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Abstract 

Computer-aided Drug Modelling of the Receptor 

Tyrosine Kinase Inhibitors 

 

         Swapnil Pandurang Bhujbal 

         Advisor: Prof. Cho Seung Joo, Ph.D. 

         Department of Biomedical Sciences 

         Graduate School of Chosun University 

 

Receptor tyrosine kinases (RTKs) are a subclass of tyrosine kinases that mediate 

cell-to-cell communication and control a wide range of complex biological functions. 

A well control of cell division and morphogenesis along with intended cell death is 

crucial to ensure normal tissue growth and patterning. Aberrant variations that cause 

an imbalance of the cellular signals which are responsible for these events lead to the 

uncontrolled cell proliferation that is known as cancer. Since most of these signals 

are regulated by RTKs, it makes them an important drug target for the treatment of 

various types of cancer. This has created significant concern in designing and 

development of kinase inhibitors to treat these diseases. In our current study, we 

have used various tyrosine kinases such as RET, MerTK and FLT3 kinase. We 

utilized a combined approach of molecular docking, molecular dynamics simulation 

and MM/PBSA binding free energy calculations to identify and study the crucial 

residues that participate in inhibition of tyrosine kinases. The results of CoMFA and 

CoMSIA revealed structural insights in enhancing the activity of the kinase 

inhibitors. Based on this structural information, we have designed some new RTK 

inhibitors. In summary, our study could be supportive to comprehend the inhibitory 

mechanism of these kinases thus assists in designing more efficient and potent 

inhibitors.  
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초록 

타이로신 카이네이즈 억제제의 컴퓨터를 활용한 신약 

모델링 연구 

              스왚닐 판두랑 부즈발 

             지도교수: 조 승 주 

             의과학과 

             조선대학교 대학원 

 

타이로신 카이네이즈 수용체는 넓은 범위의 복잡한 생물학적 기능을 제어하는 것과 세포사이의 

통신을 매개하는데 관여한다. 의도된 세포 사멸과 함께 세포 분열 및 형태 형성의 원활한 제어는 

정상적인 조직 성장 및 패턴화에 중요하다. 이러한 기능을 담당하는 세포 신호의 불균형을 

유발하는 비정상적인 변화는 제어되지 않은 세포 증식, 즉, 암을 일으킨다. 이러한 신호의 

대부분은 RTK에 의해 조절되므로 다양한 유형의 암 치료에 중한 약물 표적이됩니다. 따라서, 

이러한 질병을 치료하기위한 키나제 억제제의 설계 및 개발에 많은 연구가 었다. 현재 연구에서 

우리는 RET, MerTK 및 FLT3 키나제와 같은 다양한 타이로신 카이네이즈를 사용했다. 우리는 

분자 도킹, 분자 역학 시뮬레이션 및 MM/PBSA 결합 자유 에너지 계산을 통하여 티로신 

카이네이즈의 억제에 관여하는 중요한 아미노산 잔기들을 확인하고 연구했습니다. CoMFA 및 

CoMSIA의 결과는 카이네이즈 억제제의 활성을 향상시키고 새로운 강력한 억제제를 설계하는 데 

있어서 구조에 관계한 정보를 제공하였다. 이 구조 정보를 기반으로, 우리는 몇 가지 새로운 RTK 

억제제를 설계했습니다. 결론적으로, 본 연구는 이들 카이네이즈의 억제 메커니즘을 이해하여 

보다 효율적이고 강력한 억제제의 설계에 도움이 된다. 
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Chapter 1 - Introduction 

General Introduction on Kinases 
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1.1. Overview on Protein Kinases 

Protein kinases are the largest enzyme superfamily engaged in cell signal 

transduction [1]. They play an important role in controlling various cellular 

processes such as transcription, cell cycle progression, metabolism, cell movement, 

cytoskeletal rearrangement, differentiation and apoptosis [2, 3]. They are encoded by 

almost 2% of eukaryotic genes and 518 protein kinases are predicted using the 

human genome sequencing, among which 90 are tyrosine kinases, and these 

comprise 58 receptor tyrosine kinases [1, 3, 4]. Kinases are classified into a 

hierarchy of groups, families, and subfamilies primarily based on sequence 

comparison of their catalytic domain, structure outside of the catalytic domains and 

biological function [3, 5]. There are 50 distinctive kinase families among yeast, 

invertebrate and mammalian kinomes [2]. The kinase dendrogram is shown in figure 

1 depicts the sequence similarity among catalytic domains. 

Protein kinases are also classified as serine/threonine or tyrosine or dual substrate 

kinases based on their ability to catalyze the transfer of the terminal phosphate of 

ATP (adenosine triphosphate) to substrates that usually contain a serine, threonine or 

tyrosine residue. All known tyrosine kinases and serine/threonine kinases share an 

associated catalytic domain of ~270 amino acids [2]. The serine/threonine family is 

more diverse than the tyrosine kinase family [6].  

1.2 Structure of Protein Kinase 

A number of protein kinase family members possess a sequence of eleven conserved 

subdomains that is the catalytic core [1, 6]. The kinases can occur in an active or an 

inactive state. They are either present as a single domain or may be covalently linked 

to other regulatory domains [4]. The kinases are bilobal with the active site situated 

in a deep cleft between the lobes. The fold of the catalytic domain is comprised of 

approximately 300 residues. It consists of a smaller N-terminal lobe of nearly 80  
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Figure 1. A dendogram of the human kinome  
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residues that exhibits five-stranded β-sheets with one α-helix, the C-helix, which is 

crucial in regulation, and approximately 200 residues C-terminal lobe (Fig. 2). A 

hinge region connects the two lobes. A groove at the interface between these two 

lobes forms the ATP-binding pocket of the catalytic site. The contacts also contain 

three significant regions namely the flexible glycine-rich loop between strands β1 

and β2, the C-helix, and the hinge region between the lobes. The protein substrate-

binding site covers the region which is called as the activation loop usually 

composed of 20-30 residues between the conserved DFG motif and the conserved 

APE motif in the C-terminal region [3, 4, 6, 7].  

 

Figure 2. 3D-Structure of a protein kinase  

1.3 Protein Kinases as Drug Target  

Mutation of different genes (including kinases) is one of the most intense ways to the 

cancer development and progression. The mutated kinases can turn into 

unmanageably active and hence cause various cellular irregularities, leading to 
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cancer initiation [8]. The deregulation of kinase activity can lead to dramatic changes 

in cellular processes [8].  

A comparison of chromosomal mapping of kinases with known disease loci showed 

that 164 kinases are often observed in tumors and approximately 80 kinases are 

implicated in other diseases [1, 4]. Over expressed receptor tyrosine kinases (RTK) 

result in autophosphorylation that stimulates signal transduction pathways leading to 

tumor metastasis [3, 5]. The human cancers are caused by an usual RTK activation 

which is mediated by four mechanisms such as gain-of-function mutations, 

chromosomal rearrangements, genomic amplification and/or autocrine activation [3, 

6]. The reason that kinases play an important role in singalling pathways makes them 

an attractive target for anti-cancer drug design. To date, 58 genes encoding RTKs 

have been identified in the human genome, 30 of which have been found to be 

dysregulated in human cancers [1, 7]. This relevance to various diseases has 

encouraged us to select few tyrosine kinases which are reported to cause different 

types of human cancers, study their inhibitory mechanisms and design new 

inhibitors. 

1.4 Types of kinase Inhibitors 

There are mainly three types of kinase inhibitors. Type Ⅰ inhibitors recognize active 

kinase conformation which is also known as DFG-in conformation (DFG: Asp-Phe-

Gly) and blocks active kinase by competing with the ATP. On the contrary, type Ⅱ 

inhibitors recognize the inactive conformation of the kinase which is called as DFG-

out. This type of inhibitors inhibits kinases by contacting both ATP binding pocket 

and an adjacent allosteric site which is seen only in DFG-out conformation. They are 

more specific in nature due to the allosteric site they contact is less conserved among 

kinases than ATP binding site. Lastly, Allosteric inhibitors bind to the allosteric site 

which is away from the ATP-binding site and regulates kinase activity in an 

allosteric manner. They tend to possess high kinase selectivity. 
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1.5. Importance of designing new RTK drugs 

Tyrosine kinases are a group of approximately 90 enzymes responsible for the 

activation of signal transduction cascades. These kinases act as an “on” and “off” 

switch for many cellular functions [6, 8]. Many of these kinases are being 

investigated for the treatment of cancer and various other diseases. Though many 

inhibitors are approved by FDA (The Food and Drug Administration) and some are 

under clinical trials, until now there is no drug specific to particular kinase. Most of 

them are multi-kinase inhibitors. It has been reported for few anticancer drugs, 

patients acquire resistance after prolonged treatment. The resistance usually arises 

from secondary mutations within the target RTK. Combination-drug therapies that 

target many pathways regulated by RTKs will enhance efficacy and may decrease 

resistance [5, 8]. Hence, it is important to design and develop new anti-cancer drugs.  
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Chapter 2  

Design of New Therapeutic Agents Targeting FLT3 Receptor 

Tyrosine Kinase  
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1. Introduction 

Acute myeloid leukemia (AML) which is characterized as a heterogeneous 

disease is caused by mutational or cytogenetic characteristics [9]. AML shows 

uncontrolled proliferation of hematopoietic cells in bone marrow. This leads to the 

overproduction of abnormal white blood cells, infection, organ dysfunction which in 

turn reduces the formation of red blood cells [10, 11]. Progression of AML is linked 

to the mutation or overexpression of FMS-like tyrosine kinase 3 (FLT3) [12, 13]. 

Two types of mutations usually occur in FLT3; an internal tandem duplication (ITD) 

positioned in the juxtamembrane domain and point mutation within the kinase 

activation loop [10, 14]. The majority of FLT3 mutations in AML are contributed by 

the ITD [9]. Although AML is well understood, the improvement in patient 

prognosis and the treatment is less in the last two decades [10, 11, 15, 16]. Even with 

existing treatment practices, 70% of patients died of AML within 1 year after 

diagnosis [17, 18]. Hence, FLT3 has been recognized as a promising therapeutic 

target for the treatment of AML.  

FLT3 is a class III receptor tyrosine kinase (RTK) that is expressed in both 

normal as well as malignant lympho-hematopoietic cells [10]. It plays an important 

role in the immune response and development and proliferation of hematopoietic 

stem cells [9, 10]. Class III RTKs consist of an extracellular domain, a 

transmembrane (TM) helix, and an intracellular domain that comprised of a 

juxtamembrane (JM) segment, a tyrosine kinase domain (TKD), and a C-terminal tail 

[9, 19]. The binding of the FLT3 ligand to the transmembrane helix causes 

dimerization and subsequent FLT3 autophosphorylation of tyrosine residues within 

the TKD, leading to their activation and signal transduction through several signaling 

cascades, including RAS, SRC, and STAT5 pathways [10, 20-23].  

Several FLT3 inhibitors have been reported against AML. Some of these 

inhibitors such as lestaurtinib [24], midostaurin [25], tandutinib [26], crenolanib 

[27], sorafenib [28], and sunitinib [29] have been evaluated in clinical trials. But 
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these inhibitors were relatively nonspecific for FLT3 and commonly inhibit class III 

RTKs such as KIT proto-oncogene receptor tyrosine kinase (KIT) and platelet-

derived growth factor receptor (PDGFR) [30]. Subsequently, quizartinib, crenolanib, 

pacritinib, ponatinib and gilteritinib were developed as more potent and specific 

FLT3 inhibitors. Among these, quizartinib is currently in clinical trial however, drug 

resistance mutations are reported in response to quizartinib treatment [31]. In 

addition, there are several AML inhibitors in Phase I or Phase I/II clinical trials such 

as E6201 (dual MEK/FLT3 inhibitor), TAK-659 (dual SYK/FLT3 inhibitor,) and 

SKLB1028 (multikinase inhibitor) [19]. Nevertheless, none of these inhibitors have 

been approved as FLT3 kinase inhibitor due to their non-specificity and off-target 

effect. Therefore it is crucial to design potent as well as specific FLT3 kinase 

inhibitors. 

Various computational studies on FLT3 kinase have been reported. Zorn et 

al. have reported the molecular dynamics studies of apo and holo FLT3 (PDB ID 

1RJB) with quizartinib to study the binding mechanism of the inhibitor and the 

conformational changes of the activation loop [9]. In many other studies, docking of 

the quizartinib and various inhibitors with FLT3 was reported to understand the 

quizartinib resistant mutations and the ligand-protein interactions respectively [9, 14, 

31-33]. Important residues involved in FLT3 inhibition has been reported in the 

above studies. Residues Cys694 and Phe830 were found to be important for the 

binding of quizartinib to the FLT3. CEP701, PKC412 and sunitinib were reported to 

interact with the active site of FLT3, forming H-bonds with residues Cys694 and 

Glu692. Other residues such as Leu616, Val624, Ala642, Tyr693 and Gly697 were 

also reported to be involved in ligand binding [14, 32, 33]. In the current study, we 

have performed the molecular docking followed by 3D-Quantitative structure-

activity relationship (3D-QSAR) on the series of 63 diaminopyrimidine derivatives 

to understand the structural requirements for designing the potent FLT3 antagonists. 

2. Materials and Methods 
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2.1 Dataset 

A series of 63 diaminopyrimidine derivatives as FLT3 kinase inhibitors 

reported by Jarusiewicz et al were taken for this study [10]. The experimental IC50 

values were converted into pIC50 values (-logIC50) and used as dependent variables 

to derive 3D-QSAR models. The dataset spans 3.6 logarithmic units which could be 

reasonable for QSAR studies [34]. The compounds and their corresponding activities 

are depicted in Table 1. Sybyl-X 2.1 was used to sketch the structures of all the 

compounds and energy minimized with the tripos force field [35]. Subsequently, 

MMFF94 were applied as a partial charge [36] scheme. Considering the activity of 

compounds, the dataset was divided into 45 compounds as a training set to derive a 

model and 18 compounds as a test set to validate the model. The test set compounds 

were randomly selected while possessing various activities. 

Table 1. Structure and biological activity values of diaminopyrimidine derivatives as 

FLT3 kinase inhibitors. 
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N
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25 NH NH 
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O
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26 NH NH 
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30* NH NH 
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32 NH NH 
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33 NH NH 
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N
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34 NH NH 
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N

 

8.222 
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35* NH NH 
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N

 

6.910 

36 NH NH 
iPr  

N

 

8.222 

37 NH NH 
tBu  

N

 

7.886 

38 NH NH 
O

CH3 CH3  

N

 

8.222 

39 NH NH 

CH3

O

O

CH3  

N

 

4.658 

40 NH NH 

CH3

O

OH

 

N

 

4.638 

41 NH NH 

CH3

CH3  

N
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CH3
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43 NH NH 

 

N
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45 NH NH 

 

N
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N
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47 NH NH 
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N
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N
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N
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50 NH NH 
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4.620 

51 NH NH 
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52* NH NH 
iPr  
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53 NH NH 
iPr  

N

 

5.541 

54* NH NH 
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O
CH3
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56 NH NH 
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S
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N N
H
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59 NH NH 
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N

 

8.222 

60 NH NH 
iPr  

N
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61 NH NH 
iPr  

N

 

6.547 

62 NH NH 
iPr  

 

4.824 

63* NH NH 
iPr  

O

NH2

 

6.672 

*Test set compounds 

2.2 Molecular docking 

The structure of FLT3 kinase co-crystallized with the inhibitor FF-10101 

Succinate (FF-10101) has been reported (PDB ID 5X02). To validate the docking 

protocol, FF-10101 was taken out from the crystal structure and re-docked into the 

binding site of the protein. The root mean square deviation (RMSD) among the 

docked pose and crystal pose of FF-10101 was found to be 1.16 Å. The active site of 

FLT3 was referred from the previously published studies [10, 11, 20]. The 4 Å 

residues around the co-crystallized inhibitor were used as the binding site for 

docking studies. The dataset contains 8 most active compounds. All these 

compounds (Compounds 34, 36, 38, 42, 43, 44, 45 and 59) were docked into the 

active site of FLT3 kinase to investigate the protein-ligand interactions using 

AutoDock 4.0 [37]. 

Protein preparation was carried out by the addition of Polar hydrogen atoms 

and Kollman charges. To avoid conformational explosion of the ligand, the number 

of rotatable bonds was limited to six. A 3D grid box was set utilizing the x, y, and z 
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coordinates of binding site and constructed with 70 × 70 × 70 points. A grid spacing 

of 0.375 Å was used. Lamarckian algorithm was used for docking and the total 

number of Genetic Algorithm (GA) runs was set to 100. The docked conformation 

for one of the most active compounds (compound 36) was selected depending on the 

lowest binding energy and interactions such as hydrogen bonding and hydrophobic 

interactions. 

2.3 CoMFA and CoMSIA 

3D-QSAR models were developed using Comparative Molecular Field 

Analysis (CoMFA), Region-Focused CoMFA (RF-CoMFA) and Comparative 

Molecular Similarity Indices Analysis (CoMSIA) to correlate the 3D structure of the 

compounds with their biological activities using Sybyl-X 2.1. CoMFA uses the steric 

and electrostatic potential energies that are computed by Lennard-Jones and 

Coulombic potentials respectively [38]. The dataset compounds were aligned using a 

template molecule (most active compound 36) [39]. 

The selection of an appropriate partial charge scheme is crucial to obtain 

satisfactory 3D-QSAR models [40, 41]. We have selected MMFF94 as partial 

charges scheme to generate 3D-QSAR models. Default parameters were utilized to 

develop CoMFA and RF-CoMFA models. A probe atom of sp3 hybridized carbon 

with +1 charge was used along with a grid spacing of 2.0 Å. Statistically reasonable 

CoMFA and RF-CoMFA models were developed using the partial least squares 

(PLS) regression. In the PLS analysis, CoMFA descriptors and biological activity 

values (pIC50) were used as independent variables and dependent variables 

respectively. PLS analysis with Leave-one-out (LOO) cross-validation was 

performed to assess the reliability of the generated models. PLS analysis was used to 

calculate an optimal number of components (ONC), the squared cross-validated 

correlation coefficient (q2) and the standard deviation of prediction (SEP). A value of 

column filtering was kept as 2.0. Based on the obtained ONC, non-cross-validation 
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analysis was then performed to compute the F-test value (F), squared correlation 

coefficient (r2) and standard error of estimate (SEE).  

Similarly, RF-CoMFA model was developed using the PLS analysis 

obtained during CoMFA model development. RF-CoMFA is an iterative process that 

refines a built model by improving the weight for those lattice points that are most 

correlated to the model. This enhances the predictive capability of the PLS analysis 

used in RF-CoMFA [42]. 

Comparative Molecular Similarity Indices Analysis (CoMSIA) [43] utilizes 

descriptors such as electrostatic, steric, hydrophobic, hydrogen bond acceptor and 

hydrogen bond donor. A probe atom of radius 1.0 Å was used to calculate all the five 

CoMSIA similarity indices. An attenuation factor of 0.30 was used. A Gaussian 

function was used to calculate the CoMSIA model between the grid point and every 

atom of the molecule [43]. The similar lattice box employed as in CoMFA 

calculations was employed to derive the several CoMSIA models based on different 

descriptor combinations. Among the various models, a model with logical statistical 

standards in terms of q2 and r2 was chosen as the final CoMSIA model.  

Among the developed 3D-QSAR models, RF-CoMFA revealed relatively 

better statistical results than CoMFA and CoMSIA. Hence, RF-CoMFA was selected 

as final model for further analyses. This model was interpreted graphically by 

contour map analyses. Based on the structural information obtained in the contour 

map analyses, we have derived a design strategy to design novel FLT3 inhibitors.  

2.3.1. Model Validation 

The selected RF-CoMFA model was checked for predictive ability using 

various validation techniques such as bootstrapping, leave-five-out (LOF), an 

external test set validation, concordance correlation coefficient (CCC) and rm2 

metric calculations [44]. Bootstrapping of 100 runs was carried out to validate the 

model’s predictability [40]. The final model was validated by the predictive 

correlation coefficient (r2
pred) as well. 
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3. Results and Discussion 

3.1 Molecular Docking 

The dataset taken for this study has 8 compounds (Compounds 34, 36, 38, 

42, 43, 44, 45 and 59) with the same pIC50 activity of 8.222 nM as shown in Table 1. 

Therefore, all these compounds were considered as the most active and each 

compound was docked into the active site of FLT3 kinase. Initially, we selected 100 

conformations for each docked compound. Among them, the reasonable binding 

pose was selected based on the docking score and the protein-ligand interactions for 

each compound. Binding energies of the selected docked poses for each compound 

are depicted in Table 2. Final poses selected for each compound were compared. 

Compound 36 showed the lowest binding energy (-7.48 kcal/mol) and formed three 

H-bond interactions with the FLT3 kinase which were reported to be important for 

the FLT3 inhibition [13, 19, 20]. On the other hand, the rest of the docked 

compounds showed only two H-bond interactions and higher binding energies as 

compared to compound 36.  

Table 2. Binding energies of all the docked most active compounds. 

Compound Binding Energy (kcal mol-1) 

34 -6.33 

36 -7.48 

38 -6.80 

42 -7.18 

43 -7.32 

44 -7.03 
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45 -7.08 

49 -6.71 

 

Therefore, compound 36 was selected as the representative compound and 

discussed below in detail. The binding pose of the compound 36 in FLT3 kinase is 

shown in Fig. (1a). Binding pocket of FLT3 kinase is contributed by residues 

Leu616, Gly617, Val624, Ala642, Tyr693, Cys694, Cys695, Tyr696, Gly697, 

Phe830 and Ala833. The compound 36 bound favorably in the FLT3 binding pocket 

by forming three hydrogen bond interactions (Fig. (1a)). Two hydrogen bond 

interactions were observed between the two amine groups around the pyrimidine ring 

of compound 36 with the hinge region residues Cys694 and Cys695. The H-bond 

with the hinge residue Cys694 is consistent with the previously reported docking 

studies [13, 20]. Additionally, a hydrogen bond interaction was observed between 

the nitrogen atom of the pyrimidine ring located between two amine groups with the 

residue Gly697. The H-bond interaction with the hinge residue Gly697 was also 

reported earlier [19]. 

   

Fig. (1a). The docked conformation of the compound 36 (depicted in stick model) inside the active 

site of FLT3; Yellow dotted lines show hydrogen bonds formed between active site residues and 

compound 36; Hydrogen bond distances are labelled in angstrom; (b) The most active compound 

36 (depicted in stick model) inside the hydrophobic pocket of FLT3; The red colored region shows 

the most hydrophobic surface and white color stands for the least hydrophobic surface of the 

protein. 
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PyMOL was used to identify the hydrophobic interactions utilizing the 

python script ‘color h’ and to color the protein receptor according to the Eisenberg 

hydrophobicity scale [45] (Fig. (1b)). This colored the receptor from red which 

denotes the most hydrophobic to white for the least hydrophobic region. The 

compound 36 seems to form hydrophobic interactions with the active site residues 

which are located in the hydrophobic region (shown as lines in the Fig. 1b). The 

phenylpyridine substitution at the R2 position was docked into the deep hydrophobic 

pocket of FLT3 which was surrounded by residues Leu616, Gly617, Val624, Ala642 

and Phe830. All these hydrophobic residues specifically, Phe830 which is from the 

conserved DFG motif, were reported to be important for the FLT3 inhibition [10, 19, 

20]. Moreover, pyrimidine ring formed hydrophobic interactions with residues 

Tyr693 and Tyr696 which were also reported to be crucial [10, 19]. The selected 

pose of the compound 36 was used for further 3D-QSAR studies. 

3.2 CoMFA, RF-CoMFA and CoMSIA Studies 

The conformation of the compound 36 was selected as template for 

alignment of the rest of the dataset compounds using Sybyl-X 2.1. The alignment of 

the compounds was depicted in Fig. (2). Full models for the CoMFA (q2=0.506, 

NOC=6, r2=0.822) and RF-CoMFA (q2=0.566, NOC=6, r2=0.865) were developed. 

The detailed statistical values of these models were shown in Table 3. Several 

CoMSIA models were produced based on different combinations of the five 

descriptors as explained in the methodology section were shown in Table 4. The 

combination of steric, electrostatic and H-bond acceptor (SEA) parameters generated 

a statistically reasonable CoMSIA model (q2=0.503, NOC=6, r2=0.865). The detailed 

statistical values for this model were shown in Table 3. RF-CoMFA model exhibited 

more reasonable statistical values as compared to the CoMFA and CoMSIA models. 

Hence, further analyses were carried out only for the RF-CoMFA model.  



Swapnil Pandurang Bhujbal Ph.D. Thesis 

Chosun University, Department of Biomedical Sciences 

 

 

26 
 

 

Fig. (2). Alignment of all the dataset compounds inside the active site of FLT3 kinase. 

Then the RF-CoMFA model (q2=0.629, NOC=6, r2=0.956) for the external test set 

was produced. The generated RF-CoMFA model was validated through a number of 

validation techniques. The bootstrapping values of r2 mean (BS-r2) and BS-standard 

deviation (BS-SD) were 0.938 and 0.018 respectively which suggested the 

robustness of the model. The leave-five-out (LOF) of 0.644 and r2
pred of 0.707 

suggested that the model is predictive. The rm2 metric calculation showed an average 

rm2 of 0.655 and Delta rm2 value of 0.197. These values exhibit the acceptable range 

suggested by Roy et al. [46]. The CCC was found to be 0.874 which indicates that 

the model is  

Table 3. The developed 3D-QSAR models for complete dataset compounds.  

Parameters CoMFA RF-CoMFA CoMSIA (SEA) 

q2 0.506 0.566 0.503 

ONC 6 6 6 

SEP 0.955 0.895 0.957 

r2 0.882 0.865 0.865 

SEE 0.466 0.499 0.499 

F-value 69.811 59.763 59.792 

Influence of different fields (%) 
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S 52.3 57.3 22.0 

E 47.7 42.7 38.8 

A - - 39.2 

q2: cross-validated correlation coefficient; ONC: Optimal number of components; SEP: Standard 

Error of Prediction; r2: non-validated correlation coefficient; SEE: Standard Error of Estimation; F 

value: F-test value; S: Steric; E: Electrostatic; A: H-bond acceptor. 

statistically reliable [47]. The detailed statistical values of RF-CoMFA model and its 

validation test results are tabulated in Table 5. Scatter plot and contour maps of RF-

CoMFA model are shown in Fig. (3) and Fig. (4) respectively. Comparison of 

experimental Vs predicted activity values of the model are shown in Table 6. 

Table 4. Detailed statistical values obtained for different combination of CoMSIA 

descriptors. 

CoMSIA q
2

 ONC SEP r
2

 SEE 
F 

value 

Percentage contribution 

S E H A D 

S 0.243 3 1.151 0.447 0.984 15.866 100 - - - - 

E 0.346 5 1.088 0.680 0.761 24.246 - 100 - - - 

H 0.191 1 1.170 0.372 1.031 36.062 - - 100 - - 

A 0.324 6 1.116 0.604 0.854 14.255 - - - 100 - 

D 0.018 2 1.323 0.182 1.197 4.362 - - - - 100 

SE 0.453 5 0.995 0.765 0.652 37.125 37.1 62.9 - - - 

EH 0.344 2 1.063 0.579 0.851 41.199 - 47.2 52.8 - - 

EA 0.484 4 0.985 0.771 0.638 48.823 - 51 - 49 - 

ED 0.388 6 1.062 0.778 0.640 32.612 - 78 - - 22 

SH 0.283 2 1.111 0.503 0.924 30.419 31.1 - 68.9 - - 
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SA 0.357 3 1.060 0.669 0.761 39.694 30.7 - - 69.3 - 

SD 0.279 4 1.133 0.473 0.960 17.676 60.4 - - - 39.6 

HA 0.256 2 1.310 0.621 0.815 32.208 - - 48.2 51.8 - 

HD 0.170 2 1.222 0.610 0.826 30.791 - - 77 - 23 

SEH 
0.424 3 1.004 0.759 0.650 41.856 19.6 38.7 41.6 - - 

SEA 
0.503 6 0.957 0.865 0.499 59.792 22.0 38.8 - 39.2 - 

SED 
0.470 6 0.989 0.848 0.529 52.156 28.8 56.4 - - 14.8 

EHA 
0.362 3 1.070 0.725 0.694 51.761 - 35.0 34.7 30.3 - 

EHD 
0.367 5 1.071 0.840 0.538 60.021 - 43.4 40.3 - 16.4 

SHA 
0.301 3 1.106 0.675 0.754 40.817 21.8 - 37.6 40.7 - 

SHD 
0.278 3 1.124 0.660 0.771 38.202 31.7 - 49.5 - 18.7 

EAD 
0.414 6 1.039 0.830 0.560 45.509 - 46.3 - 39.3 14.5 

HAD 
0.246 3 1.166 0.669 0.762 39.666 - - 38.0 46.0 16.0 

SEHD 
0.438 5 1.009 0.852 0.518 65.512 16.8 36.7 33.7 - 12.8 

SEHA 
0.409 3 1.017 0.752 0.658 59.714 13.6 30.3 29.6 26.5 - 

SEAD 
0.466 6 0.993 0.871 0.488 62.838 18.8 36.4 - 33.2 11.6 

EHAD 
0.361 2 1.049 0.755 0.655 60.578 - 33.2 27.7 26.4 12.7 

SHAD 
0.301 3 1.106 0.708 0.714 47.752 18.6 - 31.4 36.3 13.6 

SEHAD 
0.408 6 1.044 0.892 0.466 77.242 13.3 29.3 25.5 21.2 10.7 

Final chosen model for CoMSIA analysis is indicated in bold font.  

ONC: optimal number of components; q2: cross-validated correlation coefficient; SEP: standard 

error of prediction; r2: non-cross-validated correlation coefficient; SEE: standard error of estimate; 

F-value: F-test value; S: steric; E: electrostatic; H: hydrophobic; A: acceptor; D: donor. 

Table 5. Statistical summary of the selected RF-CoMFA model. 
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Parameters RF-CoMFA (TS-18) 

q2 0.629 

ONC 6 

SEP 0.903 

r2 0.956 

SEE 0.429 

F value 69.382 

r2
pred 0.707 

LOF 0.644 

BS-r2 0.938 

BS-SD 0.018 

rm2 0.655 

Delta rm2 0.197 

CCC 0.874 

S 57.8 

E 42.2 

q2: cross-validated correlation coefficient; ONC: Optimal number of components; SEP: Standard 

Error of Prediction; r2: non-validated correlation coefficient; SEE: Standard Error of Estimation; F 

value: F-test value; r2
pred: Predictive r2; LFO: leave-five-out; BS-r2: Bootstrapping r2 mean; BS-SD: 

Bootstrapping Standard deviation; Q2: Progressive scrambling; Average rm2 for the dataset; Delta 

rm2 for the dataset; CCC: Concordance correlation coefficient; S:Steric; E:Electrostatic. 
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Fig. (3). Scatter plot for the selected RF-COMFA model; the plot depicts the actual pIC50 versus 

predicted pIC50 activity of the dataset for training and test sets; the training set compounds are 

shown as diamonds in black color; the test set compounds are shown as squares in red color. 

Table 6. Experimental and predicted pIC50 values with their residuals of selected RF-

CoMFA model. 

Compound Actual pIC50 
RF-CoMFA (TS-18) 

Predicted pIC50 Residual 

1 7.097 6.751 0.346 

2 5.824 5.735 0.089 

3 6.851 6.318 0.533 

4 7.086 6.601 0.485 

5 4.959 4.905 0.054 

6 4.824 4.884 -0.060 

7 6.728 6.973 -0.245 

8 5.900 6.794 -0.894 

9 7.310 7.095 0.215 

10 7.495 6.622 0.873 

11 5.724 6.388 -0.665 

12 4.886 5.090 -0.204 

13 5.587 4.863 0.724 
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14 6.421 5.937 0.484 

15 4.721 4.684 0.037 

16 6.010 5.969 0.041 

17 4.921 4.937 -0.016 

18 5.767 6.194 -0.427 

19 4.611 4.325 0.286 

20 4.876 4.586 0.290 

21 6.474 6.854 -0.380 

22 7.018 7.141 -0.123 

23 7.796 8.030 -0.234 

24 7.699 7.891 -0.192 

25 6.142 6.227 -0.086 

26 5.487 5.881 -0.394 

27 4.638 4.579 0.059 

28 5.482 4.931 0.551 

29 7.854 7.057 0.797 

30 5.726 4.909 0.817 

31 4.509 5.049 -0.540 

32 6.620 7.035 -0.415 

33 7.323 6.902 0.421 

34 8.222 7.815 0.407 

35 6.910 7.828 -0.918 

36 8.222 8.393 -0.171 

37 7.886 7.272 0.614 

38 8.222 8.076 0.146 

39 4.658 4.728 -0.070 

40 4.638 4.870 -0.232 

41 8.097 8.261 -0.164 

42 8.222 8.261 -0.039 

43 8.222 8.118 0.104 

44 8.222 8.779 -0.557 

45 8.222 8.146 0.076 

46 7.886 7.933 -0.047 

47 4.469 4.812 -0.344 

48 8.097 8.786 -0.689 

49 6.728 7.018 -0.290 

50 4.620 4.435 0.185 

51 4.765 4.738 0.026 

52 4.936 5.805 -0.869 

53 5.541 6.078 -0.537 

54 5.157 5.321 -0.164 
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55 5.353 4.438 0.915 

56 6.037 6.215 -0.178 

57 6.323 6.178 0.145 

58 7.377 6.970 0.407 

59 8.222 8.082 0.140 

60 7.959 7.416 0.543 

61 6.547 6.481 0.066 

62 4.824 4.548 0.276 

63 6.672 6.364 0.308 

 

3.3 Contour Map Analysis 

RF-CoMFA contour maps 

The contour maps of the chosen RF-CoMFA model were represented in Fig. 

(4). The compound 36 is superimposed with RF-CoMFA contour maps within the 

active site of FLT3 kinase. The green and yellow colored contours in the steric 

contour map represented the regions for favorable and unfavorable bulky 

substitutions, respectively (Fig. (4a)). The big green colored contour observed at the 

R1 position of pyrimidine ring shows that the bulky substitutions are favorable to 

enhance the activity. This is exemplified by the high activity values of the 

compounds 29, 37, 41, 46, 48, 60 and all the most active compounds including 

compound 36 that possess bulky group at this position. Similarly, a green colored 

contour observed close to the pyridine ring of R2 substitution suggests that a bulky 

substitution is favorable at this position. On the contrary, two small yellow colored 

contours noticed near the phenylpyridine substitution at R2 position proposed that the 

steric substitution at this position is not favored and could cause decrease in the 

inhibitory activity. This is probably explained by the low activity values of 

compounds 12, 19, 20, 50, 54 and 55 which exhibits bulky groups at this place.  
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Fig. (4). Contour maps for the selected RF-CoMFA model. (a) RF-CoMFA steric contour map; (b) 

RF-CoMFA electrostatic contour map; Green contour shows the regions favorable for bulky 

substitutions and yellow contours shows the regions unfavorable for bulky substitutions; Blue 

contour favors electropositive substitutions while red contour favors electronegative substitutions. 

RF-CoMFA electrostatic contour map is shown in Fig. (4b). Here, blue 

contours signify regions where electropositive substitutions are favorable to enhance 

the inhibitory activity, while red electronegative. A blue contour region at the R1 

position near isopropyl moiety and at the R2 position near pyridine ring suggests that 

the positive substitutions at these areas might help in increasing the activity. On the 

other hand, red contour close to the amine group at R1 site designates that negative 

substitutions could increase the potency. This might be justified by our docking 

results in which nitrogen atom in the pyrimidine ring formed hydrogen bond 

interaction with Gly697. This can be observed by the medium to high activities of 

compounds 10, 24, 29, 37, 41, 46, 48, 60 and all the most active compounds 

including compound 36 that possess electronegative group at this place. 

3.4 Designing of new potent compounds 

A design strategy was developed (Fig. 5) based on the structural information 

acquired from the contour maps of the RF-CoMFA model. We have designed 14 

novel compounds with enhanced FLT3 inhibitory activity using the design strategy. 

Sybyl X 2.1 was used to sketch and optimize all the designed compounds using 
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tripos force field. The final RF-CoMFA model was used to predict the activity of all 

the newly designed compounds. All the 14 compounds exhibited better activity than 

the most active compounds of the dataset taken for this study. The structure and the 

predicted pIC50 activities of all the designed compounds are depicted in Table 7. 

 

Fig. (5). Design strategy to design a series of diaminopyrimidine derivatives as FLT3 kinase 

inhibitors. 

Table 7. Chemical structures and predicted pIC50 values of newly designed FLT3 

kinase inhibitors.  

 

N

NNH
R

1 NH
R

2

 
Compoun

d 
R1 R2 

Predicte

d pIC50 

D01 NH

O

 

N

 

9.369 
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D02 CONO2 

N

 

8.862 

D03 

O

NH

CN

 

N

 

8.330 

D04 

O

NH

CF3

 

N

 

8.356 

D05 
N

 

N

 

8.418 
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D06 
CH3

CH3

OH

 

N

 

8.360 

D07 

OH

CH3

CH3

 

N

 

8.353 

D08 

OH

CH3

 

N

 

8.299 

D09 
CH3

CH3

OH

CH3

 

N

 

8.294 
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D10 
CH3

CH3

OH

CH3

 

CH3

CH3

 

13.654 

D11 CH3

OH

CH3 CH3

 

N

 

8.324 

D12 CH3

OH

CH3 CH3

CH3

 

N

 

8.884 

D13 

CH3

OH

F

 

N

 

8.443 
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D14 

OH

F

CH3

CH3

 

N

 

8.758 

 

4. Conclusion 

In this work, molecular docking and 3D-QSAR studies were performed on 

diaminopyrimidine derivatives as FLT3 kinase antagonists. The docking analyses 

recognized important active site residues of FLT3 kinase which interacts with the 

most active compound (compound 36). Active site residues Leu616, Gly617, 

Val624, Ala642, Phe830, Tyr693, Cys694, Cys695, Tyr696, and Gly697 seemed to 

be important in the inhibition of FLT3 kinase. All the dataset compounds were 

aligned inside the FLT3 active site using compound 36 as a template molecule. 

Subsequent alignment was used to derive CoMFA, RF-CoMFA and CoMSIA 

models. RF-CoMFA model yielded relatively better statistical results than CoMFA 

and CoMSIA so it was selected for further analyses. Validation of this model was 

performed by means of bootstrapping, external test set, leave-five-out, rm2 metric 

calculations, concordance correlation coefficient, and r2
pred. Statistically acceptable 

RF-CoMFA (q2=0.629, NOC=6, r2=0.956) model was developed. Analyses of the 

RF-CoMFA contour maps suggested that the bulky and electronegative substitutions 

are favored at R1 position whereas bulky and electropositive substitutions are favored 

at R2 position to increase the inhibitory potency of FLT3 kinase. The contour map 

analyses were consistent with our docking results. Using the structural information 

obtained from the contour maps and the protein-ligand interactions observed in 
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docking analyses, we have derived a design strategy to design more potent FLT3 

inhibitors. A series of 14 new diaminopyrimidine derivatives were designed and their 

activities were predicted. All the designed compounds showed more inhibitory 

activity than the most active compounds using RF-CoMFA. Our designed 

compounds could be helpful to the medicinal chemists to develop more potent and 

selective FLT3 kinase antagonists.  
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Chapter 3  

Macrocyclic effect on inhibitory activity of MerTK inhibitors  
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1. Introduction 

Naturally existing macrocyclic compounds possess the ring sizes which span 

from 11 to 16 membered rings, most often 14 membered [48]. Structures bearing 

macrocyclic ring have been reported to have a favorable impact on important 

properties requisite for drugs for example membrane permeability [49], metabolic 

stability, increased binding affinity and selectivity [50], and overall 

pharmacokinetics [51, 52]. They are reported to display remarkably more biological 

activities and have balance between flexibility and conformational preorganization to 

attain the best possible binding properties with respect to their biological targets [53-

55]. Some of the naturally occurring macrocyclic compounds are erythromycin 

(antibiotic), epothilone B (anticancer), tacrolimus (immunosuppressant) and 

bryostatins (protein kinase C inhibitor) [53-56]. 

Artificial compounds with large ring structures were synthesized and studied 

for inhibitory activity against a variety of targets. There have been different studies 

about the effect of ring size on the potency of inhibitors. Marsault et al. [53] reported 

that macrocyclic inhibitors of renin exhibited rise in inhibitory activity with the rise 

in ring size (from 10 to 14-membered rings). On the contrary, histone deacetylase 

inhibitors displayed elevated potency with a 14-membered ring over a 16-membered 

ring. In the similar study, the activity was lower when the ring size was larger [53]. 

De Clercq and co-workers [56] performed structure-activity relationship for 

phenylenebis(methylene) linked bistetraazamacrocycles against HIV (HIV-1 and 

HIV-2 replication). They noticed that increasing the ring size from 10 to 14 resulted 

in higher anti-HIV activity. But, additional rise in the ring size resulted in a 

significant reduction in the potency [56-58].  Thus, the ring size effect is very 

intriguing, but the nature of its interaction has not been well examined.   

Receptor tyrosine kinases (RTKs) are important transmembrane receptors 

which regulate crucial signal transduction such as migration, apoptosis, cell 

proliferation and invasion of numerous cancers [59, 60]. Mer receptor tyrosine 
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kinase (MerTK) is a member of the TAM-family of receptor tyrosine kinases which 

is comprised of Tyro3, Axl and MerTK [61, 62]. TAM receptors are type I 

transmembrane glycoproteins, composed of an extracellular domain enclosing 

tandem immunoglobulin related domains, tandem fibronectin type III repeats and a 

protein kinase c-like intracellular kinase domain [62-64]. Members of the TAM 

family comprise extremely conserved kinase domain (>70% identity), and 

encompasses a distinctive KW(I/L)A(I/L)ES active site which differs from other 

RTKs [63, 65, 66].  

MerTK inhibition presents exclusive clinical challenge since drugs that 

target MerTK would also inhibit the usual proteins in noncancerous cells. There are 

few compounds which have been reported to possess potent antagonism against 

MerTK such as UNC569 derivatives [67], ONO-9330547 [68, 69], CVO-102, R428 

and BMS-777607 [51]. UNC569 derivatives and ONO-9330547 increased the 

sensitivity to chemotherapy and reduced colony formation of acute lymphoblastic 

leukemia (ALL) cells and a pediatric tumor cell line (BT12) [70]. CVO-102 has been 

revealed to have significant activity in preventing blood clotting and also shows 

capable anticancer agent in late preclinical development [71]. R428 and BMS-

777607 exhibit activity against Mer but are approximately 4-fold to 15-fold more 

selective for Axl [71, 72].  

To study MerTK and inhibitor interactions, docking, molecular dynamics 

and receptor based 3D-QSAR (3D-Quantitative Structure-Activity Relationship) 

studies were reported with a range of pyrimidine derivatives such as pyrazolo-[3,4-

d]-pyrimidines [73], pyridine-substituted pyrimidines [74] pyridinepyrimidines [75] 

and pyrimidine-based derivatives [76]. Yu et al. and Liang et al. reported that hinge 

region residues from the active site, Pro672 and Met674 are extremely crucial for 

MerTK inhibition [74, 77]. Experimental studies showed that these two amino acids 

are important [78, 79]. X-ray structures (PDB ID: 5K0X & 5K0K) show that MerTK 

hinge region residues (Pro672 and Met674) bind to the co-crystallized inhibitors [78, 

79]. In another study, aforementioned amino acids were also reported crucial by 
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docking analyses. In addition, 107 MerTK inhibitors were utilized to develop a 

ligand-based pharmacophore model. 6 compounds with new scaffolds were 

recognized as MerTK inhibitors by virtual screening using this model [80].   

In our study, we have chosen a series of macrocyclic MerTK inhibitors 

containing different ring sizes (from 14 to 20-membered rings) to study ring size 

effect and factors affecting MerTK inhibitory activity. To this end, we employed a 

variety of simulation techniques such as docking, molecular dynamics and 3D-

QSAR methods. 

2. Materials and Methods 

2.1 Overall procedure 

Simple alignment schemes such as atom by atom matching could not be 

applied due to the complex nature of the macrocyclic ring structure. In recent studies, 

Hawkins [57] and Watts et al. [58] reported that sampling of low energy conformers 

of macrocycles is difficult due to the large ring size and flexibility of these 

molecules. The existing techniques such as stochastic methods based on Monte 

Carlo-simulated annealing, distance geometry are not convenient for conformational 

sampling of macrocyclic molecules [57, 58].  

Molecular dynamics (MD) should be one of the reasonable simulation 

methods to deal with macrocyclic ring structure [51]. So, we have employed 

molecular dynamics for pose selection of macrocyclic compounds inside the receptor 

to provide reliable molecular alignments. Fortunately, there exists information about 

seemingly important amino acid residues such as Pro672 and Met674 [75, 78]. 

Hydrogen bonding interactions with these two hinge region residues mimic the 

interaction of ATP with MerTK, which have been considered crucial for the inhibitor 

recognition.   

Using these hydrogen bonding interactions at the hinge region as the 

anchoring points, the inhibitors could be placed inside the receptor in a reasonable 
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way. Then the structures were optimized by molecular dynamics followed by energy 

minimization and structure sampling. The resultant structures of ligands were used as 

input structures for subsequent receptor-based 3D-QSAR studies. Comparative 

molecular field analysis (CoMFA) and comparative molecular similarity indices 

analysis (CoMSIA) were used to understand the structural requirements of MerTK 

inhibitors.  

2.2 Molecular Docking  

Prior to the docking process, the protein structure was prepared as follows: 

polar hydrogen was added, Kollman and Gasteiger charges and AD4 atom-types 

were assigned. Autodock 4.0 [37] was used to perform docking. Docking protocol 

was validated by re-docking of extracted co-crystallized ligand from the crystal 

structure (PDB code: 5K0K) into the active site of the protein. Active site was 

defined by the same residues as used in the previous studies [75, 76]. The most 

potent compound from the dataset was docked into the active site of MerTK. Active 

site grid was created using the x, y and z coordinates of the active site. Dimensions 

of this grid were extended to 80 × 80 × 80 points with a grid spacing of 0.375 Å. The 

number of Genetic algorithm (GA) run was set to 100 and docking was executed 

using the Lamarckian genetic algorithm (LGA). The resultant docked conformations 

were clustered into groups with default RMS deviations of 0.5 Å.  

A docked pose based on the docking score and the two key hydrogen 

bonding interactions at the hinge region (Pro672, Met674) was selected as the 

representative binding pose. Since the dataset comprises macrocyclic compounds 

with various ring sizes (from 14 to 20-membered rings), we docked all the 

compounds. Since Autodock does not allow flexibility of macrocyclic ring 

structures, we have performed molecular dynamics simulations for structural 

optimization and relaxation using SYBYL-X 2.1 program.  

2.3 Structure optimization and sampling 
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SYBYL-X 2.1 was used for MD to generate conformers of these 

macrocyclic ring structures. As a first step, a dynamics run for 100 ps was performed 

using NVT ensemble at 300 K and with a time step of 1 fs. Trajectories were 

recorded every 5 ps for the MD runs. Boltzmann random velocity was selected as the 

initial velocity. The rest of the parameters were chosen as default. Tripos force field 

was used for the minimization of all the compounds. Gasteiger-Marsili charges were 

applied to the protein-ligand complex. The important residues (Pro672, Met674) 

forming key hydrogen bond interactions were constrained. From the several 

conformers generated, one conformation was selected considering two criteria. i.e., 

energy and the presence of two key hydrogen bond interactions as mentioned above. 

Final conformers selected for the compounds were used for the 3D-QSAR study.  

2.4 Test set / training set selection for 3D-QSAR analyses 

A series of 68 macrocyclic pyrimidines reported as potent MerTK inhibitors 

with their biological activities (IC50 values) were collected for this study [78, 79]. 

These inhibitors exhibit various ring sizes (from 14 to 20-membered rings). SYBYL-

X 2.1 was used to sketch all the 68 structures and optimized by energy minimization 

with Tripos force field [35]. Biological data expressed as IC50 values were converted 

into pIC50 (-log IC50) values. The pIC50 values cover 4.24 log units which signify the 

dataset is acceptable for a QSAR study [34]. The dataset was divided into a training 

set of 46 compounds for model derivation and a test set of 22 compounds for 

external predictability. The test sets were selected by considering different 

macrocyclic ring sizes and biological activity. The compounds were classified into 

high, medium, and low active ones depending on the biological activities. 

Subsequently, 22 compounds were randomly taken from the three activity classes 

and chosen as the test set. Docked conformation of the most active compound was 

taken as a template to sketch the rest of the compounds in the dataset. All the ligands 

taken for the docking studies were energy minimized to find the most reasonable 
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poses within the receptor. The chemical structures and biological activity values of 

all the compounds are depicted in Table 1.   

Table 1. Structure and biological activity values of macrocyclic pyrimidines as 

MerTK inhibitors 

 

 

Compound R1 m n 
IC50 

(nm) 

pIC50 

(nm) 

1* 

N

N
CH3

 

2 1 3.9 8.409 

2 

N

N
CH3

 

4 1 17 7.770 

3* 

N

N
CH3

 

6 1 30 7.523 



Swapnil Pandurang Bhujbal Ph.D. Thesis 

Chosun University, Department of Biomedical Sciences 

 

 

47 
 

4* 

N

N
CH3

 

2 2 8.9 8.051 

5 

N

N
CH3

 

4 2 2.2 8.658 

6 

N

N
CH3

 

6 2 0.8 9.097 

7* 

N

N
CH3

 

1 1 4.1 8.387 

8 

N

N
CH3

 

2 1 5.6 8.252 
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9 

N

N
CH3

 

3 1 1.8 8.745 

10* 

N

N
CH3

 

4 1 9.6 8.018 

11 

N

N
CH3

 

1 2 8.0 8.097 

12 

N

N
CH3

 

2 2 4.0 8.398 

13* 

N

N
CH3

 

3 2 3.0 8.523 
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14* 

N

N
CH3

 

4 2 2.6 8.585 

15 

N

N
CH3

 

1 3 4.1 8.387 

16 

N

N
CH3

 

2 3 5.0 8.301 

17 

N

N
CH3

 

3 3 3.1 8.509 

18 

N

N
CH3

 

4 3 4.9 8.310 

19 

 

3 2 140 6.854 
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20 

F

 

3 2 150 6.824 

21 
O

CH3

 

3 2 86 7.066 

22 

O
CH3

 

3 2 160 6.796 

23* 
O

CH3

 

3 2 170 6.770 

24 
O

N

 

3 2 16 7.796 

25 

O

N

O

 

3 2 8.1 8.092 

26 

O

N
S

OO

 

3 2 11 7.959 

27 
NNH

O

O

 

3 2 30 7.523 
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28 
N

O

 

3 2 32 7.495 

29* 
N

 

3 2 54 7.268 

30* 

N

 

3 2 13 7.886 

31 
N

 

3 2 80 7.097 

32 

O

 

3 2 94 7.027 

33 

F 

2 1 61 7.215 

34 

F 

1 1 200 6.699 

35* 

F 

3 1 760 6.119 

36 

F 

4 1 230 6.638 

37 

F 

5 1 91 7.041 
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38* 

F 

6 1 62 7.208 

39 

F 

1 2 3200 5.495 

40 

F 

2 2 140 6.854 

41* 

F 

3 2 36 7.444 

42 

F 

4 2 4.4 8.357 

43* 

F 

5 2 4.1 8.387 

44* 

F 

6 2 6.2 8.208 

45 
N

CH3

CH3

 

4 2 6.4 8.194 

46* 

O
CH3

O
CH3  

4 2 25 7.602 
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47 
N

O

 

4 2 6.0 8.222 

48 
N

O

 

4 2 9.5 8.022 

49* 
N

N
CH3

 

4 2 4.3 8.367 

50 

N  

4 2 6.3 8.201 

51* 
N

 

4 2 4.4 8.357 

52 
N

 

4 2 22 7.658 

53 
N N

N
 

4 2 1.5 8.824 

54* 
NH

 

4 2 6.5 8.187 

55 
O

 

4 2 14 7.854 
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56 
N

 

4 2 2.9 8.538 

57* 

N

N

N
H

NH

NH

O

F

NH

NHBoc

O

 

- - 54 7.268 

58 

N

N

N
H

NH

NH

O

F

NH

O

 

- - 59 7.229 

59 

N

N

N
H

NH

NH

O

F

NH

O

NH
CH3

 

- - 11 7.959 

60 

N

N

N
H

NH

NH

O

F

O

O

NH2

 

- - 3.9 8.409 
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61* 

N

N

N
H

NH

NH

O

F

OH

 

- - 68 7.168 

62 

N

N

N
H

NH

NH

O

F

OH

 

- - 140 6.854 

63* 

N

N

N
H

NH

NH

O

F

OH

 

- - 21 7.678 

64 

N

N

NH

NH

NH

O

F

O

 

- - 480 6.319 

65 

N

N

N
H

NH

NH

O

N

O

O
O

N

N
 

- - 770 6.114 
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66 

N

N

N
H

NH

NH

O

N

O
O

N

N
 

- - 14000 4.854 

67 

N

N

N
H

NH

NH

O

N N

N

NH

O

NH2

 

- - 40 7.398 

68 

N

N

N
H

NH

NH

O

NH

O

NH2

N

 

- - 21 7.678 

* Test set compounds 

2.5 3D-QSAR (CoMFA and CoMSIA)  

In CoMFA (Comparative Molecular Field Analysis), correlation of 

biological properties of compounds with steric and electrostatic potential energies 

are calculated using Lennard-Jones and Coulombic potentials, respectively [38]. The 
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dataset compounds should be aligned in their bioactive conformations to develop a 

reasonable model [39]. The dataset compounds were aligned using a common 

substructure-based alignment method with template molecule (most active 

compound 6). The choice of appropriate partial charge scheme is important to obtain 

robust 3D-QSAR models. Previous studies reported the necessity of considering 

more appropriate atomic charges rather than default CoMFA charges [40, 41]. We 

derived 3D-QSAR models using different charge calculation schemes to study the 

influence of these charge schemes on the 3D-QSAR models. The partial atomic 

charges were applied for each ligand by using different charge schemes i.e. 

Gasteiger-Hückel, Hückel, Gasteiger-Marsili [81], Del-Re [82], Pullman [83], 

MMFF94 [36] and AM1-BCC [84].  

Default parameters were used to generate the CoMFA model. A sp3 

hybridized carbon as probe atom with +1 charge and a grid spacing of 2.0 Å was 

used. The partial least squares (PLS) regression was used to develop statistically 

reasonable 3D-QSAR models. In the PLS analysis, CoMFA descriptors were used as 

independent variables and biological activity values (pIC50) were used as dependent 

variables. PLS analysis with Leave-one-out (LOO) cross-validation was executed to 

evaluate the reliability of the models developed [85, 86]. The squared cross-validated 

correlation coefficient (q2) value, an optimal number of components (ONC) and 

standard deviation of prediction (SEP) were calculated using PLS analysis. A 

column filtering value of 2.0 was used. A non-cross-validation analysis was then 

carried out using the obtained ONC by cross-validation to calculate the squared 

correlation coefficient (r2), F-test value (F) and standard error of estimate (SEE).  

In Comparative Molecular Similarity Indices Analysis (CoMSIA) [43], 

steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor 

descriptors were considered. All five CoMSIA similarity indices were calculated 

using a probe atom of radius 1.0 Å. An attenuation factor of 0.30 was used. The 

CoMSIA models were calculated between the grid point and each atom of the 

molecule by a Gaussian function [43]. The CoMSIA models with different 
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combinations were generated with the same lattice box used as in CoMFA 

calculations. Among the possible combinations, a model with reasonable statistical 

values in terms of q2 and r2 was selected as the final CoMSIA model. 3D-QSAR 

results were interpreted graphically by the field contribution maps. The developed 

models were checked for predictive ability and robustness using various validation 

techniques which includes bootstrapping, progressive scrambling, an external test set 

validation, rm2 metric calculations and concordance correlation coefficient (CCC) 

[44]. Bootstrapping for 100 runs and the progressive scrambling of 100 runs with 2 

to 10 bins were performed to validate the model’s predictability [40]. The models 

were also validated by the predictive correlation coefficient (r2
pred).  

3. Results and Discussion 

3.1 Activity vs ring size  

The dataset comprises macrocyclic compounds with various ring sizes 

ranging from 14 to 20-members. Since previous reports mentioned about ring size 

effects over biological activity, we tried to see the ring size effects. As shown in Fig. 

1, there seemed no correlation between ring size (x-axis) and biological activity (y-

axis). To further investigate the factors affecting biological activity, we did docking 

study. 
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Figure 1. The scatter plot of macrocyclic ring size vs. pIC50 activity values. Circle indicates 

compounds having 4 hydrogen bonds; square indicates compounds having 3 hydrogen bonds and 

triangle indicates compounds having 2 hydrogen bonds. 

3.2 Molecular docking and pose optimization using molecular 

dynamics  

In many cases of cyclic inhibitors, docking approaches have been 

particularly difficult. Most of the docking programs do not support flexibility of the 

cyclic inhibitors during docking. Hence, pose selection from docked structures was 

performed to provide flexibility to macrocyclic rings and to get more reliable binding 

poses for the 3D-QSAR study. Molecular dynamics (MD) was used for pose 

selection of macrocyclic compounds inside the receptor. The molecular dynamics for 

each docked compound was carried out for 100 ps with a time step of 1 fs with the 

above mentioned parameters using dynamics module in SybylX 2.1. The conformers 

were saved every 5 ps which generated a total of 20 conformers for each compound. 

The obtained conformers were plotted as scatter plot for each compound based on 

their energy. From the conformers generated for each compound, one conformation 
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was selected on the basis of the lowest energy and the presence of two signature 

hydrogen bond interactions with the important hinge region residues Pro672 and 

Met674. Final conformers selected were used for the alignment of dataset 

compounds in the 3D-QSAR study. The selected docked structures from MD 

simulations were used for subsequent 3D-QSAR studies.  

Since diverse rings would bind differently to the same receptor, all the 

compounds were docked. Table 2 shows the docking analyses of all dataset 

compounds. First, we chose 100 poses for each docked compound. Among them, the 

best binding pose was selected on the basis of docking score and the key hydrogen 

bonding for each compound. In Fig. 2a, the binding pose of the most active 

compound in MerTK is shown. For this cyclic inhibitor, there are 4 H-bonds with 

residues at the active site.  

 

Figure. 2 a The docked conformation of the compound 06 (shown in stick model) inside the 

binding pocket of MerTK Cyan dotted lines represent hydrogen bonds formed between residues 

and compound 06. Hydrogen bond distances are labelled in angstrom b The most active compound 

(shown in stick model) inside the hydrophobic pocket of MerTK. The red colored region represents 

the most hydrophobic surface and white color represents the less hydrophobic surface of the 

protein. 

The H of NH (bold NH in Fig. 3) which is adjacent to pyrimidine ring forms 

H-bond with the hinge region residue Pro672. Similarly, the N (bold N in Fig. 3) of 

pyrimidine ring forms H-bond with the hinge region residue Met674. X-ray crystal 
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structures conducted by McIver et al., [78] also have two hydrogen bonds at this 

hinge region. This is consistent with the previous reports that these hydrogen bonds 

are essential [75, 76]. These 2 key interactions were found in all the docked 

compounds having different ring sizes. In addition, hydrogen atoms of the amino 

group of the macrocyclic ring forms hydrogen bond interactions with the active site 

residues Arg727 and Asn728. Hydrogen bonding was assigned with PyMOL 

program with default parameters.  From the docking results, the chiral compounds  

 

Table 2. Hydrogen bond interactions between macrocyclic pyrimidine derivatives 

and MerTK (Docking analyses of the dataset compounds) 

Compou

nd 

Ring 

Size 
pIC50 

No. of 

H-

bonds 

Hydrogen bond residues 

HB1 HB2 HB3 HB4 

Cpd01 15 8.409 4 PRO672 MET674 ARG727 ASN728 

Cpd02 17 7.770 4 PRO672 MET674 ARG727 ASN728 

Cpd03 19 7.523 4 PRO672 MET674 ARG727 ASN728 

Cpd04 16 8.051 4 PRO672 MET674 ARG727 ASN728 

Cpd05 18 8.658 4 PRO672 MET674 ARG727 ASN728 

Cpd06 20 9.097 4 PRO672 MET674 ARG727 ASN728 

Cpd43 19 8.387 4 PRO672 MET674 ARG727 ASN728 

Cpd13 17 8.523 4 PRO672 MET674 ASP741 ASN728 

Cpd53 18 8.824 4 PRO672 MET674 ARG727 ASN728 

Cpd42 18 8.357 4 PRO672 MET674 ARG727 ASN728 

Cpd45 18 8.194 4 PRO672 MET674 ARG727 ASN728 

Cpd07 14 8.387 3 PRO672 MET674 ASP741 - 

Cpd09 16 8.745 3 PRO672 MET674 ASP741 - 

Cpd41 17 7.444 3 PRO672 MET674 ASN728 - 

Cpd37 18 7.041 3 PRO672 MET674 ARG727 - 

Cpd18 19 8.310 3 PRO672 MET674 ASN728 - 

Cpd40 16 6.854 3 PRO672 MET674 ASN728 - 
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Cpd60 18 8.409 3 PRO672 MET674 ASN728 - 

Cpd44 20 8.208 3 PRO672 MET674 ASN728 - 

Cpd16 17 8.301 3 PRO672 MET674 ASN728 - 

Cpd34 14 6.699 3 PRO672 MET674 ASP741 - 

Cpd15 16 8.387 3 PRO672 MET674 ASP741 - 

Cpd12 16 8.398 2 PRO672 MET674 - - 

Cpd38 19 7.208 2 PRO672 MET674 - - 

Cpd08 15 8.252 2 PRO672 MET674 - - 

Cpd10 17 8.018 2 PRO672 MET674 - - 

Cpd11 15 8.097 2 PRO672 MET674 - - 

Cpd14 18 8.585 2 PRO672 MET674 - - 

Cpd17 18 8.509 2 PRO672 MET674 - - 

Cpd19 17 6.854 2 PRO672 MET674 - - 

Cpd20 17 6.824 2 PRO672 MET674 - - 

Cpd21 17 7.066 2 PRO672 MET674 - - 

Cpd22 17 6.796 2 PRO672 MET674 - - 

Cpd23 17 6.770 2 PRO672 MET674 - - 

Cpd24 17 7.796 2 PRO672 MET674 - - 

Cpd25 17 8.092 2 PRO672 MET674 - - 

Cpd26 17 7.959 2 PRO672 MET674 - - 

Cpd27 17 7.523 2 PRO672 MET674 - - 

Cpd28 17 7.495 2 PRO672 MET674 - - 

Cpd29 17 7.268 2 PRO672 MET674 - - 

Cpd30 17 7.886 2 PRO672 MET674 - - 

Cpd31 17 7.097 2 PRO672 MET674 - - 

Cpd32 17 7.027 2 PRO672 MET674 - - 

Cpd33 15 7.215 2 PRO672 MET674 - - 

Cpd35 16 6.119 2 PRO672 MET674 - - 

Cpd36 17 6.638 2 PRO672 MET674 - - 

Cpd39 15 5.495 2 PRO672 MET674 - - 

Cpd46 18 7.602 2 PRO672 MET674 - - 

Cpd47 18 8.222 2 PRO672 MET674 - - 
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Cpd48 18 8.022 2 PRO672 MET674 - - 

Cpd49 18 8.367 2 PRO672 MET674 - - 

Cpd50 18 8.201 2 PRO672 MET674 - - 

Cpd51 18 8.357 2 PRO672 MET674 - - 

Cpd52 18 7.658 2 PRO672 MET674 - - 

Cpd54 18 8.187 2 PRO672 MET674 - - 

Cpd55 18 7.854 2 PRO672 MET674 - - 

Cpd56 18 8.538 2 PRO672 MET674 - - 

Cpd57 18 7.268 2 PRO672 MET674 - - 

Cpd58 18 7.229 2 PRO672 MET674 - - 

Cpd59 18 7.959 2 PRO672 MET674 - - 

Cpd61 18 7.168 2 PRO672 MET674 - - 

Cpd62 19 6.854 2 PRO672 MET674 - - 

Cpd63 14 7.678 2 PRO672 MET674 - - 

Cpd64 18 6.319 2 PRO672 MET674 - - 

Cpd65 16 6.114 2 PRO672 MET674 - - 

Cpd66 16 4.854 2 PRO672 MET674 - - 

Cpd67 18 7.398 2 PRO672 MET674 - - 

Cpd68 18 7.678 2 PRO672 MET674 - - 

 

having S configuration in the pyrimidine ring seem to be crucial to form hydrogen 

bond interactions with the active site residues Arg727 and Asn728. These docked 

poses explain why group I and III compounds have chiral carbon of S configuration. 

If the chiral compounds have R configuration, these hydrogen bonding interactions 

would not be possible.  
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Figure. 3 Dataset compounds (Group-I, Group-II, Group-III). 

Dataset compounds were categorized into Group-I, Group-II and Group-III depending on the 

amino group having S configuration in the pyrimidine ring and compounds having hydroxyl group 

in the pyrimidine ring. 

Hydrophobic interactions of the most active compound with MerTK were 

also identified. We have used python script to color receptor according to the 

Eisenberg hydrophobicity scale [45] in PyMOL (Fig. 2b). This gives colouring from 

red for the most hydrophobic to white for the least hydrophobic. Active site residues 

which reside in the hydrophobic region (highlighted as sticks in the Fig. 2b) seem to 

form hydrophobic interactions with the most active compound. Hydrophobic 

interactions of phenyl ring at the R1 position with residues Gly677 and Tyr685; and 

pyrimidine ring with residues Phe673 and Met730 were observed. In addition, the 

macrocyclic ring was docked into the deep hydrophobic pocket of MerTK which was 

lined with residues Val601 and Leu671.  

From the overall docking results we could speculate that active site residues 

Pro672, Met674, Arg727, Asn728, Val601 and Leu671 are important for the binding 

of the macrocyclic ring inside the binding pocket of MerTK. The docked 

conformations of all these compounds were selected based on the presence of the 

two key hydrogen bond interactions with hinge region residues Pro672 and Met674 

similar to that of the most active compound. 

Fig. 1 shows the scatter plot of macrocyclic ring size vs. pIC50 activity 

values. This shows that the various ring-sized compounds possess various inhibitory 
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activities so no significant effect of the ring size over the potency was observed. 

However, from our docking analysis it was observed that the compounds with higher 

activity have more hydrogen bonding interactions whereas, compounds with lower 

activity values showed less hydrogen bonding interactions with the protein. From 

which it is quite clear that the hydrogen bond formation may have influence on the 

activity of the compounds rather than the ring-size effect.  

3.3 CoMFA and CoMSIA  

Receptor-based 3D-QSAR models were developed for the series of 

macrocyclic pyrimidines as potent MerTK inhibitors. Conformers obtained from the 

pose selection for various ring size compounds were used for the 3D-QSAR study. 

All the compounds were aligned with the template molecule (most active compound) 

using the common substructure. The common substructure is shown in Fig. 4a and 

the alignment of the dataset is shown in Fig. 4b. Choice of appropriate partial 

charges is crucial to obtain reasonable 3D-QSAR models. Thus, different charge 

schemes such as Gasteiger-Hückel, Hückel, Gasteiger-Marsili, Del-Re, Pullman, 

MMFF94 and AM1-BCC were applied.  

 

Figure. 4 a Common substructure of the dataset b Alignment of the dataset compounds inside the 

active site of MerTK. 
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The dataset was divided into a test set of 22 compounds and a training set of 

46 compounds to develop 3D-QSAR models for the external test set. CoMFA 

models with steric and electrostatic field (S+E) contributions were obtained. Among 

the different charge schemes used, MMFF94 produced statistically reasonable 

CoMFA model (S+E) in terms of several statistical parameters (q2=0.702, ONC=5, 

and r2=0.979). Then we developed CoMFA models for electrostatic parameter alone 

(E only) to minimize the interaction between these parameters. The CoMFA models 

(E only) is shown in Table 3. MMFF94 produced statistically reasonable model 

(q2=0.600, ONC=6, and r2=0.943). We compared both CoMFA models and found 

that model with S+E is statistically better than the model with E only. The contour 

maps obtained from two models (S+E and E only) were quite similar. CoMFA model 

obtained only with electrostatic parameters could explain clearly about the hydrogen 

bonding. Therefore we have selected this model to validate the notion that hydrogen 

bonding interactions could be crucial for the activity variation. The r2
pred value of 

0.724 suggests that the model is statistically stable [87]. The scatter plot and contour 

maps is depicted in Fig. 5 and 6 respectively. The CoMFA (E only) contour map 

results are consistent with our docking analysis which is discussed in detail in the 

contour map analysis section.  

 

Table 3 Statistical summary of the developed CoMFA models for electrostatic 

descriptor with different charge schemes 

Parameter 
Gasteiger- 

Huckel 

Gasteiger- 

Marsili 

MMFF9

4 
Del-re Huckel 

Pullma

n 

AM1-

BCC 

E 

 

q2 0.297 0.315 0.600 0.282 0.274 0.379 0.328 

ONC 1 1 6 1 2 6 3 

SEP 0.758 0.748 0.607 0.766 0.779 0.756 0.671 

r2 0.792 0.849 0.943 0.858 0.651 0.958 0.890 

SEE 0.422 0.359 0.134 0.349 0.553 0.197 0.341 
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F value 53.409 78.748 328.045 84.531 19.149 
147.99

5 
86.305 

E: Electrostatic descriptor; q2: squared cross-validated correlation coefficient; ONC: optimal 

number of components; SEP: standard error of prediction; r2: squared correlation coefficient; SEE: 

standard error of estimation; F value: F-test value (These models were developed after dividing 

dataset into training set of 46 compounds and test set of 22 compounds) 

Different combinations of steric (S), electrostatic (E), hydrophobic (H), hydrogen 

bond acceptor (A) and hydrogen bond donor (D) fields were used to generate the 

CoMSIA models. Among the charge schemes studied, MMFF94 was used as a 

partial charge to generate the CoMSIA models by using the similar training set and 

test set as used in CoMFA. The detailed statistical values for the generated CoMSIA 

models are depicted in Table 4. Among the probable combinations, the optimal 

CoMSIA model generated using electrostatic and hydrogen bond donor parameters 

(ED) gave relatively better statistical results (q2=0.563, ONC=5, and r2=0.927), 

therefore selected as the final model. The r2
pred value of 0.672 indicates that the 

model is statistically reasonable [87]. The selected CoMFA (E only) and CoMSIA 

(ED) models helped us to confirm the hydrogen bonding interactions observed in 

docking analysis. It is observed that H-bond interactions with the active site residues 

Arg727 and Asn728 are important along with the H-bond interactions with 2 key 

residues Pro672 and Met674 for the inhibition of MerTK.  

 

Table 4. Detailed statistical values for the CoMSIA models 

CoMSI

A 
q2 

ON

C 
SEP r2 SEE F value 

Percentage contribution 

S E H A D 

S 
0.47

3 
2 

0.66
4 

0.77
3 

0.44
1 

47.693 100 - - - - 

E 
0.55

2 
5 

0.61
8 

0.91
9 

0.19
6 

203.00
3 

- 100 - - - 

H 
0.53

8 
2 

0.55
0 

0.84
2 

0.36
8 

74.536 - - 100 - - 
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A 
0.53

9 
2 

0.62
0 

0.83
3 

0.37
8 

69.947 - - - 100 - 

D 
0.42

9 
3 

0.69
9 

0.73
3 

0.47
8 

38.512 - - - - 100 

SE 
0.54

4 
5 

0.57

2 

0.91

0 

0.21

2 

129.45

8 

29.

8 

70.

2 
- - - 

EH 
0.56

0 
3 

0.53
4 

0.90
7 

0.28
3 

135.86
5 

- 
44.
5 

55.
5 

- - 

EA 
0.51

5 
4 

0.58
1 

0.91
6 

0.21
8 

178.62
4 

- 
48.
9 

- 
51.
1 

- 

ED 
0.56

3 
5 

0.62

7 

0.92

7 

0.20

0 

171.08

6 
- 

56.

3 
- - 

43.

7 

SD 
0.54

1 
2 

0.61
9 

0.80
5 

0.40
3 

89.038 
35.
1 

- - - 
64.
9 

HD 
0.53

3 
3 

0.56
1 

0.85
7 

0.35
0 

83.928 - - 
38.
9 

- 
41.
1 

SEH 
0.54

8 
3 

0.54

9 

0.90

2 

0.29

0 

128.71

4 

17.

2 

38.

5 

44.

4 
- - 

SEA 
0.50

1 
3 

0.58
4 

0.90
3 

0.28
8 

130.17
8 

16.
9 

37.
0 

- 
46.
0 

- 

SED 
0.50

5 
5 

0.59
6 

0.89
1 

0.30
5 

114.72
5 

23.
5 

40.
5 

- - 
36.
0 

EHA 
0.43

5 
3 

0.63
2 

0.93
9 

0.21
3 

155.54
3 

- 
38.
0 

35.
2 

26.
9 

- 

EHD 
0.49

9 
3 

0.59
5 

0.93
7 

0.21
7 

150.52
9 

- 
37.
4 

38.
5 

- 
24.
1 

SHA 
0.38

4 
3 

0.65
9 

0.90
8 

0.26
1 

100.58
6 

17.
9 

- 
45.
3 

36.
8 

- 

SHD 
0.50

7 
2 

0.57

2 

0.76

7 

0.44

1 
70.862 

18.

3 
- 

41.

7 
- 

40.

0 

EAD 
0.54

8 
5 

0.56
2 

0.83
2 

0.24
1 

192.22
1 

- 
30.
7 

- 
41.
3 

28.
0 

HAD 
0.46

0 
3 

0.52
4 

0.80
4 

0.22
6 

97.050 - - 
38.
6 

31.
8 

29.
6 

SEHD 
0.55

8 
3 

0.61
7 

0.84
1 

0.31
0 

130.91
3 

11.
7 

30.
4 

28.
4 

- 
28.
5 

SEHA 
0.45

6 
3 

0.63
7 

0.93
9 

0.21
3 

155.29
4 

9.4 
36.
3 

28.
6 

25.
7 

- 
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SEAD 
0.52

9 
3 

0.54
0 

0.91
2 

0.21
4 

130.26
2 

11.
6 

34.
3 

- 
29.
0 

25.
1 

EHAD 
0.50

3 
3 

0.64

3 

0.93

0 

0.21

1 

118.93

9 
- 

30.

0 

26.

7 

23.

4 

19.

8 

SHAD 
0.42

8 
3 

0.63
6 

0.90
8 

0.36
1 

110.09
5 

13.
2 

- 
33.
0 

27.
7 

26.
1 

SEHAD 
0.55

5 
3 

0.64
0 

0.91
5 

0.25
9 

137.42
3 

9.0 
26.
4 

24.
1 

20.
9 

19.
5 

Final selected CoMSIA model is highlighted in bold font. 

q2: squared cross-validated correlation coefficient; ONC: optimal number of components; SEP: 
standard error of prediction; r2: squared correlation coefficient; SEE: standard error of estimation; 
F value: F-test value; S: steric, E: electrostatic, H: hydrophobic, A: acceptor, D: donor. 

Table 5. Statistical values of the selected CoMFA and CoMSIA models 

Parameters CoMFA (E only) CoMSIA (ED) 

q2 0.600 0.563 

ONC 6 5 

SEP 0.607 0.627 

r2 0.943 0.927 

SEE 0.134 0.200 

F value 328.045 171.086 

BS-r2 0.987 0.981 

BS-SD 0.005 0.010 

Q2 0.413 0.554 

r2
pred 0.724 0.672 

rm2 0.593 0.549 

Delta rm2 0.130 0.064 

CCC 0.836 0.815 

E: Electrostatic; D: Hydrogen bond donor; q2: cross-validated correlation coefficient, ONC: 

optimal number of components, SEP: standard error of prediction, r2: non-validated correlation 

coefficient, SEE: standard error of estimation, F value: F-test value, BS-r2: bootstrapping r2 mean, 

BS-SD: bootstrapping standard deviation; Q2: Progressive scrambling; r2
pred: predictive r2, rm2: 
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average rm2 for the dataset; Delta rm2: Delta rm2 for the dataset, CCC: concordance correlation 

coefficient. 

Both the CoMFA and CoMSIA models were validated using bootstrapping, 

progressive scrambling [88], rm2 metric calculation and CCC. The CCC value was 

found to be significant as per the criteria given by Gramatica et al. [44]. The detailed 

statistical values of the selected CoMFA and CoMSIA models are represented in 

Table 5. These values suggested that the developed models were statistically 

reasonable. The scatter plot and contour maps were depicted in Fig. 5 & 6 

respectively.  

 

Figure. 5 a Scatter plot for the selected CoMFA model b Scatter plot for the selected CoMSIA 

model. 

The plot shows the actual pIC50 versus predicted pIC50 activity of the dataset for training and test 

sets. The training set compounds are represented as diamonds in blue colour; the test set 

compounds are represented as squares in red colour. 

3.4 Contour map analysis 

The standard parameters for 3D-QSAR models were used to generate the 3D 

contour maps that illustrate the change in inhibitory activity according to the changes 

in physicochemical properties of the substituents. The contour maps for the final 

CoMFA and CoMSIA models are shown in Fig. 6. The most potent compound of the 
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dataset is shown superimposed with CoMFA and CoMSIA contour maps inside the 

receptor. Here, we discuss CoMFA model generated only with the electrostatic 

parameter. 

The CoMFA electrostatic contour map is represented in Fig. 6a. The blue 

contours illustrate the regions where electropositive substitutions increase the 

activity while red contours illustrate the regions where electronegative substitutions 

increase the activity. Blue contours are observed at different positions in the 

macrocyclic ring which suggests that electropositive substitution at these positions 

increase the activity. The blue contour which is present at NH group near pyrimidine 

ring suggests that electropositive substituent at this position could interact with the 

Pro672. This can be justified by our docking results in which hydrogen atom from 

NH group forms a hydrogen bond with the oxygen atom of Pro672. This could be 

the reason for highly active compounds 17, 13, 56, 14, 5, 9, 53 and 6 (the highest 

active compound) have electropositive substitutions at this region. Moreover, the 

presence of blue contours near phenyl ring of R1 position signifies the region that is 

favorable for electropositive substitutions. In contrast, red contours are observed near 

the piperazine ring at R1 position and near the phenyl ring. This could be the reason 

for the moderate activity of the compounds 58 and 59 which possess electronegative 

substituent at these positions.  

Since electrostatic contour map in CoMFA (Fig. 6a) is almost similar to the 

CoMSIA electrostatic contour (Fig. 6b), only the hydrogen bond (H-bond) donor 

contour map of CoMSIA is discussed below. The H-bond donor contour map from 

CoMSIA is shown in Fig. 6c. The cyan contours indicate the favorable regions for 

H-bond donor groups, while the purple contours indicate the unfavorable regions for 

H-bond donor groups. Cyan contours on both sides of the amino group of 

macrocyclic ring suggest that the presence of H-bond donor group at these positions 

could increase the activity. This could be due to the fact that the H-bond donor 

substitutions at these regions could interact with the oxygen atoms of residues 

Arg727 and Asn728. These interactions are observed in our docking analyses. This 
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can also be explained by the moderate to the high activity of compounds 17, 13, 56, 

14, 5, 9, 53 and 6 (the highest active compound) which possess H-bond donor group 

in this region. On the contrary, the purple contours around the pyrimidine ring are 

unfavorable for the H-bond donor groups and could cause decrease in the efficacy. 

Overall contour map analysis supports the notion that the hydrogen bond formation 

has influence on the activity of the compounds rather than the ring-size effect. 

 

Fig. 6 Contour maps for the selected CoMFA and CoMSIA models a CoMFA electrostatic contour 

map b CoMSIA electrostatic contour map c CoMSIA hydrogen bond donor contour map. Blue 

contours favour electropositive substitutions while red contours favour electronegative 

substitutions. The Cyan contours indicate the favourable region for hydrogen bond donor 

substitution whereas the purple contours indicate the unfavourable region for hydrogen bond donor 

substitutions. 

4. Conclusion  
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  In this study, we have performed molecular docking of the macrocyclic 

pyrimidines followed by their pose selection and 3D-QSAR to understand the factors 

involving a series of macrocyclic inhibitors against MerTK. Molecular docking of 

these different sized compounds (14 to 20 membered rings) was carried out to check 

their binding affinity to MerTK. Docking studies revealed the interactions with 

crucial active site residues; i.e., in addition to two signature hydrogen bond 

interactions (Pro672 and Met674), the two hydrogen bond interactions with Arg727 

and Asn728 were found essential. Furthermore, active site residues Val601, Leu671, 

Phe673, Gly677, Tyr685 and Met730 were observed which form hydrophobic 

pocket. Though the ring size effect was not observed, our results support the 

importance of hydrogen bonding. Moreover, the importance of number of hydrogen 

bonding was confirmed statistically by receptor-based CoMFA and CoMSIA models 

and further visualized by their contour maps. These models were validated by 

various statistical parameters such as bootstrapping, progressive scrambling, an 

external test set validation, rm2 metric calculations and concordance correlation 

coefficient. The analysis of overall contour maps suggested that the electropositive 

substitution near the pyrimidine ring and at R1 position are favored to increase the 

activity. Likewise, electropositive and H-bonding donor groups are favorable in the 

macrocyclic ring.  

Overall, our results provide the importance of hydrogen bonding 

interactions for this receptor along with suggested critical residues, which could be 

useful for more potent MerTK inhibitor design. In addition, this work suggests the 

importance of hydrogen bonding for macrocyclic compounds as inhibitors, at least 

for the series of the compounds used in this study. However, if the dataset is 

different, this conclusion may not be applicable. To understand macrocyclic effects 

more clearly in drug discovery, further detailed studies should be desirable over this 

issue.  
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Chapter 4  

Receptor-guided 3D-QSAR study to develop a design strategy 

for RET kinase antagonists 
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1.0 Introduction 

Protein kinases (PKs) are the most explored targets for cancer therapy.[89] 

The family of receptor tyrosine kinases (TKs) is often related to cancer onset and 

development due to their deregulation, via mutation or overexpression.[90] RET 

(rearranged during transfection), one of the receptor tyrosine kinases, is essential for 

the normal growth, survival, maturation, and maintenance of cells and tissues.[91, 

92] It is also necessary for a typical growth of the parasympathetic and peripheral 

sympathetic nervous systems, brain, lung, thyroid, hematopoietic progenitors, and 

the neuroendocrine thyroid calcitonin-making C-cells.[93] It consists of the 

distinctive extracellular domain, the transmembrane domain subsequent to the 

intracellular domain, a tyrosine kinase domain, and a carboxy-terminal end. An 

extracellular domain consists of 4 cadherin-like domain (CD-1/2/3/4) replicates, 

calcium-binding site and a cysteine-rich segment just proximal to the transmembrane 

domain.[94, 95] 

The ligand of the glial cell line-originated neurotrophic factor (GDNF) 

family activates the RET kinase.[95, 96] The activation of RET requires 

supplementary GDNF family co-receptors (GFR1/2/3/4).[93] The 

glycosylphosphatidylinositol linkage helps GFR1/2/3/4 to bind to the external 

plasma membrane by forming the binary complexes with extracellular RET-

stimulating ligands so as to consecutively bind to RET.[97, 98] Moreover, ligand 

binding needs calcium ions chelated onto the RET kinase extracellular domain.[97, 

99] Subsequently, the RET receptor dimer is subjected to transphosphorylation 

which gives rise to the activity. 

Aberrant kinase signaling takes place which results in a variety of 

cancers[100] and inflammatory diseases.[101] Oncogenic activation of RET arises 

through one of the four mechanisms: point mutations, chromosomal rearrangements, 

retroviral transduction and overexpression.[102] Point mutations in RET are usually 

observed in medullary thyroid carcinoma (MTC)[93, 103] and in multiple endocrine 
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neoplasia, whereas chromosomal rearrangements are prevalent in non-small cell lung 

cancer (NSCLC) and in papillary thyroid carcinoma (PTC).[104] Recently, 

oncogenic activation of RET has been caught up in numerous types of cancers just as 

prostate,[105] breast,[106] and pancreatic cancer,[99] neuroblastoma,[107] brain 

tumor and glioblastoma.[108] Hence, the RET proto-oncogene has been recognized 

as an assuring therapeutic target for the development of therapeutic agents for 

cancer. 

Several RET antagonists have progressed as plausible agents against cancer. 

Recently FDA and EMA have approved vandetanib,[109] cabozantinib,[109] 

sorafenib,22 and lenvatinib[110] for the treatment of MTC. But, these inhibitors are 

non-selective to RET and possess elevated efficacy against some other protein 

kinases.[7, 111] These drugs are also ineffective inhibitors against the gatekeeper 

mutants V804M and V804L.[112] PP1 and PP2, two pyrazolopyrimidine derivatives 

suppress Src and RET kinase family[107, 113] but more selective for PTK6 than for 

Src kinase family, and may be useful for the treatment of PTK6-positive malignant 

diseases such as breast cancer. Likewise, CEP-701 and CEP-751 target various 

kinases, for example, FLT3, TRK and JAK2 and showed inefficacy against 

RET.[114] Therefore it is crucial to propose potent as well as specific RET kinase 

inhibitors. 

Few computational studies on RET kinase inhibitors have been reported. In 

a recent study, Pietra et al., reported the discovery of novel RET inhibitors using 

receptor-based virtual screening.21 He reported a new antagonist, 5-(4-chlorophenyl)-

3-((4-chlorophenylthio)methyl)-1H-1,2,4-triazole, that showed to inhibit efficiently 

wild-type and V804L mutant RET kinase as well.[109] In another study, a 

quantitative structure-activity relationship (QSAR) analysis has been reported to 

improve the activities of certain carbolin-1-one or indolin-2-one class derivatives as 

RET inhibitors.[98] We have reported the 3D-QSAR study (3D-Quantitative 

structure-activity relationship) on 2-substituted phenol quinazolines as RET 

inhibitors.[115] In the current study, we have performed molecular docking followed 
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by 3D-QSAR studies on anilinoquinozoline derivatives as RET antagonists to find 

out the key residues and structural requirements for strong inhibition.  

2.0 Materials and Methods 

2.1 Dataset 

A collection of 42 anilinoquinazoline derivatives as RET kinase antagonists 

were taken for the study.[111] Converted pIC50 values (−log IC50) from the reported 

IC50 values (µM) of the compounds shows the log span of 3.7 which is satisfactory to 

perform a 3D-QSAR study.[86] Table 1 illustrates the compounds and their 

corresponding activities of the dataset taken for the study. The three dimensional 

structures of the compounds were drawn using Tripos SYBYL-X 2.1[35] followed 

by energy minimization with tripos force field. Gasteiger-Hückel charges were 

applied as partial charges. To check the external predictivity, the dataset was 

randomly split into 10 test set compounds and 32 training set compounds.  

Table 1. Structure and biological activity values of anilinoquinazoline derivatives as 

RET kinase inhibitors. 

N

N
O

CH3

O
( )n

R
2

NH
R

1

 

Compounds 1-42 

Compound R1 R2 n 
IC50 

(µM) 
pIC50 
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1 

F

OH

CH3

 

- 1 0.044 7.357 

2 

 

- 1 1.7 5.770 

3 

S
O

O NH2

 

- 1 7.7 5.114 

4 

FF

 

- 1 2.9 5.538 

5 
N
H  

- 1 1.7 5.770 

6* 

N
H

 

- 1 9.1 5.041 

7 

N

N
H  

- 1 >30 4.523 
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8* 

N
H

N

 

- 1 4.3 5.367 

9 
N
H

N

 

- 1 3.3 5.482 

10 
N
H

N

 

- 1 0.28 6.553 

11 
N
H

N

 

- 1 0.60 6.222 

12 

N
H

N

 

- 1 0.14 6.854 

13 

F

OH

CH3

 

NH2 2 0.13 6.886 

14 

F

OH

CH3

 

NH2 3 0.048 7.319 
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15 

F

OH

CH3

 

NHMe 2 0.10 7.000 

16 

F

OH

CH3

 

NHMe 3 0.023 7.638 

17 

F

OH

CH3

 

NHMe2 2 0.35 6.456 

18* 

F

OH

CH3

 

NHMe2 3 0.007 8.155 

19 

F

OH

CH3

 

N

 

2 0.10 7.000 

20 

F

OH

CH3

 

N

 

3 0.015 7.824 
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21 

F

OH

CH3

 

N

 

2 0.12 6.921 

22 

F

OH

CH3

 

N

 

3 0.015 7.824 

23 

F

OH

CH3

 

N

N
H  

2 0.017 7.770 

24 

F

OH

CH3

 

N

N
H  

3 0.005 8.301 

25* 

F

OH

CH3

 

N

N
H  

2 0.065 7.187 

26* 

F

OH

CH3

 

N

N
H  

3 0.011 7.959 
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27 

F

OH

CH3

 

N

N

CH3  

2 0.044 7.357 

28* 

F

OH

CH3

 

N

N

CH3  

3 0.029 7.538 

29 

F

OH

CH3

 

N

O  

2 0.014 7.854 

30 

F

OH

CH3

 

N

O  

3 0.011 7.959 

31 

F

OH

CH3

 

N

S
O O  

2 0.014 7.854 

32 

F

OH

CH3

 

N

S
O O  

3 0.009 8.046 
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33* 

F

OH

CH3

 

N

F 

2 0.030 7.523 

34 

F

OH

CH3

 

N
CF3

 

2 0.15 6.824 

35 

F

OH

CH3

 

N
CF3

 

3 0.062 7.208 

36 

F

OH

CH3

 

N

 

1 0.012 7.921 

37* 

F

OH

CH3

 

N

N

CH3

 

1 0.11 6.959 

38* 

F

OH

CH3

 

N

O

N

CH3 

1 0.024 7.620 
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39 

F

OH

CH3

 

N

CH3  

1 0.078 7.108 

40 

F

OH

CH3

 

O  

1 0.018 7.745 

41* 

F

OH

CH3

 

OMe 2 0.014 7.854 

42 

F

OH

CH3

 

OMe 3 0.038 7.420 

* Test set compounds 

2.2 Molecular docking 

Autodock 4.0.[37] was employed for docking studies. The crystal structure 

of RET kinase (PDB ID: 4CKJ) was used. As a part of the docking preparations, 

Kollman charges and polar hydrogens were added to the protein structure. The no. of 

rotatable bonds of compound 24 was set to 6. The grid was placed around the active 

site of the protein which was reported in previous studies.[109, 111] Compound 24 

(Most active molecule of the dataset) was docked into the set grid of RET kinase 

with 100 runs of genetic algorithm.  
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2.3 CoMFA and CoMSIA 

Alignment of 3D-structures of the molecules is necessary to derive a 

reasonable 3D-QSAR model.[116] The dataset compounds were aligned on a 

common scaffold (quinazoline ring) using distill-rigid alignment method in SYBYL-

X 2.1 package. 3D QSAR models with CoMFA[38] (Comparative Molecular Field 

Analysis) and the CoMSIA[116] (Comparative Molecular Similarity Indices 

Analysis) descriptors were produced using Tripos SYBYL-X 2.1. The Standard 

protocol was employed for calculating steric and electrostatic parameters required 

for CoMFA analyses. CoMSIA descriptor uses five fields (Steric, Electrostatic, 

Hydrophobic, H-bond Donors, H-bond acceptors). PLS regression analysis was 

performed taking CoMFA and CoMSIA descriptors as independent variables and 

biological activity (pIC50) as dependent variables. Models were produced to obtain 

squared cross-validated correlation coefficient (q2),[34, 85] conventional squared 

correlation coefficient (r2) using non-cross validation, and standard error of estimate 

(SEE). To produce CoMSIA models, different field descriptor combinations were 

utilized and the descriptors that provided a reasonable statistical model were 

selected.  

2.3.1 Validation of CoMFA and CoMSIA models 

The internal and external predictivity of the developed models were 

validated using bootstrapping, leave five out (LOF), progressive scrambling and 

external test set validation. Furthermore, predictive correlation coefficient (r2
pred), 

rm2 metric calculations and concordance correlation coefficient (CCC) were also 

carried out. 
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3.0 Results and Discussion 

3.1 Molecular Docking 

 Binding pocket of RET kinase is contributed by residues Leu730, Gly731, 

Gly733, Glu734, Ala807, Gly810, Ser811 and Asp874. One best-docked pose was 

selected from the clusters achieved from all the 100 conformations depending on 

binding energy, polar and non-polar interactions. The highly active compound 24 

was bound favorably in the RET binding pocket (Figure 1a). The selected docked 

pose showed the binding energy of –7.45 kcal mol-1 with five hydrogen bond 

formations. Two hydrogen bond interactions are observed between the hydroxyl 

group of a phenyl ring of compound 24 with the hinge region residue Ala807. This 

interaction mimics the ATP’s interaction with kinase which is also present in the x-

ray co-crystallized ATP-RET kinase complex (PDB ID: 4CKJ), i.e., it was 

considered very crucial.[117] Additionally, two more hydrogen bond interactions 

have been monitored between the two nitrogen atoms of quinazoline ring with 

residue Ser811. Similarly, a hydrogen bond between the piperazine ring and Asp874 

was found.  

 

Figure 1 a. The docked conformation of the compound 24 (shown in stick model) inside the 

binding pocket of RET. Yellow dotted lines represent hydrogen bonds formed between residues 

and compound 24. Hydrogen bond distances are labeled in angstrom. b. The most active compound 

24 (shown in stick model) inside the hydrophobic pocket of RET. The red colored region 
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represents the most hydrophobic surface and white color represents the least hydrophobic surface 

of the protein.  

 

Hydrophobic interactions were identified using python script ‘color h’ and 

to color the receptor according to the Eisenberg hydrophobicity scale[45] in PyMOL 

(Figure 1b). This gives coloring from red for the most hydrophobic to white for the 

least hydrophobic region. Active site residues which reside in the hydrophobic 

region (highlighted as lines in the figure) seem to form hydrophobic interactions with 

the highly potent compound 24. The phenyl ring at the R1 position was docked into 

the hydrophobic pocket of RET which was surrounded by residues Leu730, Ala807 

and Gly810. Furthermore, hydrophobic interaction of quinazoline ring with residues 

Gly731 and Ser811 and piperazine ring with residues Gly733 and Glu734 were 

found. Among these, hydrophobic interaction with Gly731 and Gly733 which is 

from glycine-rich loop is reported to be important.[117]  

We have shown the correlation between pIC50 values and the docking score 

of the remaining compounds of the dataset in Figure 2.  The chosen conformation of 

the ligand was employed in our 3D-QSAR technique. 
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Figure 2. Scatter plot of activity (pIC50) values vs docking score. 

Here, pIC50 = - log10 IC50 (µM) and docking score = binding energy (kcal mol-1). All 

the binding energy values are negative. This scatter plot shows that the there is a 

correlation between pIC50 values and the docking score. The trend is not much clear 

but it indicates the limitations of modeling studies. High active compounds have the 

lowest binding energy whereas low actives ones have high binding energy. We can 

also see that some of the low active compounds possess low binding energy and few 

medium to high active compounds possess high binding energy. 

3.2 CoMFA and CoMSIA Studies 

The conformation of the compound 24 was taken as template to align the 

rest of the dataset compounds using the distill-rigid alignment in Sybyl-X 2.1. The 

common core of the dataset and the alignment of the compounds are depicted in 

Figure 3a and Figure 3b respectively. Full model for the CoMFA (q2=0.695, NOC=6, 

r2=0.979) was developed. Then the CoMFA model for the external test set 

compounds of 32 training and 10 test set (q2=0.723, NOC=5, r2=0.980) was 
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produced. This model displayed more reasonable predictive power. Table 2 shows 

the several CoMSIA models were produced with different combination of the five 

field descriptors as explained in the methodology section. The field combination of 

electrostatic and H-bond acceptor (EA) generated a statistically sound CoMSIA 

model (q2=0.679, NOC=3, r2=0.914). Furthermore, external test set validation for 

combination EA yielded the most predictive CoMSIA model (q2=0.767, NOC=6, 

r2=0.967).  

Table 2. Detailed statistical values for the CoMSIA models. 

CoMSI

A 

q
2 

 

ON

C 
SEP r

2

 SEE F value 
Percentage contribution 

S E H A D 

S 
0.58

0 
5 

0.66

9 

0.81

5 

0.44

4 
31.653 100 - - - - 

E 
0.66

0 
3 

0.57

1 

0.88

2 

0.34

5 
94.681 - 100 - - - 

H 
0.55

5 
3 

0.66

2 

0.76

1 

0.49

1 
40.350 - - 100 - - 

A 
0.61

7 
4 

0.63

0 

0.86

8 

0.36

9 
60.932 - - - 100 - 

D 
0.55

6 
3 

0.65

2 

0.77

3 

0.47

8 
43.221 - - - - 100 

SE 
0.64

6 
3 

0.59

0 

0.86

8 

0.36

5 
83.072 

26.

8 

73.

2 
- - - 

EH 
0.64

8 
3 

0.58

8 

0.89

4 

0.32

7 

106.70

9 
- 

67.

5 

32.

5 
- - 

EA 
0.67

9 
3 

0.56

9 

0.91

4 

0.29

5 

134.42

4 
- 

50.

3 
- 

49.

7 
- 

ED 
0.65

0 
3 

0.57

9 

0.88

2 

0.34

6 
94.230 - 

56.

8 
- - 

43.

2 

SH 
0.59

2 
3 

0.64

1 

0.77

4 

0.47

7 
43.367 

46.

5 
- 

53.

5 
- - 
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SA 
0.62

5 
3 

0.60

7 

0.84

5 

0.39

5 
69.162 

35.

6 
- - 

64.

4 
- 

SD 
0.62

3 
3 

0.60

1 

0.80

1 

0.44

7 
51.111 

33.

1 
- - - 

66.

9 

HA 
0.64

2 
3 

0.60

2 

0.88

8 

0.33

6 

100.64

0 
- - 

39.

8 

60.

2 
- 

HD 
0.57

3 
3 

0.64

8 

0.83

4 

0.40

9 
63.520 - - 

40.

9 
- 

59.

1 

SEH 
0.64

4 
2 

0.59

1 

0.86

8 

0.36

5 
83.020 

20.

5 

54.

2 

25.

3 
- - 

SEA 
0.67

5 
3 

0.56

4 

0.90

0 

0.31

7 

114.58

1 

18.

3 

39.

8 
- 

41.

8 
- 

SED 
0.66

0 
3 

0.57

0 

0.87

6 

0.35

4 
89.445 

17.

3 

47.

8 
- - 

34.

9 

EHA 
0.66

8 
4 

0.58

3 

0.91

4 

0.29

5 

134.53

3 
- 

38.

5 

20.

6 

40.

9 
- 

EHD 
0.63

8 
3 

0.58

9 

0.87

2 

0.35

9 
86.644 - 

43.

9 

20.

1 
- 

36.

0 

SHA 
0.63

8 
3 

0.60

4 

0.87

3 

0.35

8 
87.137 

24.

3 
- 

26.

5 

49.

2 
- 

SHD 
0.61

1 
3 

0.61

0 

0.82

0 

0.42

6 
57.824 

23.

3 
- 

28.

9 
- 

47.

8 

EAD 
0.63

9 
3 

0.58

8 

0.91

8 

0.28

8 

141.77

6 
- 

33.

0 
- 

35.

5 

31.

6 

HAD 
0.60

2 
3 

0.52

6 

0.89

7 

0.32

3 

110.02

1 
- - 

21.

6 

39.

9 

38.

6 

SEHD 
0.64

7 
3 

0.58

2 

0.87

3 

0.35

8 
87.138 

14.

2 

38.

3 

17.

9 
- 

29.

6 

SEHA 
0.67

2 
3 

0.56

7 

0.90

4 

0.31

1 

119.49

7 

14.

9 

32.

6 

16.

5 

36.

0 
- 

SEAD 
0.65

7 
3 

0.57

3 

0.91

5 

0.29

3 

136.36

7 

11.

3 

28.

4 
- 

34.

7 

25.

6 
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EHAD 
0.63

5 
3 

0.59

1 

0.90

9 

0.30

3 

126.43

3 
- 

27.

8 

13.

1 

32.

3 

26.

8 

SHAD 
0.62

1 
3 

0.60

3 

0.89

7 

0.32

2 

110.71

3 

13.

7 
- 

16.

1 

39.

9 

30.

3 

SEHAD 
0.64

8 
3 

0.58

1 

0.90

9 

0.30

4 

125.77

1 

10.

2 

24.

6 

11.

6 

31.

2 

22.

4 

Final selected CoMSIA model is highlighted in bold font.  

q2: squared cross-validated correlation coefficient; ONC: optimal number of components; SEP: 

standard error of prediction; r2: squared correlation coefficient; SEE: standard error of estimation; 

F value: F-test value; S: steric, E: electrostatic, H: hydrophobic, A: acceptor, D: donor. 

 

Figure 3 a. Common substructure of the dataset. b. Alignment of the dataset compounds inside the 

active site of RET. 

The generated CoMFA and CoMSIA models were carefully validated 

through quite a few validation techniques such as Leave-Five-out, r2
pred, 

Bootstrapping, progressive scrambling (Q2), rm2 metric calculation and concordance 

correlation coefficient (CCC). All the validation results confirmed the robustness and 

predictive ability of the developed models. The values of the concordance correlation 

coefficient (CCC) for both the models were in the range suggested by Gramatica et 

al.[47] Similarly the average rm2 and Delta rm2 values of the models shows to be in 

the acceptable range as mentioned by Roy et al. [46] [38]40 The detailed statistical 
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values of both CoMFA and CoMSIA models along with their validation test results 

are tabulated in Table 3. Scatter plots and contour maps of CoMFA and CoMSIA 

models are shown in Figure 4 and Figure 5 respectively. Comparison of experimental 

Vs the predicted activity values of the models are shown in Table 4. 

Table 3. Statistical values of the selected CoMFA and CoMSIA models. 

Parameters CoMFA CoMSIA (EA) 

q2 0.723 0.767 

ONC 5 6 

SEP 0.544 0.509 

r2 0.980 0.967 

SEE 0.147 0.147 

F-value 253.680 212.001 

BS-r2 0.990 0.987 

BS-SD 0.005 0.007 

Q2 0.560 0.529 

r2
pred 0.859 0.822 

LOF 0.745 0.751 

rm2 0.816 0.762 

Delta rm2 0.090 0.050 

CCC 0.931 0.911 

q2: squared cross-validated correlation coefficient; ONC: optimal number of components; SEP: 

standard error of prediction; r2: squared correlation coefficient; SEE: standard error of estimation; 

F value: F-test value; BS-r2: bootstrapping r2 mean; BS-SD: bootstrapping standard deviation; Q2: 

progressive sampling; r2
pred: predictive r2, LOF: Leave-Five-out, rm2: average rm2 for the dataset; 

Delta rm2: Delta rm2 for the dataset, CCC: concordance correlation coefficient. 
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Figure 4 a. Scatter plot for the selected CoMFA model. b. Scatter plot for the selected CoMSIA 

model. 

The plot shows the actual pIC50 versus predicted pIC50 activity of the dataset for 

training and test sets. The training set compounds are represented as diamonds in 

blue color; the test set compounds are represented as squares in red color. 

Table 4.  Actual pIC50 and predicted pIC50 with their residual values of selected 

CoMFA and CoMSIA models. 

Compound Actual pIC50 

CoMFA CoMSIA (EA) 

Predicted Residual Predicted Residual 

1 7.357 7.115 0.241 7.236 0.121 

2 5.770 5.861 -0.091 5.753 0.017 

3 5.114 5.121 -0.008 5.142 -0.029 

4 5.538 5.685 -0.147 5.520 0.018 

5 5.770 5.901 -0.131 5.809 -0.039 

6 5.041 5.001 0.040 5.125 -0.084 
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7 4.523 4.427 0.096 4.557 -0.034 

8 5.367 5.019 0.348 5.309 0.058 

9 5.482 5.438 0.043 5.576 -0.095 

10 6.553 6.266 0.287 6.268 0.285 

11 6.222 6.423 -0.201 6.376 -0.154 

12 6.854 6.795 0.059 6.923 -0.069 

13 6.886 7.083 -0.197 6.817 0.069 

14 7.319 7.350 -0.031 7.327 -0.008 

15 7.000 6.777 0.223 6.912 0.088 

16 7.638 7.478 0.160 7.659 -0.021 

17 6.456 6.595 -0.139 6.723 -0.267 

18 8.155 7.595 0.560 7.749 0.406 

19 7.000 7.033 -0.033 6.755 0.245 

20 7.824 7.870 -0.046 7.847 -0.023 

21 6.921 7.009 -0.088 6.970 -0.049 

22 7.824 7.862 -0.038 8.005 -0.181 

23 7.770 7.575 0.195 7.445 0.325 

24 8.301 8.264 0.037 8.167 0.134 
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25 7.187 7.747 -0.560 7.116 0.071 

26 7.959 7.811 0.148 8.063 -0.104 

27 7.357 7.562 -0.206 7.584 -0.228 

28 7.538 8.005 -0.467 8.282 -0.744 

29 7.854 7.912 -0.058 7.931 -0.077 

30 7.959 7.938 0.021 8.055 -0.096 

31 7.854 7.794 0.060 7.742 0.112 

32 8.046 7.979 0.067 8.029 0.017 

33 7.523 7.012 0.511 6.729 0.794 

34 6.824 6.751 0.073 6.780 0.044 

35 7.208 7.103 0.105 7.216 -0.008 

36 7.921 8.012 -0.091 7.906 0.015 

37 6.959 7.238 -0.279 7.275 -0.316 

38 7.620 7.242 0.378 7.006 0.614 

39 7.108 7.175 -0.067 7.176 -0.068 

40 7.745 7.649 0.096 7.830 -0.085 

41 7.854 7.798 0.056 7.984 -0.130 

42 7.420 7.912 -0.492 7.374 0.046 
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3.3 Contour Map Analysis 

3.3.1 CoMFA contour maps 

Figures 5a and 5b illustrates the contour map of the chosen CoMFA model. 

The highly active compound 24 is displayed superimposed with CoMFA contour 

map within the active site of RET kinase. In case of steric contour map, the green 

and yellow colored contours designate the favorable and unfavorable steric 

interactions, respectively (Figure 5a). The big green colored contour observed close 

to R2 position of piperazine ring expresses that the bulky substituents are ideal to 

raise the activity. The steric substitution at R2 position can clarify why the 

compounds 26, 25, 20, 22, 23, 27 and 32 together with the highly potent compound 

24 have increased activities. Similarly, a green colored contour observed close to the 

R1 site of a phenyl ring suggests that a bulky substitution is favorable to increase the 

potency. Quite the opposite, two small yellow colored contours observed next to the 

methoxy group of quinazoline ring proposing that the steric substitution at this 

position is not favored and could cause decrease in the efficacy. Big substituent must 

be avoided at this place because it may sterically interact with the residue Asp892. 

CoMFA Electrostatic contour maps are shown in Figure 5b. For higher 

inhibitory potency, blue contours symbolize regions where positive electrostatic 

potential are favorable, while red negative. A blue contour region at the R1 site near a 

phenyl ring suggests that the positive substitutions in this area might aid in the 

improved potency. Presence of positive group at this site could make hydrogen bond 

interaction with oxygen atom of Ala807. This interaction could be explained by our 

docking results. Compounds bearing hydroxyl substitution at R1 site were detected to 

possess higher activity that justifies the occurrence of blue colored contour. This is 

possibly explained by higher activities of compounds 32, 18, 26, 30, 38, 28, and 

many other series of compounds including the highly potent compound 24 which 

contains hydroxyl group at this place. Red contours close to the nitrogen at R1 site 
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near the quinazoline ring indicates that negative substituents could amplify the 

potency. This might be justified by our docking results where both the nitrogen 

atoms in the quinazoline ring formed hydrogen bond interaction with Ser811.  

3.3.2. CoMSIA contour maps 

An electrostatic and the H-bond acceptor descriptors were employed to 

generate CoMSIA contour maps. Only the H-bond acceptor field contour maps are 

discussed below due to the similarity between CoMSIA and CoMFA electrostatic 

contours. Figure 5d represents the H-bond acceptor contour map. Cyan and magenta 

colored contours specify the areas where H-bond acceptor and H-bond donor groups 

are favored respectively. Two cyan contours near the phenyl ring and piperazine ring 

propose that H-bond acceptor substitutions are favored. In contrast, magenta contour 

observed close to the hydroxyl group at R1 site of the phenyl ring designates that 

presence of H-bond donor groups possibly may form hydrogen bond interaction with 

Ala807 which may lead to the elevated potency. This could be reason why 

compounds 32, 18, 26, 30, 38, 28, and together with the highly potent compound 24 

which exhibits H-bond donor group (hydroxyl group) at this site specifies increased 

potency. Likewise, a small magenta colored contour next to piperazine ring (R2 site) 

represents the existence of H-bond donor substituents at this site might enhance the 

activity. This is possibly elucidated by higher activities of compounds 21, 22, 23 as 

well as the highly potent compound 24 that possesses hydrogen atom at this site. 

This can be supported with our docking study where hydrogen atom at this site 

establishes a hydrogen bond with oxygen atom of Asp874. Exploiting the results 

obtained from the  
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Figure 5. Contour maps for the selected CoMFA and CoMSIA models. a. CoMFA steric contour 

map. b. CoMFA electrostatic contour map. c. CoMSIA electrostatic contour map. d. CoMSIA 

hydrogen bond acceptor contour map. Green contour shows the regions favorable for bulky 

substitutions and yellow contours shows the regions unfavorable for bulky substitutions. Blue 

contours favor electropositive substitutions while red contours favor electronegative substitutions. 

The Cyan contours indicate the favorable region for hydrogen bond acceptor substitution whereas 

the magenta contours indicate the favorable region for hydrogen bond donor substitutions. 

contour maps analyses, a design strategy is developed to design a series of more 

potent RET kinase inhibitors of anilinoquinazoline derivatives (Figure 6). 
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Figure 6. Design strategy to design a series of potent and selective RET kinase inhibitors of 

anilinoquinazoline derivatives. 

4.0 Conclusion 

In the present work, molecular docking followed by the 3D-QSAR studies 

like CoMFA and CoMSIA were carried out on anilinoquinazoline derivatives as 

RET kinase antagonists. Our docking analyses identified crucial residues within the 

active site of RET kinase, which interacts with the most active compound 

(compound 24 in Table 1). Residues Leu730, Gly731, Gly733, Glu734, Ala807, 

Gly810, Ser811 and Asp874 seemed to be significant in the inhibitory mechanism of 

RET kinase. The rest of the inhibitors in the dataset were also positioned inside the 

RET active site and the resultant poses were used to derive 3D-QSAR models. 

Validation of the chosen models was carried out via bootstrapping, external test set, 

progressive scrambling, Leave-Five-out, rm2 metric calculations and concordance 

correlation coefficient. Statistically validated receptor-guided CoMFA (q2=0.723, 

NOC=5, r2=0.980) and CoMSIA (q2=0.767, NOC=6, r2=0.967) models were 

produced. Favorable regions responsible for the elevated inhibitory activity were 

divulged in the investigation of contour maps of the chosen models. Steric and 

hydrogen bond donor substitutions at R1 and R2 positions are favored. Positive and 

negative substitutions at R1 position are favored to enhance the potency. 
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Furthermore, H-bond acceptor substitutions are favored in the regions where both 

phenyl and piperazine rings are close.  

The interactions of the most potent compound with important active site 

residues of RET kinase such as Ala807, Ser811 and Asp874 were observed in the 

favorable regions ideal for the increased potency which were divulged in contour 

map analyses. Thus, a strong correlation among the docking analysis and outcome of 

contour map was identified. Our design strategy could be useful to the medicinal 

chemists and pharmaceutical companies to design more potent RET kinase 

inhibitors.  
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Chapter 5 

Conclusion of the Study 
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Conclusion 

Receptor Tyrosine Kinases (RTKs) are interesting drug targets due to their 

involvement in cancer and other diseases. They are widely considered as one of the 

most promising drug targets in an academic research as well as in pharmaceutical 

industries. Kinase inhibitor drug discovery and molecular modeling has progressed 

considerably in the past decade. Various computational approaches have been used 

in the current study to understand the inhibitory mechanism of a number of tyrosine 

kinases such as RET, MerTK and FLT3.  

We performed a molecular modeling study combining molecular docking, 

three-dimensional structure-activity relationship (3D-QSAR) and molecular 

dynamics simulation to find the binding mode of RTK inhibitors and identify the 

important key active site residues that participate in the inhibition. CoMFA and 

CoMSIA contour maps were used to understand the structural variations essential to 

enhance the activity of the inhibitors and to design new molecules. These results 

assisted in the design of 14 novel FLT3 kinase inhibitors with the increased activity. 

Further in vivo and in vitro studies of the designed compounds are required to check 

their efficacy and safety. The overall results and knowledge acquired from our study 

is expected to be helpful for the scientific community and medicinal chemists to 

design and synthesize more potent and specific RTK inhibitors. 
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