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Abstract 

Low-Cost Self-Repairing Binary Signed-Digit Adder with 

Multiple Fault Detection and Localization 
 

By: Hossein Moradian Sardroudi 

Advisor: Professor Jeong-A Lee, Ph. D 

Department of Computer Engineering 

Graduate School of Chosun University 

The advent of advanced microelectronic technologies and scale downing into 

nanometer dimensions has made current digital systems more susceptible to faults and 

increases the demand for reliable and high-performance computing. Current solutions have 

so far used the parity prediction scheme to increase reliability and detect fault in adder 

modules, but they add perceptible area overhead to the circuit. In this research, we present 

two new efficient methods for fault detection and localization, in addition to the full error-

correction, targeting stuck-at and multi-cycle transient (MCT) faults in radix-2 signed-digit 

adders through a combination of time and hardware redundancy. Signed-digit adder, which 

eliminates carry propagation chain, can execute addition operation independent of the 

length of operands, in constant time. The confined carry propagation implies remarkable 

advantage in terms of error detection, localization, and correction. We developed a new 

low-cost technique, for fault-localization and error-correction, which utilizes the self-dual 

concept in binary signed-digit adders. In addition, we use the self-checking full adder that 

can identify a fault based on internal functionality to detect any fault in the adder modules. 

The detection of a fault is followed by input inversion, recomputation, and appropriate 

output inversion to correct the error and localize the fault. The error-correction method 

employs fault masking by utilizing the self-dual concept, which is based on the fact that in 

the existence of a fault, the designed technique results in a fault-free complement of the 

expected output when fed by the complement of its input operands. Additionally, the 

existence of any fault in the input lines of the adder modules can be identified by low-cost 
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parity checking error-detection approach, and a faulty module can be localized by 

comparing the faulty output from the first computation with the fault-free output from the 

recomputation. Higher reliability with less computational time and reduced hardware-area 

overhead are the distinct features of our new designs. In these methods, all of the single 

stuck-at and MCT faults can be localized and corrected, whereas previous approaches were 

unable to localize and correct with 100% reliability even with longer time durations and 

greater hardware cost. Based on the experimental results, the area occupied by our designs 

is up to 50% less, compared with the area used by previous designs. In addition to the area 

reduction, our design approaches result in a higher reliability with less power consumption 

and low time delay compared with a previous related works. 

 

 

[KEYWORDS]: Reliability, Fault tolerance, Fault detection, Error correction, Fault 

localization, Self-Repairing, Signed-digit adder 
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초록.….. 

오류의 국지화 기반 저비용 다중오류 자가회복 부호 이진수 

가산기 구조 
 

호세인 모러디안 살드루디 

지도교수 : 이정아 

컴퓨터공학과 

조선대학교 대학원 

반도체 소자의 집적화 기술의 발전으로 나노미터 수준으로 축소되면서, 

디지털 시스템의 결함은 더 취약해졌고, 고성능 컴퓨팅에 대한 신뢰성 요구는 

더욱 더 증가하게 된다. 가산기 회로에서 신뢰성을 높이기 위한 기존의 

방법에서는 패리티 예측 기법을 사용하여 오류를 탐지하지만, 이와 관련된 

상당한 하드웨어 오버 헤드를 회로에 추가한다. 본 논문에서는 가산기의 오류 

탐지와 오류 회복을 보다 효율적으로 구현하기 위하여, 오류의 국지화에  

기반한  저비용 오류 자가회복 가산기 구조를 제시한다.  고착오류(Stuck-at 

Faults)와  Multi-Cycle Transient(MCT) 오류를 대상으로 부호 이진수 가산기에서 

오류 검출 및 오류 위치 파악을 통한 두 가지의 효율적인 오류 자가회복 

방법을 제시한다. 

부호 이진수 가산기는 캐리 전달 체인이 제거되어 기존의 가산기와 달리, 

덧셈을 완료하는 시간은 피연산자의 길이에 관계 없이 일정하다.  부호 이진수 

가산기의 제한된 캐리 전파는 오류 검출, 오류의 지역화 및 오류회복 측면에서 

주목할만한 이점을 제시한다. 본 논문에서는 결함 위치 및 오류 회복을 위해 

부호 이진수 가산기에서 Self-Dual 개념을 사용하는 새로운 저비용 기술을 

개발했다. 또한 전가산기(Full Adder)회로의 로직 특징을 기반으로 한 오류 

자가탐지 전가산기를 이용하여 가산기 모듈의 작동오류를 탐지한다.  부호 

이진수 가산기의 세부 모듈인 전가산기 회로의 작동오류가 탐지되면 입력 반전, 

재연산 및 적절한 출력 반전에 의해 해당 오류를 정정하고 지역화한다. 오류 

정정 방법은 Self-Dual 개념을 활용한 오류 마스킹을 사용한다.  즉, 오류가 

탐지되었을 경우,  부호 이진수 가산기에서 피연산자의 입력을 보수화하면,  

출력은 오류가 없을 것이며, 이 출력의 보수값이 오류가 회복된 출력이 되는 

Self-Dual 성질을 이용한다.  또한, 전가산기 모듈의 입력 라인에서의 임의의 

결함은 저비용 패리티 검사 오류 검출 방법에 의해 식별 될 수 있고, 오류가 
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있는 전가산기모듈은 첫 번째 계산의 오류 출력을 재연산 한 fault-free 출력과 

비교하여 모두 지역화 할 수 있다.  부호 이진수 가산기의  입력라인 

결함탐지와 전가산기 작동오류 자가탐지를 활용하여,  계산 시간 단축은 

물론이고, 높은 신뢰성을 하드웨어 영역 오버 헤드 감소로 달성할 수 있었다. 

기존의 방법에서 더 긴 시간과 하드웨어 비용으로도 지역화 및 오류 정정을 

100% 달성할 수 없었던 반면, 고착오류 (Stuck-at Faults)와  Multi-Cycle 

Transient(MCT) 오류 모두 지역화 및 정정될 수 있었다.  실험 결과에 따르면, 

본 논문에서 제시한 오류의 국지화 기반 다중오류 자가회복 부호 이진수 

가산기 구조는 기존에 제시된 자가회복 이진수 가산기 구조보다 회로 

오버헤드가 줄어서, 그 회로 크기가 최대 50% 축소되었으며, 높은 신뢰성과 

저전력, 그리고 낮은 지연시간을 제공한다. 

 

[KEYWORDS]: 신뢰성, 결함극복, 오류 검출, 오류 수정, 오류의 국지화, 

오류 자가 회복 부호 이진수 가산기 
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1 Introduction  

Experimental researches have shown that the increasing complexity of digital circuits, 

reduced clock cycles, and reduction in hardware (i.e. transistor) size, along with the presence of 

radiation and other environmental conditions, has made current hardware systems more prone 

to faults [1]. 

Moreover the incidence of multiple faults caused by a single particle hit increase because 

of reduction in transistor size and decreasing the distance between neighbor devices. Increasing 

the clock frequency of circuits to achieve high speed systems, leads to transient faults 

remaining longer than one cycle. These facts disqualify the use of several existing soft error 

moderation methods based on temporal redundancy, and necessitate the development of new 

fault tolerant methods to handle this different scenario. Consequently a solution that eases 

building trustworthy schemes by supervision errors caused by unreliable modules and 

mechanisms is needed [1] [2] [3] [4] [5]. In addition, a fault-tolerant characteristic is not only 

for mission-critical and safety systems but also for the common computing systems. 

As the central modules of the processing elements, arithmetic operators are also 

vulnerable to diverse environmental effects. In nearly all digital components, adders are the 

vital components existing in the arithmetic operators. Therefore, designing a reliable adder that 

can detect faults and correct the errors is an important challenge and a prominent goal. 

Novel low cost fault tolerance methods are proposed in this research. New techniques 

working at diverse concept levels, as the chosen substitute to deal with stuck-at faults and those 

faults produced by multi-cycle transient (MCT) that will upset CMOS devices to be 

manufactured in upcoming technologies. 
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A. Motivations 

In recent the development of semiconductor technology has carried growing concerns 

about the reliability of systems to be deliberate using those devices, while continually 

providing innovative devices with unmatched speed, size, and power consumption 

characteristics. According‎ to‎ Moore’s‎ law‎ while CMOS technology keeps developing, thus 

approaching the physical boundaries carry out by spending of only a few atoms to organize the 

device’s‎channel‎[6] [7], the development of another technologies, able to take digital systems 

away from those bounds, come to be a huge challenge to be faced by researchers. But then 

again even the most hopeful alternative technologies developed so far bring alongside the 

similar adverse characteristic: devices manufactured using them are more susceptible to 

manufacturing defects and transient faults than nanoscale CMOS, making the reliability aim 

even more hard to be reached. 

In new technologies the decreasing reliability of CMOS devices is a result of several 

diverse problems arising from the physical features of those devices: 

• Functional temperature restrictions and the lower power consumption levied by 

embedded and portable systems necessities lead to the usage of lower operational voltages, 

which consecutively infer smaller critical charges, making the devices more vulnerable to 

transient pulses, meanwhile those devices can be upset by even particles with quite slight 

energy [8]. Accordingly, the incidence of single event upsets (SEUs) and single event transients 

(SETs) has been increasing in recent years, and became a concern not only for avionics 

applications or systems targeting space, but also for those intended for critical operations meant 

to be used at sea level [9]. Consistent with the international technology roadmap for 

semiconductors 2008 update, under 65nm, single-event upsets (soft-errors) influence field-level 

product reliability, not only for embedded memories, but for latches and logic also [10]. 

Furthermore, while several error detection and correction methods have been suggested and are 
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in present use to shield devices against those effects, in this manner stabilizing the soft error 

rate (SER) through technology nodes, the protection of combinational logic alongside transient 

faults is still an open issue. 

• Small size devices allow the building of circuits with higher densities, where the space 

among neighbor devices is reduced among consecutive technology nodes. Such little spaces 

allow that two or more silicon devices to be hit by a single particle at the same time, by this 

means producing multiple concurrent faults, a risk that was not reflected until recently, and 

consequently is not eased by currently existing fault tolerance techniques [11] [12]. 

Consecutively, this multiple concurrent faults situation can lead to catastrophic concerns when 

well established and proven techniques in use under the single fault model are used with 

upcoming technologies. 

• Transient faults appear only for a short time and then disappear. Therefore, detecting 

transient faults is more important than correcting them because after the fault disappears, the 

module functions correctly. Designing circuits with shorter cycle times became possible with 

the new fast devices, however unfortunately, at the same bound of the cycle times the duration 

of transient pulses does not scale [13] [14], leading to a condition where transient pulses might 

come to be longer than the cycle time of the circuits. By increasing the operating frequencies in 

recent nanometer-technology-based circuits, transient fault phenomena that previously 

occurred for durations as short as and considerably below one clock cycle can be now 

deliberated as long-duration transient (LDT) or multi-cycle transient (MCT) faults [15]. In fact, 

the effects of MCT faults clearly have a considerably higher chance of not being covered, 

therefore they also stand a more chance of making system failures [16]. Existing soft error 

mitigation methods either are not able to deal with this new situation due the high performance 

overheads that they would impose to get by such long duration transients, or do impose very 

high power consumption and area overheads, which will need the growth of new low cost 

system level modification methods [17]. 
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• In addition all those adverse effects over reliable system operation caused by CMOS 

technology development, the manufacturing of digital systems is correspondingly affected by 

growing defect rates as a result of process deviations, higher complexity for manufacturing test 

as a result of augmented components density in the circuits, and further related problems. 

Stuck-at fault is one of the faults that can be appeared due to manufacturing problems. To cope 

with this new scenario new method needs to be introduced. In case of permanent stuck-at 

faults, circuit manufacturers apply different error detection patterns to detect faulty modules 

after fabrication, but it is not guaranteed that all permanent faults can be detected in the testing 

phase. In addition, stuck-at faults can appear in circuits afterward because of different reasons 

such as aging, accidental overvoltage, temperature, or other environmental conditions. 

Therefore detecting and correcting stuck-at faults during the time that the module is online, 

without interrupting the system, is important. 

On the other hand complicacy in a circuitry and delay in propagation are some of the main 

problems that every digital circuitry has to deal with. In binary system of numbers, speed of 

computation relies on propagation & formulation of carry particularly when quantity of bits 

gets raised. Two basic approaches for reducing the delays caused by signal propagation in 

arithmetic operations are speeding up or eliminating the carry and borrow chains. The speeding 

up approach is exemplified by carry-skip and carry-lookahead designs which reduce the ripple-

carry delay of O(n) to a delay of O(n) and O(log n), respectively, for n-digit operands. The 

second approach (eliminating the carry and borrow chains) is exemplified by signed-digit 

number representation methods which limit the propagation of carries and borrows at the 

expense of some overhead in storage and data-path width and in processing time for the initial 

conversion and the final reconversion. The signed-digit number system has advantages of 

performing fast computations with the help of characteristics of redundancy that perform carry- 

and borrow-free operations of addition, subtraction, multiplication and division. 

The application for fast arithmetic operations is wide, including central processing unit 
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(CPU), graphics processing unit (GPU), cryptography, digital signal processing (DSP), fast 

fourier transform (FFT), finite impulse response (FIR) Filter, and applications that spend a 

large proportion of the time for arithmetic calculation. 

B. Objectives of Research 

The objectives of this research are to present new efficient procedures that will achieve 

single and multi-fault detection and localization, in addition to full error correction, in the 

binary signed-digit number (BSDN) adders in which the faulty modules can be identified with 

lesser area, time, and power overhead. 

The objectives can be listed as: 

◦ To study existing fault tolerance methods 

◦ To propose new method for fault detection 

◦ To suggest a technique for error localization 

◦ To present a new process that will achieve full error correction 

◦ To analyse and evaluate the proposed methods by comparing with 

previous methods 

C. Research Scope 

 Number system: 

◦ Radix-2 signed digit 

 Fault Type: 

◦ A single/multi stuck-at and MCT faults 

 Design Tools: 

◦ Xilinx Design Tools (ISE Design Suit 14.7, Vivado 2015.2) 
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 Implementation Language: 

◦ Verilog HDL 

 Simulation: 

◦ ModelSim Student Edition 10.3c (Mentor Graphics) 

◦ MATLAB Simulink R2015a 

 Synthesis: 

◦ Vivado 2015.2 

◦ Synopsys Design Compiler 

D. Organization of the Research 

The organization of this thesis is as follows. Chapter 2 gives an overview of fault types, 

self-checking circuits, signed-digit number system and self-checking signed-digit adders. 

Specific techniques for each proposed method are provided in Chapter 3. Chapter 4 discusses 

the performance of proposed methods and presents the area overhead, maximum timing delay 

and power consumption of techniques beside with comparison with previously related works. 

Chapter 5 provides concluding remarks and future research opportunities. 



 

7 

 

2 Related Work  

In this chapter, we present the main technical terms used in the research, and discuss the 

related works regarding stuck-at and multi cycle transient faults. In addition signed-digit 

number system and previous works in self-checking signed-digit adder systems are presented 

in this section. 

A. Failure 

Failure is defined as a system malfunction that causes the system to not meet its 

correctness, performance, or other guarantees. A failure arises when a system differs from its 

normal behavior.  A failure is, however, simply a special case of an error showing up at a 

boundary where it becomes visible to the user. This could be a silent data corruption (SDC) 

event, such as a change in the bank account, which the user sees. This could also be a detected 

unrecoverable error (DUE) caught by the system but not corrected and may lead to temporary 

unavailability of the system itself. For instance, if the word that was written in system memory, 

differs from the word is read from the same address in the memory it is failure, or, an ATM 

machine could be unavailable temporarily due to a system reboot caused by a radiation-induced 

bit flip in the hardware. Alternatively, a disk could be considered to have failed if its 

performance degrades by 1000x, even if it continues to return correct data. 

B. Fault 

User-visible errors, such as soft errors, are a manifestation of underlying faults in a 

computer system. Faults in hardware structures or software modules could arise from defects, 

imperfections, or interactions with the external environment. Examples of faults include 
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manufacturing defects in a silicon chip, software bugs, or bit flips caused by cosmic ray strikes. 

Typically, faults are classified into three broad categories—permanent, intermittent, and 

transient. The names of the faults reflect their nature. Permanent faults remain for indefinite 

periods till corrective action is taken. Oxide wearout, which can lead to a transistor malfunction 

in a silicon chip, is an example of a permanent fault. Intermittent faults appear, disappear, and 

then reappear and are often early indicators of impending permanent faults. Partial oxide 

wearout may cause intermittent faults initially. Finally, transient faults are those that appear and 

disappear. Bit flips or gate malfunction from an alpha particle or a neutron strike is an example 

of a transient fault: 

 Permanent faults (stuck at 1 or stuck at 0) 

 Transient faults (noise on the power supply) 

 Intermittent fault (a transistor that is going to break down ; one time it is working 

correctly and the next time not) 

Faults in a computer system can occur directly in a user application, thereby eventually 

giving rise to a user-visible error. Alternatively, it can appear in any abstraction layer 

underneath the user application. In a computer system, the abstraction layers can be classified 

into six broad categories (Figure ‎2.1)—user application, OS, firmware, architecture, circuits, 

and process technology. Software bugs are faults arising in applications, OSs, or firmware. 

Design faults can arise in architecture or circuits. Defects, imperfections, or bit flips from 

particle strikes are examples of faults in the process technology or the underlying silicon chip. 

A fault in a particular layer may not show up as a user-visible error. This is because of two 

reasons. First, a fault may be masked in an intermediate layer. A defective transistor—perhaps 

arising from oxide wearout—may affect performance but may not affect correct operation of an 

architecture. This could happen, for example, if the transistor is part of a branch predictor. 

Modern architectures typically use a branch predictor to accelerate performance but have the 
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ability to recover from a branch misprediction. Second, any of the layers may be partially or 

fully designed to tolerate faults. For example, special circuits—radiation-hardened cells—can 

detect and recover from faults in transistors. Similarly, each abstraction layer, shown in 

Figure ‎2.1, can be designed to tolerate faults arising in lower layers. If a fault is tolerated at a 

particular layer, then the fault is avoided at the layer above it. The next section discusses how 

faults are related to errors. 

User Applications 

Operating System 

Firmware 

Architecture 

Circuits 

Process Technology 

Figure ‎2.1 Abstraction layers in a computer system. 

C. Error 

Errors are manifestation of faults. Faults are necessary to cause an error, but not all faults 

show up as errors. Figure ‎2.2 shows that a fault within a particular scope may not show up as 

an error outside the scope if the fault is either masked or tolerated. The notion of an error (and 

units to characterize or measure it) is fundamentally tied to the notion of a scope. When a fault 

is detected in a specific scope, it becomes an error in that scope. Similarly, when an error is 

corrected in a given a scope, its effect usually does not propagate outside the scope. This thesis 

tries to use the terms fault detection and error correction as consistently as possible. Since an 

error can propagate and be detected again in a different scope, it is also acceptable to use the 

term error detection (as opposed to fault detection). 

Three examples are considered here. The first one is a fault in a branch predictor. No fault 

in a branch predictor will cause a user-visible error. Hence, there is no scope outside which a 
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branch predictor fault would show up as an error. In contrast, a fault in a cache cell can 

potentially lead to a user-visible error. If the cache cell is protected with error correction codes 

(ECC), then a fault is an error within the scope of the ECC logic. Outside the scope of this 

logic where our typical observation point would be, the fault gets tolerated and never causes an 

error. Consider a third scenario in which three complete microprocessors vote on the correct 

output. If the output of one of the processors is incorrect, then the voting logic assumes that the 

other two are correct, thereby correcting any internal fault. In this case, the scope is the entire 

microprocessor. A fault within the microprocessor will never show up outside the voting logic. 

Like faults, errors can be classified as permanent, intermittent, or transient. As the names 

indicate, a permanent fault causes a permanent or hard error, an intermittent fault causes an 

intermittent error, and a transient fault causes a transient or soft error. Hard errors can cause 

both infant mortality and lifetime reliability problems and are typically characterized by the 

classic bathtub curve, shown in Figure ‎2.3. Initially, the error rate is typically high because of 

either bugs in the system or latent hardware defects. Beyond the infant mortality phase, a 

system typically works properly until the end of its useful lifetime is reached. Then, the 

wearout accelerates causing significantly higher error rates. The silicon industry typically uses 

a technique called burn-in to move the starting use point of a chip to the beginning of the 

useful lifetime period shown in Figure ‎2.3. Burn-in removes any chips that fail initially, thereby 

leaving parts that can last through the useful lifetime period. Further, the silicon industry 

designs technology parameters, such as oxide thickness, to guarantee that most chips last a 

minimal lifetime period. 
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Figure ‎2.2 (a) Fault within the inner scope masked and not visible outside the inner scope. (b) Fault propagated 

outside the outer scope and visible as an error [1]. 

 

 

Figure ‎2.3 Bathtub curve presenting the connection between failure rate, infant mortality, useful lifetime, and 

wearout phase [1]. 

D. Stuck-at Fault 

Stuck-at fault is a functional fault on a Boolean (logic) function implementation and 

individual signals and pins are assumed to be stuck at logical '1' and '0'. A logic stuck-at 1 

means when the line is applied logic 0, it produces a logical error. A logical error means 0 

becomes 1 or vice versa. The number of stuck-at faults can be single or multiple, depending on 

the number of lines or nodes affected. Stuck-at 1 does not mean line is shorted to VDD, and 

Time 

Instantaneous 

Error 

Rate 

Infant 

mortality 

phase 
Useful lifetime 

Wearout 

phase 

Fault Fault 

Inner Scope Inner Scope 

Outer Scope Outer Scope Error 

(a) (b) 
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stuck-at 0 does not mean line is grounded. It is an abstract fault model. 

E. Multi Cycle Transient Fault 

In addition to higher densities, the accessibility of faster circuits is a new feature of 

upcoming technologies that carries strong concerns to the error tolerance topic, since it has 

been expected that, for those technologies, even particles with diffident linear energy transfer 

(LET) values will creates transients lasting longer than the expected cycle time of circuits [13], 

[14]. In [18] for first time the undesirable impact of the effects of such multi cycle transients 

(MCTs) or long duration transients (LDTs) on the overhead imposed by presently used of time 

redundancy based error modification methods has been presented. 

The first important phase in this study was the analysis of the effects of what has been 

entitled multi cycle transients (MCT) or long duration transient (LDT) on soft errors mitigation 

methods. This prediction was embedded in published works as to the effects of radiation on 

semiconductor devices in different technologies [13], [14], and in [18] has been challenged 

with the expected cycle times for inverters chains with different sizes, attained through 

simulation. When opposing the development of the width of radiation induced transient pulses 

through technologies with that of the cycle times of circuits, one could finds that, scaling trend 

for the width of the transient pulses is not clear while the cycle times decrease in a fairly linear 

form. Moreover, it has been proved that the extent of transient pulses will exceed the expected 

cycle time of circuits for technologies beyond the 130 nm node [18]. Table ‎2.1 shows this fact 

with data for a 10-inverter chain. The transient width figures in Table ‎2.1 has been extracted 

from [13] and [14], while those for propagation delays have been estimated using parameters 

from the Predictive Technology Model web site through simulation, [19]. 
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Table ‎2.1 Transient Widths vs. Propagation Delay across Technologies (ps) 

Technology (nm) 180 130 100 90 70 32 

Transient width for LET = 10 MeV-cm
2
/mg 140 210 168 n.a. 170 n.a. 

Transient width for LET = 20 MeV-cm
2
/mg 277 369 300 n.a. 240 n.a. 

10-inverter chain propagation delay 508 158 n.a. 120 n.a. 80 

n.a. = not available 

 

In this new consequence the study of the behavior of temporal redundancy based 

techniques has exposed that they cannot deal with MCTs/LDTs, caused by the intolerable 

performance overhead that they would impose. In the other hand, area redundancy based 

techniques, which could cope with MCTs/LDTs, impose space and power overheads that are 

not matched to the requirements of a number of applications areas. From this analysis, in this 

research, the necessity to work at advanced abstraction levels to face this different scenario has 

been defined, and the search for low cost methods to detect and correct errors produced by 

MCTs/LDTs at system, circuit and algorithm levels has taken place. 

F. Standard Adder Types 

Ripple-carry adder (RCA) is simplest and the most well-known adder. The RCA design is 

regular, easy to implement and with the lowest area and power costs among all existing adders. 

Its primary limitation is the long critical path, which grows linearly (O(n)) with the word width 

n. Faster adders with shorter delays but increased area and power consumption also exist [20]. 

The well-known types are: 

 carry-lookahead adder (CLA); O(log(n)); 

 carry-select adder (CSA);‎O(‎√‎n); 

 carry-skip adder (CSK);‎O(‎√‎n); and 

 ripple-carry/carry-lookahead adder (hybrid adder) (RCLA); O(log(n)). 
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 signed-digit adder (SDA); O(1) 

For implementing a scalable-adder design, not only the delay is important, but also area 

and power consumption of the adder are important too. The adder should also lend itself to 

functionality segmentation, that is, the capability to divide the adder up in parts, without give in 

the benefits and functionality of the adder in question; it should, therefore, have a regular 

structure. Clearly, in terms of area and power, the RCA is always preferred when it is deemed 

fast enough for its intended purpose. It also has the most regular structure of all known adder 

types. The CSK, as well as the CLA, and particularly the RCLA hybrid, need some more 

analysis, mostly because of their high-speed potential and their regular structures. CSA has no 

regular structure which makes scalable implementation very difficult. Previous studies such as 

Rabaey and [21] show that CSA overheads are significantly greater than those of the CLA 

however the delay increases. In conventional RCA, carry propagation significantly reduces the 

operation performance, especially when the size of the operands increases. Using a redundant 

number system eliminates or reduces the carry propagation in the addition operation [22]. The 

advantage of using a redundant system is to obtain an addition or subtraction operation with a 

complexity of O(1), which is independent of the digit length of the operand, and results in a 

fast adder circuit design [23]. 

G. Self-Checking Circuits 

Self-checking usually emphasizes the detection of faults and overlooks the overhead 

associated with fault recovery. Concepts of self-checking and fault tolerance system can be 

stated as: 

 A system is fault secure if it indicates a fault as soon as it occurs or if it 

remains unaffected by a fault  

 A system is self-testing if in response to every generated fault it produces a 
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non-coded output  

 A system will be totally self-checking (TSC) if it is both fault secure and self-

testing 

Self-checking systems require redundancy, which can be broadly classified as: 

 Time-based redundancy 

• Same hardware will perform a single operation in different intervals 

of time 

 Hardware-based redundancy 

• Using more than one hardware to produce either the same, inverted or 

coded output. In order to indicate the fault, the comparison between 

the outputs of the redundant and the actual hardware will be used. 

1. Fault Detection 

Errors can interrupt program execution, corrupted data, or halt a running program. Error 

detection approaches try to guarantee system reliability by detecting errors and turning out 

correct results or data. Different methods within each technique have their own advantages and 

disadvantages. Arithmetic codes, redundancy codes, Berger codes, and parity codes are sorts of 

error detection approaches. Computer‎architect’s‎goals‎are‎reducing‎area,‎increasing speed, and 

reducing power consumption of an error detection technique [24].  

Area/Time Redundancy 

Redundancy infers several computations of the identical inputs for an assumed circuit. A 

comparison phase of the results will recognize the presence of an error if a fault happens in any 

of the computations. Redundancy may be attained temporally or spatially. Temporal or time 

redundancy is as a result of repeating computations using the same hardware, while spatial or 
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hardware redundancy duplicates hardware for concurrent computations.  

Hardware or spatial redundancy is the most common method of redundancy [25]. Due to 

simultaneous error detection, increased timing for hardware redundancy is not a concern. 

Simultaneous error detection is the method of identifying and reporting errors while, 

simultaneously, acting out normal processes of the system [25]. Dual modular redundancy 

(DMR) is the modest hardware redundancy system. DMR duplicates the circuit and compares 

the outputs of the two circuits. A fault propagating through one of the circuits will flag an error 

when the two circuit outputs are compared [26]. DMR makes available 100% error detection, 

however it needs 100% overhead plus the comparator circuit. 

Time or temporal redundancy is an error recognition structure that cuts extra hardware at 

the cost of spending more time [27]. Depending on the application of the processor, time 

redundancy may be more affordable than extra hardware. The simple perception of temporal 

redundancy is detecting the error by repetition of computations. The principal methods that use 

time redundancy are alternating logic, recalculation using rotated operands (RERO), and 

recalculation using shifted operands (RESO) [28] [29] [30]. 

Berger Codes 

Berger codes offer error detection for logic and arithmetic operations. The only well-

known method for self-checking systems other than hardware duplication and two-rail encoded 

systems is the strongly fault secure (SFS) Berger check prediction (BCP). A SFS BCP is further 

effective than a two-rail encoded scheme. For all unidirectional errors Berger codes are usable. 

In Unidirectional errors, both 1 to 0 and 0 to 1 errors can arise but they do not take place 

concurrently in a single data word [31] [32]. The‎binary‎demonstration‎of‎the‎number‎of‎0’s‎in‎

data bits as the check code is used for the encoding system [33]. 

Parity Prediction  
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Parity prediction circuits only provide detection for arithmetic operations. The word 

“prediction” implies‎ parity‎ is‎ “predicted”,‎ however,‎ parity‎ “prediction”‎ is‎ not‎ a‎ abstract 

method, but it calculates the parity of the operands and outcome for comparison [1]. Amongst 

all acknowledged self-checking adder systems, parity prediction adders need the lowest 

hardware overhead [34]. 

Even and odd parity are two types of parity prediction. This study uses even parity to 

produce parity bits. If there is an odd number of 1’s‎in‎the‎result or operand, the parity bit is set 

to 1 when using even parity. 

In the parity prediction circuit, the parity generator uses a series of logic XOR gates to 

make a parity bit. For the logic and parity circuit, the logic unit is a replication of only the logic 

unit in the circuit. Figure ‎2.4 expresses the gate level for producing an even parity bit for an 

operand X. 

 

 

Figure ‎2.4 Chain of Logic XOR gates to generating even parity. 

There exist several parity-prediction designs which are fault-secure for single errors. For a 

full-adder (FA) design any parity-prediction scheme contains the following parts: 

 X0 X1 X2 X3 X4 X5 X6 X7 

Px 
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 PA and PB: parity generators for the operands (XOR-trees) 

 PC: parity generator for the internal carries 

 PS: parity generator for the parity of the sum 

 predictor/comparator: requires PA, PB, and PC to predict (compute) PS and compare 

it with the real PS, and signal an error on mismatch 

Carry errors always manifest as multiple errors of even number. Therefore, the parity-

prediction scheme would normally not be able to detect these types. [35] proposed a parity-

prediction scheme with duplicated carry circuits which is fault-secure and is also covering all 

carry errors. When the carry circuit of every full-adder is duplicated, it is possible to compare 

the carry outputs of the full adder and the duplicated-carry circuit. Only one carry circuit is 

assumed to be erroneous at a time, since the aim is fault secureness for single errors. When the 

compare signals are fed to the checker, we can detect single carry errors since the maximum 

number of detected carry-circuit errors is one, and, thus, odd. [35] called this scheme 

“Duplicate carry with parity check”. In fact, the scheme can be simplified by avoiding the 

actual comparison among the normal carries and duplicated carries. Based on the duplicated 

carries it is sufficient to generate parity PC instead of the normal ones in order to achieve the 

fault-secure property. In case of a carry error, the parity of the duplicated carry always contains 

one error less than PC. Furthermore, the number of errors in the sum S is always equal to the 

number of errors in PC. This makes the error detectable. This scheme is called‎“Duplicate carry 

with‎parity‎check‎II”‎[36]. 

2. Fault Localization 

Fault localization, a central aspect of fault administration is a process of inferring the 

exact basis of a failure from a set of observed failure signs. Since faults are unavoidable in 

digital systems, for the accessibility, reliability, and robustness of a system, their rapid 

detection and isolation is critical. In large and complex systems, automating fault diagnosis is 
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critical. It has been a attention of study movement since the beginning of modern digital 

systems, which produced numerous fault localization techniques. However, the requirements 

carried out on fault localization methods have changed as digital systems offering new 

capabilities and becoming more complex. 

3. Fault-Tolerant Adders 

Fault tolerance means that apart from detecting (certain) errors, the circuit is also capable 

of correcting them. According to the literature, error detection (ED)/error correction (EC) 

methods to achieve fault tolerance (at the architectural level) can be facilitated through: 

(i) hardware replication 

(ii) time redundancy 

(iii) ED/EC codes 

(iv) or various combinations of the above techniques 

 

The most widely used ED technique is hardware replication. It has been utilized for many 

years due to its high fault coverage. One can duplicate a circuit and feed both the circuit 

outputs to a comparator; in case of comparison mismatch, an error is detected. Such systems 

with resource replication are also called duplex or Duplication-With-Comparison (DWC) [37] 

[20] [35]. 

An example of a fault-tolerant adder using hardware replication is the TMR-adder (Triple 

Modular Redundancy). Here, three adder units are present, working concurrently and serving 

their results to a majority voter. This voter looks for a match between any two of the three 

inputs and outputs that result. Another fault-tolerant adder based on hardware replication is the 

Quadruple Modular Redundancy (QMR) adder [38]. Two adders and a comparator make a 

Self-Checking Adder (SCA). Since, it is not possible to attain information about which of the 

two adders in a SCA is faulty in case of error, the QMR has two SCAs, which the outputs of the 

two SCA adders are connected to a multiplexer. In total, the QMR scheme contains four adders. 
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The fault coverage of these fault-tolerant adders is very high. However, the power and area 

costs of the TMR and QMR are often excessive because of the replicated adder structure and 

extra checker circuitry needed. 

Another type of fault-tolerant adder employing hardware redundancy is described in [39] 

and uses alternative computations. In every bit slice of the adder, the sum and carry are 

computed in two different ways and compared with each other. In case of an error, one of the 

redundant components is brought in to continue the calculations, saving 11.1% in transistor 

count compared to the QMR adder. [40] presented an asynchronous adder which achieves fault 

tolerance through dynamic self-reconfiguration. The adder is built based on a fault tolerant 

array. In case of a fault, reconfiguration logic will try different configurations until a workable 

instance is found. Depending on the degree of fault coverage (single faults to quadruple faults), 

the area overhead of these self-healing adders varies between 102% and 326% and is claimed 

to be lower than traditional redundancy methods (TMR and QMR). Note that this technique 

can be also employed in sequential adders at the cost of extra ED logic. 

[41] employ the properties of radix-2, signed-digit representation to build a fault-tolerant 

adder. Repair is based on graceful degradation: either by recomputing the result with shifted 

operands and utilizing the intersection of the achieved results to recover the correct output or 

based on a reduced-dynamic-range approach, where the result is obtained faster but with fewer 

output digits. A low-cost, fault-tolerant technique for carry-lookahead adders was proposed by 

[42]. Correction of all single-bit and multiple-bit transient faults is claimed. The power and 

area costs of this method are significantly lower than those of the TMR adder or the duplicated 

adder with parity checking. The introduced additional delay is small, in particular compared to 

parity-checked adders. This technique is, however, only applicable for carry-lookahead Adders 

(CLAs). Valinataj represented a novel self-checking carry-lookahead adder with multiple error 

detection/correction capability [43]. The proposed self-checking architecture utilizes a 

modified parity prediction scheme combined with a partial triple modular redundancy 
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distributed in all of the bit slices. This scheme fits carry-lookahead adder and its arithmetic 

logic unit (ALU) counterpart in which the carry logic occupies a large part of the circuit. 

Figure ‎2.5 illustrated a bit slice of the proposed carry-lookahead adder. 

 

 

Figure ‎2.5 (a) A bit slice of the proposed carry lookahead adder. (b) The structure of the voter in (a). 

Another fault-tolerance adder is presented in [44]. This scheme presents the design 

philosophy of a fault tolerant conditional sum adder that uses hot-standby technique, which is 

an online swapping process of faulty components of a circuit by fault-free spares without 

interrupting the normal operation of the system.  

In [45] authors introduced new method for self-repairing ordinary adders. In an ordinary 

FA, self-checking is accomplished using the observed relevance among inputs, sum, and carry 

out. As mentioned in [45] and listed in Table ‎2.2 when all three inputs, namely, addend (A), 

augend (B), and input carry (Cin), are equal, the sum (Sum) and output carry (Cout) bits will be 

equal. When one of the three inputs is different, the sum and carry output bits will be 

complemented. These relationships can be used to design a self-checking adder with the cost of 

an equivalence tester (Eqt), as shown in Figure ‎2.6.  
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Table ‎2.2 Relationships between the inputs and outputs in an FA 

A B Cin Sum Cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

 

 

Figure ‎2.6 Self-checking FA [45] 

The equivalence tester (Eqt) checks the equivalence of the inputs. G1 tests the equivalence 

of the outputs (Sum and Cout), and G2 (Ef) tests the equivalence of Eqt and G1. 

 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑡𝑒𝑠𝑡𝑒𝑟 (𝐸𝑞𝑡) = (𝐴̅. 𝐵̅. 𝐶𝑖𝑛
̅̅ ̅̅ ) + (𝐴. 𝐵. 𝐶𝑖𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
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Error (Ef) = Sum ʘ Cout ʘ Eqt = G1 ʘ Eqt 

In an error-free calculation, when Eqt is logic 0 (all inputs are equal), the output of G1 and 

G2 must be logic 1 and 0, respectively; if Eqt is logic 1, then both G1 and G2 gates must be 

equal to logic 0. In any other case, a fault will be highlighted [45]. To prevent the non-detection 

of faults, Sum and Cout of the FA will not be sharing any logic; thus, any fault occurring in the 

internal logic associated with an individual component will only make that single component 

faulty and, therefore, easily detectable by comparison. Figure ‎2.7 shows the design of one FA 

without logic sharing. 

 

Figure ‎2.7 FA without logic sharing [17] 

H. Signed-Digit Number systems 

This part presents the elementary concepts of signed-digit arithmetic. Signed-digit systems 

were considered with the purpose of obtaining totally parallel addition [46], where carry 

propagation is eliminated. Carry propagation is reduced by making each digit of the subsequent 

sum a function of only two input numbers. This is became possible by the redundancy of the 

number demonstration meanwhile a appropriate intermediate demonstration of the operand 

digit summation, xi+yi, is designated so that the ending addition outcome can be produced with 

cin 

cout 

a 

b sum 
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half-adders that do not need nor produce carry signals. The totally parallel addition process can 

also be used to do subtraction operations. The subsequent parts present the principal features of 

signed-digit schemes and the basic principles of the resultant addition algorithm. 

The algebraic value of a signed-digit number is given by 

𝑍 = ∑ 𝑧𝑖𝑟−𝑖

𝑚

𝑖=−𝑛

 

where r is a positive integer called the radix. 

In a redundant representation each number can assume more than r values, with radix r, 

while digits can assume exactly r values in conventional number representations. The condition 

of a unique representation for the algebraic value Z = 0 should satisfy the values of the radix 

and the number digits, zi. It is formerly easy to verify that if, and only if, all digits of signed-

digit representation have the value zi = 0, the algebraic value Z is zero. It is also obvious that 

the sign of the most significant non-zero digit is the sign of the algebraic value Z. In the same 

way, if the sign of every non-zero zi digit of Z changed, the result is the additive inverse of Z, 

the signed-digit representation of –Z. 

Figure ‎2.8 shows the fully parallel addition method in the signed-digit arithmetic scheme. 

if two conditions are satisfied, the addition of two digits x* and y* is fully parallel.  
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Figure ‎2.8 Fully parallel addition method in signed-digit number representation [46] 

 

First, the sum (si) is function of the operand digits (xi and yi) and the carry digit (ci-1) from 

the neighboring digit position. Second, the carry digit to the next location (ci) is only function 

of the operand digits (xi and yi). Fully concurrent subtraction (xi - yi) is take in as the fully 

concurrent addition of xi and the additive reverse of yi, namely, xi – yi = xi + (-yi). 

 Fully concurrent addition of two digits is completed in two phases, as represented in 

Figure ‎2.8. In the first phase, an intermediate carry output (ci) and an interim sum output (wi) 

are produced such that 

xi + yi = rci + wi (1) 

In the next phase, the final sum digit si is attained as 

si = wi + ci-1  (2) 

For each of the variables involved in the two-phase addition procedure the allowed and 

required digit values can be resultant from the definition of fully concurrent addition and from 

the addition procedure defined by (1) and (2). Follows are the primary results of such 
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derivation (see [46] for a comprehensive analysis): 

1. The smallest adequate set of values for the carry digit is ci = {-1, 0, 1} 

2. For the magnitude of the intermediate sum the upper bound is |wi| <= r - 2 

3. For the radix value the lower bound is r > 2 

4. For an odd radix (r0 >= 3) the minimum set of values for operand digits (xi and yi) 

comprises of the sequence of r0 + 2 integers 

{−
1

2
(𝑟0 + 1), … , −1, 0, 1, … ,

1

2
(𝑟0 + 1)} 

5. For an even radix (re >= 4) the required minimum set of values for operand digits (xi 

and yi) consists of the sequence of re + 3 integers 

{−(
1

2
𝑟𝑒 + 1), … , −1, 0, 1, … ,

1

2
𝑟𝑒 + 1} 

Minimum sets are the only acceptable for radix-3 and radix-4 schemes. For r > 4, still, 

there is more than one valid set of digit values. The order of integers 

{-a, -(a-1),‎…,‎-1,‎0,‎1,‎…,‎a-1, a} 

satisfies the requirements for signed-digit number demonstrations, where 

1

2
(𝑟0 + 1) ≤ 𝑎 ≤ 𝑟0 − 1     𝑜𝑟     

1

2
𝑟𝑒 + 1 ≤ 𝑎 ≤ 𝑟𝑒 − 1 

r0 is an odd integer (r0 >= 3), and re is an even integer (re >= 4). All signed-digit number 

representations can be designated in terms of the acceptable radix values and the acceptable zi 

digit values. When a = ½  (r0 + 1) or a = ½  re + 1 the redundancy of a signed-digit system is 

minimal, and when a = r0 - 1 or a = re - 1 the redundancy is maximal. 

1. Signed-Digit Adders 

The totally parallel addition algorithm that described in (1) and (2) are used to add two 

signed-digit numbers. The instructions for attaining wi, ci, and si can be determined given the 

set of permitted values of wi, wmin and wmax, as follows. From algorithm (1), 
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wi = (xi + yi) –rci, 

where 

𝑐𝑖 = {

0                𝑖𝑓 𝑤𝑚𝑖𝑛 ≤ 𝑥𝑖 + 𝑦𝑖 ≤ 𝑤𝑚𝑎𝑥

1               𝑖𝑓 𝑥𝑖 + 𝑦𝑖 > 𝑤𝑚𝑎𝑥                
−1            𝑖𝑓 𝑥𝑖 + 𝑦𝑖 < 𝑤𝑚𝑖𝑛                

 

and 

si = wi + ci-1 

For clarifying the method here we explain the addition of two signed-digit radix-10 

numbers: 

The allowed values for the digits are 

𝑤𝑖 = 5̅, 4̅, 3̅, 2̅, 1̅, 0, 1, 2, 3, 4, 5 

𝑐𝑖 = 1̅, 0, 1 

𝑠𝑖 , 𝑥𝑖 , 𝑦𝑖 = 6̅, 5̅, 4̅, 3̅, 2̅, 1̅, 0, 1, 2, 3, 4, 5, 6 

Digits with negative values are identified with a bar above the integer. The addition 

operands are 𝑥 = 4. 2̅5̅143̅ (value X = 3.75137), and 𝑦 = 2̅. 3̅3021̅̅ ̅̅ ̅̅ ̅ (value Y = 2.32979). 

The addition method is as follows: 

augend x: 4 . 2̅ 5̅ 1 4 3̅ 

addend y: 2̅ . 3̅ 3̅ 0 2 1 

Step (1): 0+2  0 + 5̅ 10̅̅̅̅ + 2 0+1 10 + 4̅ 0 + 2̅ 

Step (2): 0  1̅ 0 1 0  

Sum s: 2 . 6̅ 2 2 4̅ 2̅ 

The resulting sum is𝑠 = 2. 6̅224̅2̅which as an algebraic value S = 1.42158 = ۳.75137 - 

2.32979 

2. Binary Signed-Digit Number (BSDN) Addition 

In binary signed-digit number system, each digit is encoded by two or more bits and 
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computation is achieved by means of conventional binary logic families, for example, dynamic 

or static CMOS. 

As mentioned before the key motivation for using signed-digit number representation in 

an arithmetic operation is to eliminate the carry propagation chain [46]. The advantage of carry 

elimination is that it results in designing a high-speed adder circuit. Therefore, the delay time 

for adding two signed-digit numbers is independent of the word length and constant, which is 

the key to fast addition. This section briefly explains the theory of BSDN addition. 

Any number a in BSDN can be represented as [41] 

𝑎 = ∑ 𝑥𝑖2𝑖

𝑛−1

𝑖=0

 

where 𝑥𝑖 ∈ {−1,0,1} and n is the number of ternary digits. M.D. Ercegovac and T. Lang 

in [47] explained two methods for BSDN addition, double-recoding method and using 

information from a previous digit position method. Given two operands, a and b, operation of 

addition can be performed by one of these methods. 

Double recoding method 

In this method, the addition can be considered as transformed from {-2, -1, 0, 1, 2} 

domain to {-1, 0, 1} domain. For this recoding, first, we recode from the digit set {-2,‎…,‎2}‎to‎

an intermediate digit set (for instance, {-2,‎…,‎1}). 

𝑎𝑖 + 𝑏𝑖 = 2ℎ𝑖 + 𝑠𝑖 ∈ {−2, −1,0,1,2} 

ℎ𝑖 ∈ {0,1} 

𝑠𝑖 ∈ {−2, −1,0,1} 

𝑞𝑖 = ℎ𝑖−1 + 𝑠𝑖 ∈ {−2, −1,0,1} 

Next, we transform the intermediate digit set into the BSDN digit set {-1, 0, 1}. 

𝑞𝑖 = 2𝑐𝑖 + 𝑤𝑖 ∈ {−2, −1,0,1} 

𝑐𝑖 ∈ {−1,0} 

𝑤𝑖 ∈ {0,1} 
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𝑧𝑖 = 𝑐𝑖−1 + 𝑤𝑖 ∈ {−1,0,1} 

Utilizing information from the preceding digit position 

In this method, first, we calculate intermediate carry (ci) and partial sum (wi) as 𝑎𝑖 + 𝑏𝑖 =

2𝑐𝑖 + 𝑤𝑖, as listed in Table ‎2.3. The result is 𝑧𝑖 = 𝑐𝑖−1 + 𝑤𝑖. 

Table ‎2.3 Calculating partial sum and intermediate carry [48] 

ai, bi Previous digit position (i-1) ci wi 

0, 0 - 0 0 

-1, -1 - -1 0 

1, 1 - 1 0 

-1, 1 - 0 0 

-1, 0 
(ai-1 + bi-1) < 0 -1 1 

Otherwise 0 -1 

1, 0 
(ai-1 + bi-1) > 0 1 -1 

Otherwise 0 1 

 

A binary signed digit, for instance, can be encoded by two or more binary digits. In two 

bits representation, two bits can denote each binary signed-digit using several encoding 

activities. Parhami [49] proposed‎ two‎ encoding‎ activities.‎ One‎ is‎ “sign” and‎ “value,” (s,v), 

encoding. The other is‎“negative” and‎“positive,” (n,p), encoding. In the (s,v) encoding, -1, 0, 

and 1 are represented by (1, 1), (0, 0), and (0,1), respectively. In the (n, p) encoding, -1, 0, and 

1 are represented by (1, 0), (0, 0), and (0, 1), respectively. In the present research, to encode the 

BSDN, (n,p) representation that considers digit 0 representation by either (0, 0) or (1, 1) is 

used. 

 

3. Self-Checking Signed-Digit Adders 

In [48], a technique to devise a self-checking binary signed-digit adder concerning stuck-
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at class faults using a parity checker was suggested. To evaluate the correctness of the binary 

signed-digit adder output, parity properties can be used. As mentioned earlier, based on the 

BSDN encoding representation method three different values (-1, 0, 1) can be held by digit xi 

and two bits are needed for the binary representation. P(xi) is defined as the parity of xi, which 

is XOR of the two bits that form digit xi, and P(X) as the parity of the signed-digit number X, 

which is XOR of the parity P(xi) of all digits xi. We use this definition to define P(A) and P(B) 

as parities of the addend and augend, P(W) and P(C) as parities of the partial sum and 

intermediate carry, and P(Z) as the parity of the addition outcome. According to Table ‎2.3, the 

following properties are demonstrated [48]: 

Property 1. 

P(Z) = P(C)⊕P(W) [48] 

By calculating the parity of ci-1 and wi, for any possible combination of ci-1 and wi, we 

obtain P(zi) = P(ci-1) ⊕ P(wi). Therefore, the following statements hold according to the 

associative property of the XOR operation: 

𝑃(𝑍) =  
𝑛 − 1

⊕
𝑖 = 0

𝑃(𝑧𝑖) =
𝑛 − 1

⊕
𝑖 = 0

(𝑃(𝑤𝑖) ⊕ P(𝑐𝑖−1)) 

=
𝑛 − 1

⊕
𝑖 = 0

𝑃(𝑤𝑖) ⊕
𝑛 − 1

⊕
𝑖 = 0

𝑃(𝑐𝑖−1) = 𝑃(𝑊) ⊕ P(C). 

Property 2. 

P(W) = P(A)⊕P(B) [16] 

By evaluating the parity of ai and bi, we obtain P(wi) = P(ai) ⊕ P(bi) for any possible 

combination of ai and bi. Again, according to the associative property of the XOR operation, we 

obtain 

𝑃(𝑊) =  
𝑛 − 1

⊕
𝑖 = 0

𝑃(𝑤𝑖) =
𝑛 − 1

⊕
𝑖 = 0

(𝑃(𝑎𝑖) ⊕ P(𝑏𝑖)) 
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=
𝑛 − 1

⊕
𝑖 = 0

𝑃(𝑎𝑖) ⊕
𝑛 − 1

⊕
𝑖 = 0

𝑃(𝑏𝑖) = 𝑃(𝐴) ⊕ P(𝐵). 

 
Figure ‎2.9 shows the architecture of this design composed of the following components: 

 Binary signed-digit adder block: accepts two signed-digit numbers a and b as addend 

and augend, respectively, and calculates z as the result of the addition 

 Parity Prediction module: produces the value of P(C) 

 Error Indicator 1 output: checks Property 2 and in case of any mismatch issues an error 

signal  

 Error Indicator 2 output: checks Property 1 and in case of mismatch issues an error 

signal 

 

 

Figure ‎2.9 BSDN Self-checking adder [48] 

In [41] authors extended the method and added error correction and localization capability 

using recomputation with left- and right- shifted operands. This algorithm is shown in 

Figure ‎2.10. 

In this method, the stuck-at faults are classified into three types to properly localize any 

fault. 

 Fault Type 1: Error in one of ADD1 outputs (ci, wi) or in ADD2 output (si), ending up 

with undesirable transforming of up to one bit 

Parity 
Prediction

ADD1ADD1

ADD2ADD2

ADD1

ADD2

⊕

⊕

⊕

⊕

a b
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P(b)P(a)
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Error 
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P(z)
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⋮
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 Fault Type 2: Fault in the input's least significant bit (LSB) causes an alteration up to 

two bits 

 Fault Type 3: Fault in the input's most significant bit (MSB) causes a variation up to 

three bits 

Referring to above fault-type definitions, in the context of the algorithm shown in 

Figure ‎2.10, the fault-localization technique seems to be incorrect. A Type 3 (Type 2) fault 

causes a modification of up to three (two) digits, which means that a Type 3 (Type 2) fault can 

alter one‎ or‎ two‎ or‎ three‎ (one‎ or‎ two)‎ bits.‎ Thus‎ “Inequalities=1”‎ (“Inequalities=2”)‎ should‎

signify a fault Type 1 or 2 or 3 (Type 2 or 3). We show a corrected algorithm in Figure ‎2.11.  

To explain the error correction and fault localization shown in Figure ‎2.11 we completed 

the algorithm and added the error correction part. This completed algorithm is illustrated in 

Figure ‎2.12. In this algorithm Z and ZF are defined as the correct and faulty outputs (first 

computation), respectively, and ZLSI and ZRSI as the outputs acquired using the left-shifted inputs 

(LSI) (second computation) and the right-shifted inputs (RSI) (third computation), respectively.  

Let us consider two signed-digit numbers A={a(0), a(1), …, a(n)} and B={b(0), b(1), 

…, b(n)}. Because by the left-shifted operation the most significant digits [a(n) and b(n)] are 

lost, the equality relationship Z(i) = ZLSI(i+1) is invalid for Z(n) and Z(n+1), whereas it is 

valid only for 0 ≤i≤ n-1. Similarly, least significant digits [a(0) and b(0)] in the right-

shifted operation, are lost, and their carries can also be lost. Thus, the Z(i) = ZRSI(i-1) equality 

only for 3 ≤i≤ n + 1 is valid. Figure ‎2.13 shows an n-digit addition process using the 

original, LSI, and RSI. 
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Figure ‎2.10 Fault detection, correction, and localization algorithm [41] 

 



 

34 

 

 

Figure ‎2.11 Corrected fault detection, correction, and localization algorithm proposed in [41] 
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Figure ‎2.12 Completed and corrected fault detection, correction, and localization algorithm proposed in [41] 
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Position (n+1) (n) (n-1) … (2) (1) (0) 

A:  an an-1 … a2 a1 a0 
B:  bn bn-1 … b2 b1 b0 

W:  wn wn-1 … w2 w1 w0 

C: cn cn-1 cn-2 … c1 c0 - 

Z: zn+1 zn zn-1 … z2 z1 z0 

a. Original Inputs 

 

A:  an-1 an-2 ... a1 a0 - 
B:  bn-1 bn-2 … b1 b0 - 

W:  wn-1 wn-2 … w1 w0 - 

C: cn-1 cn-2 cn-3 … c0 - - 

Z: zn zn-1 zn-2 … z1 z0 - 

 ZLSI(n+1) ZLSI(n) ZLSI(n-1) … ZLSI(2) ZLSI(1) ZLSI(0) 

b. LSI 

 

A:  - an … a3 a2 a1 
B:  - bn … b3 b2 b1 
W:  - wn … w3 w2 w1 

C: - cn cn-1 … c2 c1 - 

Z: - zn+1 zn … z3 z2 z1 

 ZRSI(n+1) ZRSI(n) ZRSI(n-1) … ZRSI(2) ZRSI(1) ZRSI(0) 

c. RSI 
 

Figure ‎2.13 n-digit BSD addition 

Once a parity error is detected and an error signal is issued either by Error Indicator 1 or 

Error Indicator 2, the error-correction and fault-localization algorithm is started. Whenever a 

fault is discovered, the addition is executed again using the LSI. The two results from the first 

(original inputs) and second (LSI) computation are compared, and the number of unequal digits 

and position of inequality (e) is calculated (if more than one unequal digit exists, the higher 

position is considered as the position of inequality, e). Depending on the position and number 

of unequal digits, fault localization and error correction can be done in this step, or the 

operation should be performed again using the RSI. 

After computing with LSI, if no difference is found between ZF and ZLSI, the operation is 

performed using RSI. However, different cases can be considered if an inequality exists 

between ZF and ZLSI,: 
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Case A: The parity is correct (no error signal is activated). 

 If only one unequal digit exists between ZF and ZLSI and e<n (error is not 

located in position (n) or (n+1)) or if two inequalities and e<n-1 or three 

inequalities and e<n–2 exist, then the following relationship generates a correct 

output; otherwise, the RSI recomputation is required: 

Z = { ZF(n+1), ZF(n), [ZLSI(n) … ZLSI(1)]} 

Case B: The parity is wrong (at least one of the error indicators signals an error)) 

 If two inequalities exist and e<n, then the following relationship computes the 

correct output; otherwise, correction is not possible: 

Z = {[ZF(n) … ZF(e + 1)], ZLSI(e+1), [ZF(e - 1) … ZF(0)]}. 

If RSI recomputation is needed, then the addition proceeds with the RSI. The two results 

(ZF and ZRSI) are compared, and the number of unequal digits and the position of inequality (e) 

are again calculated. Again, if no difference is detected between ZF and ZRSI, then the checker is 

expected to be faulty. However, two cases can be considered if an inequality exists between ZF 

and ZRSI  again. 

Case A: The parity is correct (no error signal is activated). 

 If error signal is not activated, it means that the calculated result (ZRSI) is 

correct, and we only need to replace the first three digits from ZF. Therefore, 

the following relationship gives the correct output: 

Z = {[ZRSI(n) … ZRSI(2)], [ZF(2) … ZF(0)]}. 

Case B: The parity is wrong (error signal is activated) 

 If two inequalities exist and e=n, then the correct result can be calculated by 

Z = {ZF(n+1), [ZRSI(n – 1) … ZRSI(2)], [ZF(2) … ZF(0)]}. 
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 If two inequalities exist and e=n+1, then the following relationship generates 

the correct result: 

Z = {[ZRSI(n) … ZRSI(2)], [ZF(2) … ZF(0)]}. 

 If more than two inequalities exist, then correction is not possible. 

Figure ‎2.12 shows the complete fault detection, localization, and correction algorithm in 

detail. 

Later, Alavi and Faez [50] used the same self-checking signed-digit adder in [48], changed 

the correction and localization algorithm in [41], and improved the correction capability to 

obtain full correction using the‎“Recomputation with Triple-Shifted‎Operands”‎method. In this 

method to find the fault position, the RESO (Recomputation with Shifted Operands) technique 

suggested in [51], [52] is used. This method uses the same fault type classifications as [41]. 

In the following explanations Z is defined as the correct output and ZF as the faulty output 

(the output when an error indicator signal is high) and define ZLS and ZRS as the correct outputs 

achieved by using the Left and Right Shifted Inputs (LSI, RSL) respectively. Also we mark 

ZFLS and ZFRS as the outputs obtained with the shifted operands when an error indicator sign is 

active. Finally ZTLS and ZTRS are the outputs obtained with the Triple Left and Right Shifted 

Inputs (TLSI, TRSI). It must be considered that the shifted operands can activate the error 

signal again or not depending on the fault type and its influence manner. The digits composing 

the operands are referred to with the corresponding lower case letter and the index i shows the 

position of the digit. 

Because the most significant digits (a(n-1), b(n-1)) are lost with the left shift operation, 

then the equality relation z(i) = zLS (i +1) is valid only for 0≤i≤ n-2 and the equality is not 

valid for z(n-1), z(n). On the other hand, as the least significant digits (a(0), b(0)) are lost with 

the Right shift operation and their Carries can also be lost, therefore the equality relation z(i) = 

zRS (i‎−1)‎will‎be‎valid only for 3 ≤i≤ n and the equality is not valid for z(0), z(1), z(2) . 

Once a parity error is detected, the procedure (algorithm) is started as follows: 



 

39 

 

A. First Phase 

Whenever a fault is detected by the parity checker, the operation is performed once more 

with the LSI and two different cases can be considered: 

1) The parity is correct, i.e., the output is ZLS (CASE A) 

2) The parity is wrong, i.e., the output is ZFLS (CASE B) 

CASE A: If neither of the error signals are activated, then the recomputed value ZLS is 

correct. By comparing between zF(i) and zLS(i+1) for 0 ≤i≤ n-2, the faulty digit(s) can be 

localized and corrected. In particular, beginning from the least significant digit, when the first 

inequality between zF(i) and zLS(i+1) is encountered, the position (i+1) is the location of the 

faulty digit. Besides, the number of inequalities depends on the fault type, in other word, the 

fault of type 1, 2, 3 produces 1, 2, 3 inequality(s) respectively. Therefore the following relation 

is hold: 

{
𝑧𝐿𝑆(𝑗 + 1) =  𝑧𝐹(𝑗),         0 ≤ 𝑗 ≤ 𝑛 − 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑖𝑔𝑖𝑡𝑠

𝑧𝐿𝑆(𝑖 + 1) ≠  𝑧𝐹(𝑖),         0 ≤ 𝑖 ≤ 𝑛 − 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑎𝑢𝑙𝑡𝑦 𝑑𝑖𝑔𝑖𝑡𝑠  
 

After comparing, there will be one of the below states: 

a) If the number of inequalities is zero: The fault is probably in the position of digit n-1 or 

n. So, the operation is performed again with the RSI (in the second phase). 

b) If the position i of faulty digit is in 0 ≤i≤ n-4: Using the bellow relation the value of 

ZF is fully corrected and the algorithm ends. 

𝑧(𝑖) = {
𝑧𝐿𝑆(𝑖 + 1)   𝑓𝑜𝑟  0 ≤ 𝑖 ≤ 𝑛 − 2

𝑧𝐹(𝑖)            𝑓𝑜𝑟 𝑖 = 𝑛 − 1, 𝑛     
 

c) If the position i of faulty digit is in n-3 ≤i≤ n-2: Using the relation z(i) = zLS(i + 1 ) 

for 0 ≤ i ≤ n-2 , the value of ZF is partially corrected, but to determine the values of z(n-1), 

z(n), the operation must be recomputed with the RSI (in the second phase). 

CASE B: If the parity checker detects a fault after calculating of ZLS, then the procedure 

will be continued as follows: By comparing zF(i ) and zFLS(i + 1) for 0 ≤i≤ n-2, the 
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position(s) of faulty digit(s) can be localized as CASE A. The inequalities can be generated by 

both an error in the computation of original result and an error in the recomputed result. 

Therefore depending on the occurred fault type, at most up to 4 inequalities are detected. Thus 

the bellow relation is truthful: 

{
𝑧𝐹𝐿𝑆(𝑗 + 1) =  𝑧𝐹(𝑗),         0 ≤ 𝑗 ≤ 𝑛 − 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑖𝑔𝑖𝑡𝑠

𝑧𝐹𝐿𝑆(𝑖 + 1) ≠  𝑧𝐹(𝑖),         0 ≤ 𝑖 ≤ 𝑛 − 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑎𝑢𝑙𝑡𝑦 𝑑𝑖𝑔𝑖𝑡𝑠  
 

After comparing, there will be one of the following states: 

a) If the number of inequalities is zero: The fault is probably in the position of digit n-1 or 

n. So, the operation is performed again with the RSI (in the second phase). 

b) If the position i of faulty digit is in 4 ≤i≤ n-1: Using the relation z(i) = zF(i ) for 0 

≤ i ≤ 3 , the value of ZF is partially corrected, but to recover the rest of the digits the 

operation must be performed again with the RSI (in the second phase). 

c) If the position i of faulty digit is in 1 ≤i≤ 3: Then, 

1. If the number of inequalities is one and zFLS(0) ≠ 0: i.e., the fault is occurred in digit 

0, then using the below relation the value of ZF is fully corrected and the algorithm ends. 

𝑧(𝑖) = {
𝑧𝐹𝐿𝑆(𝑖 + 1)            𝑓𝑜𝑟  0 ≤ 𝑖 ≤ 𝑛 − 2

𝑧𝐹(𝑖)                       𝑓𝑜𝑟 𝑖 = 𝑛 − 1, 𝑛     
 

2. If the number of inequalities is equal to two and zFLS(0) = 0: Assume that the digit f be 

faulty, so by using the below relation the value of ZF is fully corrected and the algorithm ends. 

𝑧(𝑖) = {
𝑧𝐹𝐿𝑆(𝑖 + 1)    𝑖𝑓 𝑖 = 𝑓

𝑧𝐹(𝑖)               𝑖𝑓 𝑖 ≠ 𝑓
 

3. Otherwise: The correction will be done partially and to achieve full correction the 

second phase of the algorithm must be completed with the TLSI. 

B. Second Phase 

Depending on the state has been occurred in the first phase, the second phase is continued 

with either RSI or TLSI. First assume that the second phase is completed with the TLSI, so the 

output value will be ZTLS. In this case, the digits of ZF and ZFLS are compared again and as a 
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result one of the following states occurs: 

a) If zFLS(0) = 0 (suppose that the digit f be faulty): 

𝑧(𝑖) = {

𝑧𝑇𝐿𝑆(𝑖 + 3)           𝑖𝑓 𝑖 = 𝑓, 𝑓 + 1

𝑧𝐹𝐿𝑆(𝑖 + 1)           𝑖𝑓 𝑖 = 𝑓 + 2     

𝑧𝐹(𝑖)                      𝑒𝑙𝑠𝑒                    

 

b) if zFLS(0) ≠ 0, i.e., the digit 0 is faulty: 

𝑧(𝑖) = {

𝑧𝑇𝐿𝑆(𝑖 + 3)    𝑖𝑓 𝑖 = 0,1   

𝑧𝐹𝐿𝑆(𝑖 + 1)    𝑖𝑓 𝑖 = 2       

𝑧𝐹(𝑖)               𝑒𝑙𝑠𝑒              

 

Now suppose that the second phase is continued with the RSI. As the first phase, here two 

different cases can also be considered: 

1) The parity is correct, i.e., the output is ZRS (CASE A'). 

2) The parity is wrong, i.e., the output is ZFRS (CASE B'). 

CASE A': If the parity checker does not show any contradiction, thus the recomputed 

value ZRS is correct. By comparing zF(i) and zRS(i‎−‎1‎ )‎for‎3≤i≤n, the faulty digits can be 

localized and corrected. Beginning from the digit 3, at the first inequality appeared between 

zF(i) and zRS(i‎−‎1‎)‎,‎the position i is the location of the faulty digit. Therefore, the following 

relation is hold: 

{
𝑧𝑅𝑆(𝑗 − 1) =  𝑧𝐹(𝑗), 3 ≤ 𝑗 ≤ 𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑖𝑔𝑖𝑡𝑠

𝑧𝑅𝑆(𝑖 − 1) ≠  𝑧𝐹(𝑖),         3 ≤ 𝑖 ≤ 𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑎𝑢𝑙𝑡𝑦 𝑑𝑖𝑔𝑖𝑡𝑠  
 

At the end of comparing, there will be one of the below states: 

a) If the number of inequalities is zero: It is concluded that the adder is correct, but the 

parity checker is out of order. Thus the outputs are correct however the self-checking ability is 

lost (END of Alg.). 

b) If the number of inequalities is non-zero: Using the bellow relation the value of ZF is 

fully corrected and the algorithm ends. 

𝑧(𝑖) = {
𝑧𝑅𝑆(𝑖 − 1) 𝑓𝑜𝑟 3 ≤ 𝑖 ≤ 𝑛

𝑧𝐹(𝑖)           𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 2
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CASE B': If the parity checker detects a fault after calculating of ZRS, then the procedure 

will be continued as follows: The faulty digits produce some inequalities between z and zRS. By 

comparing zF(i) and zFRS(i−1)‎the‎position‎of‎faulty‎digit‎can‎be‎localized‎as‎CASE‎A'.‎After‎

comparing, there will be one of the following states: 

a) If the number of inequalities is zero: It is concluded that the adder correct, but the parity 

checker is out of order. Thus the outputs are correct however the self-checking ability is lost 

(END of Alg.). 

b) If there are two inequalities and the position f of faulty digit is 4 or 5: Using the 

following relation, the value of ZF is corrected completely and the algorithm is finished. 

𝑧(𝑖) = {
𝑧𝐹𝑅𝑆(𝑖 − 1) 𝑖𝑓 𝑖 = 𝑓

𝑧𝐹(𝑖)             𝑒𝑙𝑠𝑒       
 

c) Otherwise: The correction will be done partially and to achieve full correction the third 

phase of the algorithm must be completed with the TRSI. 

C. Third Phase 

In this phase the operation is carried out again with the TRSI (Triple Right Shifted Inputs). 

Therefore, the output is ZTRS . The digit of ZF and ZFRS are compared once more and by using 

the bellow relation the digits of ZF is corrected completely. At the end, the algorithm is 

completed. 

𝑧(𝑖) = {

𝑧𝐹𝑅𝑆(𝑖 − 1)     𝑖𝑓 𝑖 = 𝑓                    

𝑧𝑇𝑅𝑆(𝑖 − 3)     𝑖𝑓 𝑖 = 𝑓 + 1, 𝑓 + 2

𝑧𝐹(𝑖)                 𝑒𝑙𝑠𝑒                           

 

Here this point is essential to mention that, not the algorithm will always be continued to 

the third phase, but it depends on the occurred fault type. In other word, in the best situation, 

the algorithm terminates in the first phase and the value of output is fully corrected while in the 

worst case, it's needed the algorithm to be continued to the third phase. 

Although this method can have full correction but it requires up to four times 

recomputation using shifted inputs to be able to localize a fault and correct the error, and it 
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incurs extra time and area overhead and makes the original represented algorithm more 

complex. 
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3 Proposed Designs 

Our proposed techniques employ the signed-digit number encoding and self-checking 

adder implementation as [41]. To localize the fault and correct errors, we use altering logic 

[30], which is the so-called I/O inversion [53] method, instead of the recomputation using the 

shifted-operand method [28] based on the self-dual concept. A logic function is self-dual if and 

only if f(x) = ~f(~x), where f is a logic function, x is a vector of the logic variables, and ~x is 

the‎1’s‎complement‎of‎x. 

The correction method is based on the fact that if one stuck-at-0 (1) or MCT fault occurs 

in one line of a circuit, the faulty line is permanently set to 0 (1) and flips from 1 (0) to 0 (1). 

However, when the line value is 0 (1), the fault will be masked. We used this property and 

masked the fault by recomputation using the complemented inputs when any of the error 

indicators signals a fault. Figure ‎3.1 shows this property. 

 
Figure ‎3.1  Masking of a fault using complemented input 

In a symmetric signed-digit‎number,‎we‎can‎compute‎the‎1’s‎complement‎by‎changing‎the‎

sign of each digit from positive to negative, and vice versa. It is worth mentioning that the digit 

“0” must be left unchanged. 
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𝑎 = 21̅03̅7   (18977)10 

𝑎̅ = 2̅1037̅(−18977)10 

Consequently, the inversion of each number in BSDN can be calculated by only changing 

1 to -1 and -1 to 1. For example 

 

𝑎 = 101̅101̅1̅0         (106)10 

𝑎̅ = 1̅011̅0110     (−106)10 

Using the BSDN encoding method representation in Chapter II, inversion (calculation of 

1’s‎ complement)‎ of‎ BSDN‎ is‎ straightforward;‎ it‎ is‎ computed‎ in‎ a‎ manner‎ similar‎ to‎ the‎

conventional‎binary‎number‎1’s‎complement.‎The‎BSDN‎1’s‎complement‎calculation‎is‎listed‎

in Table ‎3.1. In addition, we assume that 0 is represented by either 00 or 11. 

Table ‎3.1 BSDN Complement 

a 𝑎̅ 

01 (+1) 10 (-1) 

10 (-1) 01 (+1) 

00 (0) 11 (0) 

11 (0) 00 (0) 

 

Therefore,‎ to‎ compute‎ the‎BSDN‎1’s‎ complement,‎ all‎ bits‎ should‎be‎ inverted‎ as‎ shown‎

below: 

𝑎 = 1 0 1̅ 1 0 1̅1̅ 0 →    01   00   10   01   00   10   10   00 

𝑎̅ = 1̅ 0 1 1̅ 0 1 1 0 →    10   11   01   10   11   01   01   11 

 

Suppose a and b are the addend and augend in a BSDN system, respectively, and s is the 

result (s = a + b). Then, following the calculation rule listed in Table ‎2.3, ci and wi can be 
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computed in such a manner that 𝑎𝑖 + 𝑏𝑖 = 2𝑐𝑖+1 + 𝑤𝑖 , and the sum value si is obtained 

using 𝑠𝑖 = 𝑐𝑖 + 𝑤𝑖. According to the property of self-duality, if 𝑠̅ = 𝑎̅ +  𝑏̅ only, then this 

addition technique is self-dual. In Table ‎2.3, the first four rows denote that inversion of the 

addend (a) and augend (b) will indicate inversion of partial sum (w) and intermediate carry (c), 

as listed in Table ‎3.2. 

Table ‎3.2 Intermediate Carry and Partial Sum, First Four Rows 

ai, bi ci wi 𝑎𝑖̅, 𝑏𝑖̅ 𝑐𝑖̅ 𝑤𝑖̅̅ ̅ 

0, 0 0 0 0, 0 0 0 

-1, -1 -1 0 1, 1 1 0 

1, 1 1 0 -1, -1 -1 0 

-1, 1 0 0 1, -1 0 0 

 

 

For the last two rows in Table ‎2.3, if adder inputs (a, b) are inverted, the outputs (c, w) are 

subsequently inverted, as listed in Table ‎3.3. Consequently, the calculation function is self-dual 

for the partial sum (w) and intermediate carry (c). 

Table ‎3.3 Intermediate Carry and Partial Sum, Last Two Rows 

ai, bi 

Previous digit position 

(i-1) 

ai-1 , bi-1 

ci wi 𝑎𝑖̅, 𝑏𝑖̅ 

Previous digit position (i-
1) 

𝑎𝑖−1̅̅ ̅̅ ̅, 𝑏𝑖−1
̅̅ ̅̅ ̅ 

𝑐𝑖̅ 𝑤𝑖̅̅̅ 

-1, 0 

(ai-1 + bi-1) < 0 

0, -1 

-1 1 

1, 0 

0, 1 
(𝑎𝑖−1̅̅ ̅̅ ̅ + 𝑏𝑖−1

̅̅ ̅̅ ̅)

> 0 
1 -1 -1, -

1 
1, 1 

Otherwise 

0, 0 

0 -1 

0, 0 

Otherwise 0 1 
0, 1 0, -1 

1, 1 -1, -1 

1, -1 -1, 1 

1, 0 

(ai-1 + bi-1) > 0 
0, 1 

1 -1 

-1, 0 

0 ,-1 (𝑎𝑖−1̅̅ ̅̅ ̅ + 𝑏𝑖−1
̅̅ ̅̅ ̅)

< 0 
-1 1 

1, 1 -1, -1 

Otherwise 

0, 0 

0 1 

0, 0 

Otherwise 0 -1 

0, -1 0, 1 

-1, -

1 
1, 1 

1, -1 -1, 1 

 

Lastly, Table ‎3.4 demonstrates that 𝑠𝑖 = 𝑐𝑖 + 𝑤𝑖, which is considered a carry-free addition 
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is also self-dual. 

Table ‎3.4 Carry Free Addition 

ci, wi si 𝑐𝑖̅, 𝑤𝑖̅̅ ̅ 𝑠𝑖̅ 

0, 0 0 0, 0 0 

0, 1 1 0, -1 -1 

0, -1 -1 0, 1 1 

1, -1 0 -1, 1 0 

 

As a result, all output (the partial sum, final sum, and intermediate carry) values will be 

inverted if all input (addend and augend) values are inverted. Therefore, the proposed BSDN 

addition function is self-dual (𝑠̅ = 𝑎̅ + 𝑏̅) 

1. Self-checking binary signed-digit adder using parity prediction (SBSA-PaP) 

The correcting and locating of a stuck-at or MCT faults by the proposed BSDN adder can 

be done using the self-dual property. To do this, we first, using normal inputs calculate the 

addition‎operation.‎If‎any‎error‎is‎detected‎by‎the‎error‎indicators,‎1’s‎complement‎of‎the‎inputs‎

is used to recompute the operation. In standard functioning, in either ADD1/ADD2 inputs or 

outputs in Figure ‎2.9, occurrence of any stuck-at or MCT faults will root to the bit flipping i.e. 

0 to 1 or 1 to 0. Earlier it was established that, with inverted inputs, recomputation of an 

operation‎will‎facade‎any‎plausible‎error,‎and‎the‎calculated‎sum‎will‎be‎correct‎because‎all‎0’s‎

become‎1’s‎and‎all‎1’s‎become‎0’s‎(10‎to‎01,‎01‎to‎10,‎11‎to‎00,‎and00‎to‎11).Therefore,‎a‎right‎

value will be shown by the bit where the subsequent stuck-at or MCT faults aroused. Following 

recalculation, if an error is signaled again, it is established that the checker fail or more than 

one stuck-at or MCT faults has occurred. However, if there is no trigger of the error signal, 

then the recomputed outcome‎is‎the‎1’s‎complement‎of‎the‎correct‎end‎result,‎and‎applying‎any‎

further error-correction procedure is not necessary. The localization is almost identical to the 
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method in [41]. Fault is localized based on fault types (Type 1, Type 2, and Type 3) as 

described in Chapter II.H.3. Figure ‎3.2 illustrates the proposed method. 

According to the algorithm shown in Figure ‎3.2, if any of the error indicators, signal an 

error, the addition operation will continue with recomputation using inverse inputs. After 

recomputation, the outputs of error indicators are checked. Here, two cases can be considered: 

Case A (Any of the error indicators signal an error again): The outputs of the first and 

second computations are compared. If all corresponding bits are inverses of each other 

(Equalities = 0), then we can conclude that the addition output is correct and the signaled errors 

are because of checker failure. Otherwise, in case of finding any corresponding equal bits 

between the results that are obtained from first and second computations, we conclude that 

there are more than one stuck-at or MCT fault in the adder circuit. 

Case B (After recomputation, none of the error indicators signal error): Again, the outputs 

of the first and second computations are compared. If all corresponding bits are inverses of 

each other (Equalities = 0), then we can conclude that the addition output is correct and the 

signaled error (in first computation) was because of a transient fault. However, if there are 

equal corresponding bits (Equalities > 0), then based on the number of equal bits, we can 

localize the faulty module as illustrated in the algorithm. 

To explain the fault localization and error correction algorithm in detail, we define Z as 

the correct output and ZF as the faulty output, respectively, in the first computation and ZINV 

and ZF-INV as the correct and faulty outputs, respectively, obtained using the inverse inputs in 

the recomputation. 

Suppose ZF = zF(n)…zF(i)…zF(0) is the faulty output calculated in the first step and ZINV = 

zINV(n)…zINV(i)…zINV(0) is the result of the calculation with the inverted inputs in the second 

step. For all error-free bits, zF(i) is the inverse of zINV(i), but for the erroneous bits, zF(i) is equal 

to zINV(i). Therefore, by counting the number of equal bits between ZF and ZINV, we can locate 

the source of the error. 
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Figure ‎3.2 Fault detection, correction, and localization algorithm for SBSA-PaP implementation 

The explained method uses the same self-checking signed-digit adder as [41]. In order to 

come up with efficient design we aim to use different self-checking binary signed-digit adder 

beside with self-dual property. 

2. Self-checking binary signed-digit adder 

Different designs have been presented for radix-2 signed-digit adder implementation [54] 

[55] [56] [57] [58] [47]. In the present study, we use the presented method in [47]. This 
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implementation uses the double-recoding method. It comprises two levels of FAs, as shown in 

Figure ‎3.3.  

 

Figure ‎3.3 Binary signed-digit adder [47] 

 

According to the design in Figure ‎3.3 we can implement the binary signed-digit adder 

using a conventional FA. To implement new self-checking radix-2 signed-digit adder, we use 

the self-checking FA in [45]. We replace the ordinary FAs in Figure ‎3.3 with the self-checking 

FA as illustrated in Figure ‎2.6. Figure ‎3.4 shows the design of a self-checking adder for BSDN. 

In this design, a fault in any adder activates E1 or E2 error signals, and the faulty module can 

be localized. 
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Figure ‎3.4 Binary signed-digit adder using a self-checking FA 

 

To protect the input bits, we use a parity checking technique. Here, we have two 

assumptions. First, we only have access to the pre-calculated parity of the addend and augend, 

and we do not have access to each input digit. Second, we do not have pre-calculated parity for 

the input digits, but we have individual access to all digits of the addend and augend. 

3. Self-checking binary signed-digit adder using pre calculated input parities 

(SBSA-PCP) 

In any FA, the parity of the input bits is equal to the parity of the sum. Therefore, to 

reduce the hardware size, we can use the sum output bit instead of calculating the parity of the 

three input bits. 

P(A, B, Cin) = P(Sum) 

In addition, according to Table ‎3.5, the parity of one ordinary number is equal to the parity 
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of the corresponding signed-digit number. Hence, we can utilize the following relationships, 

where A and B are two n-bit numbers (addend and augend). a0, a1, …, an-1 and b0, b1, …, bn-1 

are individual binary bits representing A and B, respectively, and n is the total number of bits 

representing each of these variables. ai
+
, ai

-
 and 𝑏𝑖

+, 𝑏𝑖
− are signed-digit representations of ai 

and bi bits, respectively: 

 

Table ‎3.5 Parity of an ordinary number and the corresponding signed-digit representation based on the 

explained encoding method 

a Signed digit representation (a
+
 a

-
) P(a) P(a

+
 a

-
) 

1 01 1 1 

-1 10 1 1 

0 00 / 11 0 0 

 

A = { a0, a1,‎…,‎an-1} 

P(A) = P(a0, a1,‎…,‎an-1) 

P(ai) = P(ai
+
, ai

-
) 

P(A) =P(a0
+
, a0

-
, a1

+
, a1

-
,‎…,‎an-1

+
, an-1

-
)         (1) 

P(B) =P(b0
+
, b0

-
, b1

+
, b1

-
,‎…,‎bn-1

+
, bn-1

-
)         (2) 

P(A, B) = P(a0
+
, a0

-
, b0

+
, b0

-
, a1

+
, a1

-
, b1

+
, b1

-
,‎…,‎an-1

+
,  an-1

-
, bn-1

+
, bn-1

-
).  (3) 

As mentioned earlier, in one FA, instead of calculating the parity of three inputs, we can 

use the sum bit. Therefore, as shown in Figure ‎3.4, we can use si as the parity of the adder 

inputs, but we must note that one of the adder inputs is complemented (ai
-
). Thus, we can 

obtain the equality 

𝑃(𝑎𝑖
+, 𝑎𝑖

−̅̅̅̅ , 𝑏𝑖
+) = 𝑃(𝑠𝑖).           (4) 

We add 𝑏𝑖
−̅̅̅̅  to both sides of the equality. 

𝑃(𝑎𝑖
+, 𝑎𝑖

−̅̅̅̅ , 𝑏𝑖
+) + 𝑃(𝑏𝑖

−̅̅̅̅ ) = 𝑃(𝑠𝑖) + 𝑃( 𝑏𝑖
−̅̅̅̅ ) 

𝑃(𝑎𝑖
+, 𝑎𝑖

−̅̅̅̅ , 𝑏𝑖
+, 𝑏𝑖

−̅̅̅̅ ) = 𝑃(𝑠𝑖, 𝑏𝑖
−̅̅̅̅ )         (5) 
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In the parity, we have 

𝑃(𝑥̅) = ~𝑃(𝑥). 

Therefore: 

𝑃(𝑎𝑖
+, 𝑎𝑖

−̅̅̅̅ , 𝑏𝑖
+, 𝑏𝑖

−̅̅̅̅ ) = ~𝑃(𝑎𝑖
+, 𝑎𝑖

−, 𝑏𝑖
+, 𝑏𝑖

−̅̅̅̅ ) = ~[~𝑃(𝑎𝑖
+, 𝑎𝑖

−, 𝑏𝑖
+, 𝑏𝑖

−)] =

 𝑃(𝑎𝑖
+, 𝑎𝑖

−, 𝑏𝑖
+, 𝑏𝑖

−)             (6) 

Referring to Eq. (5) and (6): 

𝑃(𝑎𝑖
+, 𝑎𝑖

−, 𝑏𝑖
+, 𝑏𝑖

−) =  𝑃(𝑠𝑖, 𝑏𝑖
−̅̅̅̅ ) 

=> 𝑃(𝑎𝑖 , 𝑏𝑖) =  𝑃(𝑠𝑖, 𝑏𝑖
−̅̅̅̅ ) 

=> 𝑃(𝑎0, 𝑎1, … , 𝑎𝑛−1, 𝑏0, 𝑏1, … , 𝑏𝑛−1) = 𝑃(𝑠0, 𝑠1, … , 𝑠𝑛−1, 𝑏0
−̅̅̅̅ , 𝑏1

−̅̅̅̅ , … , 𝑏𝑛−1
−̅̅ ̅̅ ̅̅  ) 

=> 𝑃(𝐴, 𝐵) = 𝑃(𝑠0, 𝑠1, … , 𝑠𝑛−1, 𝑏0
−̅̅̅̅ , 𝑏1

−̅̅̅̅ , … , 𝑏𝑛−1
−̅̅ ̅̅ ̅̅  )     (7) 

Referring to Eq. (7), by obtaining the parity of addend (A) and augend (B), any odd 

number of faults in the input lines can be detected by calculating the parity of the intermediate 

sum (s) and the augend LSB (b
-
). Figure ‎3.5 shows this design. 

 

 

Figure ‎3.5 SBSA-PCP 
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4. Self-checking binary signed-digit adder using input bit parities (SBSA-IBP) 

For the second assumption, if we can access all digits in the addend and augend, we can 

calculate the parity of each signed-digit number, e.g., P(ai
+
 ai

-
) and compare it with the parity 

of the corresponding ordinary bit, e.g., P(ai). Therefore, any fault in the inputs can be detected 

and localized. Figure ‎3.6 shows this design. 

 

 

Figure ‎3.6 SBSA-IBP 

 

5. Error-correction and fault-localization method in SBSA-PCP and SBSA-

IBP 

To correct errors, here also we use the recalculation based on the self-dual concept [53], 

[59], [30]. 

As reported in [53] and by referring to the truth table of FAs listed in Table ‎3.6, both the 

sum and output-carry functions are self-dual, which means that inverting all FA inputs inverts 
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the value of both sum and output-carry. As explained earlier, the BSDN adder design in this 

study consists only of FAs. Therefore, the described BSDN adder is also self-dual, which 

means that if we complement the BSDN adder inputs, all intermediate values and outputs will 

also be complemented. Therefore, if a stuck-at or MCT fault occurs in the input lines, FA 

modules, or output lines and causes flipping of the bit value from 1 to 0 or 0 to 1, it will be 

masked when we apply the complemented value. Therefore, the recalculated result is the 

inverted correct result. By inverting this result, we can obtain the correct final output. 

Table ‎3.6 Truth table for FA with original and complemented inputs 

A B Cin Sum Cout A̅ B̅ Cin
̅̅ ̅̅  𝑆𝑢𝑚̅̅ ̅̅ ̅̅  Cout

̅̅ ̅̅ ̅ 

0 0 0 0 0 1 1 1 1 1 

0 0 1 1 0 1 1 0 0 1 

0 1 0 1 0 1 0 1 0 1 

0 1 1 0 1 1 0 0 1 0 

1 0 0 1 0 0 1 1 0 1 

1 0 1 0 1 0 1 0 1 0 

1 1 0 0 1 0 0 1 1 0 

1 1 1 1 1 0 0 0 0 0 

 

To localize the fault in our first design (SBSA-PCP), if the fault is located in one of the 

adder modules, we can localize it by referring to the adder module number that issued the error 

signal because each adder has its own error signal. However, if the fault is located in one of the 

input lines, we can locate the faulty input module by comparing the faulty result obtained in the 

first calculation and correct the inverted result obtained in the recomputation. Figure ‎3.7 shows 

the algorithm for the error correction and fault localization according to this design. In this 

algorithm, we define Z as the correct output and ZF as the faulty output in the first computation 

and ZINV and ZF-INV as the correct and faulty outputs, respectively, obtained using the inverted 

inputs in the recomputation. 
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By using normal operands, we first perform the addition operation. After the calculation, 

if any of the error indicators detects and signals error, the operation will be followed by 

recomputation using the inverse operands. During normal operation, if any stuck-at or MCT 

fault occurs either in the self-checking FA input or output lines, that fault will cause the 

flipping bit from 1 to 0 or 0 to 1. We have earlier confirmed that if the operation is recalculated 

using‎ the‎1’s‎ complemented‎operands,‎any‎possible‎ fault‎will‎ be‎ covered, and the calculated 

sum‎will‎be‎correct‎because‎all‎0’s‎become‎1’s‎and‎all‎1’s‎become‎0’s‎(01 to 10, 10 to 01, 00 to 

11, and 11 to 00). Therefore, the bit will show the correct value where the corresponding stuck-

at or MCT fault occurred. If any of the error indicators again issues an error after the 

recomputation, by comparing the two obtained results from the first and second calculations, if 

the results complement each other, we can conclude that a checker failure occurred; otherwise, 

more than one stuck-at or MCT fault that at least one of them was masked in first calculation. 

However, if no error signal is activated after the recomputation, by referring to the first error 

signal source, if it is input error, we compare the two calculated results from the first and 

second computations and determine the faulty module number. Otherwise, if the error is issued 

by the adder module, we report the adder module number as a faulty module. The recomputed 

result‎ is‎ the‎ 1’s‎ complement‎ of‎ the‎ correct‎ result,‎ and applying any further error-correction 

procedure is not necessary. 
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Figure ‎3.7 Algorithm of the fault correction and localization for the SBSA-PCP implementation 

 

In one FA, any change in one of the input lines changes either the sum or both the sum and 

carry outputs. Therefore any fault in the ai
+
, ai

-
, or bi

+
 lines makes either the si or si and hi+1 

lines faulty. Consequently, any fault in the bi
-
, si, or hi lines makes either the zi

+
 or zi

+
 and zi+1

-
 

output(s) faulty. Thus, any fault in one of the ai
+
, ai

-
, bi

+
, and bi

-
 inputs can make a minimum of 

one (zi
+
) and a maximum of four (zi

+
, zi+1

-
, zi+1

+
, and zi+2

-
) faulty digits. We can conclude that 

any fault in the ith input digit position makes the zi output faulty. Thus, by comparing both 

faulty and fault-free results, the lowest equal bit indicates the faulty input digit position. 

We suppose that ZF = zF(n)…zF(i)…zF(0) is the faulty output calculated in the first step 

and ZINV = zINV(n)…zINV(i)…zINV(0) is the result of the calculation with the inverted inputs in the 

second step. For all error-free bits, zF(i) is the inverse of zINV(i), but for the erroneous bits, zF(i) 

is equal to zINV(i). Therefore, comparing ZF and ZINV can locate the error source. 

For example, we assume that the result in the first computation is ZF =11100100 and an 
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input fault signal is activated. Therefore, we recalculate the addition using the inverted inputs, 

and the result is ZINV = 00010111. The comparison of these two results in Figure ‎3.8 shows that 

Z1
-
 and Z1

+
 are equal. Therefore, we can conclude that the fault is located in module number 1.  

 

 Z3
+
 Z3

-
 Z2

+
 Z2

-
 Z1

+
 Z1

-
 Z0

+
 Z0

-
 

ZF 1 1 1 0 0 1 0 0 

ZINV 0 0 0 1 0 1 1 1 

 √ √ √ √ X X √ √ 

Figure ‎3.8 Example of the comparison results from first and second addition operations 

 

The fault localization in our second design (SBSA-IBP) does not require any comparison 

process because all input lines have a dedicated fault signal. In this implementation, when any 

fault is activated, similar to the previous implementation, recomputation will done using the 

inverse inputs. If the fault signal is again activated by comparing the first and second obtained 

results, we can determine that the error signal is activated due to a checker failure or existence 

of more than one fault that at least one of them was masked in first calculation. However, if 

none of the error signals is activated after the second calculation, the faulty module number 

that activated the error signal in the first computation is reported as the faulty module. 

Figure ‎3.9 shows the fault-localization and error-correction algorithm for the SBSA-IBP 

implementation. 
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Figure ‎3.9 Algorithm of the fault correction and localization for SBSA-IBP implementation 



 

60 

 

4 Performance Evaluation and Comparison 

 In this chapter, a description of the results obtained from the implementations of the 

proposed methods and other related methods that could provide us with useful information 

regarding the efficiency of the proposed methods is presented. To validate the efficiency of the 

proposed method, we compare our proposed methods with the algorithm in [41]. We discuss 

the capability of error correction along with the time, area, and power overhead. 

1. Error detection 

The presented method in [41] and SBSA-PaP method can detect single/odd stuck-at faults 

both in the input lines or adder modules, and because of the use of a parity checker to detect a 

fault, these two methods are not able to detect an even number of faults. Because our SBSA-

PCP method uses the parity checker to check the existence of faults in the input lines, it can 

detect a single/odd stuck-at or MCT fault in the input lines. In addition, for the adder modules, 

it can detect all faults in the separate modules. The SBSA-IBP can detect any number of faults 

either in the input lines or the adder modules. Table ‎4.1 lists the error-detection capability of 

the discussed methods. 
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Table ‎4.1 Capability of fault detection 

 
Fault in input lines Fault in adder modules 

Single Multiple Single Multiple 

Cardarili’s method [41] Yes No Yes Only odd number of faults 

SBSA-PaP Yes No Yes Only odd number of faults 

SBSA-PCP Yes No Yes Yes 

SBSA-IBP Yes Yes Yes Yes 

2. Error correction and fault localization 

First we describe the capability of error correction in Cardarilli’s‎method‎ [41]. In an n-

digit BSDN addition, 5n+1 digits are involved [n-digit addend (a), n-digit augend (b), n-digit 

partial sum (w), n-digit intermediate carry (c), and n+1 digit sum (z)]. Each digit in BSDN uses 

two bits for representation; therefore, 10n+2 possible locations are available to accommodate a 

fault. 

The proposed process in [41] specifies the correction and localization of all Type 1 faults. 

Hence, a fault that occurs in c, w, or z is correctable and fully localized. Therefore, any fault in 

6n+2 bits (w: 2n, c: 2n, z: 2n+2) can be fully corrected and localized. Types2 and 3 faults are 

correctable only if the recomputation results in fault masking, and none of the error indicator 

activates an error signal; else, only a partial correction is possible. Because in one bit the fault 

masking chance is 50%, thorough correction and localization of only half of the Types 2 and 3 

faults is possible. 

Comprehensively, the probability of full and partial error corrections in the method in [41] 

can be calculated as 

Probability of Type 1 error (error in w, c, and z): 

6𝑛 + 2

10𝑛 + 2
 

Probability of Type 2 error (error in the LSB bit of a and b): 
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2𝑛

10𝑛 + 2
 

Probability of Type3 error (error in the MSB bit of a and b): 

2𝑛

10𝑛 + 2
 

Probability of error correction for Type 1 error: 100% 

Probability of error correction for Type 2 error: 50% 

Probability of error correction for Type 3 error: 50% 

Probability of full error correction: 

100% (
6𝑛 + 2

10𝑛 + 2
) + 50% (

2𝑛

10𝑛 + 2
) + 50% (

2𝑛

10𝑛 + 2
) 

 

Full error correction: 
8𝑛+2

10𝑛+2
≅

4

5
 

Partial error correction: 
2𝑛

10𝑛+2
≅

1

5
 

 A rough approximation shows that the partial and full error correction percentage does not 

dependent on digit length n. 

In our proposed procedures, because the value of all 10n+2 bits flips in the second 

recomputation, any stuck-at or MCT fault is masked; therefore, a fault in a, b, c, w, or z is fully 

corrected and localized, and the correction algorithm can be applied without referring to the 

type of the fault (Type 1, 2, or 3 fault).  Table ‎4.2 lists the error-correction probability of the 

explained methods. 

Table ‎4.2 Probability of error correction 

Method 
Percentage 

Input lines Adder modules 

Cardarili’s‎method [41] 50% 100% 

SBSA-PaP, SBSA-PCP, SBSA-IBP 100% 100% 

 

With regard to fault localization, presented method in [41] and SBSA-PaP method localize 
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the fault based on the fault type. A fault in the MSB of input line can cause one to three 

inequalities, a fault in the LSB can cause up to two inequalities, and a fault in the adder 

modules can create one inequality. Therefore, when the number of inequality is one, we cannot 

locate the fault because it can be caused either by the input line (MSB or LSB) or one of the 

adder modules. In SBSA-PCP, because the error indicators for the adder modules and input 

lines are separated, the source of the fault can be specified as either due to the adder modules or 

input line. Because each adder has its own error indicator, any fault in any adder can be 

localized. To localize the fault in the input lines, comparing the calculated results from the first 

and second computations can specify the faulty line number. For the SBSA-IBP 

implementation, all faults can be localized because all adder modules and input lines have 

separate error indicators. 

3. Time, Area, and Power Overhead 

To achieve time, area, and power comparison, Verilog HDL is used to code up the method 

of [41]  and our proposed methods. The functional simulation is performed by Modelsim SE 

while Synopsys Design Compiler is used for synthesis. In addition, for accurate comparison, 

we designed all methods for 8, 16, 32, 64 and 128 digits. 

Time overhead 

To analyze the time overhead, first, the delay time in the binary signed-digit adder and 

self-checking binary signed-digit adder was calculated. Because the signed-digit adder is a 

parallel adder, the delay time for all lengths of digits is equal. Because SBSA-PCP and SBSA-

IBP methods use different signed-digit adder implementation compared with the methods in 

[41] and SBSA-PaP method, they have different delay times. For both our implementations, the 

delay time in the binary signed-digit adder is 0.66 ns, and those in the self-checking binary 
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signed-digit adder are 0.78 ns and 0.85 ns for the SBSA-PCP and SBSA-IBP implementations, 

respectively. In an error-free‎ calculation,‎ the‎ Cardarili’s method [41], and our SBSA-PaP, 

SBSA-PCP and SBSA-IBP methods take almost the same time, which are approximately 0.71, 

0.71, 0.78, and 0.85 ns, respectively, for all digit lengths. Table ‎4.3 lists the time delays in the 

absence of a fault. 

Table ‎4.3 Time delay for fault-free addition (ns) 

Method 
Time 

8 Digit 16 Digit 32 Digit 64 Digit 128 Digit 

Cardarili’s‎method‎[41] 0.71 0.71 0.71 0.71 0.71 

SBSA-PaP 0.71 0.71 0.71 0.71 0.71 

SBSA-PCP 0.78 0.78 0.78 0.78 0.78 

SBSA-IBP 0.85 0.85 0.85 0.85 0.85 

 

For any fault, all methods need to perform the recomputation step(s) to localize and 

correct the faulty digit. Table ‎4.4 lists the estimated time for the localization and correction 

algorithm in all methods. As mentioned earlier, in our methods, correction can be 

straightforwardly done by inverting the result obtained in the second computation; however, 

the‎Cardarili’s‎method‎[41] needs a different calculation to obtain a correct result. Therefore, 

the time delays in our proposed methods are quite less compared with that in the Cardarili’s‎

method [41]. 
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Table ‎4.4 Time delay for the fault-localization and error-correction algorithm only (ns) 

Method 

Time 

8 Digit 16 Digit 32 Digit 64 Digit 128 Digit 

Cardarili’s‎method‎[41] 2.52 3.42 5.17 9.78 18.49 

SBSA-PaP 1.7 1.9 2.05 2.14 2.34 

SBSA-PCP 0.89 1.02 1.16 1.34 1.49 

SBSA-IBP 0.35 0.43 0.51 0.60 0.78 

 

For‎any‎ fault,‎ the‎Cardarili’s‎method‎ [41] needs to perform a minimum of two addition 

processes (computation using normal inputs and LSI) with one localization and correction 

process and a maximum of three addition processes (computation using normal inputs, LSI, 

and RSI) with two localization and correction processes. In our proposed methods, for any 

fault, only two addition processes along with one localization and correction process are 

needed. According to Table ‎4.3 and Table ‎4.4, we can estimate the delay times in the mentioned 

methods for faulty addition, as listed in Table ‎4.5. 

Table ‎4.5 Approximate time delay for faulty addition (ns) 

Method 

Time 

8 Digit 16 Digit 32 Digit 64 Digit 128 Digit 

Cardarili’s‎method‎[41] LSI 3.94 4.84 6.59 11.2 19.91 

Cardarili’s‎method‎[41] RSI 7.17 8.97 12.74 21.69 39.11 

SBSA-PaP 3.12 3.32 3.47 3.56 3.76 

SBSA-PCP 2.45 2.58 2.72 2.9 3.05 

SBSA-IBP 1.91 1.99 2.07 2.16 2.34 

 

By referring to Table ‎4.4 and Table ‎4.5, we can prove the superiority of our proposed 

methods‎compared‎with‎that‎of‎the‎Cardarili’s‎method‎[41]. The tables also indicate that in our 

methods, the delay time slightly depends on the input digit length compared with the 
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Cardarili’s‎ method‎ [41]. Figure ‎4.1 shows that the delay time increases by increasing the 

number of input digits. 

 

 

Figure ‎4.1 Approximate delay time in the presence of a fault. 

Area overhead 

Table ‎4.6 lists the occupied area in the unprotected conventional binary signed-digit adder 

and self-checking binary signed-digit adder under two different implementations. The 

minimum area overhead for the self-checking BSDN adder is approximately 67% in the 

implementation using information from the previous digit position and 76% using the double-

recoding method of the corresponding conventional BSDN adder. As listed in Table ‎4.7, adding 

the fault-localization and error-correction algorithm increases the occupied area in all methods. 

However, in the SBSA-PCP method, the increase in the area is not as large as that of other 

described technique. Further, it significantly requires lesser area than the other approaches. 

SBSA-IBP method needs a slightly larger area to detect and localize the fault, but still it needs 

a lesser area than SBSA-PaP and method in [41]. 
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Table ‎4.6 Occupied area in the conventional and self-checking‎BSDA‎(μm2) 

Implementation Method 
Area 

8 Digit 16 Digit 32 Digit 64 Digit 128 Digit 

Using 

information 

from the 

previous 

digit 

position 

 

Unprotected 

BSDA 
520 1030 2050 4091 8176 

Self-

checking 

BSDA 

(Figure ‎2.9) 

870 1721 3472 6870 13737 

Using 

double-

recoding 

method 

Unprotected 

BSDA 

(Figure ‎3.3) 

460 899 1778 3535 7053 

SBSA-PP 

(Fig. 8) 
815 1579 3198 6351 12666 

SBSA-IP 

(Fig. 9) 
1251 2321 4697 9321 18910 

 

Table ‎4.7 Occupied whole area‎(μm2) 

Method 
Area 

8 Digit 16 Digit 32 Digit 64 Digit 128 Digit 

Cardarili’s‎method [41] 2476 3873 7420 14109 29033 

SBSA-PaP 1511 2884 5497 11456 23181 

SBSA-PCP 1162 2159 4358 8651 17560 

SBSA-IBP 1251 2321 4697 9321 18910 

 

Table ‎4.8 shows the percentage area overhead in different adder design based on original 

adder. According to the table Cardarili’s‎ method [41] overhead is more than 300 percent 

compared with unprotected signed-digit adder. Our designed adder, SBSA-PCP, has less area 

overhead among all other designs. In order to compare out designs with other fault-tolerance 

designs we show the area overhead in two other adders. Table ‎4.8 shows that the fault-tolerance 
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carry-lookahead adder presented in [43] has average 130 percent overhead compared with 

original unprotected carry-lookahead adder, while our SBSA-PCP design had average less than 

120 percent area overhead. Protected carry select adder presented in [44]  shows less area 

overhead compared with other designs but this is calculated without considering occupied areas 

by LUTs and Registers. In addition, the probability of error detection/correction in carry select 

adder in [44] is less than other designs. 

Table ‎4.8 Time complexity and percentage of area overhead in different adders based on original unprotected 

adder 

Method 

Area overhead (compared with unprotected adder) 

Time 

Complexity 
8 Digit 16 Digit 32 Digit 64 Digit 128 Digit 

Cardarili’s‎method 

[41] 
376.1% 276.0% 261.9% 244.9% 255.1% O(1) 

SBSA-PaP 190.6% 180.0% 168.1% 180.0% 183.5% O(1) 

SBSA-PCP 123.5% 109.6% 112.6% 111.5% 114.8% O(1) 

SBSA-IBP 140.6% 125.3% 129.1% 127.8% 131.3% O(1) 

Carry-lookahead adder 

[43] 
137.5% 136.9% 136.6% 136.5% N/A O(log(n)) 

Carry select adder [44] 

without LUTs/Reg 
84.9% 75.15% 68.19% 65.45% N/A O(√𝑛) 

 

Figure ‎4.2 shows the increase in the area with the increase in the number of input digits in 

the four methods.  
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Figure ‎4.2 Increase in the‎area‎by‎increasing‎the‎number‎of‎input‎digits‎(μm2). 

Power overhead 

Finally, the power consumption comparison results of the method in [41] with that of our 

proposed methods are listed in Table ‎4.9, which shows that the power consumption of our 

proposed methods is significantly lesser than the method in [41]. 

Table ‎4.9 Power‎consumption‎(μW) 

Method 
Power 

8 Digit 16 Digit 32 Digit 64 Digit 128 Digit 

Cardarili’s‎method [41] 171 288 614 1200 2480 

SBSA-PaP 146 264 592 1190 2470 

SBSA-PCP 92 174 367 758 1660 

SBSA-IBP 105 137 240 573 1541 

 

Figure ‎4.3 shows the results obtained from the five compared methods. The methods in 

[41] and SBSA-PaP method almost overlapped and incur more power consumption than others. 
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Figure ‎4.3 Increased‎in‎power‎consumption‎with‎the‎increase‎in‎the‎number‎of‎input‎digits‎(μW). 

 

The results prove the superiority of the proposed methods over the previously suggested 

methods. Our methods lead in all aspects such as lower application time, area overhead, and 

power consumption, along with high error-correction and fault-localization capability with 

more fault coverage. 
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5 Conclusion 

 In this chapter, the conclusion on the overall study will be discussed. At first findings of 

the thesis are briefly reviewed, and then the contributions of the methods are discussed. And 

finally a future work is suggested to extend the proposed methods in a way to act more 

efficient. 

This research has presented new fault-localization, detection, and error-correction 

methods for a self-checking BSDN adder scheme. Through the use of inverted operands, the 

new methods with low-complexity, state that these capabilities are achievable. Fault-

localization and error-correction schemes rely on exploitation of the self-dual function model. 

Furthermore, with respect to full error-correction capabilities using recomputation with 

complemented operands, comparison with the help of obtained results led to the localization of 

faulty bit(s). Accomplishment of fault localization and error correction using the proposed 

approaches are performed in one phase only. 

The research indicated that for error correction using self-dual property beside with parity 

prediction structure is more efficient than error correction method using recomputation with 

shifted operands. In addition a novel, low-complexity approach shows that error detection and 

localization capabilities are more efficient and achievable using the FA property, which takes 

advantage of the observed relationship between the inputs and outputs in an FA, beside with 

the self-dual function concept to set up fault-localization and error-correction procedures. 

Future work will aim towards the attainment of fault-localization and error correction 

properties at low cost in different radix signed-digit number adders by employing the proposed 

techniques. For instance the future work will include the use of these methods in radix-4 

quaternary signed-digit (QSD) number adders to obtain fault-tolerance property at low cost. In 

Radix-4 the operations on greater numbers like 64, 128 –bit, that is carry free, can be 

implemented with a persistent delay and low complicacy. QSD system uses four states instead 



 

72 

 

of two states in binary form. In QSD, every digit is presented by a number in between -3 to 3. 

QSD acts as a support for the new state-of-the-arts areas like quantum computing, DNA 

computing, optical computing, and quantum dot cellular automata ant etc. 
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