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ABSTRACT

A Study on Digital Holography Microscopic Using Fringe Stabilization

System

Choi, Tae-Ho

Advisor: Prof. Kim, Kyeong-Suk Ph.D.

Dept. Advanced Parts & Materials Engineering

Graduate School of Chosun University

Holography is an optical technique in which the wave nature of light is used to

produce three-dimensional images of an object of interest. In addition to the at 2D

representation of a photograph, the holograph also records the depth of eld by recording

the phase of an incoming wave eld. The principles of holography can also be used to

examine the optical properties of transparent media. The refractive index of a

transparent material is dened to be the fraction by which light slows down as it

propagates through the medium. A digital holographic microscope (DHM) has been

constructed to measure the refractive index of living biological cells as this information

has been shown to be an indicator of cell health and is also central to cellular

biomechanics measurements made with optical force instruments. In order to nd the

index, the DHM records interferograms which quantitatively measures laser light's

change in phase as it traverses the cells. These interferograms are then processed to

reveal the cell's refractive index and height. The theory and design for the DHM will
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be presented along with a full discussion of the interferogram processing algorithms.

The experimental procedure will be outlined in detail, and verication for the integrity of

the index measurements will be discussed. Finally, a summary of refractive index

measurements made of red cells at several wavelengths will be presented.

A digital holographic microscope that can be used to measure the refractive index of

biological cells at different wavelengths that extend to the near infrared spectrum was‐

built. The interference pattern produced by the reference and object beams was recorded

by a CCD camera. The recording process followed a special procedure called

decoupling procedure. Three digital holograms with different interference patterns were

recorded by varying the refractive index of the cell medium.

holographic experiments based on LabVIEW are demonstrated in this work in order

to offer a teaching modal by making full use of LabVIEW as an educational tool.

Digital incoherent holography enables holograms to be recorded from incoherent light

with just a digital camera and spatial light modulator and three-dimensional properties，

of the specimen are revealed after the hologram is reconstructed in the computer The．

experiment of phase shifting incoherent digital holography is designed and implemented

based on the principle of Fresnel incoherent correlation holography．

An automatic control application is developed based on LabVIEW which combines，

the functions of major experimental hardware control and digital reconstruction of the

holograms The basic functions of the system are completed and a user-friendly．

interface is provided for easy operation The students are encouraged and stimulated．

to learn and practice the basic principle of incoherent digital holography and other

related optics-based technologies during the programming of the application and

implementation of the system.

Due to the characteristics of the optical metrology technique, a process to remove

some noise due to the complexity of an optical system is essential. for constructing an

noise-reduced interference system, has less noise factors than the conventional

transmissive type of the digital holography system. Also, in order to stabilize the digital

holography system, the corresponding error signal to the movement of the interference

fringes generated by the external environment, when the external air flow, th vibration
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and so on are applied to the interferometer, is controlled. An interference fringes

stabilization system can be constructed by using a method that the low electric voltage

is applied to a piezo-electric element. The measured results are compared with those

obtained from the conventional transmissive type of the digital holography system. It is

confirmed that the digital holography system with an interference fringes stabilization

system can obtain more stable results than the conventional method.
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[Fig. 1.1] Fibroblast 3D shape measurement
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[Fig. 1.2] Pattern Shape of a microstructure with step
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[Fig. 1.3] International Patent Status of Digital Holography
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[Fig. 1.4] Domestic Patent Status of Digital Holography
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[Fig. 1.5] World Market Forecast of Digital Holography
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ETRI, 2012

[Fig. 1.6] Domestic market forecast of Digital Holography
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[Table. 1-1] International research status for digital holography
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[Fig. 2.1] Surface of integration
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[Fig. 2.2] Diffraction by a flat screen with an opening
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[Fig 2.6] Coordinate systems for Digital Holography
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    
 
  cos
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Phase detector
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Phase detector
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[Fig. 3.1] Graphical solution of closed loop equation

voltage
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Beam splitter

Michelson

[Fig. 3.2]. Experimental setup of Stabilization interferometer
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제 조 사 Thorlabs

Laser He-Ne (632.8nm)

Model HNL225R

Beam Diameter 0.50 mm

[Table. 3-1] Specifications of Laser

CCD

CCD Charge Coupled Device

[Table. 3-2] Specifications of CCD Camera

Detector Assembly

Voltage Voltage

[Table. 3-3] Specifications of Detector Assembly

제조사 FLIR

Model Gs3-U3-41C6M

image 2048*2048

Pixel 5.5 mμ

Shutter Global shutter

Type 실리콘 포토다이오드

System sensitivity 1 microwatt/cm

Peak sensitivity 800 nm

Spectral sensitivity 350~1100 nm

Detector spacing 2.6 mm

Detector Size Fig. 참조6.2
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2.6mm

Photodiode

f0.8mm

f38mm 2.6mm

Photodiode

f0.8mm

f38mm

[Fig. 3.4] Detector Assembly Appearance

Control Electronics

[Table. 3-4] Specifications of Control Electronics

Mirror(PZT) Assembly

Frequency response 0.5 KHz

Rolloff (adjustable) 10 - 500 Hz

Gain(adjustable) 1 - 100X

Monitor output 0-3.5 VDC
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Diameter 11.5 mm

Displacement 5 micrometers

System stability l/20

Driver Low voltage piezo-electric

[Table. 3-5] Specifications of Mirror(PZT) Assembly

[Photo. 3.1] Laser stabilization interferometer
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[Fig. 3.5] Stabilization Configuration Flowchart

Zero Gain DampZero Gain Damp

[Fig. 3.6] Stabilization control Electronic

[Fig. 3.6]
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error voltage error

voltage

Fringe

Zero

Damp
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Damp

Fringe

기준신호

참조신호

zero

Gain

Damp

기준신호

참조신호

zero

Gain

Damp

[Fig. 3.7] Stabilization basic circuit diagram

Reference signal Comparative Signal

Zero Damp

Gain Fringe
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Damp

Closed-loop

loop

CCD Fig. 3.9 Labview

[Fig. 3.8] Interference pattern stability measurement program

(front panel)
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[Fig. 3.9] Interference pattern stability measurement program

(block diagram)

[Fig. 3.10] Interference pattern and its profile
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[Fig. 3.11] Unstable wave form causer by external environmental factors

[Fig 3.12] Fringe
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[Fig. 3.12] Stabilization process by operating Control Electronics

[Fig 3.13]
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[Fig. 3.13] waveform measured after stabilization of interference pattern

[Fig 3.14]
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[Fig. 3.14] stabilization waveform after an external turbulence was applied to the

stabilization interferometer

[Fig 3.15]
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[Fig. 3.15] Waveform with / without stabilization function
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[Fig. 3.16]

Mirror

He-Ne 10mmW

MO (Nikon 60X,

NA=0.8)

Neutral Density filter Contrast

CCD(POINT GREY

GS3-U3-41C6M) CCD

CCD

USAF, standard target , CO2

[Fig 3.16] A schematic of a transmissive holographic interferometer
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[Photo.3-2] Configuration of a transmissive digital holographic interferometer

CCD

Fourier

transform D

Fourier transform Fourier transform

Phase

Fourier transform Fourier transform

Amplitude Phase

Amplitude

Phase
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[Fig 3.17] Reproduction of a hologram

[Fig 3.18] Flowchart of 3D shape restoration

CCD

Object beam Reference beam Fourier



- 58 -

transform

Object beam

Reference beam CCD

Phase

[Fig 3.19] Flowchart of reproduction of digital hologram
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[Fig. 3.20]

Object beam Reference beam PZT

Object beam Reference

beam CCD

PZT

DC signal

DC signal

[Fig 3.20] Configuration of a holographic interferometer fringe stabilization device
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[Fig 3.21] A digital holographic microscopy with an interference fringe

stabilization device

Laser beam BS(beam splitter)

CCD

CCD

DC signal

field

program

Fresnel

Convolution Method Fresnel Angular spectrum
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Method

[Fig. 3.22] Labview

Phase

Object beam Reference beam phase Phase

π π π

Phase Unwrapping

[Fig 3.22] LabVIEW Program for digital holographic microscopy

(front panel)
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[Fig 3.23] LabVIEW Program for digital holographic microscopy

(block diagram)
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resolution target

resolution target Edmund Optics USAF

resolution test chart resolution targets

resolution

target

[Fig 4.1]

[Table.4-1,2]

[Fig 4.1] USAF transmissive resolution target
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[Table. 4.1] Number of Line Pairs

[Table. 4.2] Width of 1 line in micrometers
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resolution target

USAF

He-Ne CCD 500*500mm

4,6,8,10 mm USAF Fig.

4.5 (17.54 mm)

[Fig. 4.2] USAF Resolution target with groups 4 and 5

Optical

D

Optical
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D

[Fig. 4-3, 4-4]

on/off

[Fig. 4.3] The reconstructed phase image(stabilization mode Off)

[Fig. 4.4] The reconstructed phase image(stabilization mode On)
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USAF-1951 resolution target

4~10mm

hologram Fresnel

[Fig. 4.5] Measurement result of resolution target Test piece (z : 4mm)

[Fig. 4.6] Measurement result of resolution target Test piece (z : 6mm)
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[Fig.4.7] Measurement result of resolution target Test piece (z : 8mm)

[Fig.4.8] Measurement result of resolution target Test piece (z : 10mm)
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Width of 1 line

Number of Line Pairs 17 mm 28 mm

40 nm 60 nm

USAF-1951 resolution target

[Fig.4.9] 3D-Shape restoration of resolution target
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[Fig. 4.10] Line profile of set 2 in group 4 of Fig. 4.9
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micrometer

Nikon stage micrometer 0.01mm

[Photo. 4-1] 0.01mm Stage micrometer (Nikon)

[Fig. 4.11] 0.01mm stage micrometer(Nikon)
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micrometer

×× ×

[Fig.4-12] Magnification micrometer test specimen
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[Fig. 4.13] Measurement result of micrometer Test piece (z : 1 mm)

[Fig. 4.14] Measurement result of micrometer Test piece (z : 10 mm)
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[Fig. 4.15] 3D-shape restoration of micrometer

[Fig. 4.16] 3D-shape restoration of micrometer
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[Fig. 4.17] Line profile of Fig.4.15
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Co2 Spot

Laser CO2 Laser

Laser (Marking)

Laser Via hole)

[Photo. 4.2] CO2 Laser machine used for fabricating quartz specimen with a CO2

spot
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quartz glass

Micro Crack

quartz glass

quartz glass CO2 Laser

laser beam

Optical fiber quartz Block

Spot

Spot

[Photo. 4.3] Quartz specimen with a CO2 spot
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Co2 Spot

CO2

[Table. 4.3]

Duty(@5kHz)
Output Power(W)

Right head Left head

10 1.8 1.8

20 4.2 4.38

25 5.3 5.4

30 6.46 6.42

[Table. 4.3] Specification of CO2 Laser Machine

CO2 Spot

×× ×

[Fig. 4.18] Measurement result of quartz test piece with a CO2 Spot
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[Fig.4-19] Measurement result of quartz test piece with a CO2 Spot (z :0.5mm)

[Fig.4-20] Measurement result of quartz test piece with a CO2 Spot (z : 1 mm)
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[Fig.4-21] Measurement result of quartz test piece with a CO2 Spot (z : 2 mm)

[Fig.4-22] 3D-shape restoration of with a CO2 spot
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[Fig.4-23] 3D-shape restoration of with a CO2 spot

[Fig.4-24] Line profile of Fig.4.22
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Erythrocyte



 MCV  Macrocyte) 

   MCV 

Hb

Anisocytosis
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[Fig.4-25] Erythrocyte

 


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[Fig.4-26]

[Fig.4-26] Erythrocyte image

[Fig 4-27]

CCD
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[Fig. 4.27] Measurement result erythrocyte Test piece (z : 0.6mm)

[Fig. 4.28] Measurement result erythrocyte Test piece (z : 0.8mm)
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[Fig. 4.29] Measurement result erythrocyte Test piece (z : 1.5mm)

numerical

reconstruction hologram

CCD
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[Fig. 4.30] 3D-shape restoration of erythrocyte

[Fig. 4.31] 3D-shape restoration of erythrocyte
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[Fig. 4.32] Line profile of Fig.4.30

[Fig 4-33,34,35] 0.4~0.8 mm

CCD

hologram date Date
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[Fig. 4.33] Measurement result erythrocyte Test piece (z : 0.4mm)

[Fig. 4.34] Measurement result erythrocyte Test piece (z : 0.6mm)
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[Fig. 4.35] Measurement result erythrocyte Test piece (z : 0.8mm)

Fourier-transform Numerical Reconstruction

Fourier transform fast Fourier transform(FFT) algorithm

discrete Fourier transform(DFT)

CCD CCD

data array

data array comb function comb function

discrete Fourier transform comb function CCD

center-to-center data array Date

CCD CCD
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Date Date

Date

Zero-padding Fig.4-36

Zero-padding Method

ero-padding Resolution target

[Fig.4-36] 3D-shape restoration of erythrocyte
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[Fig.4-37] 3D-shape restoration of erythrocyte

[Fig.4-38] Line profile of Fig.4.36
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