

Attribution-NonCommercial-NoDerivs 2.0 KOREA

You are free to :

 Share — copy and redistribute the material in any medium or format

Under the follwing terms :

Attribution — You must give appropriate credit, provide a link to the license, and

indicate if changes were made. You may do so in any reasonable manner, but

not in any way that suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

NoDerivatives — If you remix, transform, or build upon the material, you may

not distribute the modified material.

You do not have to comply with the license for elements of the material in the public domain or where your use

is permitted by an applicable exception or limitation.

This is a human-readable summary of (and not a substitute for) the license.

Disclaimer

http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/
http://creativecommons.org/licenses/by-nc-nd/2.0/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0
http://creativecommons.org/licenses/by-nc-nd/2.0/kr

February 2017

PhD Thesis

Low-Cost Self-Repairing

Binary Signed-Digit Adder with

Multiple Fault Detection and

Localization

Graduate School of Chosun University

Department of Computer Engineering

Hossein Moradian Sardroudi

[UCI]I804:24011-200000265894

오류의 국지화

저비용 다중오류 자가회복

부호 이진수 가산기 구조

2017 년 2 월 24 일

조선대학교 대학원

컴 퓨 터 학 과

호세인 모라디언살드루디

Low-Cost Self-Repairing

Binary Signed-Digit Adder with

Multiple Fault Detection and

Localization

Advisor: Prof Jeong-A Lee

This Thesis is submitted to the Graduate School of Chosun

University in partial fulfillment of the requirements for

the award of a PhD degree

2016 년 10 월

Graduate School of Chosun University

Department of Computer Engineering

Hossein Moradian Sardroudi

- vi -

Dedication

I dedicate this thesis to my beloved parents,

thank you for always being there for me, supporting

me and encouraging me to be the best that I can be.

- vii -

Acknowledgements

This research would not have been possible without the support of many people. I am

heartily thankful to my supervisor, Professor Jeong-A Lee, who was abundantly helpful

and offered invaluable assistance, support and guidance. Without her continued support

and interest, this thesis would not have been the same as presented here. My sincere

appreciation also extends to all my labmates and friends who have provided assistance at

various occasions. Their views and tips were useful indeed. Also I wish to express my love

and gratitude to my beloved parents and families for their supports and endless love,

through the duration of my studies. Lastly, I offer my regards and blessings to all of those

who supported me in any respect during the completion of the research.

- viii -

Table of Contents

DEDICATION ... VI

ACKNOWLEDGEMENTS.. VII

TABLE OF CONTENTS ... VIII

LIST OF TABLES ... XI

LIST OF FIGURES .. XII

ABBREVIATIONS .. XIV

ABSTRACT .. XVI

초록.….. .. XVIII

1 INTRODUCTION .. 1

A. MOTIVATIONS ... 2

B. OBJECTIVES OF RESEARCH ... 5

C. RESEARCH SCOPE ... 5

D. ORGANIZATION OF THE RESEARCH .. 6

2 RELATED WORK ... 7

A. FAILURE ... 7

B. FAULT ... 7

- ix -

C. ERROR .. 9

D. STUCK-AT FAULT .. 11

E. MULTI CYCLE TRANSIENT FAULT ... 12

F. STANDARD ADDER TYPES .. 13

G. SELF-CHECKING CIRCUITS ... 14

1. Fault Detection ... 15

2. Fault Localization .. 18

3. Fault-Tolerant Adders .. 19

H. SIGNED-DIGIT NUMBER SYSTEMS .. 23

1. Signed-Digit Adders .. 26

2. Binary Signed-Digit Number (BSDN) Addition .. 27

3. Self-Checking Signed-Digit Adders .. 29

3 PROPOSED DESIGNS ... 44

1. Self-checking binary signed-digit adder using parity prediction (SBSA-PaP) .. 47

2. Self-checking binary signed-digit adder .. 49

3. Self-checking binary signed-digit adder using pre calculated input paritie

 (SBSA-PCP) .. 51

4. Self-checking binary signed-digit adder using input bit parities (SBSA-IBP) .. 54

5. Error-correction and fault-localization method in SBSA-PCP and SBSA-IBP . 54

4 PERFORMANCE EVALUATION AND COMPARISON 60

1. Error detection ... 60

2. Error correction and fault localization ... 61

3. Time, Area, and Power Overhead .. 63

5 CONCLUSION... 71

- x -

6 REFERENCES ... 73

- xi -

 List of Tables

Table ‎2.1 Transient Widths vs. Propagation Delay across Technologies (ps) 13

Table ‎2.2 Relationships between the inputs and outputs in an FA .. 22

Table ‎2.3 Calculating partial sum and intermediate carry [48] .. 29

Table ‎3.1 BSDN Complement ... 45

Table ‎3.2 Intermediate Carry and Partial Sum, First Four Rows ... 46

Table ‎3.3 Intermediate Carry and Partial Sum, Last Two Rows .. 46

Table ‎3.4 Carry Free Addition ... 47

Table ‎3.5 Parity of an ordinary number and the corresponding signed-digit representation based

on the explained encoding method .. 52

Table ‎3.6 Truth table for FA with original and complemented inputs.. 55

Table ‎4.1 Capability of fault detection ... 61

Table ‎4.2 Probability of error correction ... 62

Table ‎4.3 Time delay for fault-free addition (ns) ... 64

Table ‎4.4 Time delay for the fault-localization and error-correction algorithm only (ns) 65

Table ‎4.5 Approximate time delay for faulty addition (ns) .. 65

Table ‎4.6 Occupied area in the conventional and self-checking‎BSDA‎(μm2) 67

Table ‎4.7‎Occupied‎whole‎area‎(μm
2
) .. 67

Table ‎4.8 Time complexity and percentage of area overhead in different adders based on

original unprotected adder ... 68

Table ‎4.9‎Power‎consumption‎(μW) .. 69

- xii -

List of Figures

Figure ‎2.1 Abstraction layers in a computer system. ... 9

Figure ‎2.2 (a) Fault within the inner scope masked and not visible outside the inner scope. (b)

Fault propagated outside the outer scope and visible as an error [1]. 11

Figure ‎2.3 Bathtub curve presenting the connection between failure rate, infant mortality,

useful lifetime, and wearout phase [1]. .. 11

Figure ‎2.4 Chain of Logic XOR gates to generating even parity. .. 17

Figure ‎2.5 (a) A bit slice of the proposed carry lookahead adder. (b) The structure of the voter

in (a). .. 21

Figure ‎2.6 Self-checking FA [45] ... 22

Figure ‎2.7 FA without logic sharing [17] ... 23

Figure ‎2.8 Fully parallel addition method in signed-digit number representation [46] 25

Figure ‎2.9 BSDN Self-checking adder [48] ... 31

Figure ‎2.10 Fault detection, correction, and localization algorithm [41] 33

Figure ‎2.11 Corrected fault detection, correction, and localization algorithm proposed in [41] 34

Figure ‎2.12 Completed and corrected fault detection, correction, and localization algorithm

proposed in [41] ... 35

Figure ‎2.13 n-digit BSD addition .. 36

Figure ‎3.1 Masking of a fault using complemented input .. 44

Figure ‎3.2 Fault detection, correction, and localization algorithm for SBSA-PaP

implementation .. 49

Figure ‎3.3 Binary signed-digit adder [47] .. 50

Figure ‎3.4 Binary signed-digit adder using a self-checking FA .. 51

Figure ‎3.5 SBSA-PCP ... 53

- xiii -

Figure ‎3.6 SBSA-IBP .. 54

Figure ‎3.7 Algorithm of the fault correction and localization for the SBSA-PCP implementation

 ... 57

Figure ‎3.8 Example of the comparison results from first and second addition operations 58

Figure ‎3.9 Algorithm of the fault correction and localization for SBSA-IBP implementation ... 59

Figure ‎4.1 Approximate delay time in the presence of a fault. .. 66

Figure ‎4.2 Increase in the area by increasing‎the‎number‎of‎input‎digits‎(μm2). 69

Figure ‎4.3 Increased in power consumption with the increase in the number of input digits

(μW). .. 70

- xiv -

Abbreviations

LDT: long duration transient

MCT: multi-cycle transient

CPU: central processing unit

GPU: graphics processing unit

DSP: digital signal processing

FFT: fast fourier transform

FIR: finite impulse response

SET: single event transient

SEU: single event upset

SER: soft error rate

SDC: silent data corruption

DUE: detected unrecoverable error

OS: operating system

EEC: error correction codes

LET: linear energy transfer

TSC: totally self-checking

DMR: dual modular redundancy

BCP: Berger check prediction

SFS: strongly fault secure

FA: full-adder

ED: error detection

EC: error correction

DWC: Duplication-With-Comparison

TMR: Triple Modular Redundancy

- xv -

QMR: Quadruple Modular Redundancy

SCA: Self-Checking Adder

CLA: Carry-Lookahead Adders

RCA: ripple-carry adder

CSA: carry-select adder

CSK: carry-skip adder

RCLA: ripple-carry/carry-lookahead adder (hybrid adder)

SDA: signed-digit adder

BSDN: binary signed-digit number

LSI: left-shifted inputs

RSI: right-shifted inputs

RESO: recomputation with shifted operands

TLSI: triple left shifted inputs

TRSI: triple right shifted inputs

QSD: quaternary signed-digit

- xvi -

Abstract

Low-Cost Self-Repairing Binary Signed-Digit Adder with

Multiple Fault Detection and Localization

By: Hossein Moradian Sardroudi

Advisor: Professor Jeong-A Lee, Ph. D

Department of Computer Engineering

Graduate School of Chosun University

The advent of advanced microelectronic technologies and scale downing into

nanometer dimensions has made current digital systems more susceptible to faults and

increases the demand for reliable and high-performance computing. Current solutions have

so far used the parity prediction scheme to increase reliability and detect fault in adder

modules, but they add perceptible area overhead to the circuit. In this research, we present

two new efficient methods for fault detection and localization, in addition to the full error-

correction, targeting stuck-at and multi-cycle transient (MCT) faults in radix-2 signed-digit

adders through a combination of time and hardware redundancy. Signed-digit adder, which

eliminates carry propagation chain, can execute addition operation independent of the

length of operands, in constant time. The confined carry propagation implies remarkable

advantage in terms of error detection, localization, and correction. We developed a new

low-cost technique, for fault-localization and error-correction, which utilizes the self-dual

concept in binary signed-digit adders. In addition, we use the self-checking full adder that

can identify a fault based on internal functionality to detect any fault in the adder modules.

The detection of a fault is followed by input inversion, recomputation, and appropriate

output inversion to correct the error and localize the fault. The error-correction method

employs fault masking by utilizing the self-dual concept, which is based on the fact that in

the existence of a fault, the designed technique results in a fault-free complement of the

expected output when fed by the complement of its input operands. Additionally, the

existence of any fault in the input lines of the adder modules can be identified by low-cost

- xvii -

parity checking error-detection approach, and a faulty module can be localized by

comparing the faulty output from the first computation with the fault-free output from the

recomputation. Higher reliability with less computational time and reduced hardware-area

overhead are the distinct features of our new designs. In these methods, all of the single

stuck-at and MCT faults can be localized and corrected, whereas previous approaches were

unable to localize and correct with 100% reliability even with longer time durations and

greater hardware cost. Based on the experimental results, the area occupied by our designs

is up to 50% less, compared with the area used by previous designs. In addition to the area

reduction, our design approaches result in a higher reliability with less power consumption

and low time delay compared with a previous related works.

[KEYWORDS]: Reliability, Fault tolerance, Fault detection, Error correction, Fault

localization, Self-Repairing, Signed-digit adder

- xviii -

초록.…..

오류의 국지화 기반 저비용 다중오류 자가회복 부호 이진수

가산기 구조

호세인 모러디안 살드루디

지도교수 : 이정아

컴퓨터공학과

조선대학교 대학원

반도체 소자의 집적화 기술의 발전으로 나노미터 수준으로 축소되면서,

디지털 시스템의 결함은 더 취약해졌고, 고성능 컴퓨팅에 대한 신뢰성 요구는

더욱 더 증가하게 된다. 가산기 회로에서 신뢰성을 높이기 위한 기존의

방법에서는 패리티 예측 기법을 사용하여 오류를 탐지하지만, 이와 관련된

상당한 하드웨어 오버 헤드를 회로에 추가한다. 본 논문에서는 가산기의 오류

탐지와 오류 회복을 보다 효율적으로 구현하기 위하여, 오류의 국지화에

기반한 저비용 오류 자가회복 가산기 구조를 제시한다. 고착오류(Stuck-at

Faults)와 Multi-Cycle Transient(MCT) 오류를 대상으로 부호 이진수 가산기에서

오류 검출 및 오류 위치 파악을 통한 두 가지의 효율적인 오류 자가회복

방법을 제시한다.

부호 이진수 가산기는 캐리 전달 체인이 제거되어 기존의 가산기와 달리,

덧셈을 완료하는 시간은 피연산자의 길이에 관계 없이 일정하다. 부호 이진수

가산기의 제한된 캐리 전파는 오류 검출, 오류의 지역화 및 오류회복 측면에서

주목할만한 이점을 제시한다. 본 논문에서는 결함 위치 및 오류 회복을 위해

부호 이진수 가산기에서 Self-Dual 개념을 사용하는 새로운 저비용 기술을

개발했다. 또한 전가산기(Full Adder)회로의 로직 특징을 기반으로 한 오류

자가탐지 전가산기를 이용하여 가산기 모듈의 작동오류를 탐지한다. 부호

이진수 가산기의 세부 모듈인 전가산기 회로의 작동오류가 탐지되면 입력 반전,

재연산 및 적절한 출력 반전에 의해 해당 오류를 정정하고 지역화한다. 오류

정정 방법은 Self-Dual 개념을 활용한 오류 마스킹을 사용한다. 즉, 오류가

탐지되었을 경우, 부호 이진수 가산기에서 피연산자의 입력을 보수화하면,

출력은 오류가 없을 것이며, 이 출력의 보수값이 오류가 회복된 출력이 되는

Self-Dual 성질을 이용한다. 또한, 전가산기 모듈의 입력 라인에서의 임의의

결함은 저비용 패리티 검사 오류 검출 방법에 의해 식별 될 수 있고, 오류가

- xix -

있는 전가산기모듈은 첫 번째 계산의 오류 출력을 재연산 한 fault-free 출력과

비교하여 모두 지역화 할 수 있다. 부호 이진수 가산기의 입력라인

결함탐지와 전가산기 작동오류 자가탐지를 활용하여, 계산 시간 단축은

물론이고, 높은 신뢰성을 하드웨어 영역 오버 헤드 감소로 달성할 수 있었다.

기존의 방법에서 더 긴 시간과 하드웨어 비용으로도 지역화 및 오류 정정을

100% 달성할 수 없었던 반면, 고착오류 (Stuck-at Faults)와 Multi-Cycle

Transient(MCT) 오류 모두 지역화 및 정정될 수 있었다. 실험 결과에 따르면,

본 논문에서 제시한 오류의 국지화 기반 다중오류 자가회복 부호 이진수

가산기 구조는 기존에 제시된 자가회복 이진수 가산기 구조보다 회로

오버헤드가 줄어서, 그 회로 크기가 최대 50% 축소되었으며, 높은 신뢰성과

저전력, 그리고 낮은 지연시간을 제공한다.

[KEYWORDS]: 신뢰성, 결함극복, 오류 검출, 오류 수정, 오류의 국지화,

오류 자가 회복 부호 이진수 가산기

1

1 Introduction

Experimental researches have shown that the increasing complexity of digital circuits,

reduced clock cycles, and reduction in hardware (i.e. transistor) size, along with the presence of

radiation and other environmental conditions, has made current hardware systems more prone

to faults [1].

Moreover the incidence of multiple faults caused by a single particle hit increase because

of reduction in transistor size and decreasing the distance between neighbor devices. Increasing

the clock frequency of circuits to achieve high speed systems, leads to transient faults

remaining longer than one cycle. These facts disqualify the use of several existing soft error

moderation methods based on temporal redundancy, and necessitate the development of new

fault tolerant methods to handle this different scenario. Consequently a solution that eases

building trustworthy schemes by supervision errors caused by unreliable modules and

mechanisms is needed [1] [2] [3] [4] [5]. In addition, a fault-tolerant characteristic is not only

for mission-critical and safety systems but also for the common computing systems.

As the central modules of the processing elements, arithmetic operators are also

vulnerable to diverse environmental effects. In nearly all digital components, adders are the

vital components existing in the arithmetic operators. Therefore, designing a reliable adder that

can detect faults and correct the errors is an important challenge and a prominent goal.

Novel low cost fault tolerance methods are proposed in this research. New techniques

working at diverse concept levels, as the chosen substitute to deal with stuck-at faults and those

faults produced by multi-cycle transient (MCT) that will upset CMOS devices to be

manufactured in upcoming technologies.

2

A. Motivations

In recent the development of semiconductor technology has carried growing concerns

about the reliability of systems to be deliberate using those devices, while continually

providing innovative devices with unmatched speed, size, and power consumption

characteristics. According‎ to‎ Moore’s‎ law‎ while CMOS technology keeps developing, thus

approaching the physical boundaries carry out by spending of only a few atoms to organize the

device’s‎channel‎[6] [7], the development of another technologies, able to take digital systems

away from those bounds, come to be a huge challenge to be faced by researchers. But then

again even the most hopeful alternative technologies developed so far bring alongside the

similar adverse characteristic: devices manufactured using them are more susceptible to

manufacturing defects and transient faults than nanoscale CMOS, making the reliability aim

even more hard to be reached.

In new technologies the decreasing reliability of CMOS devices is a result of several

diverse problems arising from the physical features of those devices:

• Functional temperature restrictions and the lower power consumption levied by

embedded and portable systems necessities lead to the usage of lower operational voltages,

which consecutively infer smaller critical charges, making the devices more vulnerable to

transient pulses, meanwhile those devices can be upset by even particles with quite slight

energy [8]. Accordingly, the incidence of single event upsets (SEUs) and single event transients

(SETs) has been increasing in recent years, and became a concern not only for avionics

applications or systems targeting space, but also for those intended for critical operations meant

to be used at sea level [9]. Consistent with the international technology roadmap for

semiconductors 2008 update, under 65nm, single-event upsets (soft-errors) influence field-level

product reliability, not only for embedded memories, but for latches and logic also [10].

Furthermore, while several error detection and correction methods have been suggested and are

3

in present use to shield devices against those effects, in this manner stabilizing the soft error

rate (SER) through technology nodes, the protection of combinational logic alongside transient

faults is still an open issue.

• Small size devices allow the building of circuits with higher densities, where the space

among neighbor devices is reduced among consecutive technology nodes. Such little spaces

allow that two or more silicon devices to be hit by a single particle at the same time, by this

means producing multiple concurrent faults, a risk that was not reflected until recently, and

consequently is not eased by currently existing fault tolerance techniques [11] [12].

Consecutively, this multiple concurrent faults situation can lead to catastrophic concerns when

well established and proven techniques in use under the single fault model are used with

upcoming technologies.

• Transient faults appear only for a short time and then disappear. Therefore, detecting

transient faults is more important than correcting them because after the fault disappears, the

module functions correctly. Designing circuits with shorter cycle times became possible with

the new fast devices, however unfortunately, at the same bound of the cycle times the duration

of transient pulses does not scale [13] [14], leading to a condition where transient pulses might

come to be longer than the cycle time of the circuits. By increasing the operating frequencies in

recent nanometer-technology-based circuits, transient fault phenomena that previously

occurred for durations as short as and considerably below one clock cycle can be now

deliberated as long-duration transient (LDT) or multi-cycle transient (MCT) faults [15]. In fact,

the effects of MCT faults clearly have a considerably higher chance of not being covered,

therefore they also stand a more chance of making system failures [16]. Existing soft error

mitigation methods either are not able to deal with this new situation due the high performance

overheads that they would impose to get by such long duration transients, or do impose very

high power consumption and area overheads, which will need the growth of new low cost

system level modification methods [17].

4

• In addition all those adverse effects over reliable system operation caused by CMOS

technology development, the manufacturing of digital systems is correspondingly affected by

growing defect rates as a result of process deviations, higher complexity for manufacturing test

as a result of augmented components density in the circuits, and further related problems.

Stuck-at fault is one of the faults that can be appeared due to manufacturing problems. To cope

with this new scenario new method needs to be introduced. In case of permanent stuck-at

faults, circuit manufacturers apply different error detection patterns to detect faulty modules

after fabrication, but it is not guaranteed that all permanent faults can be detected in the testing

phase. In addition, stuck-at faults can appear in circuits afterward because of different reasons

such as aging, accidental overvoltage, temperature, or other environmental conditions.

Therefore detecting and correcting stuck-at faults during the time that the module is online,

without interrupting the system, is important.

On the other hand complicacy in a circuitry and delay in propagation are some of the main

problems that every digital circuitry has to deal with. In binary system of numbers, speed of

computation relies on propagation & formulation of carry particularly when quantity of bits

gets raised. Two basic approaches for reducing the delays caused by signal propagation in

arithmetic operations are speeding up or eliminating the carry and borrow chains. The speeding

up approach is exemplified by carry-skip and carry-lookahead designs which reduce the ripple-

carry delay of O(n) to a delay of O(n) and O(log n), respectively, for n-digit operands. The

second approach (eliminating the carry and borrow chains) is exemplified by signed-digit

number representation methods which limit the propagation of carries and borrows at the

expense of some overhead in storage and data-path width and in processing time for the initial

conversion and the final reconversion. The signed-digit number system has advantages of

performing fast computations with the help of characteristics of redundancy that perform carry-

and borrow-free operations of addition, subtraction, multiplication and division.

The application for fast arithmetic operations is wide, including central processing unit

5

(CPU), graphics processing unit (GPU), cryptography, digital signal processing (DSP), fast

fourier transform (FFT), finite impulse response (FIR) Filter, and applications that spend a

large proportion of the time for arithmetic calculation.

B. Objectives of Research

The objectives of this research are to present new efficient procedures that will achieve

single and multi-fault detection and localization, in addition to full error correction, in the

binary signed-digit number (BSDN) adders in which the faulty modules can be identified with

lesser area, time, and power overhead.

The objectives can be listed as:

◦ To study existing fault tolerance methods

◦ To propose new method for fault detection

◦ To suggest a technique for error localization

◦ To present a new process that will achieve full error correction

◦ To analyse and evaluate the proposed methods by comparing with

previous methods

C. Research Scope

 Number system:

◦ Radix-2 signed digit

 Fault Type:

◦ A single/multi stuck-at and MCT faults

 Design Tools:

◦ Xilinx Design Tools (ISE Design Suit 14.7, Vivado 2015.2)

6

 Implementation Language:

◦ Verilog HDL

 Simulation:

◦ ModelSim Student Edition 10.3c (Mentor Graphics)

◦ MATLAB Simulink R2015a

 Synthesis:

◦ Vivado 2015.2

◦ Synopsys Design Compiler

D. Organization of the Research

The organization of this thesis is as follows. Chapter 2 gives an overview of fault types,

self-checking circuits, signed-digit number system and self-checking signed-digit adders.

Specific techniques for each proposed method are provided in Chapter 3. Chapter 4 discusses

the performance of proposed methods and presents the area overhead, maximum timing delay

and power consumption of techniques beside with comparison with previously related works.

Chapter 5 provides concluding remarks and future research opportunities.

7

2 Related Work

In this chapter, we present the main technical terms used in the research, and discuss the

related works regarding stuck-at and multi cycle transient faults. In addition signed-digit

number system and previous works in self-checking signed-digit adder systems are presented

in this section.

A. Failure

Failure is defined as a system malfunction that causes the system to not meet its

correctness, performance, or other guarantees. A failure arises when a system differs from its

normal behavior. A failure is, however, simply a special case of an error showing up at a

boundary where it becomes visible to the user. This could be a silent data corruption (SDC)

event, such as a change in the bank account, which the user sees. This could also be a detected

unrecoverable error (DUE) caught by the system but not corrected and may lead to temporary

unavailability of the system itself. For instance, if the word that was written in system memory,

differs from the word is read from the same address in the memory it is failure, or, an ATM

machine could be unavailable temporarily due to a system reboot caused by a radiation-induced

bit flip in the hardware. Alternatively, a disk could be considered to have failed if its

performance degrades by 1000x, even if it continues to return correct data.

B. Fault

User-visible errors, such as soft errors, are a manifestation of underlying faults in a

computer system. Faults in hardware structures or software modules could arise from defects,

imperfections, or interactions with the external environment. Examples of faults include

8

manufacturing defects in a silicon chip, software bugs, or bit flips caused by cosmic ray strikes.

Typically, faults are classified into three broad categories—permanent, intermittent, and

transient. The names of the faults reflect their nature. Permanent faults remain for indefinite

periods till corrective action is taken. Oxide wearout, which can lead to a transistor malfunction

in a silicon chip, is an example of a permanent fault. Intermittent faults appear, disappear, and

then reappear and are often early indicators of impending permanent faults. Partial oxide

wearout may cause intermittent faults initially. Finally, transient faults are those that appear and

disappear. Bit flips or gate malfunction from an alpha particle or a neutron strike is an example

of a transient fault:

 Permanent faults (stuck at 1 or stuck at 0)

 Transient faults (noise on the power supply)

 Intermittent fault (a transistor that is going to break down ; one time it is working

correctly and the next time not)

Faults in a computer system can occur directly in a user application, thereby eventually

giving rise to a user-visible error. Alternatively, it can appear in any abstraction layer

underneath the user application. In a computer system, the abstraction layers can be classified

into six broad categories (Figure ‎2.1)—user application, OS, firmware, architecture, circuits,

and process technology. Software bugs are faults arising in applications, OSs, or firmware.

Design faults can arise in architecture or circuits. Defects, imperfections, or bit flips from

particle strikes are examples of faults in the process technology or the underlying silicon chip.

A fault in a particular layer may not show up as a user-visible error. This is because of two

reasons. First, a fault may be masked in an intermediate layer. A defective transistor—perhaps

arising from oxide wearout—may affect performance but may not affect correct operation of an

architecture. This could happen, for example, if the transistor is part of a branch predictor.

Modern architectures typically use a branch predictor to accelerate performance but have the

9

ability to recover from a branch misprediction. Second, any of the layers may be partially or

fully designed to tolerate faults. For example, special circuits—radiation-hardened cells—can

detect and recover from faults in transistors. Similarly, each abstraction layer, shown in

Figure ‎2.1, can be designed to tolerate faults arising in lower layers. If a fault is tolerated at a

particular layer, then the fault is avoided at the layer above it. The next section discusses how

faults are related to errors.

User Applications

Operating System

Firmware

Architecture

Circuits

Process Technology

Figure ‎2.1 Abstraction layers in a computer system.

C. Error

Errors are manifestation of faults. Faults are necessary to cause an error, but not all faults

show up as errors. Figure ‎2.2 shows that a fault within a particular scope may not show up as

an error outside the scope if the fault is either masked or tolerated. The notion of an error (and

units to characterize or measure it) is fundamentally tied to the notion of a scope. When a fault

is detected in a specific scope, it becomes an error in that scope. Similarly, when an error is

corrected in a given a scope, its effect usually does not propagate outside the scope. This thesis

tries to use the terms fault detection and error correction as consistently as possible. Since an

error can propagate and be detected again in a different scope, it is also acceptable to use the

term error detection (as opposed to fault detection).

Three examples are considered here. The first one is a fault in a branch predictor. No fault

in a branch predictor will cause a user-visible error. Hence, there is no scope outside which a

10

branch predictor fault would show up as an error. In contrast, a fault in a cache cell can

potentially lead to a user-visible error. If the cache cell is protected with error correction codes

(ECC), then a fault is an error within the scope of the ECC logic. Outside the scope of this

logic where our typical observation point would be, the fault gets tolerated and never causes an

error. Consider a third scenario in which three complete microprocessors vote on the correct

output. If the output of one of the processors is incorrect, then the voting logic assumes that the

other two are correct, thereby correcting any internal fault. In this case, the scope is the entire

microprocessor. A fault within the microprocessor will never show up outside the voting logic.

Like faults, errors can be classified as permanent, intermittent, or transient. As the names

indicate, a permanent fault causes a permanent or hard error, an intermittent fault causes an

intermittent error, and a transient fault causes a transient or soft error. Hard errors can cause

both infant mortality and lifetime reliability problems and are typically characterized by the

classic bathtub curve, shown in Figure ‎2.3. Initially, the error rate is typically high because of

either bugs in the system or latent hardware defects. Beyond the infant mortality phase, a

system typically works properly until the end of its useful lifetime is reached. Then, the

wearout accelerates causing significantly higher error rates. The silicon industry typically uses

a technique called burn-in to move the starting use point of a chip to the beginning of the

useful lifetime period shown in Figure ‎2.3. Burn-in removes any chips that fail initially, thereby

leaving parts that can last through the useful lifetime period. Further, the silicon industry

designs technology parameters, such as oxide thickness, to guarantee that most chips last a

minimal lifetime period.

11

Figure ‎2.2 (a) Fault within the inner scope masked and not visible outside the inner scope. (b) Fault propagated

outside the outer scope and visible as an error [1].

Figure ‎2.3 Bathtub curve presenting the connection between failure rate, infant mortality, useful lifetime, and

wearout phase [1].

D. Stuck-at Fault

Stuck-at fault is a functional fault on a Boolean (logic) function implementation and

individual signals and pins are assumed to be stuck at logical '1' and '0'. A logic stuck-at 1

means when the line is applied logic 0, it produces a logical error. A logical error means 0

becomes 1 or vice versa. The number of stuck-at faults can be single or multiple, depending on

the number of lines or nodes affected. Stuck-at 1 does not mean line is shorted to VDD, and

Time

Instantaneous

Error

Rate

Infant

mortality

phase
Useful lifetime

Wearout

phase

Fault Fault

Inner Scope Inner Scope

Outer Scope Outer Scope Error

(a) (b)

12

stuck-at 0 does not mean line is grounded. It is an abstract fault model.

E. Multi Cycle Transient Fault

In addition to higher densities, the accessibility of faster circuits is a new feature of

upcoming technologies that carries strong concerns to the error tolerance topic, since it has

been expected that, for those technologies, even particles with diffident linear energy transfer

(LET) values will creates transients lasting longer than the expected cycle time of circuits [13],

[14]. In [18] for first time the undesirable impact of the effects of such multi cycle transients

(MCTs) or long duration transients (LDTs) on the overhead imposed by presently used of time

redundancy based error modification methods has been presented.

The first important phase in this study was the analysis of the effects of what has been

entitled multi cycle transients (MCT) or long duration transient (LDT) on soft errors mitigation

methods. This prediction was embedded in published works as to the effects of radiation on

semiconductor devices in different technologies [13], [14], and in [18] has been challenged

with the expected cycle times for inverters chains with different sizes, attained through

simulation. When opposing the development of the width of radiation induced transient pulses

through technologies with that of the cycle times of circuits, one could finds that, scaling trend

for the width of the transient pulses is not clear while the cycle times decrease in a fairly linear

form. Moreover, it has been proved that the extent of transient pulses will exceed the expected

cycle time of circuits for technologies beyond the 130 nm node [18]. Table ‎2.1 shows this fact

with data for a 10-inverter chain. The transient width figures in Table ‎2.1 has been extracted

from [13] and [14], while those for propagation delays have been estimated using parameters

from the Predictive Technology Model web site through simulation, [19].

13

Table ‎2.1 Transient Widths vs. Propagation Delay across Technologies (ps)

Technology (nm) 180 130 100 90 70 32

Transient width for LET = 10 MeV-cm
2
/mg 140 210 168 n.a. 170 n.a.

Transient width for LET = 20 MeV-cm
2
/mg 277 369 300 n.a. 240 n.a.

10-inverter chain propagation delay 508 158 n.a. 120 n.a. 80

n.a. = not available

In this new consequence the study of the behavior of temporal redundancy based

techniques has exposed that they cannot deal with MCTs/LDTs, caused by the intolerable

performance overhead that they would impose. In the other hand, area redundancy based

techniques, which could cope with MCTs/LDTs, impose space and power overheads that are

not matched to the requirements of a number of applications areas. From this analysis, in this

research, the necessity to work at advanced abstraction levels to face this different scenario has

been defined, and the search for low cost methods to detect and correct errors produced by

MCTs/LDTs at system, circuit and algorithm levels has taken place.

F. Standard Adder Types

Ripple-carry adder (RCA) is simplest and the most well-known adder. The RCA design is

regular, easy to implement and with the lowest area and power costs among all existing adders.

Its primary limitation is the long critical path, which grows linearly (O(n)) with the word width

n. Faster adders with shorter delays but increased area and power consumption also exist [20].

The well-known types are:

 carry-lookahead adder (CLA); O(log(n));

 carry-select adder (CSA);‎O(‎√‎n);

 carry-skip adder (CSK);‎O(‎√‎n); and

 ripple-carry/carry-lookahead adder (hybrid adder) (RCLA); O(log(n)).

14

 signed-digit adder (SDA); O(1)

For implementing a scalable-adder design, not only the delay is important, but also area

and power consumption of the adder are important too. The adder should also lend itself to

functionality segmentation, that is, the capability to divide the adder up in parts, without give in

the benefits and functionality of the adder in question; it should, therefore, have a regular

structure. Clearly, in terms of area and power, the RCA is always preferred when it is deemed

fast enough for its intended purpose. It also has the most regular structure of all known adder

types. The CSK, as well as the CLA, and particularly the RCLA hybrid, need some more

analysis, mostly because of their high-speed potential and their regular structures. CSA has no

regular structure which makes scalable implementation very difficult. Previous studies such as

Rabaey and [21] show that CSA overheads are significantly greater than those of the CLA

however the delay increases. In conventional RCA, carry propagation significantly reduces the

operation performance, especially when the size of the operands increases. Using a redundant

number system eliminates or reduces the carry propagation in the addition operation [22]. The

advantage of using a redundant system is to obtain an addition or subtraction operation with a

complexity of O(1), which is independent of the digit length of the operand, and results in a

fast adder circuit design [23].

G. Self-Checking Circuits

Self-checking usually emphasizes the detection of faults and overlooks the overhead

associated with fault recovery. Concepts of self-checking and fault tolerance system can be

stated as:

 A system is fault secure if it indicates a fault as soon as it occurs or if it

remains unaffected by a fault

 A system is self-testing if in response to every generated fault it produces a

15

non-coded output

 A system will be totally self-checking (TSC) if it is both fault secure and self-

testing

Self-checking systems require redundancy, which can be broadly classified as:

 Time-based redundancy

• Same hardware will perform a single operation in different intervals

of time

 Hardware-based redundancy

• Using more than one hardware to produce either the same, inverted or

coded output. In order to indicate the fault, the comparison between

the outputs of the redundant and the actual hardware will be used.

1. Fault Detection

Errors can interrupt program execution, corrupted data, or halt a running program. Error

detection approaches try to guarantee system reliability by detecting errors and turning out

correct results or data. Different methods within each technique have their own advantages and

disadvantages. Arithmetic codes, redundancy codes, Berger codes, and parity codes are sorts of

error detection approaches. Computer‎architect’s‎goals‎are‎reducing‎area,‎increasing speed, and

reducing power consumption of an error detection technique [24].

Area/Time Redundancy

Redundancy infers several computations of the identical inputs for an assumed circuit. A

comparison phase of the results will recognize the presence of an error if a fault happens in any

of the computations. Redundancy may be attained temporally or spatially. Temporal or time

redundancy is as a result of repeating computations using the same hardware, while spatial or

16

hardware redundancy duplicates hardware for concurrent computations.

Hardware or spatial redundancy is the most common method of redundancy [25]. Due to

simultaneous error detection, increased timing for hardware redundancy is not a concern.

Simultaneous error detection is the method of identifying and reporting errors while,

simultaneously, acting out normal processes of the system [25]. Dual modular redundancy

(DMR) is the modest hardware redundancy system. DMR duplicates the circuit and compares

the outputs of the two circuits. A fault propagating through one of the circuits will flag an error

when the two circuit outputs are compared [26]. DMR makes available 100% error detection,

however it needs 100% overhead plus the comparator circuit.

Time or temporal redundancy is an error recognition structure that cuts extra hardware at

the cost of spending more time [27]. Depending on the application of the processor, time

redundancy may be more affordable than extra hardware. The simple perception of temporal

redundancy is detecting the error by repetition of computations. The principal methods that use

time redundancy are alternating logic, recalculation using rotated operands (RERO), and

recalculation using shifted operands (RESO) [28] [29] [30].

Berger Codes

Berger codes offer error detection for logic and arithmetic operations. The only well-

known method for self-checking systems other than hardware duplication and two-rail encoded

systems is the strongly fault secure (SFS) Berger check prediction (BCP). A SFS BCP is further

effective than a two-rail encoded scheme. For all unidirectional errors Berger codes are usable.

In Unidirectional errors, both 1 to 0 and 0 to 1 errors can arise but they do not take place

concurrently in a single data word [31] [32]. The‎binary‎demonstration‎of‎the‎number‎of‎0’s‎in‎

data bits as the check code is used for the encoding system [33].

Parity Prediction

17

Parity prediction circuits only provide detection for arithmetic operations. The word

“prediction” implies‎ parity‎ is‎ “predicted”,‎ however,‎ parity‎ “prediction”‎ is‎ not‎ a‎ abstract

method, but it calculates the parity of the operands and outcome for comparison [1]. Amongst

all acknowledged self-checking adder systems, parity prediction adders need the lowest

hardware overhead [34].

Even and odd parity are two types of parity prediction. This study uses even parity to

produce parity bits. If there is an odd number of 1’s‎in‎the‎result or operand, the parity bit is set

to 1 when using even parity.

In the parity prediction circuit, the parity generator uses a series of logic XOR gates to

make a parity bit. For the logic and parity circuit, the logic unit is a replication of only the logic

unit in the circuit. Figure ‎2.4 expresses the gate level for producing an even parity bit for an

operand X.

Figure ‎2.4 Chain of Logic XOR gates to generating even parity.

There exist several parity-prediction designs which are fault-secure for single errors. For a

full-adder (FA) design any parity-prediction scheme contains the following parts:

 X0 X1 X2 X3 X4 X5 X6 X7

Px

18

 PA and PB: parity generators for the operands (XOR-trees)

 PC: parity generator for the internal carries

 PS: parity generator for the parity of the sum

 predictor/comparator: requires PA, PB, and PC to predict (compute) PS and compare

it with the real PS, and signal an error on mismatch

Carry errors always manifest as multiple errors of even number. Therefore, the parity-

prediction scheme would normally not be able to detect these types. [35] proposed a parity-

prediction scheme with duplicated carry circuits which is fault-secure and is also covering all

carry errors. When the carry circuit of every full-adder is duplicated, it is possible to compare

the carry outputs of the full adder and the duplicated-carry circuit. Only one carry circuit is

assumed to be erroneous at a time, since the aim is fault secureness for single errors. When the

compare signals are fed to the checker, we can detect single carry errors since the maximum

number of detected carry-circuit errors is one, and, thus, odd. [35] called this scheme

“Duplicate carry with parity check”. In fact, the scheme can be simplified by avoiding the

actual comparison among the normal carries and duplicated carries. Based on the duplicated

carries it is sufficient to generate parity PC instead of the normal ones in order to achieve the

fault-secure property. In case of a carry error, the parity of the duplicated carry always contains

one error less than PC. Furthermore, the number of errors in the sum S is always equal to the

number of errors in PC. This makes the error detectable. This scheme is called‎“Duplicate carry

with‎parity‎check‎II”‎[36].

2. Fault Localization

Fault localization, a central aspect of fault administration is a process of inferring the

exact basis of a failure from a set of observed failure signs. Since faults are unavoidable in

digital systems, for the accessibility, reliability, and robustness of a system, their rapid

detection and isolation is critical. In large and complex systems, automating fault diagnosis is

19

critical. It has been a attention of study movement since the beginning of modern digital

systems, which produced numerous fault localization techniques. However, the requirements

carried out on fault localization methods have changed as digital systems offering new

capabilities and becoming more complex.

3. Fault-Tolerant Adders

Fault tolerance means that apart from detecting (certain) errors, the circuit is also capable

of correcting them. According to the literature, error detection (ED)/error correction (EC)

methods to achieve fault tolerance (at the architectural level) can be facilitated through:

(i) hardware replication

(ii) time redundancy

(iii) ED/EC codes

(iv) or various combinations of the above techniques

The most widely used ED technique is hardware replication. It has been utilized for many

years due to its high fault coverage. One can duplicate a circuit and feed both the circuit

outputs to a comparator; in case of comparison mismatch, an error is detected. Such systems

with resource replication are also called duplex or Duplication-With-Comparison (DWC) [37]

[20] [35].

An example of a fault-tolerant adder using hardware replication is the TMR-adder (Triple

Modular Redundancy). Here, three adder units are present, working concurrently and serving

their results to a majority voter. This voter looks for a match between any two of the three

inputs and outputs that result. Another fault-tolerant adder based on hardware replication is the

Quadruple Modular Redundancy (QMR) adder [38]. Two adders and a comparator make a

Self-Checking Adder (SCA). Since, it is not possible to attain information about which of the

two adders in a SCA is faulty in case of error, the QMR has two SCAs, which the outputs of the

two SCA adders are connected to a multiplexer. In total, the QMR scheme contains four adders.

20

The fault coverage of these fault-tolerant adders is very high. However, the power and area

costs of the TMR and QMR are often excessive because of the replicated adder structure and

extra checker circuitry needed.

Another type of fault-tolerant adder employing hardware redundancy is described in [39]

and uses alternative computations. In every bit slice of the adder, the sum and carry are

computed in two different ways and compared with each other. In case of an error, one of the

redundant components is brought in to continue the calculations, saving 11.1% in transistor

count compared to the QMR adder. [40] presented an asynchronous adder which achieves fault

tolerance through dynamic self-reconfiguration. The adder is built based on a fault tolerant

array. In case of a fault, reconfiguration logic will try different configurations until a workable

instance is found. Depending on the degree of fault coverage (single faults to quadruple faults),

the area overhead of these self-healing adders varies between 102% and 326% and is claimed

to be lower than traditional redundancy methods (TMR and QMR). Note that this technique

can be also employed in sequential adders at the cost of extra ED logic.

[41] employ the properties of radix-2, signed-digit representation to build a fault-tolerant

adder. Repair is based on graceful degradation: either by recomputing the result with shifted

operands and utilizing the intersection of the achieved results to recover the correct output or

based on a reduced-dynamic-range approach, where the result is obtained faster but with fewer

output digits. A low-cost, fault-tolerant technique for carry-lookahead adders was proposed by

[42]. Correction of all single-bit and multiple-bit transient faults is claimed. The power and

area costs of this method are significantly lower than those of the TMR adder or the duplicated

adder with parity checking. The introduced additional delay is small, in particular compared to

parity-checked adders. This technique is, however, only applicable for carry-lookahead Adders

(CLAs). Valinataj represented a novel self-checking carry-lookahead adder with multiple error

detection/correction capability [43]. The proposed self-checking architecture utilizes a

modified parity prediction scheme combined with a partial triple modular redundancy

21

distributed in all of the bit slices. This scheme fits carry-lookahead adder and its arithmetic

logic unit (ALU) counterpart in which the carry logic occupies a large part of the circuit.

Figure ‎2.5 illustrated a bit slice of the proposed carry-lookahead adder.

Figure ‎2.5 (a) A bit slice of the proposed carry lookahead adder. (b) The structure of the voter in (a).

Another fault-tolerance adder is presented in [44]. This scheme presents the design

philosophy of a fault tolerant conditional sum adder that uses hot-standby technique, which is

an online swapping process of faulty components of a circuit by fault-free spares without

interrupting the normal operation of the system.

In [45] authors introduced new method for self-repairing ordinary adders. In an ordinary

FA, self-checking is accomplished using the observed relevance among inputs, sum, and carry

out. As mentioned in [45] and listed in Table ‎2.2 when all three inputs, namely, addend (A),

augend (B), and input carry (Cin), are equal, the sum (Sum) and output carry (Cout) bits will be

equal. When one of the three inputs is different, the sum and carry output bits will be

complemented. These relationships can be used to design a self-checking adder with the cost of

an equivalence tester (Eqt), as shown in Figure ‎2.6.

22

Table ‎2.2 Relationships between the inputs and outputs in an FA

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Figure ‎2.6 Self-checking FA [45]

The equivalence tester (Eqt) checks the equivalence of the inputs. G1 tests the equivalence

of the outputs (Sum and Cout), and G2 (Ef) tests the equivalence of Eqt and G1.

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑡𝑒𝑠𝑡𝑒𝑟 (𝐸𝑞𝑡) = (𝐴̅. 𝐵̅. 𝐶𝑖𝑛
̅̅ ̅̅) + (𝐴. 𝐵. 𝐶𝑖𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

23

Error (Ef) = Sum ʘ Cout ʘ Eqt = G1 ʘ Eqt

In an error-free calculation, when Eqt is logic 0 (all inputs are equal), the output of G1 and

G2 must be logic 1 and 0, respectively; if Eqt is logic 1, then both G1 and G2 gates must be

equal to logic 0. In any other case, a fault will be highlighted [45]. To prevent the non-detection

of faults, Sum and Cout of the FA will not be sharing any logic; thus, any fault occurring in the

internal logic associated with an individual component will only make that single component

faulty and, therefore, easily detectable by comparison. Figure ‎2.7 shows the design of one FA

without logic sharing.

Figure ‎2.7 FA without logic sharing [17]

H. Signed-Digit Number systems

This part presents the elementary concepts of signed-digit arithmetic. Signed-digit systems

were considered with the purpose of obtaining totally parallel addition [46], where carry

propagation is eliminated. Carry propagation is reduced by making each digit of the subsequent

sum a function of only two input numbers. This is became possible by the redundancy of the

number demonstration meanwhile a appropriate intermediate demonstration of the operand

digit summation, xi+yi, is designated so that the ending addition outcome can be produced with

cin

cout

a

b sum

24

half-adders that do not need nor produce carry signals. The totally parallel addition process can

also be used to do subtraction operations. The subsequent parts present the principal features of

signed-digit schemes and the basic principles of the resultant addition algorithm.

The algebraic value of a signed-digit number is given by

𝑍 = ∑ 𝑧𝑖𝑟−𝑖

𝑚

𝑖=−𝑛

where r is a positive integer called the radix.

In a redundant representation each number can assume more than r values, with radix r,

while digits can assume exactly r values in conventional number representations. The condition

of a unique representation for the algebraic value Z = 0 should satisfy the values of the radix

and the number digits, zi. It is formerly easy to verify that if, and only if, all digits of signed-

digit representation have the value zi = 0, the algebraic value Z is zero. It is also obvious that

the sign of the most significant non-zero digit is the sign of the algebraic value Z. In the same

way, if the sign of every non-zero zi digit of Z changed, the result is the additive inverse of Z,

the signed-digit representation of –Z.

Figure ‎2.8 shows the fully parallel addition method in the signed-digit arithmetic scheme.

if two conditions are satisfied, the addition of two digits x* and y* is fully parallel.

25

Figure ‎2.8 Fully parallel addition method in signed-digit number representation [46]

First, the sum (si) is function of the operand digits (xi and yi) and the carry digit (ci-1) from

the neighboring digit position. Second, the carry digit to the next location (ci) is only function

of the operand digits (xi and yi). Fully concurrent subtraction (xi - yi) is take in as the fully

concurrent addition of xi and the additive reverse of yi, namely, xi – yi = xi + (-yi).

 Fully concurrent addition of two digits is completed in two phases, as represented in

Figure ‎2.8. In the first phase, an intermediate carry output (ci) and an interim sum output (wi)

are produced such that

xi + yi = rci + wi (1)

In the next phase, the final sum digit si is attained as

si = wi + ci-1 (2)

For each of the variables involved in the two-phase addition procedure the allowed and

required digit values can be resultant from the definition of fully concurrent addition and from

the addition procedure defined by (1) and (2). Follows are the primary results of such

26

derivation (see [46] for a comprehensive analysis):

1. The smallest adequate set of values for the carry digit is ci = {-1, 0, 1}

2. For the magnitude of the intermediate sum the upper bound is |wi| <= r - 2

3. For the radix value the lower bound is r > 2

4. For an odd radix (r0 >= 3) the minimum set of values for operand digits (xi and yi)

comprises of the sequence of r0 + 2 integers

{−
1

2
(𝑟0 + 1), … , −1, 0, 1, … ,

1

2
(𝑟0 + 1)}

5. For an even radix (re >= 4) the required minimum set of values for operand digits (xi

and yi) consists of the sequence of re + 3 integers

{−(
1

2
𝑟𝑒 + 1), … , −1, 0, 1, … ,

1

2
𝑟𝑒 + 1}

Minimum sets are the only acceptable for radix-3 and radix-4 schemes. For r > 4, still,

there is more than one valid set of digit values. The order of integers

{-a, -(a-1),‎…,‎-1,‎0,‎1,‎…,‎a-1, a}

satisfies the requirements for signed-digit number demonstrations, where

1

2
(𝑟0 + 1) ≤ 𝑎 ≤ 𝑟0 − 1 𝑜𝑟

1

2
𝑟𝑒 + 1 ≤ 𝑎 ≤ 𝑟𝑒 − 1

r0 is an odd integer (r0 >= 3), and re is an even integer (re >= 4). All signed-digit number

representations can be designated in terms of the acceptable radix values and the acceptable zi

digit values. When a = ½ (r0 + 1) or a = ½ re + 1 the redundancy of a signed-digit system is

minimal, and when a = r0 - 1 or a = re - 1 the redundancy is maximal.

1. Signed-Digit Adders

The totally parallel addition algorithm that described in (1) and (2) are used to add two

signed-digit numbers. The instructions for attaining wi, ci, and si can be determined given the

set of permitted values of wi, wmin and wmax, as follows. From algorithm (1),

27

wi = (xi + yi) –rci,

where

𝑐𝑖 = {

0 𝑖𝑓 𝑤𝑚𝑖𝑛 ≤ 𝑥𝑖 + 𝑦𝑖 ≤ 𝑤𝑚𝑎𝑥

1 𝑖𝑓 𝑥𝑖 + 𝑦𝑖 > 𝑤𝑚𝑎𝑥
−1 𝑖𝑓 𝑥𝑖 + 𝑦𝑖 < 𝑤𝑚𝑖𝑛

and

si = wi + ci-1

For clarifying the method here we explain the addition of two signed-digit radix-10

numbers:

The allowed values for the digits are

𝑤𝑖 = 5̅, 4̅, 3̅, 2̅, 1̅, 0, 1, 2, 3, 4, 5

𝑐𝑖 = 1̅, 0, 1

𝑠𝑖 , 𝑥𝑖 , 𝑦𝑖 = 6̅, 5̅, 4̅, 3̅, 2̅, 1̅, 0, 1, 2, 3, 4, 5, 6

Digits with negative values are identified with a bar above the integer. The addition

operands are 𝑥 = 4. 2̅5̅143̅ (value X = 3.75137), and 𝑦 = 2̅. 3̅3021̅̅ ̅̅ ̅̅ ̅ (value Y = 2.32979).

The addition method is as follows:

augend x: 4 . 2̅ 5̅ 1 4 3̅

addend y: 2̅ . 3̅ 3̅ 0 2 1

Step (1): 0+2 0 + 5̅ 10̅̅̅̅ + 2 0+1 10 + 4̅ 0 + 2̅

Step (2): 0 1̅ 0 1 0

Sum s: 2 . 6̅ 2 2 4̅ 2̅

The resulting sum is𝑠 = 2. 6̅224̅2̅which as an algebraic value S = 1.42158 = ۳.75137 -

2.32979

2. Binary Signed-Digit Number (BSDN) Addition

In binary signed-digit number system, each digit is encoded by two or more bits and

28

computation is achieved by means of conventional binary logic families, for example, dynamic

or static CMOS.

As mentioned before the key motivation for using signed-digit number representation in

an arithmetic operation is to eliminate the carry propagation chain [46]. The advantage of carry

elimination is that it results in designing a high-speed adder circuit. Therefore, the delay time

for adding two signed-digit numbers is independent of the word length and constant, which is

the key to fast addition. This section briefly explains the theory of BSDN addition.

Any number a in BSDN can be represented as [41]

𝑎 = ∑ 𝑥𝑖2𝑖

𝑛−1

𝑖=0

where 𝑥𝑖 ∈ {−1,0,1} and n is the number of ternary digits. M.D. Ercegovac and T. Lang

in [47] explained two methods for BSDN addition, double-recoding method and using

information from a previous digit position method. Given two operands, a and b, operation of

addition can be performed by one of these methods.

Double recoding method

In this method, the addition can be considered as transformed from {-2, -1, 0, 1, 2}

domain to {-1, 0, 1} domain. For this recoding, first, we recode from the digit set {-2,‎…,‎2}‎to‎

an intermediate digit set (for instance, {-2,‎…,‎1}).

𝑎𝑖 + 𝑏𝑖 = 2ℎ𝑖 + 𝑠𝑖 ∈ {−2, −1,0,1,2}

ℎ𝑖 ∈ {0,1}

𝑠𝑖 ∈ {−2, −1,0,1}

𝑞𝑖 = ℎ𝑖−1 + 𝑠𝑖 ∈ {−2, −1,0,1}

Next, we transform the intermediate digit set into the BSDN digit set {-1, 0, 1}.

𝑞𝑖 = 2𝑐𝑖 + 𝑤𝑖 ∈ {−2, −1,0,1}

𝑐𝑖 ∈ {−1,0}

𝑤𝑖 ∈ {0,1}

29

𝑧𝑖 = 𝑐𝑖−1 + 𝑤𝑖 ∈ {−1,0,1}

Utilizing information from the preceding digit position

In this method, first, we calculate intermediate carry (ci) and partial sum (wi) as 𝑎𝑖 + 𝑏𝑖 =

2𝑐𝑖 + 𝑤𝑖, as listed in Table ‎2.3. The result is 𝑧𝑖 = 𝑐𝑖−1 + 𝑤𝑖.

Table ‎2.3 Calculating partial sum and intermediate carry [48]

ai, bi Previous digit position (i-1) ci wi

0, 0 - 0 0

-1, -1 - -1 0

1, 1 - 1 0

-1, 1 - 0 0

-1, 0
(ai-1 + bi-1) < 0 -1 1

Otherwise 0 -1

1, 0
(ai-1 + bi-1) > 0 1 -1

Otherwise 0 1

A binary signed digit, for instance, can be encoded by two or more binary digits. In two

bits representation, two bits can denote each binary signed-digit using several encoding

activities. Parhami [49] proposed‎ two‎ encoding‎ activities.‎ One‎ is‎ “sign” and‎ “value,” (s,v),

encoding. The other is‎“negative” and‎“positive,” (n,p), encoding. In the (s,v) encoding, -1, 0,

and 1 are represented by (1, 1), (0, 0), and (0,1), respectively. In the (n, p) encoding, -1, 0, and

1 are represented by (1, 0), (0, 0), and (0, 1), respectively. In the present research, to encode the

BSDN, (n,p) representation that considers digit 0 representation by either (0, 0) or (1, 1) is

used.

3. Self-Checking Signed-Digit Adders

In [48], a technique to devise a self-checking binary signed-digit adder concerning stuck-

30

at class faults using a parity checker was suggested. To evaluate the correctness of the binary

signed-digit adder output, parity properties can be used. As mentioned earlier, based on the

BSDN encoding representation method three different values (-1, 0, 1) can be held by digit xi

and two bits are needed for the binary representation. P(xi) is defined as the parity of xi, which

is XOR of the two bits that form digit xi, and P(X) as the parity of the signed-digit number X,

which is XOR of the parity P(xi) of all digits xi. We use this definition to define P(A) and P(B)

as parities of the addend and augend, P(W) and P(C) as parities of the partial sum and

intermediate carry, and P(Z) as the parity of the addition outcome. According to Table ‎2.3, the

following properties are demonstrated [48]:

Property 1.

P(Z) = P(C)⊕P(W) [48]

By calculating the parity of ci-1 and wi, for any possible combination of ci-1 and wi, we

obtain P(zi) = P(ci-1) ⊕ P(wi). Therefore, the following statements hold according to the

associative property of the XOR operation:

𝑃(𝑍) =
𝑛 − 1

⊕
𝑖 = 0

𝑃(𝑧𝑖) =
𝑛 − 1

⊕
𝑖 = 0

(𝑃(𝑤𝑖) ⊕ P(𝑐𝑖−1))

=
𝑛 − 1

⊕
𝑖 = 0

𝑃(𝑤𝑖) ⊕
𝑛 − 1

⊕
𝑖 = 0

𝑃(𝑐𝑖−1) = 𝑃(𝑊) ⊕ P(C).

Property 2.

P(W) = P(A)⊕P(B) [16]

By evaluating the parity of ai and bi, we obtain P(wi) = P(ai) ⊕ P(bi) for any possible

combination of ai and bi. Again, according to the associative property of the XOR operation, we

obtain

𝑃(𝑊) =
𝑛 − 1

⊕
𝑖 = 0

𝑃(𝑤𝑖) =
𝑛 − 1

⊕
𝑖 = 0

(𝑃(𝑎𝑖) ⊕ P(𝑏𝑖))

31

=
𝑛 − 1

⊕
𝑖 = 0

𝑃(𝑎𝑖) ⊕
𝑛 − 1

⊕
𝑖 = 0

𝑃(𝑏𝑖) = 𝑃(𝐴) ⊕ P(𝐵).

Figure ‎2.9 shows the architecture of this design composed of the following components:

 Binary signed-digit adder block: accepts two signed-digit numbers a and b as addend

and augend, respectively, and calculates z as the result of the addition

 Parity Prediction module: produces the value of P(C)

 Error Indicator 1 output: checks Property 2 and in case of any mismatch issues an error

signal

 Error Indicator 2 output: checks Property 1 and in case of mismatch issues an error

signal

Figure ‎2.9 BSDN Self-checking adder [48]

In [41] authors extended the method and added error correction and localization capability

using recomputation with left- and right- shifted operands. This algorithm is shown in

Figure ‎2.10.

In this method, the stuck-at faults are classified into three types to properly localize any

fault.

 Fault Type 1: Error in one of ADD1 outputs (ci, wi) or in ADD2 output (si), ending up

with undesirable transforming of up to one bit

Parity
Prediction

ADD1ADD1

ADD2ADD2

ADD1

ADD2

⊕

⊕

⊕

⊕

a b
a0 b0a1 b1an bn

w0c0
w1c1cn-1wncn

z0z1zn

wn

w0

P(b)P(a)

P(w)

Error
Indicator 1

Error
Indicator 2

P(z)

P(z)

⋮

⋮

32

 Fault Type 2: Fault in the input's least significant bit (LSB) causes an alteration up to

two bits

 Fault Type 3: Fault in the input's most significant bit (MSB) causes a variation up to

three bits

Referring to above fault-type definitions, in the context of the algorithm shown in

Figure ‎2.10, the fault-localization technique seems to be incorrect. A Type 3 (Type 2) fault

causes a modification of up to three (two) digits, which means that a Type 3 (Type 2) fault can

alter one‎ or‎ two‎ or‎ three‎ (one‎ or‎ two)‎ bits.‎ Thus‎ “Inequalities=1”‎ (“Inequalities=2”)‎ should‎

signify a fault Type 1 or 2 or 3 (Type 2 or 3). We show a corrected algorithm in Figure ‎2.11.

To explain the error correction and fault localization shown in Figure ‎2.11 we completed

the algorithm and added the error correction part. This completed algorithm is illustrated in

Figure ‎2.12. In this algorithm Z and ZF are defined as the correct and faulty outputs (first

computation), respectively, and ZLSI and ZRSI as the outputs acquired using the left-shifted inputs

(LSI) (second computation) and the right-shifted inputs (RSI) (third computation), respectively.

Let us consider two signed-digit numbers A={a(0), a(1), …, a(n)} and B={b(0), b(1),

…, b(n)}. Because by the left-shifted operation the most significant digits [a(n) and b(n)] are

lost, the equality relationship Z(i) = ZLSI(i+1) is invalid for Z(n) and Z(n+1), whereas it is

valid only for 0 ≤i≤ n-1. Similarly, least significant digits [a(0) and b(0)] in the right-

shifted operation, are lost, and their carries can also be lost. Thus, the Z(i) = ZRSI(i-1) equality

only for 3 ≤i≤ n + 1 is valid. Figure ‎2.13 shows an n-digit addition process using the

original, LSI, and RSI.

33

Figure ‎2.10 Fault detection, correction, and localization algorithm [41]

34

Figure ‎2.11 Corrected fault detection, correction, and localization algorithm proposed in [41]

35

Figure ‎2.12 Completed and corrected fault detection, correction, and localization algorithm proposed in [41]

36

Position (n+1) (n) (n-1) … (2) (1) (0)

A: an an-1 … a2 a1 a0
B: bn bn-1 … b2 b1 b0

W: wn wn-1 … w2 w1 w0

C: cn cn-1 cn-2 … c1 c0 -

Z: zn+1 zn zn-1 … z2 z1 z0

a. Original Inputs

A: an-1 an-2 ... a1 a0 -
B: bn-1 bn-2 … b1 b0 -

W: wn-1 wn-2 … w1 w0 -

C: cn-1 cn-2 cn-3 … c0 - -

Z: zn zn-1 zn-2 … z1 z0 -

 ZLSI(n+1) ZLSI(n) ZLSI(n-1) … ZLSI(2) ZLSI(1) ZLSI(0)

b. LSI

A: - an … a3 a2 a1
B: - bn … b3 b2 b1
W: - wn … w3 w2 w1

C: - cn cn-1 … c2 c1 -

Z: - zn+1 zn … z3 z2 z1

 ZRSI(n+1) ZRSI(n) ZRSI(n-1) … ZRSI(2) ZRSI(1) ZRSI(0)

c. RSI

Figure ‎2.13 n-digit BSD addition

Once a parity error is detected and an error signal is issued either by Error Indicator 1 or

Error Indicator 2, the error-correction and fault-localization algorithm is started. Whenever a

fault is discovered, the addition is executed again using the LSI. The two results from the first

(original inputs) and second (LSI) computation are compared, and the number of unequal digits

and position of inequality (e) is calculated (if more than one unequal digit exists, the higher

position is considered as the position of inequality, e). Depending on the position and number

of unequal digits, fault localization and error correction can be done in this step, or the

operation should be performed again using the RSI.

After computing with LSI, if no difference is found between ZF and ZLSI, the operation is

performed using RSI. However, different cases can be considered if an inequality exists

between ZF and ZLSI,:

37

Case A: The parity is correct (no error signal is activated).

 If only one unequal digit exists between ZF and ZLSI and e<n (error is not

located in position (n) or (n+1)) or if two inequalities and e<n-1 or three

inequalities and e<n–2 exist, then the following relationship generates a correct

output; otherwise, the RSI recomputation is required:

Z = { ZF(n+1), ZF(n), [ZLSI(n) … ZLSI(1)]}

Case B: The parity is wrong (at least one of the error indicators signals an error))

 If two inequalities exist and e<n, then the following relationship computes the

correct output; otherwise, correction is not possible:

Z = {[ZF(n) … ZF(e + 1)], ZLSI(e+1), [ZF(e - 1) … ZF(0)]}.

If RSI recomputation is needed, then the addition proceeds with the RSI. The two results

(ZF and ZRSI) are compared, and the number of unequal digits and the position of inequality (e)

are again calculated. Again, if no difference is detected between ZF and ZRSI, then the checker is

expected to be faulty. However, two cases can be considered if an inequality exists between ZF

and ZRSI again.

Case A: The parity is correct (no error signal is activated).

 If error signal is not activated, it means that the calculated result (ZRSI) is

correct, and we only need to replace the first three digits from ZF. Therefore,

the following relationship gives the correct output:

Z = {[ZRSI(n) … ZRSI(2)], [ZF(2) … ZF(0)]}.

Case B: The parity is wrong (error signal is activated)

 If two inequalities exist and e=n, then the correct result can be calculated by

Z = {ZF(n+1), [ZRSI(n – 1) … ZRSI(2)], [ZF(2) … ZF(0)]}.

38

 If two inequalities exist and e=n+1, then the following relationship generates

the correct result:

Z = {[ZRSI(n) … ZRSI(2)], [ZF(2) … ZF(0)]}.

 If more than two inequalities exist, then correction is not possible.

Figure ‎2.12 shows the complete fault detection, localization, and correction algorithm in

detail.

Later, Alavi and Faez [50] used the same self-checking signed-digit adder in [48], changed

the correction and localization algorithm in [41], and improved the correction capability to

obtain full correction using the‎“Recomputation with Triple-Shifted‎Operands”‎method. In this

method to find the fault position, the RESO (Recomputation with Shifted Operands) technique

suggested in [51], [52] is used. This method uses the same fault type classifications as [41].

In the following explanations Z is defined as the correct output and ZF as the faulty output

(the output when an error indicator signal is high) and define ZLS and ZRS as the correct outputs

achieved by using the Left and Right Shifted Inputs (LSI, RSL) respectively. Also we mark

ZFLS and ZFRS as the outputs obtained with the shifted operands when an error indicator sign is

active. Finally ZTLS and ZTRS are the outputs obtained with the Triple Left and Right Shifted

Inputs (TLSI, TRSI). It must be considered that the shifted operands can activate the error

signal again or not depending on the fault type and its influence manner. The digits composing

the operands are referred to with the corresponding lower case letter and the index i shows the

position of the digit.

Because the most significant digits (a(n-1), b(n-1)) are lost with the left shift operation,

then the equality relation z(i) = zLS (i +1) is valid only for 0≤i≤ n-2 and the equality is not

valid for z(n-1), z(n). On the other hand, as the least significant digits (a(0), b(0)) are lost with

the Right shift operation and their Carries can also be lost, therefore the equality relation z(i) =

zRS (i‎−1)‎will‎be‎valid only for 3 ≤i≤ n and the equality is not valid for z(0), z(1), z(2) .

Once a parity error is detected, the procedure (algorithm) is started as follows:

39

A. First Phase

Whenever a fault is detected by the parity checker, the operation is performed once more

with the LSI and two different cases can be considered:

1) The parity is correct, i.e., the output is ZLS (CASE A)

2) The parity is wrong, i.e., the output is ZFLS (CASE B)

CASE A: If neither of the error signals are activated, then the recomputed value ZLS is

correct. By comparing between zF(i) and zLS(i+1) for 0 ≤i≤ n-2, the faulty digit(s) can be

localized and corrected. In particular, beginning from the least significant digit, when the first

inequality between zF(i) and zLS(i+1) is encountered, the position (i+1) is the location of the

faulty digit. Besides, the number of inequalities depends on the fault type, in other word, the

fault of type 1, 2, 3 produces 1, 2, 3 inequality(s) respectively. Therefore the following relation

is hold:

{
𝑧𝐿𝑆(𝑗 + 1) = 𝑧𝐹(𝑗), 0 ≤ 𝑗 ≤ 𝑛 − 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑖𝑔𝑖𝑡𝑠

𝑧𝐿𝑆(𝑖 + 1) ≠ 𝑧𝐹(𝑖), 0 ≤ 𝑖 ≤ 𝑛 − 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑎𝑢𝑙𝑡𝑦 𝑑𝑖𝑔𝑖𝑡𝑠

After comparing, there will be one of the below states:

a) If the number of inequalities is zero: The fault is probably in the position of digit n-1 or

n. So, the operation is performed again with the RSI (in the second phase).

b) If the position i of faulty digit is in 0 ≤i≤ n-4: Using the bellow relation the value of

ZF is fully corrected and the algorithm ends.

𝑧(𝑖) = {
𝑧𝐿𝑆(𝑖 + 1) 𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑛 − 2

𝑧𝐹(𝑖) 𝑓𝑜𝑟 𝑖 = 𝑛 − 1, 𝑛

c) If the position i of faulty digit is in n-3 ≤i≤ n-2: Using the relation z(i) = zLS(i + 1)

for 0 ≤ i ≤ n-2 , the value of ZF is partially corrected, but to determine the values of z(n-1),

z(n), the operation must be recomputed with the RSI (in the second phase).

CASE B: If the parity checker detects a fault after calculating of ZLS, then the procedure

will be continued as follows: By comparing zF(i) and zFLS(i + 1) for 0 ≤i≤ n-2, the

40

position(s) of faulty digit(s) can be localized as CASE A. The inequalities can be generated by

both an error in the computation of original result and an error in the recomputed result.

Therefore depending on the occurred fault type, at most up to 4 inequalities are detected. Thus

the bellow relation is truthful:

{
𝑧𝐹𝐿𝑆(𝑗 + 1) = 𝑧𝐹(𝑗), 0 ≤ 𝑗 ≤ 𝑛 − 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑖𝑔𝑖𝑡𝑠

𝑧𝐹𝐿𝑆(𝑖 + 1) ≠ 𝑧𝐹(𝑖), 0 ≤ 𝑖 ≤ 𝑛 − 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑎𝑢𝑙𝑡𝑦 𝑑𝑖𝑔𝑖𝑡𝑠

After comparing, there will be one of the following states:

a) If the number of inequalities is zero: The fault is probably in the position of digit n-1 or

n. So, the operation is performed again with the RSI (in the second phase).

b) If the position i of faulty digit is in 4 ≤i≤ n-1: Using the relation z(i) = zF(i) for 0

≤ i ≤ 3 , the value of ZF is partially corrected, but to recover the rest of the digits the

operation must be performed again with the RSI (in the second phase).

c) If the position i of faulty digit is in 1 ≤i≤ 3: Then,

1. If the number of inequalities is one and zFLS(0) ≠ 0: i.e., the fault is occurred in digit

0, then using the below relation the value of ZF is fully corrected and the algorithm ends.

𝑧(𝑖) = {
𝑧𝐹𝐿𝑆(𝑖 + 1) 𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑛 − 2

𝑧𝐹(𝑖) 𝑓𝑜𝑟 𝑖 = 𝑛 − 1, 𝑛

2. If the number of inequalities is equal to two and zFLS(0) = 0: Assume that the digit f be

faulty, so by using the below relation the value of ZF is fully corrected and the algorithm ends.

𝑧(𝑖) = {
𝑧𝐹𝐿𝑆(𝑖 + 1) 𝑖𝑓 𝑖 = 𝑓

𝑧𝐹(𝑖) 𝑖𝑓 𝑖 ≠ 𝑓

3. Otherwise: The correction will be done partially and to achieve full correction the

second phase of the algorithm must be completed with the TLSI.

B. Second Phase

Depending on the state has been occurred in the first phase, the second phase is continued

with either RSI or TLSI. First assume that the second phase is completed with the TLSI, so the

output value will be ZTLS. In this case, the digits of ZF and ZFLS are compared again and as a

41

result one of the following states occurs:

a) If zFLS(0) = 0 (suppose that the digit f be faulty):

𝑧(𝑖) = {

𝑧𝑇𝐿𝑆(𝑖 + 3) 𝑖𝑓 𝑖 = 𝑓, 𝑓 + 1

𝑧𝐹𝐿𝑆(𝑖 + 1) 𝑖𝑓 𝑖 = 𝑓 + 2

𝑧𝐹(𝑖) 𝑒𝑙𝑠𝑒

b) if zFLS(0) ≠ 0, i.e., the digit 0 is faulty:

𝑧(𝑖) = {

𝑧𝑇𝐿𝑆(𝑖 + 3) 𝑖𝑓 𝑖 = 0,1

𝑧𝐹𝐿𝑆(𝑖 + 1) 𝑖𝑓 𝑖 = 2

𝑧𝐹(𝑖) 𝑒𝑙𝑠𝑒

Now suppose that the second phase is continued with the RSI. As the first phase, here two

different cases can also be considered:

1) The parity is correct, i.e., the output is ZRS (CASE A').

2) The parity is wrong, i.e., the output is ZFRS (CASE B').

CASE A': If the parity checker does not show any contradiction, thus the recomputed

value ZRS is correct. By comparing zF(i) and zRS(i‎−‎1‎)‎for‎3≤i≤n, the faulty digits can be

localized and corrected. Beginning from the digit 3, at the first inequality appeared between

zF(i) and zRS(i‎−‎1‎)‎,‎the position i is the location of the faulty digit. Therefore, the following

relation is hold:

{
𝑧𝑅𝑆(𝑗 − 1) = 𝑧𝐹(𝑗), 3 ≤ 𝑗 ≤ 𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑖𝑔𝑖𝑡𝑠

𝑧𝑅𝑆(𝑖 − 1) ≠ 𝑧𝐹(𝑖), 3 ≤ 𝑖 ≤ 𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑎𝑢𝑙𝑡𝑦 𝑑𝑖𝑔𝑖𝑡𝑠

At the end of comparing, there will be one of the below states:

a) If the number of inequalities is zero: It is concluded that the adder is correct, but the

parity checker is out of order. Thus the outputs are correct however the self-checking ability is

lost (END of Alg.).

b) If the number of inequalities is non-zero: Using the bellow relation the value of ZF is

fully corrected and the algorithm ends.

𝑧(𝑖) = {
𝑧𝑅𝑆(𝑖 − 1) 𝑓𝑜𝑟 3 ≤ 𝑖 ≤ 𝑛

𝑧𝐹(𝑖) 𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 2

42

CASE B': If the parity checker detects a fault after calculating of ZRS, then the procedure

will be continued as follows: The faulty digits produce some inequalities between z and zRS. By

comparing zF(i) and zFRS(i−1)‎the‎position‎of‎faulty‎digit‎can‎be‎localized‎as‎CASE‎A'.‎After‎

comparing, there will be one of the following states:

a) If the number of inequalities is zero: It is concluded that the adder correct, but the parity

checker is out of order. Thus the outputs are correct however the self-checking ability is lost

(END of Alg.).

b) If there are two inequalities and the position f of faulty digit is 4 or 5: Using the

following relation, the value of ZF is corrected completely and the algorithm is finished.

𝑧(𝑖) = {
𝑧𝐹𝑅𝑆(𝑖 − 1) 𝑖𝑓 𝑖 = 𝑓

𝑧𝐹(𝑖) 𝑒𝑙𝑠𝑒

c) Otherwise: The correction will be done partially and to achieve full correction the third

phase of the algorithm must be completed with the TRSI.

C. Third Phase

In this phase the operation is carried out again with the TRSI (Triple Right Shifted Inputs).

Therefore, the output is ZTRS . The digit of ZF and ZFRS are compared once more and by using

the bellow relation the digits of ZF is corrected completely. At the end, the algorithm is

completed.

𝑧(𝑖) = {

𝑧𝐹𝑅𝑆(𝑖 − 1) 𝑖𝑓 𝑖 = 𝑓

𝑧𝑇𝑅𝑆(𝑖 − 3) 𝑖𝑓 𝑖 = 𝑓 + 1, 𝑓 + 2

𝑧𝐹(𝑖) 𝑒𝑙𝑠𝑒

Here this point is essential to mention that, not the algorithm will always be continued to

the third phase, but it depends on the occurred fault type. In other word, in the best situation,

the algorithm terminates in the first phase and the value of output is fully corrected while in the

worst case, it's needed the algorithm to be continued to the third phase.

Although this method can have full correction but it requires up to four times

recomputation using shifted inputs to be able to localize a fault and correct the error, and it

43

incurs extra time and area overhead and makes the original represented algorithm more

complex.

44

3 Proposed Designs

Our proposed techniques employ the signed-digit number encoding and self-checking

adder implementation as [41]. To localize the fault and correct errors, we use altering logic

[30], which is the so-called I/O inversion [53] method, instead of the recomputation using the

shifted-operand method [28] based on the self-dual concept. A logic function is self-dual if and

only if f(x) = ~f(~x), where f is a logic function, x is a vector of the logic variables, and ~x is

the‎1’s‎complement‎of‎x.

The correction method is based on the fact that if one stuck-at-0 (1) or MCT fault occurs

in one line of a circuit, the faulty line is permanently set to 0 (1) and flips from 1 (0) to 0 (1).

However, when the line value is 0 (1), the fault will be masked. We used this property and

masked the fault by recomputation using the complemented inputs when any of the error

indicators signals a fault. Figure ‎3.1 shows this property.

Figure ‎3.1 Masking of a fault using complemented input

In a symmetric signed-digit‎number,‎we‎can‎compute‎the‎1’s‎complement‎by‎changing‎the‎

sign of each digit from positive to negative, and vice versa. It is worth mentioning that the digit

“0” must be left unchanged.

45

𝑎 = 21̅03̅7 (18977)10

𝑎̅ = 2̅1037̅(−18977)10

Consequently, the inversion of each number in BSDN can be calculated by only changing

1 to -1 and -1 to 1. For example

𝑎 = 101̅101̅1̅0 (106)10

𝑎̅ = 1̅011̅0110 (−106)10

Using the BSDN encoding method representation in Chapter II, inversion (calculation of

1’s‎ complement)‎ of‎ BSDN‎ is‎ straightforward;‎ it‎ is‎ computed‎ in‎ a‎ manner‎ similar‎ to‎ the‎

conventional‎binary‎number‎1’s‎complement.‎The‎BSDN‎1’s‎complement‎calculation‎is‎listed‎

in Table ‎3.1. In addition, we assume that 0 is represented by either 00 or 11.

Table ‎3.1 BSDN Complement

a 𝑎̅

01 (+1) 10 (-1)

10 (-1) 01 (+1)

00 (0) 11 (0)

11 (0) 00 (0)

Therefore,‎ to‎ compute‎ the‎BSDN‎1’s‎ complement,‎ all‎ bits‎ should‎be‎ inverted‎ as‎ shown‎

below:

𝑎 = 1 0 1̅ 1 0 1̅1̅ 0 → 01 00 10 01 00 10 10 00

𝑎̅ = 1̅ 0 1 1̅ 0 1 1 0 → 10 11 01 10 11 01 01 11

Suppose a and b are the addend and augend in a BSDN system, respectively, and s is the

result (s = a + b). Then, following the calculation rule listed in Table ‎2.3, ci and wi can be

46

computed in such a manner that 𝑎𝑖 + 𝑏𝑖 = 2𝑐𝑖+1 + 𝑤𝑖 , and the sum value si is obtained

using 𝑠𝑖 = 𝑐𝑖 + 𝑤𝑖. According to the property of self-duality, if 𝑠̅ = 𝑎̅ + 𝑏̅ only, then this

addition technique is self-dual. In Table ‎2.3, the first four rows denote that inversion of the

addend (a) and augend (b) will indicate inversion of partial sum (w) and intermediate carry (c),

as listed in Table ‎3.2.

Table ‎3.2 Intermediate Carry and Partial Sum, First Four Rows

ai, bi ci wi 𝑎𝑖̅, 𝑏𝑖̅ 𝑐𝑖̅ 𝑤𝑖̅̅ ̅

0, 0 0 0 0, 0 0 0

-1, -1 -1 0 1, 1 1 0

1, 1 1 0 -1, -1 -1 0

-1, 1 0 0 1, -1 0 0

For the last two rows in Table ‎2.3, if adder inputs (a, b) are inverted, the outputs (c, w) are

subsequently inverted, as listed in Table ‎3.3. Consequently, the calculation function is self-dual

for the partial sum (w) and intermediate carry (c).

Table ‎3.3 Intermediate Carry and Partial Sum, Last Two Rows

ai, bi

Previous digit position

(i-1)

ai-1 , bi-1

ci wi 𝑎𝑖̅, 𝑏𝑖̅

Previous digit position (i-
1)

𝑎𝑖−1̅̅ ̅̅ ̅, 𝑏𝑖−1
̅̅ ̅̅ ̅

𝑐𝑖̅ 𝑤𝑖̅̅̅

-1, 0

(ai-1 + bi-1) < 0

0, -1

-1 1

1, 0

0, 1
(𝑎𝑖−1̅̅ ̅̅ ̅ + 𝑏𝑖−1

̅̅ ̅̅ ̅)

> 0
1 -1 -1, -

1
1, 1

Otherwise

0, 0

0 -1

0, 0

Otherwise 0 1
0, 1 0, -1

1, 1 -1, -1

1, -1 -1, 1

1, 0

(ai-1 + bi-1) > 0
0, 1

1 -1

-1, 0

0 ,-1 (𝑎𝑖−1̅̅ ̅̅ ̅ + 𝑏𝑖−1
̅̅ ̅̅ ̅)

< 0
-1 1

1, 1 -1, -1

Otherwise

0, 0

0 1

0, 0

Otherwise 0 -1

0, -1 0, 1

-1, -

1
1, 1

1, -1 -1, 1

Lastly, Table ‎3.4 demonstrates that 𝑠𝑖 = 𝑐𝑖 + 𝑤𝑖, which is considered a carry-free addition

47

is also self-dual.

Table ‎3.4 Carry Free Addition

ci, wi si 𝑐𝑖̅, 𝑤𝑖̅̅ ̅ 𝑠𝑖̅

0, 0 0 0, 0 0

0, 1 1 0, -1 -1

0, -1 -1 0, 1 1

1, -1 0 -1, 1 0

As a result, all output (the partial sum, final sum, and intermediate carry) values will be

inverted if all input (addend and augend) values are inverted. Therefore, the proposed BSDN

addition function is self-dual (𝑠̅ = 𝑎̅ + 𝑏̅)

1. Self-checking binary signed-digit adder using parity prediction (SBSA-PaP)

The correcting and locating of a stuck-at or MCT faults by the proposed BSDN adder can

be done using the self-dual property. To do this, we first, using normal inputs calculate the

addition‎operation.‎If‎any‎error‎is‎detected‎by‎the‎error‎indicators,‎1’s‎complement‎of‎the‎inputs‎

is used to recompute the operation. In standard functioning, in either ADD1/ADD2 inputs or

outputs in Figure ‎2.9, occurrence of any stuck-at or MCT faults will root to the bit flipping i.e.

0 to 1 or 1 to 0. Earlier it was established that, with inverted inputs, recomputation of an

operation‎will‎facade‎any‎plausible‎error,‎and‎the‎calculated‎sum‎will‎be‎correct‎because‎all‎0’s‎

become‎1’s‎and‎all‎1’s‎become‎0’s‎(10‎to‎01,‎01‎to‎10,‎11‎to‎00,‎and00‎to‎11).Therefore,‎a‎right‎

value will be shown by the bit where the subsequent stuck-at or MCT faults aroused. Following

recalculation, if an error is signaled again, it is established that the checker fail or more than

one stuck-at or MCT faults has occurred. However, if there is no trigger of the error signal,

then the recomputed outcome‎is‎the‎1’s‎complement‎of‎the‎correct‎end‎result,‎and‎applying‎any‎

further error-correction procedure is not necessary. The localization is almost identical to the

48

method in [41]. Fault is localized based on fault types (Type 1, Type 2, and Type 3) as

described in Chapter II.H.3. Figure ‎3.2 illustrates the proposed method.

According to the algorithm shown in Figure ‎3.2, if any of the error indicators, signal an

error, the addition operation will continue with recomputation using inverse inputs. After

recomputation, the outputs of error indicators are checked. Here, two cases can be considered:

Case A (Any of the error indicators signal an error again): The outputs of the first and

second computations are compared. If all corresponding bits are inverses of each other

(Equalities = 0), then we can conclude that the addition output is correct and the signaled errors

are because of checker failure. Otherwise, in case of finding any corresponding equal bits

between the results that are obtained from first and second computations, we conclude that

there are more than one stuck-at or MCT fault in the adder circuit.

Case B (After recomputation, none of the error indicators signal error): Again, the outputs

of the first and second computations are compared. If all corresponding bits are inverses of

each other (Equalities = 0), then we can conclude that the addition output is correct and the

signaled error (in first computation) was because of a transient fault. However, if there are

equal corresponding bits (Equalities > 0), then based on the number of equal bits, we can

localize the faulty module as illustrated in the algorithm.

To explain the fault localization and error correction algorithm in detail, we define Z as

the correct output and ZF as the faulty output, respectively, in the first computation and ZINV

and ZF-INV as the correct and faulty outputs, respectively, obtained using the inverse inputs in

the recomputation.

Suppose ZF = zF(n)…zF(i)…zF(0) is the faulty output calculated in the first step and ZINV =

zINV(n)…zINV(i)…zINV(0) is the result of the calculation with the inverted inputs in the second

step. For all error-free bits, zF(i) is the inverse of zINV(i), but for the erroneous bits, zF(i) is equal

to zINV(i). Therefore, by counting the number of equal bits between ZF and ZINV, we can locate

the source of the error.

49

Figure ‎3.2 Fault detection, correction, and localization algorithm for SBSA-PaP implementation

The explained method uses the same self-checking signed-digit adder as [41]. In order to

come up with efficient design we aim to use different self-checking binary signed-digit adder

beside with self-dual property.

2. Self-checking binary signed-digit adder

Different designs have been presented for radix-2 signed-digit adder implementation [54]

[55] [56] [57] [58] [47]. In the present study, we use the presented method in [47]. This

50

implementation uses the double-recoding method. It comprises two levels of FAs, as shown in

Figure ‎3.3.

Figure ‎3.3 Binary signed-digit adder [47]

According to the design in Figure ‎3.3 we can implement the binary signed-digit adder

using a conventional FA. To implement new self-checking radix-2 signed-digit adder, we use

the self-checking FA in [45]. We replace the ordinary FAs in Figure ‎3.3 with the self-checking

FA as illustrated in Figure ‎2.6. Figure ‎3.4 shows the design of a self-checking adder for BSDN.

In this design, a fault in any adder activates E1 or E2 error signals, and the faulty module can

be localized.

51

Figure ‎3.4 Binary signed-digit adder using a self-checking FA

To protect the input bits, we use a parity checking technique. Here, we have two

assumptions. First, we only have access to the pre-calculated parity of the addend and augend,

and we do not have access to each input digit. Second, we do not have pre-calculated parity for

the input digits, but we have individual access to all digits of the addend and augend.

3. Self-checking binary signed-digit adder using pre calculated input parities

(SBSA-PCP)

In any FA, the parity of the input bits is equal to the parity of the sum. Therefore, to

reduce the hardware size, we can use the sum output bit instead of calculating the parity of the

three input bits.

P(A, B, Cin) = P(Sum)

In addition, according to Table ‎3.5, the parity of one ordinary number is equal to the parity

52

of the corresponding signed-digit number. Hence, we can utilize the following relationships,

where A and B are two n-bit numbers (addend and augend). a0, a1, …, an-1 and b0, b1, …, bn-1

are individual binary bits representing A and B, respectively, and n is the total number of bits

representing each of these variables. ai
+
, ai

-
 and 𝑏𝑖

+, 𝑏𝑖
− are signed-digit representations of ai

and bi bits, respectively:

Table ‎3.5 Parity of an ordinary number and the corresponding signed-digit representation based on the

explained encoding method

a Signed digit representation (a
+
 a

-
) P(a) P(a

+
 a

-
)

1 01 1 1

-1 10 1 1

0 00 / 11 0 0

A = { a0, a1,‎…,‎an-1}

P(A) = P(a0, a1,‎…,‎an-1)

P(ai) = P(ai
+
, ai

-
)

P(A) =P(a0
+
, a0

-
, a1

+
, a1

-
,‎…,‎an-1

+
, an-1

-
) (1)

P(B) =P(b0
+
, b0

-
, b1

+
, b1

-
,‎…,‎bn-1

+
, bn-1

-
) (2)

P(A, B) = P(a0
+
, a0

-
, b0

+
, b0

-
, a1

+
, a1

-
, b1

+
, b1

-
,‎…,‎an-1

+
, an-1

-
, bn-1

+
, bn-1

-
). (3)

As mentioned earlier, in one FA, instead of calculating the parity of three inputs, we can

use the sum bit. Therefore, as shown in Figure ‎3.4, we can use si as the parity of the adder

inputs, but we must note that one of the adder inputs is complemented (ai
-
). Thus, we can

obtain the equality

𝑃(𝑎𝑖
+, 𝑎𝑖

−̅̅̅̅ , 𝑏𝑖
+) = 𝑃(𝑠𝑖). (4)

We add 𝑏𝑖
−̅̅̅̅ to both sides of the equality.

𝑃(𝑎𝑖
+, 𝑎𝑖

−̅̅̅̅ , 𝑏𝑖
+) + 𝑃(𝑏𝑖

−̅̅̅̅) = 𝑃(𝑠𝑖) + 𝑃(𝑏𝑖
−̅̅̅̅)

𝑃(𝑎𝑖
+, 𝑎𝑖

−̅̅̅̅ , 𝑏𝑖
+, 𝑏𝑖

−̅̅̅̅) = 𝑃(𝑠𝑖, 𝑏𝑖
−̅̅̅̅) (5)

53

In the parity, we have

𝑃(𝑥̅) = ~𝑃(𝑥).

Therefore:

𝑃(𝑎𝑖
+, 𝑎𝑖

−̅̅̅̅ , 𝑏𝑖
+, 𝑏𝑖

−̅̅̅̅) = ~𝑃(𝑎𝑖
+, 𝑎𝑖

−, 𝑏𝑖
+, 𝑏𝑖

−̅̅̅̅) = ~[~𝑃(𝑎𝑖
+, 𝑎𝑖

−, 𝑏𝑖
+, 𝑏𝑖

−)] =

 𝑃(𝑎𝑖
+, 𝑎𝑖

−, 𝑏𝑖
+, 𝑏𝑖

−) (6)

Referring to Eq. (5) and (6):

𝑃(𝑎𝑖
+, 𝑎𝑖

−, 𝑏𝑖
+, 𝑏𝑖

−) = 𝑃(𝑠𝑖, 𝑏𝑖
−̅̅̅̅)

=> 𝑃(𝑎𝑖 , 𝑏𝑖) = 𝑃(𝑠𝑖, 𝑏𝑖
−̅̅̅̅)

=> 𝑃(𝑎0, 𝑎1, … , 𝑎𝑛−1, 𝑏0, 𝑏1, … , 𝑏𝑛−1) = 𝑃(𝑠0, 𝑠1, … , 𝑠𝑛−1, 𝑏0
−̅̅̅̅ , 𝑏1

−̅̅̅̅ , … , 𝑏𝑛−1
−̅̅ ̅̅ ̅̅)

=> 𝑃(𝐴, 𝐵) = 𝑃(𝑠0, 𝑠1, … , 𝑠𝑛−1, 𝑏0
−̅̅̅̅ , 𝑏1

−̅̅̅̅ , … , 𝑏𝑛−1
−̅̅ ̅̅ ̅̅) (7)

Referring to Eq. (7), by obtaining the parity of addend (A) and augend (B), any odd

number of faults in the input lines can be detected by calculating the parity of the intermediate

sum (s) and the augend LSB (b
-
). Figure ‎3.5 shows this design.

Figure ‎3.5 SBSA-PCP

54

4. Self-checking binary signed-digit adder using input bit parities (SBSA-IBP)

For the second assumption, if we can access all digits in the addend and augend, we can

calculate the parity of each signed-digit number, e.g., P(ai
+
 ai

-
) and compare it with the parity

of the corresponding ordinary bit, e.g., P(ai). Therefore, any fault in the inputs can be detected

and localized. Figure ‎3.6 shows this design.

Figure ‎3.6 SBSA-IBP

5. Error-correction and fault-localization method in SBSA-PCP and SBSA-

IBP

To correct errors, here also we use the recalculation based on the self-dual concept [53],

[59], [30].

As reported in [53] and by referring to the truth table of FAs listed in Table ‎3.6, both the

sum and output-carry functions are self-dual, which means that inverting all FA inputs inverts

55

the value of both sum and output-carry. As explained earlier, the BSDN adder design in this

study consists only of FAs. Therefore, the described BSDN adder is also self-dual, which

means that if we complement the BSDN adder inputs, all intermediate values and outputs will

also be complemented. Therefore, if a stuck-at or MCT fault occurs in the input lines, FA

modules, or output lines and causes flipping of the bit value from 1 to 0 or 0 to 1, it will be

masked when we apply the complemented value. Therefore, the recalculated result is the

inverted correct result. By inverting this result, we can obtain the correct final output.

Table ‎3.6 Truth table for FA with original and complemented inputs

A B Cin Sum Cout A̅ B̅ Cin
̅̅ ̅̅ 𝑆𝑢𝑚̅̅ ̅̅ ̅̅ Cout

̅̅ ̅̅ ̅

0 0 0 0 0 1 1 1 1 1

0 0 1 1 0 1 1 0 0 1

0 1 0 1 0 1 0 1 0 1

0 1 1 0 1 1 0 0 1 0

1 0 0 1 0 0 1 1 0 1

1 0 1 0 1 0 1 0 1 0

1 1 0 0 1 0 0 1 1 0

1 1 1 1 1 0 0 0 0 0

To localize the fault in our first design (SBSA-PCP), if the fault is located in one of the

adder modules, we can localize it by referring to the adder module number that issued the error

signal because each adder has its own error signal. However, if the fault is located in one of the

input lines, we can locate the faulty input module by comparing the faulty result obtained in the

first calculation and correct the inverted result obtained in the recomputation. Figure ‎3.7 shows

the algorithm for the error correction and fault localization according to this design. In this

algorithm, we define Z as the correct output and ZF as the faulty output in the first computation

and ZINV and ZF-INV as the correct and faulty outputs, respectively, obtained using the inverted

inputs in the recomputation.

56

By using normal operands, we first perform the addition operation. After the calculation,

if any of the error indicators detects and signals error, the operation will be followed by

recomputation using the inverse operands. During normal operation, if any stuck-at or MCT

fault occurs either in the self-checking FA input or output lines, that fault will cause the

flipping bit from 1 to 0 or 0 to 1. We have earlier confirmed that if the operation is recalculated

using‎ the‎1’s‎ complemented‎operands,‎any‎possible‎ fault‎will‎ be‎ covered, and the calculated

sum‎will‎be‎correct‎because‎all‎0’s‎become‎1’s‎and‎all‎1’s‎become‎0’s‎(01 to 10, 10 to 01, 00 to

11, and 11 to 00). Therefore, the bit will show the correct value where the corresponding stuck-

at or MCT fault occurred. If any of the error indicators again issues an error after the

recomputation, by comparing the two obtained results from the first and second calculations, if

the results complement each other, we can conclude that a checker failure occurred; otherwise,

more than one stuck-at or MCT fault that at least one of them was masked in first calculation.

However, if no error signal is activated after the recomputation, by referring to the first error

signal source, if it is input error, we compare the two calculated results from the first and

second computations and determine the faulty module number. Otherwise, if the error is issued

by the adder module, we report the adder module number as a faulty module. The recomputed

result‎ is‎ the‎ 1’s‎ complement‎ of‎ the‎ correct‎ result,‎ and applying any further error-correction

procedure is not necessary.

57

Figure ‎3.7 Algorithm of the fault correction and localization for the SBSA-PCP implementation

In one FA, any change in one of the input lines changes either the sum or both the sum and

carry outputs. Therefore any fault in the ai
+
, ai

-
, or bi

+
 lines makes either the si or si and hi+1

lines faulty. Consequently, any fault in the bi
-
, si, or hi lines makes either the zi

+
 or zi

+
 and zi+1

-

output(s) faulty. Thus, any fault in one of the ai
+
, ai

-
, bi

+
, and bi

-
 inputs can make a minimum of

one (zi
+
) and a maximum of four (zi

+
, zi+1

-
, zi+1

+
, and zi+2

-
) faulty digits. We can conclude that

any fault in the ith input digit position makes the zi output faulty. Thus, by comparing both

faulty and fault-free results, the lowest equal bit indicates the faulty input digit position.

We suppose that ZF = zF(n)…zF(i)…zF(0) is the faulty output calculated in the first step

and ZINV = zINV(n)…zINV(i)…zINV(0) is the result of the calculation with the inverted inputs in the

second step. For all error-free bits, zF(i) is the inverse of zINV(i), but for the erroneous bits, zF(i)

is equal to zINV(i). Therefore, comparing ZF and ZINV can locate the error source.

For example, we assume that the result in the first computation is ZF =11100100 and an

58

input fault signal is activated. Therefore, we recalculate the addition using the inverted inputs,

and the result is ZINV = 00010111. The comparison of these two results in Figure ‎3.8 shows that

Z1
-
 and Z1

+
 are equal. Therefore, we can conclude that the fault is located in module number 1.

 Z3
+
 Z3

-
 Z2

+
 Z2

-
 Z1

+
 Z1

-
 Z0

+
 Z0

-

ZF 1 1 1 0 0 1 0 0

ZINV 0 0 0 1 0 1 1 1

 √ √ √ √ X X √ √

Figure ‎3.8 Example of the comparison results from first and second addition operations

The fault localization in our second design (SBSA-IBP) does not require any comparison

process because all input lines have a dedicated fault signal. In this implementation, when any

fault is activated, similar to the previous implementation, recomputation will done using the

inverse inputs. If the fault signal is again activated by comparing the first and second obtained

results, we can determine that the error signal is activated due to a checker failure or existence

of more than one fault that at least one of them was masked in first calculation. However, if

none of the error signals is activated after the second calculation, the faulty module number

that activated the error signal in the first computation is reported as the faulty module.

Figure ‎3.9 shows the fault-localization and error-correction algorithm for the SBSA-IBP

implementation.

59

Figure ‎3.9 Algorithm of the fault correction and localization for SBSA-IBP implementation

60

4 Performance Evaluation and Comparison

 In this chapter, a description of the results obtained from the implementations of the

proposed methods and other related methods that could provide us with useful information

regarding the efficiency of the proposed methods is presented. To validate the efficiency of the

proposed method, we compare our proposed methods with the algorithm in [41]. We discuss

the capability of error correction along with the time, area, and power overhead.

1. Error detection

The presented method in [41] and SBSA-PaP method can detect single/odd stuck-at faults

both in the input lines or adder modules, and because of the use of a parity checker to detect a

fault, these two methods are not able to detect an even number of faults. Because our SBSA-

PCP method uses the parity checker to check the existence of faults in the input lines, it can

detect a single/odd stuck-at or MCT fault in the input lines. In addition, for the adder modules,

it can detect all faults in the separate modules. The SBSA-IBP can detect any number of faults

either in the input lines or the adder modules. Table ‎4.1 lists the error-detection capability of

the discussed methods.

61

Table ‎4.1 Capability of fault detection

Fault in input lines Fault in adder modules

Single Multiple Single Multiple

Cardarili’s method [41] Yes No Yes Only odd number of faults

SBSA-PaP Yes No Yes Only odd number of faults

SBSA-PCP Yes No Yes Yes

SBSA-IBP Yes Yes Yes Yes

2. Error correction and fault localization

First we describe the capability of error correction in Cardarilli’s‎method‎ [41]. In an n-

digit BSDN addition, 5n+1 digits are involved [n-digit addend (a), n-digit augend (b), n-digit

partial sum (w), n-digit intermediate carry (c), and n+1 digit sum (z)]. Each digit in BSDN uses

two bits for representation; therefore, 10n+2 possible locations are available to accommodate a

fault.

The proposed process in [41] specifies the correction and localization of all Type 1 faults.

Hence, a fault that occurs in c, w, or z is correctable and fully localized. Therefore, any fault in

6n+2 bits (w: 2n, c: 2n, z: 2n+2) can be fully corrected and localized. Types2 and 3 faults are

correctable only if the recomputation results in fault masking, and none of the error indicator

activates an error signal; else, only a partial correction is possible. Because in one bit the fault

masking chance is 50%, thorough correction and localization of only half of the Types 2 and 3

faults is possible.

Comprehensively, the probability of full and partial error corrections in the method in [41]

can be calculated as

Probability of Type 1 error (error in w, c, and z):

6𝑛 + 2

10𝑛 + 2

Probability of Type 2 error (error in the LSB bit of a and b):

62

2𝑛

10𝑛 + 2

Probability of Type3 error (error in the MSB bit of a and b):

2𝑛

10𝑛 + 2

Probability of error correction for Type 1 error: 100%

Probability of error correction for Type 2 error: 50%

Probability of error correction for Type 3 error: 50%

Probability of full error correction:

100% (
6𝑛 + 2

10𝑛 + 2
) + 50% (

2𝑛

10𝑛 + 2
) + 50% (

2𝑛

10𝑛 + 2
)

Full error correction:
8𝑛+2

10𝑛+2
≅

4

5

Partial error correction:
2𝑛

10𝑛+2
≅

1

5

 A rough approximation shows that the partial and full error correction percentage does not

dependent on digit length n.

In our proposed procedures, because the value of all 10n+2 bits flips in the second

recomputation, any stuck-at or MCT fault is masked; therefore, a fault in a, b, c, w, or z is fully

corrected and localized, and the correction algorithm can be applied without referring to the

type of the fault (Type 1, 2, or 3 fault). Table ‎4.2 lists the error-correction probability of the

explained methods.

Table ‎4.2 Probability of error correction

Method
Percentage

Input lines Adder modules

Cardarili’s‎method [41] 50% 100%

SBSA-PaP, SBSA-PCP, SBSA-IBP 100% 100%

With regard to fault localization, presented method in [41] and SBSA-PaP method localize

63

the fault based on the fault type. A fault in the MSB of input line can cause one to three

inequalities, a fault in the LSB can cause up to two inequalities, and a fault in the adder

modules can create one inequality. Therefore, when the number of inequality is one, we cannot

locate the fault because it can be caused either by the input line (MSB or LSB) or one of the

adder modules. In SBSA-PCP, because the error indicators for the adder modules and input

lines are separated, the source of the fault can be specified as either due to the adder modules or

input line. Because each adder has its own error indicator, any fault in any adder can be

localized. To localize the fault in the input lines, comparing the calculated results from the first

and second computations can specify the faulty line number. For the SBSA-IBP

implementation, all faults can be localized because all adder modules and input lines have

separate error indicators.

3. Time, Area, and Power Overhead

To achieve time, area, and power comparison, Verilog HDL is used to code up the method

of [41] and our proposed methods. The functional simulation is performed by Modelsim SE

while Synopsys Design Compiler is used for synthesis. In addition, for accurate comparison,

we designed all methods for 8, 16, 32, 64 and 128 digits.

Time overhead

To analyze the time overhead, first, the delay time in the binary signed-digit adder and

self-checking binary signed-digit adder was calculated. Because the signed-digit adder is a

parallel adder, the delay time for all lengths of digits is equal. Because SBSA-PCP and SBSA-

IBP methods use different signed-digit adder implementation compared with the methods in

[41] and SBSA-PaP method, they have different delay times. For both our implementations, the

delay time in the binary signed-digit adder is 0.66 ns, and those in the self-checking binary

64

signed-digit adder are 0.78 ns and 0.85 ns for the SBSA-PCP and SBSA-IBP implementations,

respectively. In an error-free‎ calculation,‎ the‎ Cardarili’s method [41], and our SBSA-PaP,

SBSA-PCP and SBSA-IBP methods take almost the same time, which are approximately 0.71,

0.71, 0.78, and 0.85 ns, respectively, for all digit lengths. Table ‎4.3 lists the time delays in the

absence of a fault.

Table ‎4.3 Time delay for fault-free addition (ns)

Method
Time

8 Digit 16 Digit 32 Digit 64 Digit 128 Digit

Cardarili’s‎method‎[41] 0.71 0.71 0.71 0.71 0.71

SBSA-PaP 0.71 0.71 0.71 0.71 0.71

SBSA-PCP 0.78 0.78 0.78 0.78 0.78

SBSA-IBP 0.85 0.85 0.85 0.85 0.85

For any fault, all methods need to perform the recomputation step(s) to localize and

correct the faulty digit. Table ‎4.4 lists the estimated time for the localization and correction

algorithm in all methods. As mentioned earlier, in our methods, correction can be

straightforwardly done by inverting the result obtained in the second computation; however,

the‎Cardarili’s‎method‎[41] needs a different calculation to obtain a correct result. Therefore,

the time delays in our proposed methods are quite less compared with that in the Cardarili’s‎

method [41].

65

Table ‎4.4 Time delay for the fault-localization and error-correction algorithm only (ns)

Method

Time

8 Digit 16 Digit 32 Digit 64 Digit 128 Digit

Cardarili’s‎method‎[41] 2.52 3.42 5.17 9.78 18.49

SBSA-PaP 1.7 1.9 2.05 2.14 2.34

SBSA-PCP 0.89 1.02 1.16 1.34 1.49

SBSA-IBP 0.35 0.43 0.51 0.60 0.78

For‎any‎ fault,‎ the‎Cardarili’s‎method‎ [41] needs to perform a minimum of two addition

processes (computation using normal inputs and LSI) with one localization and correction

process and a maximum of three addition processes (computation using normal inputs, LSI,

and RSI) with two localization and correction processes. In our proposed methods, for any

fault, only two addition processes along with one localization and correction process are

needed. According to Table ‎4.3 and Table ‎4.4, we can estimate the delay times in the mentioned

methods for faulty addition, as listed in Table ‎4.5.

Table ‎4.5 Approximate time delay for faulty addition (ns)

Method

Time

8 Digit 16 Digit 32 Digit 64 Digit 128 Digit

Cardarili’s‎method‎[41] LSI 3.94 4.84 6.59 11.2 19.91

Cardarili’s‎method‎[41] RSI 7.17 8.97 12.74 21.69 39.11

SBSA-PaP 3.12 3.32 3.47 3.56 3.76

SBSA-PCP 2.45 2.58 2.72 2.9 3.05

SBSA-IBP 1.91 1.99 2.07 2.16 2.34

By referring to Table ‎4.4 and Table ‎4.5, we can prove the superiority of our proposed

methods‎compared‎with‎that‎of‎the‎Cardarili’s‎method‎[41]. The tables also indicate that in our

methods, the delay time slightly depends on the input digit length compared with the

66

Cardarili’s‎ method‎ [41]. Figure ‎4.1 shows that the delay time increases by increasing the

number of input digits.

Figure ‎4.1 Approximate delay time in the presence of a fault.

Area overhead

Table ‎4.6 lists the occupied area in the unprotected conventional binary signed-digit adder

and self-checking binary signed-digit adder under two different implementations. The

minimum area overhead for the self-checking BSDN adder is approximately 67% in the

implementation using information from the previous digit position and 76% using the double-

recoding method of the corresponding conventional BSDN adder. As listed in Table ‎4.7, adding

the fault-localization and error-correction algorithm increases the occupied area in all methods.

However, in the SBSA-PCP method, the increase in the area is not as large as that of other

described technique. Further, it significantly requires lesser area than the other approaches.

SBSA-IBP method needs a slightly larger area to detect and localize the fault, but still it needs

a lesser area than SBSA-PaP and method in [41].

0

5

10

15

20

25

30

35

40

45

D
el

a
y

 (
n

s)

Adder Width

Cardarilli’s‎Method‎

RSI

Cardarilli’s‎Method‎

LSI

SBSA-PaP

SBSA-PCP

SBSA-IBP

67

Table ‎4.6 Occupied area in the conventional and self-checking‎BSDA‎(μm2)

Implementation Method
Area

8 Digit 16 Digit 32 Digit 64 Digit 128 Digit

Using

information

from the

previous

digit

position

Unprotected

BSDA
520 1030 2050 4091 8176

Self-

checking

BSDA

(Figure ‎2.9)

870 1721 3472 6870 13737

Using

double-

recoding

method

Unprotected

BSDA

(Figure ‎3.3)

460 899 1778 3535 7053

SBSA-PP

(Fig. 8)
815 1579 3198 6351 12666

SBSA-IP

(Fig. 9)
1251 2321 4697 9321 18910

Table ‎4.7 Occupied whole area‎(μm2)

Method
Area

8 Digit 16 Digit 32 Digit 64 Digit 128 Digit

Cardarili’s‎method [41] 2476 3873 7420 14109 29033

SBSA-PaP 1511 2884 5497 11456 23181

SBSA-PCP 1162 2159 4358 8651 17560

SBSA-IBP 1251 2321 4697 9321 18910

Table ‎4.8 shows the percentage area overhead in different adder design based on original

adder. According to the table Cardarili’s‎ method [41] overhead is more than 300 percent

compared with unprotected signed-digit adder. Our designed adder, SBSA-PCP, has less area

overhead among all other designs. In order to compare out designs with other fault-tolerance

designs we show the area overhead in two other adders. Table ‎4.8 shows that the fault-tolerance

68

carry-lookahead adder presented in [43] has average 130 percent overhead compared with

original unprotected carry-lookahead adder, while our SBSA-PCP design had average less than

120 percent area overhead. Protected carry select adder presented in [44] shows less area

overhead compared with other designs but this is calculated without considering occupied areas

by LUTs and Registers. In addition, the probability of error detection/correction in carry select

adder in [44] is less than other designs.

Table ‎4.8 Time complexity and percentage of area overhead in different adders based on original unprotected

adder

Method

Area overhead (compared with unprotected adder)

Time

Complexity
8 Digit 16 Digit 32 Digit 64 Digit 128 Digit

Cardarili’s‎method

[41]
376.1% 276.0% 261.9% 244.9% 255.1% O(1)

SBSA-PaP 190.6% 180.0% 168.1% 180.0% 183.5% O(1)

SBSA-PCP 123.5% 109.6% 112.6% 111.5% 114.8% O(1)

SBSA-IBP 140.6% 125.3% 129.1% 127.8% 131.3% O(1)

Carry-lookahead adder

[43]
137.5% 136.9% 136.6% 136.5% N/A O(log(n))

Carry select adder [44]

without LUTs/Reg
84.9% 75.15% 68.19% 65.45% N/A O(√𝑛)

Figure ‎4.2 shows the increase in the area with the increase in the number of input digits in

the four methods.

69

Figure ‎4.2 Increase in the‎area‎by‎increasing‎the‎number‎of‎input‎digits‎(μm2).

Power overhead

Finally, the power consumption comparison results of the method in [41] with that of our

proposed methods are listed in Table ‎4.9, which shows that the power consumption of our

proposed methods is significantly lesser than the method in [41].

Table ‎4.9 Power‎consumption‎(μW)

Method
Power

8 Digit 16 Digit 32 Digit 64 Digit 128 Digit

Cardarili’s‎method [41] 171 288 614 1200 2480

SBSA-PaP 146 264 592 1190 2470

SBSA-PCP 92 174 367 758 1660

SBSA-IBP 105 137 240 573 1541

Figure ‎4.3 shows the results obtained from the five compared methods. The methods in

[41] and SBSA-PaP method almost overlapped and incur more power consumption than others.

0

5000

10000

15000

20000

25000

30000

35000

A
re

a
 (

μ
m

2
)

Adder Width

Cardarilli’s‎Method

SBSA-PaP

SBSA-IBP

SBSA-PCP

70

Figure ‎4.3 Increased‎in‎power‎consumption‎with‎the‎increase‎in‎the‎number‎of‎input‎digits‎(μW).

The results prove the superiority of the proposed methods over the previously suggested

methods. Our methods lead in all aspects such as lower application time, area overhead, and

power consumption, along with high error-correction and fault-localization capability with

more fault coverage.

0

500

1000

1500

2000

2500

3000
P

o
w

er
 (

μ
W

)

Adder Width

Cardarilli’s‎Method

SBSA-PaP

SBSA-PCP

SBSA-IBP

71

5 Conclusion

 In this chapter, the conclusion on the overall study will be discussed. At first findings of

the thesis are briefly reviewed, and then the contributions of the methods are discussed. And

finally a future work is suggested to extend the proposed methods in a way to act more

efficient.

This research has presented new fault-localization, detection, and error-correction

methods for a self-checking BSDN adder scheme. Through the use of inverted operands, the

new methods with low-complexity, state that these capabilities are achievable. Fault-

localization and error-correction schemes rely on exploitation of the self-dual function model.

Furthermore, with respect to full error-correction capabilities using recomputation with

complemented operands, comparison with the help of obtained results led to the localization of

faulty bit(s). Accomplishment of fault localization and error correction using the proposed

approaches are performed in one phase only.

The research indicated that for error correction using self-dual property beside with parity

prediction structure is more efficient than error correction method using recomputation with

shifted operands. In addition a novel, low-complexity approach shows that error detection and

localization capabilities are more efficient and achievable using the FA property, which takes

advantage of the observed relationship between the inputs and outputs in an FA, beside with

the self-dual function concept to set up fault-localization and error-correction procedures.

Future work will aim towards the attainment of fault-localization and error correction

properties at low cost in different radix signed-digit number adders by employing the proposed

techniques. For instance the future work will include the use of these methods in radix-4

quaternary signed-digit (QSD) number adders to obtain fault-tolerance property at low cost. In

Radix-4 the operations on greater numbers like 64, 128 –bit, that is carry free, can be

implemented with a persistent delay and low complicacy. QSD system uses four states instead

72

of two states in binary form. In QSD, every digit is presented by a number in between -3 to 3.

QSD acts as a support for the new state-of-the-arts areas like quantum computing, DNA

computing, optical computing, and quantum dot cellular automata ant etc.

73

6 References

[1] Mukherjee, Shubu. "Architecture design for soft errors." Morgan Kaufmann, 2011.

[2] Mehdizadeh, Nima, Mohammad Shokrolah-Shirazi, and Seyed Ghassem Miremadi.

"Analyzing fault effects in the 32-bit OpenRISC 1200 microprocessor." IEEE Third

International Conference on Availability, Reliability and Security (ARES), 2008.

[3] Meixner, Albert, Michael E. Bauer, and Daniel Sorin. "Argus: Low-cost,

comprehensive error detection in simple cores." 40th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), 2007.

[4] Pellegrini, Andrea, et al. "CrashTest'ing SWAT: accurate, gate-level evaluation of

symptom-based resiliency solutions." Proceedings of the Conference on Design,

Automation and Test in Europe Consortium (EDA), 2012.

[5] Hong, Seokin, and Soontae Kim. "Lizard: Energy-efficient hard fault detection,

diagnosis and isolation in the ALU." IEEE International Conference on Computer

Design (ICCD), 2010.

[6] Kim, Nam Sung, et al. "Leakage current: Moore's law meets static

power." Computer 36.12, pp. 68-75, 2003.

[7] Thompson, Scott E., et al. "In search of ‘forever,’ continued transistor scaling one

new material at a time." IEEE Transactions on Semiconductor Manufacturing 18.1,

pp. 26-36, 2005

[8] Velazco, Raoul, Pascal Fouillat, and Ricardo Reis, eds. "Radiation effects on

embedded systems". Springer Science & Business Media, 2007.

[9] Heijmen, Tino. "Radiation-induced soft errors in digital circuits--A literature

survey.", 2002.

[10] Lisboa, Carlos Arthur Lang, and Luigi Carro. "XOR-based low cost checkers for

combinational logic." IEEE International Symposium on Defect and Fault

Tolerance of VLSI Systems, 2008.

[11] Rossi, Daniele, et al. "Multiple transient faults in logic: An issue for next

generation ICs?." 20th IEEE International Symposium on Defect and Fault

74

Tolerance in VLSI Systems (DFT'), 2005.

[12] Rusu, Claudia, et al. "Multiple event transient induced by nuclear reactions in

CMOS logic cells." 13th IEEE International On-Line Testing Symposium (IOLTS),

2007.

[13] Dodd, Paul E., et al. "Production and propagation of single-event transients in high-

speed digital logic ICs." IEEE Transactions on Nuclear Science 51.6, pp. 3278-

3284, 2004.

[14] Ferlet-Cavrois, V., et al. "Statistical analysis of the charge collected in SOI and

bulk devices under heavy lon and proton irradiation—Implications for digital

SETs." IEEE Transactions on Nuclear Science 53.6, pp. 3242-3252, 2006.

[15] Huang, Ryan H-M., and Charles H-P. Wen. "Advanced soft-error-rate (SER)

estimation with striking-time and multi-cycle effects." 51st ACM/EDAC/IEEE

Design Automation Conference (DAC), 2014.

[16] Bastos, Rodrigo Possamai, et al. "A New Recovery Scheme Against Short-to-Long

Duration Transient Faults in Combinational Logic." Journal of Electronic

Testing 29.3, pp. 331-340, 2013.

[17] Lisboa, C. A., Marcelo Ienczczak Erigson, and Luigi Carro. "System level

approaches for mitigation of long duration transient faults in future

technologies." 12th IEEE European Test Symposium (ETS), 2007.

[18] Lisboa, C., M. Erigson, and L. Carro. "A low cost checker for matrix

multiplicatio." IEEE Latin-American Test Workshop, LATW. Vol. 8, 2007.

[19] Arizona State University, "Predictive technology model web site," [Online].

Available: http://www.eas.asu.edu/~ptm.

[20] Behrooz, Parhami. "Computer arithmetic: Algorithms and hardware

designs." Oxford University Press 19, 2000.

[21] Rabaey, J. M., and M. Pedram. "Low Power Design Methodologies Kluwer

Academic Publishers." Norwell, MA, 1996.

[22] González, Alejandro F., and Pinaki Mazumder. "Redundant arithmetic, algorithms

and implementations." Integration, the VLSI journal 30.1, pp. 13-53, 2000.

75

[23] Schneider, Klaus, and Adrian Willenbücher. "A New Algorithm for Carry-Free

Addition of Binary Signed-Digit Numbers." 22nd IEEE Annual International

Symposium on Field-Programmable Custom Computing Machines (FCCM), 2014.

[24] Bickham, Ryan. "An Analysis of Error Detection Techniques for Arithmetic Logic

Units". Dissertation, Vanderbilt University, 2010.

[25] Johnson, Barry W., James H. Aylor, and Haytham H. Hana. "Efficient use of time

and hardware redundancy for concurrent error detection in a 32-bit VLSI

adder." IEEE Journal of Solid-State Circuits 23.1, pp. 208-215, 1988.

[26] Golander, Amit, Shlomo Weiss, and Ronny Ronen. "Synchronizing redundant

cores in a dynamic DMR multicore architecture." IEEE Transactions on Circuits

and Systems II: Express Briefs 56.6, pp. 474-478, 2009.

[27] Nicolaidis, Michael. "Time redundancy based soft-error tolerance to rescue

nanometer technologies." 17th IEEE Proceedings VLSI Test Symposium, 1999.

[28] Patel, Janak H., and Leona Y. Fung. "Concurrent error detection in ALU's by

recomputing with shifted operands." IEEE Transactions on Computers 100.7, pp.

589-595, 1982.

[29] Reynolds, Dennis A., and Gernot Metze. "Fault detection capabilities of alternating

logic." IEEE Transactions on Computers 100.12, pp. 1093-1098, 1978.

[30] Ngai, Tat, Chen He, and EE Jr Swartzlander. "Enhanced concurrent error correcting

arithmetic unit design using alternating logic." IEEE Proceedings International

Symposium on Defect and Fault Tolerance in VLSI Systems, 2001.

[31] Nicolaidis M., Manich S. "Fault-secure parity prediction arithmetic operators."

IEEE Design and Test of Computers, 1997.

[32] Saitoh, Yuichi, and Hideki Imai. "Multiple undirectional byte error-correcting

codes." IEEE Transactions on Information Theory 37.3, pp. 903-908, 1991.

[33] Koob, Gary M., and Clifford G. Lau, eds. "Foundations of Dependable Computing:

System Implementation". Springer Science & Business Media, Vol. 285, 1994.

[34] Nicolaidis, Michael. "Efficient implementations of self-checking adders and

ALUs." The Twenty-Third International Symposium on Fault-Tolerant Computing,

76

(FTCS-23), Digest of Papers, 1993.

[35] Sellers, Frederick F., Muyue Xiao, and Leroy W. Bearnson. "Error detecting logic

for digital computers." McGraw-Hill, 1968.

[36] Riemens, Danny P., et al. "Towards scalable arithmetic units with graceful

degradation." ACM Transactions on Embedded Computing Systems (TECS) 13.4,

2014.

[37] Mitra, Subhasish, and Edward J. McCluskey. "Which concurrent error detection

scheme to choose?." IEEE Proceedings International Test Conference, 2000.

[38] Townsend, Whitney J., Jacob A. Abraham, and E. E. Swartzlander. "Quadruple

time redundancy adders [error correcting adder]." 18th IEEE Proceedings

International Symposium on Defect and Fault Tolerance in VLSI Systems, 2003.

[39] Khedhiri, Chiraz, et al. "A fault tolerant adder based on alternative

computation." International Journal of Design, Analysis and Tools for Integrated

Circuits and Systems Vol. 3, No. 1, pp. 14-18, 2012.

[40] Peng, Song, and Rajit Manohar. "Fault tolerant asynchronous adder through

dynamic self-reconfiguration." IEEE International Conference on Computer

Design, 2005.

[41] Cardarilli, Gian-Carlo, et al. "Fault localization, error correction, and graceful

degradation in radix 2 signed digit-based adders." IEEE Transactions on

Computers 55.5, pp. 534-540, 2006.

[42] Namazi, Alireza, et al. "A low-cost fault-tolerant technique for Carry Look-Ahead

adder." 15th IEEE International On-Line Testing Symposium, 2009.

[43] Valinataj, Mojtaba. "A novel self-checking carry lookahead adder with multiple

error detection/correction." Microprocessors and Microsystems 38.8, pp. 1072-

1081, 2014.

[44] Mukherjee, Atin, and Anindya Sundar Dhar. "Real-time fault-tolerance with hot-

standby topology for conditional sum adder." Microelectronics Reliability 55.3, pp.

704-712, 2015.

[45] Akbar, Muhammad Ali, and Jeong-A. Lee. "Self-repairing adder using fault

77

localization." Microelectronics Reliability 54.6, pp. 1443-1451, 2014.

[46] Avizienis, Algirdas. "Signed-digit numbe representations for fast parallel

arithmetic." IRE Transactions on Electronic Computers 3, pp. 389-400, 1961.

[47] Ercegovac,‎Miloš‎D.,‎and‎Tomas‎Lang. "Digital arithmetic." Elsevier, 2004.

[48] Cardarilli, Gian-Carlo, et al. "Error detection in signed digit arithmetic circuit with

parity checker [adder example]." 18th IEEE Proceedings International Symposium

on Defect and Fault Tolerance in VLSI Systems, 2003.

[49] Parhami, Behrooz. "Carry-free addition of recoded binary signed-digit

numbers." IEEE Transactions on Computers 37.11, pp. 1470-1476, 1988.

[50] Alavi, Seyyed Roohollah, and Karim Faez. "Fault Localization and Full Error

Correction in Radix2 Signed Digit-Based Adders." IEEE Pacific Rim Conference

on Communications, Computers and Signal Processing, 2007.

[51] Patel, Janak H., and Leona Y. Fung. "Concurrent error detection in ALU's by

recomputing with shifted operands." IEEE Transactions on Computers 100.7, pp.

589-595, 1982.

[52] John Barry, W. "Design and Analysis of Fault-Tolerant Digital Systems.", 1989.

[53] Oikonomakos, Petros, and Paul Fox. "Error correction in arithmetic operations by

I/O inversion." 12th IEEE International On-Line Testing Symposium (IOLTS'06),

2006.

[54] Takagi, Naofumi, Hiroto Yasuura, and Shuzo Yajima. "High-speed VLSI

multiplication algorithm with a redundant binary addition tree." IEEE Transactions

on Computers 100.9, pp. 789-796, 1985.

[55] Kuninobu, Shigeo, et al. "Design of high speed MOS multiplier and divider using

redundant binary representation." 8th IEEE Symposium on Computer Arithmetic

(ARITH), 1987.

[56] Takagi, Naofumi. "Studies on hardware algorithms for arithmetic operations with a

redundant binary representation." Kyoto University, 1988.

[57] Kuninobu, Shigeo, Tamotsu Nishiyama, and Takashi Taniguchi. "High speed MOS

multiplier and divider using redundant binary representation and their

78

implementation in a microprocessor." IEICE Transactions on Electronics 76.3, pp.

436-445, 1993.

[58] Makino, Hiroshi, et al. "An 8.8-ns 54× 54-bit multiplier with high speed redundant

binary architecture." IEEE Journal of Solid-State Circuits 31.6, pp. 773-783, 1996.

[59] Moradian, Hossein, and Jeong-A. Lee. "Low-Cost Fault Localization and Error

Correction for a Signed Digit Adder Design Utilizing the Self-Dual

Concept." IEEE Euromicro Conference on Digital System Design (DSD), 2015.

	1. INTRODUCTION
	A. MOTIVATIONS
	B. OBJECTIVES OF RESEARCH
	C. RESEARCH SCOPE
	D. ORGANIZATION OF THE RESEARCH

	2. RELATED WORK
	A. FAILURE
	B. FAULT
	C. ERROR
	D. STUCK-AT FAULT
	E. MULTI CYCLE TRANSIENT FAULT
	F. STANDARD ADDER TYPES
	G. SELF-CHECKING CIRCUITS
	H. SIGNED-DIGIT NUMBER SYSTEMS

	3. PROPOSED DESIGNS
	1. Self-checking binary signed-digit adder using parity prediction (SBSA-PaP)
	2. Self-checking binary signed-digit adder
	3. Self-checking binary signed-digit adder using pre-calculated input parities (SBSA-PCP)
	4. Self-checking binary signed-digit adder using input bit parities (SBSA-IBP)
	5. Error-correction and fault-localization method in SBSA-PCP and SBSA-IBP

	4. PERFORMANCE EVALUATION AND COMPARISON
	1. Error detection
	2. Error correction and fault localization
	3. Time, Area, and Power Overhead

	5. CONCLUSION
	6. REFERENCES

<startpage>20
1. INTRODUCTION 1
 A. MOTIVATIONS 2
 B. OBJECTIVES OF RESEARCH 5
 C. RESEARCH SCOPE 5
 D. ORGANIZATION OF THE RESEARCH 6
2. RELATED WORK 7
 A. FAILURE 7
 B. FAULT 7
 C. ERROR 9
 D. STUCK-AT FAULT 11
 E. MULTI CYCLE TRANSIENT FAULT 12
 F. STANDARD ADDER TYPES 13
 G. SELF-CHECKING CIRCUITS 14
 H. SIGNED-DIGIT NUMBER SYSTEMS 23
3. PROPOSED DESIGNS 44
 1. Self-checking binary signed-digit adder using parity prediction (SBSA-PaP) 47
 2. Self-checking binary signed-digit adder 49
 3. Self-checking binary signed-digit adder using pre-calculated input parities (SBSA-PCP) 51
 4. Self-checking binary signed-digit adder using input bit parities (SBSA-IBP) 54
 5. Error-correction and fault-localization method in SBSA-PCP and SBSA-IBP 54
4. PERFORMANCE EVALUATION AND COMPARISON 60
 1. Error detection 60
 2. Error correction and fault localization 61
 3. Time, Area, and Power Overhead 63
5. CONCLUSION 71
6. REFERENCES 73
</body>

