The first is thermal motion, 

which is more prominent in membrane regions with a small curvature (the dimple region). The 

second is linked to the metabolic activity that determines the ATP content in the membrane 

skeleton and to the involvement of actin. The second type of fluctuations is believed to happen 

in regions of high curvature, such as the ring section of RBCs [76].  

As mentioned earlier, different factors influence the deformability of RBCs. However, 

under storage conditions (e.g., in blood banks), RBCs undergo molecular, metabolic, 

biochemical and biomechanical changes, which are commonly referred to as storage lesions. 

Briefly, such processes result primarily in a decrease in energy metabolism,2,3 

diphosphoglycerate (DPG), adenosine triphosphate (ATP), and nitric oxide.  

Furthermore, during storage, the erythrocyte shape alters from deformable discoid to an 

irreversibly deformed spheroechinocytes. It is due to the irreversible loss of membrane by the 

formation of vesicles, which is the cause of an increased osmotic fragility [32,38,51,52,77-82]. 

It is understood that these changes are associated with decreased deformability, poor 
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functionality of RBC and consequently with the removal of RBCs from the bloodstream [79-

82]. 

One important question is regarding the extent to which the morphological and biochemical 

changes occurring under storage conditions affect membrane fluctuations. Another question is whether 

there is any correlation between the dynamic and static parameters. In order to address these questions, 

we propose automated methods for measuring quantitative fluctuations rate at the single-RBC level as a 

function of their storage time, using time-lapse digital holographic imaging. We also analyze both the 

ring and dimple regions of the cell separately, since we believe that fluctuations have different causes. 

Images were acquired every few days over a 71-day period to investigate the quantitative alterations of 

RBC parameters over storage time systematically. The erythrocyte concentrate (EC) from which the 

RBC samples were collected were prepared at the blood center of the Transfusion Interrégionale CRS 

(Epalinges, Switzerland) as follow: 450±50 mL of whole blood were collected and mixed with 63 

mL citrate-phosphate-dextrose (CPD) anticoagulant. The bags were centrifuged to separate blood 

components. Then, semi-automated pressure applied to distribute the blood fractions into sterile inter-

connected blood bags (Fenwal, Lake Zurich, IL, USA). Finally, to remove residual leukocytes the 

erythrocytes were filtered and 100 mL of saline-adenine-glucose-mannitol (SAGM) additive solution 

were added. Five mL of each sample were collected using a sampling site weekly during 71 days 

(the 4 ECs were stored at 4 °C) [83]. To prepare the RBCs, the EC samples were washed two times 

with NaCl 0.9% (centrifugation at 2000 g, during 10 min at 4°C) and resuspended in HEPA 10 mM 

glucose. The RBCs were then seeded in a 96-well plate coated with poly-L-Ornithine for image 

acquisition.  

The static morphological properties (mean corpuscular volume (MCV), projected surface 

area (PSA), surface area, and sphericity coefficient) and mean hemoglobin content (MCH) at the 

single-RBC level were measured. Having measured the fluctuations rate and the morphological 

and biochemical changes, we calculated the correlation of these parameters to the fluctuations 

rates at different times. Since previous studies mentioned that the RBC morphology affects 
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stiffness [75, 80], the present study focuses exclusively on biconcave RBCs. Additional reasons 

include that such cells are convenient for discrimination between the ring and dimple sections. 

Our quantitative analysis reveals some interesting points. First, we demonstrate that older cells 

(71 days storage) that have preserved their original discocytic shape are a little bit stiffer than 

younger ones (stored for 4 days). Also, the fluctuations rate in the dimple is greater than in the 

ring section in younger RBCs. The MCV, MCH, PSA, and surface area do not change 

significantly on these time scales. Interestingly, we show that the CMFs of a whole cell (for 

cells stored for 4 days) show significant negative correlation with the sphericity coefficient 

which means that more spherocyte cell becomes, less fluctuations it can have. A significant 

positive correlation between the dimple fluctuations and the sphericity coefficient is also 

observed. Membrane Fluctuations rate (methods and approaches) 

Different techniques have been proposed to measure fluctuations in RBC membranes [74-

76, 80]. However, their separate applications to the ring and dimple sections remain to be 

carried out, since we believe that the sources of their fluctuations are different. To calculate the 

fluctuations rate, we consider the statistical model of Rappaz et al. [76]. Briefly, this requires the 

definition of a region of interest (ROI) and two independent variables: std(hcell+hbackground), the temporal 

deviation within the RBC area (combining both the cell fluctuations and noise), and std(hbackground), the 

mean temporal deviation calculated over all the pixels located outside the RBC area (see Fig. 3.16). The 

measured standard deviations (see Fig. 3.17) for one pixel outside the cell ( point “A”), on the ring ( point 

“B”) and at the center (point “C”), are  17, 42 and 29 nm, respectively, indicating that the membrane 

fluctuation amplitudes are significantly larger than the background noise level (see Fig. 3.17). 

Accordingly, the fluctuations at each single pixel CMF(x,y) can be evaluated as [76]: 
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Figure 3.16: Distribution of temporal deviations within a ROI; the left-side distribution represents the 

background and the right side corresponds to the membrane and noise. 
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Figure 3.17: Thickness signals in three different regions recorded at 20 Hz over a 10s period (“A” denotes a 

background location, “B” is on the cell ring, and “C” is in the dimple region). The standard deviations of the 

signal are 17, 42, and 29 nm, respectively. 

 

Several strategies can also reduce noise effects. A temporal summation of three images and a 

median filter with size 5×5 pixels were utilized. It can also be noted that an RBC occasionally displays 

significant lateral displacements in time-lapse sequences. The lateral movement of RBCs, which are in 

the process of becoming spherocytes, could be caused by the loose attachment of the cell to the substrate 

(only a small portion of the membrane is in contact with the substrate). Such cases also display strong 

changes in CMFs. We canceled these lateral displacements by utilizing the ImageJ[84] software and the 

StackReg[85] plugin. Another concern is the steep membrane gradient at the cell border and around the 

center of the cell, where a small lateral displacement of the cell membrane has a strong impact on the 

OPD value, since the OPD measures variations in thickness along the z-axis (blue vector in Fig. 

3.18(b)). In order to avoid systematically overestimating cell fluctuations in such steep-slope regions, cell 

fluctuations must be evaluated in a direction perpendicular (normal) to the cell membrane (green vectors 

in Figs. Fig. 3.18 (a) and (b)). Finally, normal fluctuations can be estimated as:  

( ) ( ) ( , ), , cos( ).n x yh x y h x y θ= ×                                  (20) 
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Figure 3.18: (a) RBC mesh with normal vectors. (b) X-Z view of the membrane surface and its normal vector. 

 

During our experiments, we realized that RBCs sometimes undergo lateral movements (i.e., in the 

X and Y directions), particularly cells that have started suffering the echinocytic process (with a 

sphericity coefficient close to 1) [see Fig. 3.19].  

 

Figure 3.19: A sample RBC undergoing a spatial displacement. The first and last frames are blended (the first 

frame is made less opaque than the last frame to facilitate visualization). 

 

As mentioned, we used the Imagej software and the Stackreg plugin. However, we found that even 

small displacements can produce large changes in the fluctuations rates, particularly at the edges of the 

cell. We therefore adopted another strategy to isolate the cells from the background area. First, we applied 

a thresholding procedure involving the simplest and most basic image segmentation algorithm:  
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where T (here set to 0.35) is the threshold value, and I’(x,y) and I(x,y) are the intensity values in 

the segmented and original images, respectively. The above equation generates two masks that can be 

used to discriminate between the cell and background areas. In order to ensure that a cell is properly 

isolated, we “eroded” the background mask by a few microns. The erosion of the binary image I’ by the 

structuring element S is defined by  

 { | },zI S z S A′Θ = ⊆                                       (22) 

where Sz is the translation of S by the vector z. Simply put, the erosion of I’ by S can be understood 

as the locus of points reached by the center of S when it moves inside I’. Here, the structuring element is 

a flat disk of approximate radius 0.5 mm (see Fig. 3.20). 

 

 

Figure 3.20: (a) RBC after thresholding, (b) background after thresholding, (c) RBC after background erosion, 

and (d) eroded background area 

 

Figure 3.22 shows a deviation map of the ring, central, and background regions. Biconcave and 

(a) (b)

(c)                                          (d)
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spherocyte cells are separated systemically using sphericity coefficients (stomatocytes are removed 

manually from the biconcave set). The method used to discriminate biconcave cells from cells with other 

morphologies is as following. We found that the sphericity coefficient can be very helpful in this regard. 

The sphericity coefficient k is the ratio of the RBC thickness hc at the cell center to the thickness ht at a 

radius that is halfway to the cell perimeter:  

.c

t

h
k

h
=                                  (23) 

This metric can distinguish between three types of RBCs. A value of k less than 1 characterizes a 

biconcave RBC, a value close to 1 denotes a flat disk, and a value greater than 1 tends to a spherocyte. In 

this work, a threshold value of kt = 0.97 is assigned to distinguish biconcave cells from spherocytes and 

echinocytes. The procedure is simple and efficient. After making two masks to isolate the cell and 

background as described earlier, we calculate the projected surface area (PSA) of the cell. The cell radius 

can then be evaluated as: 

1
2
.PSAr

π
 ≅  
 

                               (24) 

Using r, we can select candidate pixels that are likely to lie near the ring section. Since the above 

procedure cannot precisely identify the points located exactly on the ring section, we search for the pixel 

with the greatest thickness value in the vicinity of each candidate pixel (within a region of size 3 pixels by 

3 pixels). Finally, we define ht as the arithmetic average of the heights of all these corrected points (red 

points in Fig. 3.21). 
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Figure 3.21: Blue points show the points obtained by using r. The red points identify the maximum values 

within a range of 3 pixels from the blue points. The green point shows the geometric center of the cell. 

 

 It turns out that the CMFs of the whole membrane, ring, and dimple are 35±4.7 (n = 33; RBC age 

is 4 days)(in agreement with previously reported values [76, 86]), 35±5.2, and 36±5.3 nm, respectively 

(see Fig. 3.22).  

 

Figure 3.22: Deviation map of (a) the ring and (b) dimple sections of a RBC, and (c) the background (after 4 

day of storage). Color-bar scale has units of nanometers. 

h. Quantitative Analysis of RBC Fluctuations 

In the present work, numbers written after a ± sign denote a standard deviation (STD). In our 

correlation analysis, we calculated the Pearson product-moment correlation coefficient and adopted a 

95% confidence level when applying the t-test method. Error bars shown in the plots represent twice the 
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corresponding standard deviations. After calculating the fluctuations rates, morphological parameters, 

and the MCH for different storage times, we can monitor the impact of storage lesions on the RBC 

fluctuations rate and 3D structure. In this study, more than 33 RBCs were extracted from each image (4 

ECs) to measure the parameters. As mentioned earlier, we measured the RBC volume using a Sysmex 

analyzer for the purpose of results confirmation. In addition, the MCH was measured with the same tool 

to confirm consistency with the MCH obtained by DHM. After calculating the morphological 

parameters, we realized that the RBC volume fluctuated around its average value, in the range 84±10 to 

87±8.8 μm3 for the RBCs stored between 4 and 71 days. Our values agree with previous reports 

[22-23]. We also found a small increase in the sphericity coefficient, signifying that the cells are 

becoming more spherical, less deformable, and stiffer, which arguably also affects the fluctuations rate. 

The sphericity coefficient increases from 0.74±0.09 in young cells (stored for 4 days) to 0.79±0.12 in 

older cells (stored for 71 days), consistent with reported values [23]. In the case of older RBCs, the STD 

value of the sphericity coefficient is significantly larger (±0.12). We believe that this results from 

biconcave cells gradually becoming spherical. The MCH does not change and only fluctuates around its 

average value of 32±0.6 pg (See Fig. 3.23), consistent with earlier reports [75, 22-23] and MCH is in 

agreement with the chemical experiment in the present study (Fig. 3.23). This constancy indicates that, 

while biconcave RBCs undergo small changes during storage, they do not leak hemoglobin into the 

storage solution [75, 80]. 
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Figure 3.23: MCH changes versus storage time 

 

The CMF rate fluctuates over the storage time. However, the general trend of the whole RBC, the 

ring, and the center is to decrease with storage time (F-statistics suggest that the linear regression line has 

a slope that is significantly different from zero; p-value <0.05), consistent with earlier findings [75]. Our 

experimental results show that RBC membranes stiffen with storage time, in agreement with the reported 

decrease in deformability [75, 79, 80, 87]. According to Fig. 3.24, fluctuations at the dimple are generally 

larger than in the ring region (p<0.05; two-sample Kolmogorov-Smirnov test), as expected and in 

agreement with the results of Rappaz et al. [76] (Age of RBC is 4 days). Figure 3.25 shows the 

correlation analyses of the fluctuations rate of young RBCs (stored for 4 days; n = 33) with the 

morphological and biochemical parameters of both the membrane and the dimple section. The ring 

section follows the same trend as the whole membrane. We therefore decided to exclude ring-section 

results from our correlation analysis results shown in Fig. 3.25. Interestingly, the membrane fluctuations 

exhibit a strong negative correlation with the sphericity coefficient (p<0.05; Pearson product-moment 

correlation test). The greater k is, the fluctuations are fewer in the membrane. This can be simply 

understood from the fact that the more spherical RBCs is, the stiffer it becomes [79, 87]. On the other 

hand, there is a significant positive correlation between the fluctuations rate in the dimple region and the 

k factor (Fig. 3.25(a)). The lower the PSA of a RBC, the larger the observed membrane fluctuations (Fig. 
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3.25(b)). Whole membrane and dimple fluctuations (Fig. 3.25(c)) have no significant correlation 

with the MCH, consistent with previous findings [75, 35]. Figure 3.25(d) and 3.25(e) shows that 

membrane fluctuations are not correlated with the MCV and surface area value (We also evaluated the 

correlation between the CMF and static morphological parameters of RBC for two storage times of 43 

and 71 days. The results are not shown here).  

Our statistical model for evaluating fluctuations rates suggests that the fluctuations rates in discocyte 

RBCs and in both the ring and dimple regions differs between young and old RBCs. Indeed, our results 

reveal that the MCH does not vary with storage time, which means that the total dry mass of a cell 

remains constant over time [75]. Further, the constancy of the PSA during blood banking shows a 

tendency of biconcave RBCs to maintain their general structure. 

 

Figure 3.24: Evolution of fluctuations rate over storage time for (a) the whole membrane, (b) the ring, and (c) 

the dimple region. The length of the error bars measures two standard deviations (Statistical test is Two-sample 

Kolmogorov-Smirnov test; p<0.05 is considered as significant). 
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Figure 3.25: Correlation measurements between the fluctuation rate and the morphological and chemical 
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parameters, for the entire membrane and the dimple region of discocyte RBCs. (a) sphericity coefficient, (b) PSA, (c) 

MCH, (d) MCV, and (e) surface area. Storage time is 4 days and n=33. (An asterisk * indicates a significant linear 

correlation by Pearson p<0.05). 

 

 

Figure 3.26:Correlation measurements between the fluctuation rate and the morphological and chemical 

parameters, for the entire membrane and the dimple region of discocyte RBCs. (a) sphericity coefficient, (b) 

PSA, (c) MCH, (d) MCV, and (e) surface area. Storage ti 

 

During circulation, normal RBCs must deform to penetrate capillaries with a diameter almost half 
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the size of a typical RBC. Their resistance to deformation may not, therefore, be substantial but not too 

small either, lest it compromise the integrity of the cell in normal circulation [88]. Previous experiments 

[75, 79, 80, 86, 87] have revealed that RBCs become less deformable and much stiffer over longer 

storage periods. The consequences are significant and potentially seriously detrimental to human organs. 

It is more difficult, if not impossible, for stiff RBCs to traverse a microcapillary system. Obstructed 

capillaries cause pain and damage to tissues and organs. Longer transit times through capillaries, 

resulting from lower RBC deformability, can also hinder oxygen delivery and carbon-dioxide absorption. 

This increase in stiffness with the aging of the RBC can be explained in several ways. The membrane 

area is reduced due to the release of microvesicles [89]. Also, ATP is crucial for preserving the biconcave 

shape, as shown in chemical experiments where the depletion of ATP caused a change from the 

biconcave to the echinocyte shape and finally yielded a spherocyte. This change of shape suggests that 

ATP and membrane loss stiffen the cytoskeleton and hence constrains the bilayer to a smaller 

cytoskeleton-projected area. The underlying physical origin of this effect is the change in the number of 

released spectrin filaments with the reduction in the number of defects as the ATP concentration is 

reduced [86-90]. Interestingly, it has been shown that the ATP concentration in RBCs decreases with 

increasing RBC age, or near the end of the RBC lifespan [91]. It is presumed that lower ATP 

concentrations linked to increasing age should correspond to a denser cytoskeleton, a higher shear 

modulus, and a drop in fluctuations rate [90]. Figure 3.27 shows two different RBCs, imaged after 

different storage times. Figure 3.27(a) displays a smaller sphericity coefficient and larger fluctuations 

rate. In contrast, the other cell has a greater sphericity coefficient and a smaller fluctuations rate (See Fig. 

3.27(b)). 



 

74 

 

 

Figure 3.27: 3D reconstruction of a RBC (age 4 days) with k = 0.85, (b) deviation distribution and (c) fluctuation map 

(average over the whole surface is 34.78 nm); (d) 3D reconstruction of a RBC (age 71 days) with k = 0.95, (e) 

deviation distribution and (f) fluctuation map (average over the whole surface is 26.33 nm). Color-bar scales are in 

nanometers 

The introduced method is not limited to a specific morphology and can be used in 

different cases. For example, fluctuations map of different morphologies are obtained and 

presented in Fig.3.28.  
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Figure 3.28: Deviation maps for a (a) biconcave (CMF = 30.3 nm), (b) echinocyte (CMF = 25.9 nm), (c) 

spherocyte (CMF = 23.2 nm), and (d) stomatocyte (CMF = 39.7 nm) RBCs (color-bar scales are in 

nanometers). 

i. Conclusions: 

In this study, we quantified fluctuations in the RBC membrane, dimple, and ring in the case of 

storage lesion using quantitative phase images acquired by DHM. We considered only discocyte cells, 

which are believed to be more robust under blood-banking conditions or were younger at the time of 

donation. Since DHM is capable of imaging cells at the single-cell level, we also evaluated 

morphological properties of the RBC. Interestingly, the fluctuations rate for the membrane and in the ring 

and central regions decrease with the age of the RBCs. Indeed, we found that the sphericity coefficient of 

a cell increases with storage time. The decrease in CMF and the increase in sphericity coefficient of the 

monitored biconcave RBCs imply that RBCs stiffen as they age. The decrease of deformability during 

storage can have negative impact on transfusion efficiency since perfusion of oxygen to organs is 

impaired. In addition, our correlation analysis revealed that membrane fluctuations are significantly 
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correlated with the sphericity coefficient of the monitored biconcave RBCs. We believe the present 

method will be useful in quantitative clinical applications for hematology targets, since DHM is a label-

free non-perturbing imaging method and blood smears can be considered for further investigation.  
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4 Automated analysis of Controlled and Drug Treated 
Cardiac Action Measurement Using Digital 

Holographic Microscopy   

a. Motivations: 

The primary function of the heart is to pump blood efficiently by virtue of an orchestrated 

contraction–relaxation cycle of the working cardio muscles or so-called cardiomyocytes 

(myocardiocytes). The human heart contains an estimated 2 to 3 billion cardiomyocytes cells. 

By coordinated contraction, these cells control blood flow through the blood vessels of the 

circulatory system. During the cardiomyocyte contraction, the whole cell changes its 3D shape 

rapidly, with meaningful intermediate events taking place on the short intervals (milliseconds) 

[41]. Also, the beating attributes such as beating frequency and peak changes are related to the 

cellular response to various stimuli and also to differentiation/maturation status. 

Cardiomyocytes respond to drugs and naturally occurring hormones and it alters the heart-beat 

rate. Drug development requires the testing of new chemical entities for adverse effects. 

Adverse drug side effects, such as cardiotoxicity is a major concern in drug development and a 

major cause of drug withdrawal from the market [42]. Therefore, safety assessments should be 

performed during drug development to see the possible side effects of the drug; especially 

those ones which interfere with the well-choreographed and elaborate movement of ions across 

cardiomyocytes membrane disrupting the electrical activity and beating of the heart [43]. 

Accordingly, pharmaceutical companies and researchers should ensure that the effects of lead 

candidate compounds on cardiac function strictly satisfy safety criteria. Therefore, it is highly 

important to establish more quantitative examination during drug developments and its effects 

on cardiomyocytes in vitro using data analysis algorithms for preventing late stage failure [42]. 
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Most of the biological cells, as well as cardiomyocytes, are transparent or semi-

transparent thus the amplitude of the light which interacts with them is minimally affected. 

Therefore, it is hard to quantitatively examine images of these cells obtained by conventional 

2D intensity-based light microscopy techniques. On the other hand, transparent specimens 

generally alter or shift the phase of light more significantly. Therefore, imaging techniques 

measuring changes in the phase of light like digital holographic microscopy (DHM) can 

quantitatively visualize the 3D shape of those cells in non-invasive manner. Analyzing tissues 

and cells in non-invasive approaches provides a powerful alternative to traditional techniques 

requiring invasive analysis of studied cells, which may end up to misleading results. DHM is 

capable of capturing the entire complex field distribution associated with the specimen in a 

single digital camera exposure, without the need for scanning or contrast agents. This 

parameter is directly related to the dry mass of the sample [20, 49], therefore, valuable 

information regarding the morphology and quantitative redistribution of materials within the 

cardiomyocytes can be obtained. DHM has been used in analyzing various types of cells, such 

as protozoa, bacteria, plant cells, blood cells, nerve cells, stem cells and cardiomyocytes. DHM 

is especially useful for acquiring fast cell dynamics, such as the red blood cell fluctuations or 

spatial transients occurring during the contraction of cardiomyocytes [41, 42].  

In this work, we analyze changes of parameters of E-4031 drug-treated and controlled 

cardiomyocytes with high spatial and temporal resolution. We believe that our method is useful 

in analyzing drug-treated cardiomyocytes and clinical experiments in vitro in a label-free 

manner. The rest of the section is organized as following: In Section “b” we will briefly explain 

about the material and methods. Section “c” is allocated for the cardiomyocyte dynamic 

measurements. Section “d” addresses the results and discussions. Finally, Section “e” is the 

conclusion part. 
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b. Materials and Methods 

Cell preparation:  

iCell cardiomyocytes (human induced pluripotent stem (iPS) cell-derived cardiomyocytes) 

obtained for Cellular Dynamics Int. (Madison, WI) were culture according to the 

manufacturer’s indication and grown for 14 days before recording. Measurements were 

achieved in a Chamlide WP incubator system for 96-well plate (LCI, South Korea) set at 

37°/5% C02 with high humidity.  

To obtain images from cardio cells, the coherent laser source with wavelength of λ = 

684.5 nm is divided into object and reference beam using beam splitter. The object beam 

illuminates the specimen and creates the object wave front. A microscope objective collects and 

magnifies the object wave-front, and the object and reference wave fronts are joined by a beam 

collector to create the hologram. At the end point interfrograms are recorded by a CCD camera 

and the data is transmitted to a PC for numerical reconstruction algorithms. The quantitative 

phase images are related to the optical path difference (OPD), expressed in terms of physical 

properties as: 

( ) ( ) ( ), , , ,c mOPD x y d x y n x y n= × −                    (1) 

In which d(x,y) denotes the cell thickness, nc(x,y) is the mean intracellular refractive index 

integrated along the optical axis at the (x,y) position and nm is the refractive index of the 

surrounding culture medium. Simply put, Eq. (1) means that the OPD signal is proportional to 

both the cell thickness and the intracellular refractive index, a property linked to the protein 

and water content of the cells [20, 49]. DHM have been used in analyzing different parameters 

of live cells, for example surface area and volume which is based on thickness not OPD value. 

Converting OPD values to thickness values requires knowing refractive index of the specimen 

and the surrounding medium. It has been shown that for certain cells, such as red blood cells, in 
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which a constant refractive index can be assumed for the entire cell contents, the thickness 

profile can be directly obtained from the phase profile or OPD profile [21]. However, it is 

limited to homogenous cell types that contain no nuclei or other organelles with varying 

refractive indices. Although useful morphological parameters including cell surface area and 

cell volume are based on the thickness profile of the cell rather than OPD value, it has been 

shown that still OPD can be used to evaluate beating profile of cardiomyocytes and 

fluctuations of red blood cell membrane [41, 42].  

OPD images were acquired by off-axis DHM configuration on a commercially available 

DHM T-1001 from LynceeTec SA (Lausanne, Switzerland) equipped with a motorized x-y 

stage (Märzhäuser Wetzlar GmbH & Co. KG, Wetzlar, Germany, ref. S429). Images were 

recorded using a Leica 20×0.4 NA objective (Leica Microsystems GmbH, Wetzlar, Germany, 

ref. 11566049). Time-lapse images were for 60 seconds at a sampling frequency of 10 Hz. In 

total, 600 images are provided. Fig.4.1 shows a cardiomyocyte in two states of minimum peak 

and maximum peak. Fig.4.2 shows a single cardiomyocyte in two states of minimum peak and 

maximum peak. 
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Figure 4.1: Cardiomyocytes at two states (a) maximum of a peak and (b) minimum of a peak. Color bar is 

similar for both images (nm). White bar is 20 µm. 

 

 

 
Figure 4.2: 3D representation of a single cell, (a) at the minimum state, (b) at its maximum. 

c. Cardiomyocytes dynamics measurement 

Several image processing techniques are used in this paper to obtain the dynamic 

parameters of controlled and E-4031 drug treated cardiomyocyte. The method to obtain beating 

profile is similar to the published paper by Rappaz [42] with changes to enhance the accuracy 

of the measurement. Simply put, temporal images are arithmetically averaged and then each 

image is subtracted from the temporal average. Then, the variance of the subtracted signal is 
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the cardio beating over the time. The evaluation can be explained by the following equation: 

1

N

n
n

OPD
OPD

N
==
∑

,                                 (2) 

( )var , nt
hOPD OPD x y OPD = − 

,                 (3) 

 

Where OPDn is the “n”th OPD image from the N samples (N is 600 here). Fig.4.3 shows 

the beating profile of a controlled cardiomyocytes after utilizing Eq.2 and Eq.3. The obtained 

variance clearly represents the cardiac action potential. To reduce the noise of the images, a 

median filter with size of 3×3 pixels is applied to each single image. 

 
Figure 4.3: Beating profile of a controlled cardio sample 

 

As it has been mentioned before, we utilized new techniques to adopt the algorithm for 

evaluating dynamic parameters of low beat-rate samples. The first change is that we removed 

high frequency noise by applying Fourier transformation on the OPDh signal. In this case, 

Fourier transform is applied and then high frequency components are removed (Frequencies 

between 9 Hz and 10Hz). Then, by applying Inverse Fourier Transform the signal is converted 
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back to the original domain again. 

 

 

Figure 4.4: A trended cardiomyocyte signal and the de-trended signal. 

 

The next change is that there are samples in which an increasing trend in OPDh signal is 

observed (probably due to a drift during imaging of cardiomyocytes, see Fig.4, dash-dot line). 

The trended signal can falsify the positive and negative peak detection step. The reason is that 

we used first-order derivation to find peaks and after it we utilized Otsu’s [92] thresholding 

method to find a proper threshold for positive and negative peaks. Therefore, finding a proper 

threshold in a trended signal is not possible. To de-trend the signal an approach similar to de-

trending electro cardiogram signal has been utilized. The trended signal is de-trended by 

subtracting it from the fitted polynomial of degree six (See Fig.4.4, solid line). Fitted 

polynomial with degree of 6 is described with the following equation: 

𝑓𝑓(𝑥𝑥) = ∑ 𝑏𝑏𝑖𝑖𝑥𝑥7−𝑖𝑖𝑖𝑖=7
𝑖𝑖=1                             (4) 

Where “x”s are the sample points on each beating period and “bi”s are the coefficient of 
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polynomial obtained with least-square criterion. 

 

 

Figure 4.5: A single beat profile and the new fitting approach versus single polynomial approach. 

 

Finally, each beating waveform should be fitted with a polynomial to analyze the 

physiology of the beating signal. This can help studying the effects of drugs on cardiac action 

potential. To find QRS complex of an ECG signal different methods are proposed [93-96]. For 

example, Christov. et.al [95] suggested peak finding and thresholding to detect R peaks. In this 

work, we tried several fitting approaches. In the previous work it has been mentioned that a 

polynomial with degree of 9 can fit the signal [42]. Also, in analyzing electrocardiogram 

signals polynomial with different degrees can be used. However, we realized that for the low 

beat-rate samples the waveform cannot be fitted with only a single polynomial (see Fig. 4.5). 

The reason is that the rising and falling time are different and it makes the rising-falling portion 

of the bating waveform appears asymmetrically. The variation is due to the presence of 

different ion channels and the mechanism by which they are sequentially activated during 

cardiac action potential [97]. The new fit consists of two fitting functions one for the rising-
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falling portion and the other one for the flat region (resting time of the cells). The fitting 

function for the rising-falling section is a weighted polynomial with the degree of 9 and the 

shoulder section is a 6th degree polynomial. The weights are assigned manually to get the best 

fit for the rising-falling section. 

 

TABLE 4.1: Description of the cardiomyocyte dynamic parameters 
Parameter Description 

Rising time The time difference between Amp20 to Amp80(T3-T1) 

Falling time The time difference between Amp80 to Amp20(T6-T4) 

IDB50 The time difference between two Amp50 (T5-T2) 

Rising Slope The amplitude difference at (T3,T1) 

Falling Slope The amplitude difference at (T6,T4) 

Beat Rate The total number of positive  peaks in 60 seconds 

Amplitude  Value difference from maximum to minimum amplitude 

 

With the fitted polynomials curves, the amplitude value defined in Table. 4.1 can be 

calculated as the maximum value minus the minimum value on the fitted curve. Thus, the 

corresponding times for 20%, 50% and 80% of the amplitude signal (see Fig. 4.6) can be 

computed by solving the fitted polynomial equation. Having the times, we can compute 

multiple parameters including, rising time, falling time, IBD50, rising and falling slope. Then, 

all of the above mentioned parameters are measured for each individual beating period and a 

population average and standard deviations are computed. The description of the parameters 

can be found in Table 4.1 [42]. These parameters are vital for the analysis of drug candidates’ 

effects on cardiomyocytes.  
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Figure 4.6: Representation of the fitted function on cardiac action potential and the definition of the multi-

parameters 

 

As it is mentioned above, the positive and negative peaks should be detected before the 

fitting step. Therefore, it requires finding positive and negative peaks by applying the first 

derivative technique to the beating signal. But, utilizing first derivative technique will provide 

so many unwanted peaks which should be removed. To do so, peaks between each positive and 

negative peak are removed. 

 

d. Results and discussions 

Having the fitted curves, all of the above mentioned parameters (Table.4.1) for each 

individual beating sample is measured. The parameters are evaluated according to the fitted 
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curve. Controlled OPD sequence in individual wells (n=3 for each amount to drug) are 

recorded before addition of the drug, then E-4031 is added at different micromolar 

concentration in individual wells (in triplicate) and after a 15-min incubation period the OPD 

signal is again recorded in each of the treated wells. Table.4.2 shows the beat rate before and 

after treating the sample with E-4031. For each drug experiment three samples are provided. 

For each sample the number of positive peaks is considered as the beat rate. Beating profiles of 

the samples are presented in Fig.4.7.  

Table 4.2: CARDIOMYOCYTE BEAT RATE BEFORE AND AFTER DRUG TREATMENT 

Sample 

No# 
Beat rate before 
treatment 

Beat rate after 
treatment 

Drug Amount  
(Micro Molar) 

#1 31 27 3 µM 

#2 31 27 3 µM 

#3 30 25 3 µM 

#4 28 23 10 µM 

#5 29 23 10 µM 

#6 29 23 10 µM 

#7 26 13 30 µM 

#8 27  14 30 µM 

#9 28 15 30 µM 

#10 27 11 100 µM 

#11 27 11 100 µM 

#12 26 12 100 µM 
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Figure 4.7: Two beating profiles for each drug treated samples; (a), (b) 3µM of E-4031; (c),(d) 10µM of E-4031;(e),(f) 

30µM of E-4031 and (g),(h) 100µM of E-4031 is added. 
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Fig. 4.8 and 4.9 show the results of cardiomyocyte dynamic changes in response to 

different amount of drug. E-4031 is a synthetized class III antiarrhythmic toxin drug. E-4031 

blocks the hERG-type potassium channels by binding to the open channels. This will reduce Ikr 

in cardiomyocytes which prolongs the QT-interval and thus change the cardiac action potential. 

According to the Fig.8, rising slope is always larger than the falling slope. This is also true for 

the controlled sample (Results not shown here). Also, according to the Fig. 9 rising time is 

shorter than falling time. 

 

 

Figure 4.8: Beat rate, rising and falling slope in response to drug amount. Dotted lines are standard deviations. 
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Figure 4.9: IDB50, rising and falling time in response to drug amount. Dotted lines are standard deviations. 

e. Conclusion 

In this section, we estimated physiologically relevant parameters of controlled and 

cardiomyocytes treated by different amount of E-4031 (class III antiarrhythmic drug) during 

the beating period. Our experimental results show that beat rate is decreasing while the amount 

of E-4031 is increasing. Indeed, IDB50, rising/falling slope and rising/falling time of the signal 

also changes with increasing amount of E-4031. We show that our method can be used to 

estimate different parameters related to cardiomyocytes in normal and drug-treated conditions 

and thus offer a useful tool for cardiotoxicity assessment in the drug development process. 
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5 Conclusion and Future Research Opportunities 

The field of digital holographic microscopy (DHM) is very new and hot topic, and has so 

many opportunities for new and young researches. In this dissertation I wanted to show the 

application of DHM in life science studies and more specifically in red blood cell and 

cardiomyocytes. RBC can be considered as perfect phase object since it cannot be seen easily 

by normal optical devices unless we add stain or chemical dyes to the sample. Studying of 

heart cells treated by different amount of drugs is another interest of our group. It can be 

helpful for pharmacological interests and drug delivery purposes. The DHM application in life 

sciences is not limited only to RBC or heart muscle cells. It can be used in studying different 

cells for example muscle cells. In a new experiment we would like to see the quantitative 

difference between young skeleton muscle cells and old ones. Studying of different alcohols 

and the effects on RBC is another interest of our group. We would like to see the changes in the 

shape and morphology of RBC affected by the different type of alcohols. This is very important 

to measure the quantitative amount of damages alcohols can cause to RBC. In another 

experiment we would like to see the amount of RBC changes in different temperature 

condition. At different temperature we would like to measure the osmosis of RBC. It has been 

mentioned that RBC become more fragile in lower temperatures. Therefore the RBC 

membrane should break down quickly and number of ghost RBCs should increase 

significantly. Studying amount of expansion and shrinkage or RBC at different solutions is 

another important issues and we would like to study it in the future. 
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