ccreative

 commons

 commons}
$\begin{array}{lllllllllll}\text { C } & \mathrm{O} & \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{N} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{E} & \mathrm{D}\end{array}$

저작자표시-비영리-변경금지 2.0 대한민국
이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 숩게 요약한 것입니다.

$$
\text { Disclaimer } \square
$$

c)Collection

2017년 2월
박사학위 논문

Genomewide characterization of

messenger RNA alternative
polyadenylation

> 조선대학교 대학원
> 의 과 학 과
> 전 세 모

선택적 mRNA polyadenylation의
 유전체 특성 분석

Genomewide characterization of messenger RNA alternative polyadenylation

2017년 2월 24일

조선대학교 대학원

의 과 학 과
전 세 모

Genomewide characterization of

messenger RNA alternative
polyadenylation

> 지도교수 유 호 진

이 논문을 박사학위 신청 논문으로 제출함

2016년 10월
조선대학교 대학원

의 과 학 과

전 세 모
©Collection @ chosun

전세모의 박사학위논문을 인준함

위원장 조선대학교 교수 장 인 엽 (인)

위 원 제주대학교 교수 윤 상 필 (인)

위 원 조선대학교 교수 전 영 진 (인)

위 원 조선대학교 교수 이 정 희 (인)

위 원 조선대학교 교수 유 호 진 (인)

조선대학교 대학원

CONTENTS

I. KOREAN ABSTRACT -V
II. INTRODUCTION 1
III. MATERIALS AND METHODS 6

1. Cell culture 6
2. Plasmid constructs 6
3. RNA interference 7
4. RNA-seq and alignments 8
5. ApA analysis 9
6. Scatter plot for differential expression and ApA analysis 10
7. Measurement of RSI 10
8. Real-time quantitative PCR (RT-qPCR) analysis 12
9. Western blot analysis and antibodies 13
10. Cell cycle analysis 14
11. Bromodeoxyuridine (BrdU) incorporation assay 15
12. Chromatin immunoprecipitation (ChIP) assay 15
IV. RESULTS 17
V. DISCUSSION 54
VI. ABSTRACT 58
VII. REFERENCES 60

CONTENTS OF FIGURES AND TABLES

Figure 1. 19
Figure 2. 23
Figure 3. 24
Figure 4. 27
Figure 5. 30
Figure 6. 33
Figure 7. 37
Figure 8. 40
Figure 9. 43
Figure 10. 45
Figure 11. 47
Figure 12. 51
Table 1. 73
Table 2. 74
Table 3. 76
Table 4. 77
Table 5. 93
Table 6. 106
Table 7. 114

국문초록

선택적 mRNA polyadenylation의 유전체 특성 분석

전 세 모
지도교수: 유 호 진
조선대학교 일반대학원
의과학과

메신저 RNA (mRNA)는 번역하기 전에 일련의 전사 후 처리 공정을 거쳐야 한다. 전사 후 단계 중 하나는 cleavage 및 polyadenylation 으로 이루어진 3 '말단 처리이며, 이 과정은 mRNA의 3' 말단을 구분하여 전사 및 번역 후 조절을 위한 조절 요소를 결정하는 데 중요하다. 3^{\prime} 말단 처리는 mRNA의 3' 말단의 다양한 trans 작용 인자 및 cis 작용 인자에 의해 조절된다. 최근 polyadenylation 이 일어나는 부분의 조절로 같은 유전자에서 서로 다른 3' 말단을 가지는 mRNA 아형의 발현에 관하여 점점 밝혀지고 있다. 더 중요한 것은, 3^{\prime} 말단에서 발생하는 전반적인 길이의 변화가 암 세포에서 주로 관찰

되고 있다. 또 다른 중요한 polyadenylation 현상은 히스톤 polyadenylation 이다. 다른 mRNA와 달리 히스톤 mRNA는 polyadenylation 대신 3 '말단에 stemloop 구조를 가진다. 최근 연구에 의하면 히스톤 polyadenylation 은 DNA 손상에 대한 감수성을 높여 결손 염색체의 빈도를 증가시키고, 게놈 불안정성을 유발한다. 본 연구에서는 선택적 polyadenylation 을 분석하기 위해 종양 형성, 세포 사멸 및 게놈 안정성에 중요한 역할을 하는 종양 단백질 p 53 과 p 53 결합 단백질로 알려져 있는 53bp1의 새로운 기전으로 mRNA 3^{\prime} 말단의 polyadenylation 을 조절함을 확인하였다. 또한 53bp1는 히스톤 polyadenylation 을 조절하는 중요한 인자임을 확인하였다. 이러한 연구 결과는 mRNA의 3^{\prime} 말단의 선택적 polyadenylation 조절에서 p53 또는 53bp1의 이전 알려져 있지 않은 새로운 중요 인자임을 시사한다.

INTRODUCTION

In the nucleus of eukaryotic cells, the 3^{\prime} end of most protein-coding genes is cleaved and polyadenylated [1-4]. A recent study shows that over 50% of human genes have multiple polyadenylation sites. For that reason, increasing the potential diversity in mRNA transcript length [5]. The formation of mRNA transcripts using these distinct polyadenylation sites (PASs) is carried out by Alternative polyadenylation (APA) with the most common form involving the differential use of APA sites located within the same transcript [6]. Processing at a most proximal polyadenylation sites in the 3' untranslated region (3' UTR) produces different-length of mRNA isoform even though encodes the same protein which removed negative regulatory elements that reduce mRNA stability or repress translation efficiency such as AU-rich elements (AREs) [7] and microRNA (miRNA) targeting sites [8, 9]. It has been reported that both rapidly proliferating cells and/or transformed cells preferentially express mRNAs with shortened 3' UTRs [4, 10-12]. In spite of these observations, the mechanisms that control the large-scale polyadenylation switch observed in proliferative, differentiation, and/ or transformed cells, as well as the
target genes subject to this regulation, are unclear [13].

Tumor protein p 53 is one of the most frequently deleted or mutated tumor suppressor genes in diverse cancers, presence as a germ-line mutation in cancer-prone families with the Li-Fraumeni syndrome, and highly penetrant tumorigenic phenotype in p53 null mice [14]. The classical function of tumor suppressor gene p53 is to act as a transcription factor to regulate its downstream protein coding genes in response to various growth conditions and cellular stresses [14, 15]. Recently, over 80% of DNA binding domain mutation in p53 were found in variety cancers [16] and over 125 protein-coding genes and noncoding RNAs were direct transcriptional targets of p53 [17], which contain specific sequences for p53 binds leading to activation of their transcription activity [15]. Although originally characterized only as a transcriptional coactivator, today function of p53 have been expanded to include transcriptional repression [18], regulation of translation [19], homologous recombination [20], and transcription-independent apoptotic response [21].
p53 binding protein 1 (53bp1) was originally identified as a protein that binds to the DNA-binding domain of p53 [22]. It contains two tudor domains and C-terminal tandem

BRCT domains [23, 24]. BRCT domain is thought to be protein-protein interaction domain and is found in many DNA damage response proteins [23, 25]. A recent report shows that 53 bp 1 is a key mediator of the cell's response to DSBs [26]. Upon the induction of DSB lesions, 53BP1 rapidly relocates to the sites of breaks and is believed to promote the stabilization of additional DNA damage response factors at DSBs [26]. The recognition of histone H 4 dimethylated at lysine $20(\mathrm{H} 4 \mathrm{~K} 20 \mathrm{me} 2)$ by the 53 bp 1 has been shown to be important for 53bp1 localization to DSBs: linking chromatin structure, lysine methylation, and DSB signaling [27]. Another recent study reported that 53BP1 recognizes p53 dimethylated at lysine 370 through its Tudor domain and modulates p53 transactivation at several target genes [28]. Thus, 53BP1 might also have functions in transcription regulation. Also, 53bp1 knockout mice are radio-sensitivity, growth retardation, cell cycle defects, chromosomal instability, and cancer-prone [29].

Histone proteins are essential components of eukaryotic chromosomes. In mammalian cells, as cells enter S phase, most of the histone synthesis are increased and they are rapidly degraded at the end of S phase. In metazoan, replication-dependent histone
mRNAs are the unique mRNAs that lack poly(A) tails. Instead, they have a conserved stem-loop structure in 3' UTR, which is the cis-acting element required for regulation of histone mRNA half-life [30]. A small number of histone proteins (replication-independent histone) such as H°, $\mathrm{H} 2 \mathrm{a} . \mathrm{Z}$, macroH2a, H 3 -cid, and H 3.3 are encoded by polyadenylated mRNAs [30]. This type of mRNAs encodes the variant histones used for DNA repair and chromatin remodeling [31]. They are expressed throughout the cell cycle [32]. The expression of replication-dependent histone is regulated by histone-specific pre-mRNA processing factors and universal polyadenylation associated factors. The stem-loop binding protein (Slbp) binds to 26 nucleotide stem-loop sequence, which is evolutionarily conserved in metazoans and is involved in all aspects of histone mRNA metabolism [33].

Slbp has an RNA-binding domain (RBD) that is dissimilar to the RBD of any other RNAbinding protein [33-35]. In the first step of histone mRNA 3' end processing, Slbp binds the stem-loop and then the histone downstream element (HDE) binds with a U7 small nuclear ribonucleoprotein (U7 snRNP), including the U7 small nuclear RNA (snRNA) and the Sm-like proteins Lsm10, Lsm11, [36-40]. Together, Slbp and U7 snRNP recruit a universal 3^{\prime} end of polyadenylated mRNAs cleavage factor that contains cleavage and
polyadenylation specific factor 3 (CPSF3), which has endonuclease activity and Symplekin (Sympk) which serve as a scaffold for recruiting regulatory factors [41]. Histone levels are strictly regulated to prevent deleterious effects such as genomic instability and chromosome abnormality [42, 43].

In this study, we used isogenic non-cancerous mouse embryonic fibroblast (MEF) cell lines to understand changes of molecular features on p53 or 53bp1 knockout. We employed RNA sequencing (RNA-seq) approaches to investigate the changes at high resolution and found an unexpected link between p53 or 53 bp 1 and APA. We show p53 or 53bp1 knockout induces global mRNA 3' UTR-APA. Our results suggest that p53 and 53bp1 have a new role in post-transcriptional gene regulation as well as pre-transcriptional regulation. We also investigated the 53bp1 knockout cells showed that decrease the expression of replication-dependent histones. We show depletion of 53bp1 increased polyadenylated histone mRNA via epigenetic regulation of well-known histone 3 ' end processing factor Slbp. This result indicates that 53 bp 1 regulate histone gene expression, which is an uncharacterized role for 53bp1 in the genomic instability.

MATERIALS AND METHODS

1. Cell culture

The human cervical adenocarcinoma cell line HeLa, obtained from the American Type Culture Collection (ATCC, Rockville, MD, USA), was cultured in Minimum Essential Media (Gibco-BRL, Grand Island, NY, USA). p53 wild-type (p53 ${ }^{+/+}$), p53 knockout (p53 $3^{-/}$), 53bp1 wild-type $\left(53 \mathrm{bp} 1^{+/+}\right)$, 53bp1 knockout $\left(53 \mathrm{bp} 1^{-/-}\right)$MEFs were cultured in Dulbecco's modified Eagle's medium (Gibco-BRL). In all cases, the media was supplemented with 10% heat-inactivated fetal bovine serum (Gibco-BRL), 100 units $/ \mathrm{ml}$ penicillin, and $100 \mathrm{mg} / \mathrm{ml}$ streptomycin sulfate (Invitrogen, Carlsbad, CA, USA). All cells were maintained in a humidified incubator containing $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$.

2. plasmid constructs

The full-length mouse p53 cDNA was amplified from addgene (pLCRcala-53) by Reverse-transcription Polymerase chain reaction (RT-PCR) using the p53 primers 5'-

AATAAGCTTATGACTGCCATGGAGGAGTCACAGT-3' (forward) and 5'-AATGAATTCGTCTGAGTCAGGCCCCACTTTCTTG-3' (reverse). The amplified p53 cDNA construct was cloned into the mammalian expression vector pcDNA3 in-frame with the hemagglutinin (HA) tag. The human 53bp1 constructs were gifted from Prof. Stanley Fields laboratory and siRNA-resistant full-length 53bp1 construct prepared by the GeneTailor Site-Directed Mutagenesis kit (Invitrogen) according to the manufacturer's instructions.

3. RNA interference

The target sequences were 5'- GGACAAGUCUCUCAGCUAUdTdT-3' for 53bp 1, 5'-GCCAGAACUUGGUAGUCAAdTdT-3' for ATP citrate lyase (Acl), 5'-GUUCUGAUUCAAAGGAGUCUAdTdT-3' for Slbp and 5'-ACGAAAUUGGUGGCGUAGGdTdT-3' was used as a negative control.

4. RNA-seq and alignments.

To evaluate transcriptome features under p53 knockout and 53bp1 knockout at nucleotide-wise resolution, we performed RNA-seq analysis of poly (A+) RNAs isolated from $\mathrm{p} 53^{+/+}, \mathrm{p}^{-1 /-}, 53 \mathrm{bp} 1^{+/+}$and 53bp1 ${ }^{-/-}$MEFs. In total, $65,339,058$ paired-end reads for $\mathrm{p} 53^{+/+}, 72,206,840$ paired-end reads for $\mathrm{p} 53^{-/-} 76,292,696$, paired-end reads for $53 \mathrm{bp} 1^{+/+}$ and $79,341,754$ paired-end reads for $53 \mathrm{bpl}^{-1}$ MEF cells were produced from Hi-Seq pipeline with length of 50 bp of each end. The short reads were aligned to the mm 10 reference genome by TopHat [44], with up to two mismatches allowed. The unmapped reads were first trimmed to remove poly-A/T tails (repeats of $[\mathrm{A} / \mathrm{N}] \mathrm{s}$ or $[\mathrm{T} / \mathrm{N}] \mathrm{s}$) from read ends/starts and then aligned to the reference genome. It is worth noting that we only retained the reads with at least 30 bp in both ends after trimming.

5. ApA analysis

To detect the potential alternative PAS of a transcript between each wild-type and
knockout MEFs, we evaluated candidate PAS motifs (AATAAA, ATTAAA, AGTAAA, CATAAA, TATAAA, GATAAA, ACTAAA, AATACA, AATATA, AAGAAA, AATAGA, AATGAA, TTTAAA, AAAATA, TATATA, AGATAA, ATTACA, AGAATA) [5, 45] in the 3' UTR of the transcript by contrasting the short-read coverage up/downstream of the site across each wild-type and knockout samples with χ^{2}-test. Specifically, we first scanned the 3' UTR of a transcript (by mm10 annotation) to identify PAS motifs as candidates of alternative PAS. For each candidate PAS, we calculated the mean coverage upstream of the site (N and M) and downstream of the site (n and m) with (N, n) denoting the coverage in wild-type and (M, m) denoting the coverage in knockout. In the calculation, the upstream region starts at the beginning of the last coding exon adjacent to the 3 ' UTR of the transcript and ends at the beginning of the PAS motif site. Next, a canonical $2 \times 2 \chi^{2}$-test was applied to report a P-value for each candidate site. The candidate PAS with the most significant P-value ≤ 0.05 was considered for further analysis. It is noteworthy that the χ^{2} test will report shortening events in both wild type (when $\mathrm{N} / \mathrm{n}>\mathrm{M} / \mathrm{m}$) and knockout (when $\mathrm{N} / \mathrm{n}<\mathrm{M} / \mathrm{m}$).

6. Scatter plot for differential expression and ApA analysis

To select candidate transcripts with sufficient signal for reliable differential expression analysis and 3' UTR-shortening identification, we first analyzed the short-read alignments of the RNA-seq data against mouse mm10 reference genome using Cufflink [46]. We further filtered out the transcripts with positional short-read coverage ≤ 25 in the entire 3 , UTR in both cell lines. In addition, transcripts with 3' UTR overlapping exons in the strand in opposite direction were removed to avoid mingled short-read signals that might lead to inaccurate 3' UTR-shortening identification. Finally, to allow precise PAS analysis, only transcripts with at least two occurrences of the 18 PAS motifs in the 3^{\prime} UTR are retained in the study.

7. Measurement of RSI

A numerical presentation of 3' UTR shortening was developed by calculating the RSI of
a given transcript. A relative expression of total or longer 3' UTR-containing transcripts was measured by normalizing to the total amount of RNAs used in RT-qPCR analysis. The following equation was used to determine the RSI.

LI $=$ [normalized expression of longer 3' UTR-containing transcript]/ [normalized expression of total (long + short) transcript]

RSI $=-\log _{2}(\mathrm{LI} /[\mathrm{LI}$ in reference cell line $]) ;$ thus, $\mathrm{RSI}=0$ for a reference cell line. If RSI <0 in a target cell line, then there is a 3^{\prime} UTR shortening.

If RSI >0 in a target cell line, then there is a 3 ' UTR lengthening. The RSI contains the information about the changes in the proportion of a longer 3' UTR-containing transcript in a given cellular context compared with a reference cell. For example, a value of 1 in the RSI of a transcript indicates that the proportion of the longer 3' UTR-containing transcript of the total (long + short) transcript decreases by 50% compared with that of the reference cell line, indicating an enrichment of 3' UTR-shortened transcript (that is, 3' UTR shortening).

8. Real-time quantitative PCR (RT-qPCR) analysis

Total RNA was isolated from cells using the Trizol Reagent (Invitrogen) according to the manufacturer's protocol. $1 \mu \mathrm{~g}$ total RNA was reverse transcribed using Superscript III reverse transcriptase (Invitrogen). Real-time quantitative PCR was performed using SYBR Premix Ex Taq (Clontech, Mountain View, CA, USA) on a Stratagene Mx3000P (Stratagene, Amsterdam, Netherlands). 20ng cDNA were amplified as follows: $94^{\circ} \mathrm{C}$ for 2 $\min , 94^{\circ} \mathrm{C}$ for $5 \mathrm{~s}, 60^{\circ} \mathrm{C}$ for 10 s , and $72^{\circ} \mathrm{C}$ for 20 s . Steps 2 through 4 were repeated for 40 cycles. Each reaction was performed in triplicate, and results of 3 independent experiments were used for statistical analysis. Relative mRNA expression levels were quantified using the $\Delta \Delta \mathrm{C}(\mathrm{t})$ method [47]. Data are presented as means \pm standard error (s.e.). Statistical comparisons were carried out using unpaired t - test and values of $\mathrm{p}<0.05$ were considered to be statistically significant. Primer sequences can be found in Tables 1-3.

9. Western blot analysis and antibodies

Cells were lysed in RIPA buffer [50mM Tris-HCl (pH 7.5), $150 \mathrm{mM} \mathrm{NaCl}, 1 \%$ Nonidet P-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS)] containing ethylenediaminetetraacetic acid (EDTA)-free protease inhibitor cocktail (Roche, Basel, Switzerland). Equal amounts of proteins were then resolved on 8-15\% SDS-PAGE gels, followed by electrotransfer to polyvinylidene difluoride membranes (Millipore, Bedford, MA, USA). The membranes were blocked for 1 h in TBS-T [10mM Tris-HCl (pH 7.4), $150 \mathrm{mM} \mathrm{NaCl}, 0.1 \%$ Tween 20] containing 5% fat-free milk at room temperature and then incubated with the indicated primary antibodies overnight at $4^{\circ} \mathrm{C}$. After incubation for 2 h with appropriate peroxidase-conjugated secondary antibodies [1:4000, Jackson ImmunoResearch Inc., West Grove, PA, USA], developed using enhanced chemiluminescence detection system. The following antibodies were used in this study; anti-mouse p53 (FL-393, Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-human p53 (DO-1, Santa Cruz Biotechnology), anti-53bp1 (Origene, Rockville, MD, USA), antiAcl (Cell Signaling, Beverly, MA, USA), anti-mouse Slbp (H-10, Santa Cruz

Biotechnology), anti-human Slbp (EPR12673, Abcam, Cambridge, MA, USA), anti-Cpsf3 (Bethyl, Montgomery, TX, USA), anti-Lsm10 (Origene), anti-Lsm11 (Bethyl), antiSymplekin (Bethyl), anti-HistoneH1 (Abcam, Cambridge, MA, USA), anti-HistoneH2a (Abcam), anti-HistoneH2b (Abcam), anti-HistoneH3 (Abcam), anti-HistoneH4 (Abcam), anti- α-tubulin (Neomarkers, Fremont, CA, USA) and anti- β-actin (Santa Cruz Biotechnology).

10. Cell cycle analysis

Trypsinized cells were washed twice with PBS and fixed in 70\% ethanol. The fixed cells were washed with PBS, incubated with $100 \mathrm{mg} / \mathrm{ml}$ RNase at $37^{\circ} \mathrm{C}$ for 30 min , stained with PI ($50 \mathrm{mg} / \mathrm{ml}$) and analyzed on FACSCalibur flow cytometer (BD Biosciences, San Jose, CA, USA). The percentages of cells in different phases of the cell cycle were analyzed using the Cell Quest Pro (BD Biosciences).

11. Bromodeoxyuridine (BrdU) incorporation assay

BrdU incorporation was using the BrdU (colorimetric) kit (Roche Diagnostics, Germany) according to the manufacturer's instructions.

12. Chromatin immunoprecipitation (ChIP) assay

ChIP was performed using a commercially available SimpleChIP Assay Kits (Cell Signaling) according to manufacturer's instructions. DNA-bound protein was immunoprecipitated using an anti-acetyl-Histone H3 (Millipore, Billerica, MA, USA) antibody or rabbit IgG (Active Motif, Rixensart, Belgium) as a negative control. For quantification of co-precipitated DNA, samples were then subjected to amplification by employing primers (mSlbp forward: 5'-TTCACTCGGCAACAGCACT-3', mSlbp reverse: 5’- GTCTCATGGTTTCGCCCTTC-3', hSlbp forward: 5’-GCGACTGCGCTCAGATTAAC-3’, hSlbp reverse: 5’-CGCTTTTTCTGCGTAGCCTG3', mCpsf3 forward: 5'-ATAACGTCGCCAAGATGCTC-3', mCpsf3 reverse: 5'-

GCTTTGGAAGCCTGATCTTG-3', hCpsf3 forward: 5'-CGCAGTCCTGACGTCCTAC3', hCpsf3 reverse: 5'-AAGGAAGAACCCCATTCACC-3', mLsm10 forward: 5'-

GAGGGCGTCAGATCTCGTTA3',	mLsm10	reverse:	5^{\prime} '
ACGTGGTGGCAAACTCCTTA-3',	hLsm10	forward:	5^{\prime} '
AGAGACAGGGTCTCCCCATT-3',	and \quad hLsm10	reverse:	5^{\prime} '

CATGAAGCCAAGCTTGTGAA-3') which amplified the promoter region of each gene.

RESULT

1. Deficient of $\mathbf{p 5 3}$ induces global mRNA 3^{\prime} ' UTR alternative polyadenylation

To determine the role of p53 in mRNA 3' UTR-APA on a genome-wide level, we performed RNA sequencing (RNA-Seq) to compare APA events in $\mathrm{p} 53^{-/-}$and $\mathrm{p} 53^{+/+}$MEFs [48]. The RNA-Seq results show, as expected, that $\mathrm{p} 53^{-/-}$promoted APA in some mRNA 3' UTR (Figure 1). Based on the RNA-Seq results, there are several patterns in APA event. For example, several genes in $\mathrm{p} 53^{-/-}$MEF cells showed decreased signal (Ocel1 and Gdf10) (Figure 1A) or increased signal (Gng2 and Igfbp5) (Figure 1D) in the 3' most exon, although the signal from upstream exons increased. Tsc22d2 and Trmt5 showed decreased signal (Figure 1B) and Elk1 and Slc30a4 (Figure 1E) increased signal in 3' most exon, however, upstream exons signal was similar. Aen and Alcam showed decreased both upstream exons signal and 3' most exon signal (Figure 1C). On the other hand, Scoc and Dpt have increased both signals (Figure 1F). As the signals from upstream exons reflecting the amount of transcripts varied among the 3' UTR-shortened and lengthened transcripts, we analyzed whether 3^{\prime} UTR-APA in the transcriptome of $\mathrm{p} 53^{-1}$ MEF cells correlates with
differential gene expression. To this end, we enriched 6,779 transcripts in our data set that are eligible for combined analysis of 3' UTR-APA and differential expression. Next, each transcript was plotted by fold changes in the differential gene expression (y-axis in Figure 1G) and the significance of 3' UTR shortening (x-axis in Figure 1G). This approach identified 793 3' UTR-shortened transcripts (Table 4) or 3' UTR-lengthened transcripts (Table 5) (about 11.7%) out of 6,779 transcripts in p53 ${ }^{-1}$ MEF cells. Although 7\% (56/793) of the 3^{\prime} UTR shortened transcripts either increased (16/793) or decreased (40/793) their expression level, 6.7% (53/793) of the 3' UTR lengthened transcripts either increased (22/793) or decreased (31/793) their expression level. A significant proportion (88.3\%) of them in the $\mathrm{p} 53^{-1-}$ MEF transcriptome remained unchanged, indicating no significant correlation between the differential gene expression (DEG) and the 3 ' UTR-APA in the p53 ${ }^{-/}$MEF transcriptome.

A

B

C

D

E

G

Figure 1. p53 knockout induces global mRNA 3' UTR alternative polyadenylation

A-F. RNA-seq reads from $\mathrm{p} 53^{+/+}$and $\mathrm{p} 53^{-/-}$MEFs are aligned to mouse genome mm10 RefSeq. Representative examples of transcripts with 3' UTR ApA are presented. Annotated gene structures are at the bottom of the alignment. G. Scatter plot of RNA-seq data. Red dots represent individual transcripts in the analysis. Horizontal blue dashed lines represent the cutoff values for two-fold changes in differential gene expression. Vertical green dashed lines represent the cutoff values for $-\log _{10}$ (P -value) of 3 ' UTR shortening (1.3 corresponds to $\mathrm{P}=0.05$) in $\mathrm{p} 53^{-/-}$and $\mathrm{p} 53^{+/+} \mathrm{MEFs}$, which was determined by χ^{2}-test. The green boxes highlight the aligned reads in 3 ' UTRs.

2. $\mathbf{p 5 3}$ regulates $\mathbf{3}^{\prime}$ ' UTR alternative polyadenylation

To validate these RNA-Seq results, we analyzed APA using the 'relative shortening index (RSI)' which was previously developed a method to determine the increase or decrease in the level of the short isoform relative to the long isoform [1]. We generated pairs of primers were used to detect a total (short + long) or a long-specific transcript (Figure 2A) and RT-qPCR validation of the 3 ' UTR-APA of randomly selected genes showed APA changes consistent with the RNA-Seq dataset (Figure 2B). We also examined the change in expression level of 3^{\prime} UTR polyadenylation and splicing factors. Interestingly, most of 3' UTR polyadenylation were up-regulated in $\mathrm{p} 53^{-1}$ MEF cells except Cpeb1 (Figure 2C), and U4 and 7sk splicing factor were up-regulated, however, other splicing factors were no significantly changed (Figure 2D). Collectively, these data suggest that p53 knockout in cells leads to expression change of 3^{\prime} UTR polyadenylation factors and transcriptome-wide APA in the 3 '-most exon of mRNAs.

To show a direct function of p 53 in APA, p53 ${ }^{-1 /}$ MEF cells were transfected with fulllength p53 expression construct. We test shortened transcripts and lengthened transcripts in
p53 ${ }^{-/}$MEF cells. As shown in Figure 3A, overexpression of p53 resulted in the length of all tested transcripts are recovered. We also checked 3' UTR polyadenylation, most of the factors, we tested, are recovered except Cpsf 3 and Cpeb1. These results suggested that p53 regulates APA via several 3' UTR polyadenylation factors through an unknown mechanism(s).

A

B

C

D

Figure 2. p53 regulation of mRNA alternative polyadenylation
A. A schematic presenting primer sets for RT-qPCR. Pairs of primers were used to detect a total (short + long) or a long-specific transcript. The RSI was calculated to determine the 3' UTR ApA in a target cell line by RT-qPCR. B. Validation of RNA-seq data. Error bars represent s.e. from three repeats of experiments. Student's t-tests are done for statistical significance ($\mathrm{P}<0.05$). C. RT-qPCR analysis of polyadenylation factor mRNA levels in $\mathrm{p} 53^{-/}$MEF cells were expressed relative to $\mathrm{p} 53^{+/+}$MEF cells. D. RT-qPCR analysis of splicing factor mRNA levels.

A

Figure 3. Introduction of wild-type $\mathbf{p} 53$ leads to restoration of alternative

polyadenylation

A. The RSI was measured using total RNAs isolated from p53 ${ }^{-1-}$ MEF cells with p 53 overexpression ($\mathrm{P}<0.05$). B. RT-qPCR analysis of polyadenylation factor mRNA levels in p 53 over-expressed $\mathrm{p} 53^{-/-}$MEF cells were expressed relative to $\mathrm{p} 53^{+/+}$MEF cells.

3. Knockout of 53bp1 leads to global mRNA 3' UTR lengthening

To determine the role of 53bp1 in mRNA 3' UTR-APA on a genome-wide level, we performed RNA-Seq to compare APA events in $53 \mathrm{bpl}^{-1}$ and $53 \mathrm{bp1} 1^{+/+}$MEFs. The RNA-Seq results show, as expected, that $53 \mathrm{bp} 1^{-1}$ promoted APA in some mRNA 3^{\prime} UTR (Figure 3). Based on the RNA-Seq results, there are several patterns in APA event similar as $\mathrm{p} 53^{-/-}$ MEF cells. For example, several genes in 53bp1 ${ }^{-/-}$MEF cells showed decreased signal (Ctss and Lum) (Figure 4A) or increased signal (Klhl24 and Gpf64) (Figure 4D) in the 3' most exon, although the signal from upstream exons increased. Kdma3a and Hypk showed decreased signal (Figure 4B) and Prrc1 and Reep5 increased signal in 3' most exon (Figure 4E), however, upstream exons signal was similar. Pole and Kif23 showed decreased both upstream exons signal and 3' most exon signal (Figure 4C). On the other hand, Anp32e and Krt19 have increased both signals (Figure 4F). As the signals from upstream exons reflecting the amount of transcripts varied among the 3^{\prime} UTR-shortened and lengthened transcripts, we analyzed whether 3^{\prime} UTR-APA in the transcriptome of $53 \mathrm{bp1} 1^{-1}$ MEF cells correlates with differential gene expression. To this end, we enriched 5,674 transcripts in
our data set that are eligible for combined analysis of 3' UTR-APA and differential expression. Next, each transcript was plotted by fold changes in the differential gene expression (y-axis in Figure 4G) and the significance of 3' UTR shortening (x-axis in Figure 4G). This approach identified 483 3' UTR-shortened transcripts (Table 6) or 3' UTR-lengthened transcripts (Table 7) (about 8.5%) out of 5,674 transcripts in $53 \mathrm{bpl}^{-1-}$ MEF cells. As contrasted with p53 ${ }^{-1}$ MEF cells, 3^{\prime} UTR lengthened transcripts (60.7\%, $293 / 483$) were more than shortened transcript $(39.3 \%, 190 / 483)$ in $53 b p 1^{-1-}$ MEF cells. Although 4.7\% (23/483) of the 3' UTR shortened transcripts either increased (6/483) or decreased (17/483) their expression level, 4.7% (23/483) of the 3' UTR lengthened transcripts either increased (15/483) or decreased (8/483) their expression level. A significant proportion (90.6%) of them in the $53 \mathrm{bpl}^{-1}$ MEF transcriptome remained unchanged, indicating no significant correlation between the differential gene expression (DEG) and the 3^{\prime} UTR-APA in the $53 \mathrm{bp1} 1^{-/}$MEF transcriptome.

A

B

C

G

Figure 4. 53bp1 knockout induces global mRNA 3' UTR alternative polyadenylation

A-F. RNA-seq reads from $53 \mathrm{bp} 1^{+/+}$and 53bp1 ${ }^{-/-}$MEFs are aligned to mouse genome mm10 RefSeq. Representative examples of transcripts with 3' UTR ApA are presented. Annotated gene structures are at the bottom of the alignment. G. Scatter plot of RNA-seq data. Red dots represent individual transcripts in the analysis. Horizontal blue dashed lines represent the cutoff values for two-fold changes in differential gene expression. Vertical green dashed lines represent the cutoff values for $-\log _{10}$ (P-value) of 3 ' UTR shortening (1.3 corresponds to $\mathrm{P}=0.05$) in $53 \mathrm{bp} 1^{-/}$and $53 \mathrm{bp} 1^{+/+}$MEFs, which was determined by χ^{2}-test. The green boxes highlight the aligned reads in 3' UTRs.

5. 53bp 1 controls 3^{\prime} ' UTR alternative polyadenylation

To validate these RNA-Seq results, we analyzed APA using the RSI method to determine the increase or decrease in the level of the short isoform relative to the long isoform same as $\mathrm{p} 53^{-1}$ MEF cells. RT-qPCR validation of the 3^{\prime} UTR-APA of randomly selected genes showed APA changes consistent with the RNA-Seq dataset (Figure 5A). We also examined the change in expression level of 3' UTR polyadenylation and splicing factors. Interestingly, on the contrary to $\mathrm{p} 53^{-/-}$MEFs, most of 3^{\prime} UTR polyadenylation factors were down-regulated except Cpeb1 (Figure 5B) and all of the tested splicing factors were upregulated in 53bp1 1^{-1} MEF cells (Figure 5C). These results demonstrate that 53bp1 knockout in cells leads to the change of 3' UTR polyadenylation factor levels and transcriptome-wide APA in the 3^{\prime}-most exon of mRNAs, contrariwise p53 knockout.

Figure 5. 53bp1 regulation of mRNA alternative polyadenylation
A. Validation of RNA-seq data. The RSI was calculated to determine the 3' UTR ApA in a target cell line by RT-qPCR. Error bars represent s.e. from three repeats of experiments. Student's t-tests are done for statistical significance ($\mathrm{P}<0.05$). B. RT-qPCR analysis of polyadenylation factor mRNA levels in $53 \mathrm{bpl}^{-1-}$ MEF cells were expressed relative to $53 \mathrm{bp} 1^{+/+}$MEF cells. C. RT-qPCR analysis of splicing factor mRNA levels.

6. Knockout of 53bp1 results in increase of replication-dependent histone
 mRNA polyadenylation

We performed the differential gene expression (DEG) analysis using the differentially expressed transcripts in 53bp1 ${ }^{-1}$ MEF cells (Figure 6A). The DEG analysis result showed that most replication-dependent histone transcripts were increased (Figure 6B). However, we performed western blot for detect histone protein expression levels. Interestingly, all of the histone protein expressions, we tested, were decreased (Figure 6C). Our RNA-seq data only represented polyadenylated RNAs; therefore, we hypothesize that decrease of histone proteins by histone 3^{\prime} 'UTR polyadenylation. To confirm our hypothesis, we performed RTqPCR validation of 3' UTR polyadenylation of two well-known histone genes (Hist1h2ac and Hist1h2bg). During reverse transcription, random hexamers prime randomly along the RNAs, whereas oligo(dT) primers only prime at polyadenylated mRNA. Thus, utilizing PCR amplifications using cDNAs resulting from random hexamers and oligo(dT) primers, we were able to measure the relative amount of total mRNA and polyadenylated mRNA. RT-qPCR results show, polyadenylated histone transcripts were increased, although total
histone transcripts were decreased (Figure 6E). These results support the hypothesis that

53bp1 knockout down-regulate histone expression via histone 3' UTR polyadenylation.
A
FPKM

B

C
D

- -	Histone H2a
- \quad	Histone H2b
- -	Histone H3
\cdots	Histone H4
-	β-Actin

E

Figure 6. Expression of the polyadenylated histone genes in 53bp1/- MEF cells
A. Scatter plots confront $53 \mathrm{bp} 1^{+/+}$MEF and 53bp1 $1^{-/}$MEF RNA-seq data on the x and $y-$ axes, respectively. Absolute expression levels (53bp1 $1^{+/+}$MEF cells versus 53bp1 $1^{-/-}$MEF cells RNA-seq FPKM units). The red dot indicates higher expressed transcript in 53bp1 $1^{-/}$ MEF cells and blue dot indicate higher expressed transcript in 53bp1 ${ }^{+/+}$MEF cells. A black dot indicates unchanged transcript. B. Individual histone transcript level in 53bp1 ${ }^{-1-}$ MEF RNA-seq data compared with $53 \mathrm{bp} 1^{+/+}$MEF. C. Western blot analysis of histones in 53bp1 $1^{+/+}$and 53bp1-MEFs. D. A schematic presenting primer sets for RT-qPCR. Pairs of primers were used to detect a total (short + polyadenylated) or a polyadenylated-specific transcript. E. RT-qPCR analysis of 3' UTR polyadenylated histone mRNAs in 53bp1 $1^{+/+}$and 53bp1 ${ }^{-/}$MEFs $(\mathrm{P}<0.05)$.

7. Expression of Slbp is decreased in 53bp1 knockout MEF cells

We next examined which histone 3' UTR processing factor affect histone polyadenylation. To performed screening a subset of histone 3^{\prime} UTR processing factors by RT-qPCR and western blot analysis. The RT-qPCR result shows that only Slbp mRNA expression level is significantly down-regulated in $53 \mathrm{bpl}^{-1 /} \mathrm{MEF}$ cells. However, other histone 3^{\prime} UTR processing factors such as Lsm10, Lsm11, Cpsf3, and U7 were no significant change (Figure 7A). Only Sympk was up-regulated. We also checked protein expression level of histone 3^{\prime} UTR processing factors by western blot. Only Slbp protein expression is decreased in $53 \mathrm{bp1} 1^{-/-}$MEF cells same as an RT-qPCR result (Figure 7B).

Other histone 3 ' UTR processing factors were unchanged, even though mRNA level was increased. Previous research shows that Slbp expression has an effect on cell cycle, and when cells enter S phase, Slbp is synthesized and rapidly degrades at the end of S phase [49-51]. Accordingly, we performed cell cycle analysis and did not show significant cell cycle change, also confirmed no change S phase accumulation by BrdU incorporation assay (Figure 7C). These results proved that 53bp1 regulate histone polyadenylation via

Slbp expression and without change cell cycle.

Figure 7. Slbp protein levels are decreased in 53bp1-/ MEF cells
A. RT-qPCR analysis of histone 3^{\prime} UTR processing factors in $53 \mathrm{bp} 1^{+/+}$and $53 \mathrm{bp} 1^{-1} \mathrm{MEFs}$ ($\mathrm{P}<0.05$). B. Western blot analysis of histone 3' UTR processing factors in 53bp1 $1^{+/+}$and
$53 \mathrm{bp} 1^{-/}$MEFs. C. Cell cycle analysis was performed on $53 \mathrm{bp} 1^{+/+}$and $53 \mathrm{bp} 1^{-/}$MEFs (Left panel). Quantification of cells in G0/G, S-phase (intermediate), and G2 of the cell cycle is shown in the each histogram. Quantification of BrdU incorporation in 53bp1 ${ }^{+/+}$and 53bp1
${ }^{-}$MEFs (Right panel).

8. Replication-dependent histone mRNA polyadenylation is decreased in 53bp1 depleted human cells

To further investigated whether suppression of 53 bp 1 in the human cell line causes replication-dependent histone mRNA polyadenylation, histone 3' UTR polyadenylation and protein expression level were analyzed by RT-qPCR and western blot analysis using 53bp1 depleted HeLa cells. The depletion of 53bp1 with siRNA led to increased level of polyadenylated histone mRNAs (Hist1h2ac and Hist1h2bd) and decreased protein level of histones same as MEF cells (Figure 8A, B). In addition, we measured histone 3' UTR processing factors using RT-qPCR and western blot analysis. The demonstrated that depletion of 53bp1 result showed also decreased only Slbp mRNA and protein level (Figure 8C, D). We performed cell cycle analysis and BrdU incorporation assay did not show significant changes of S phase same as 53bp1 ${ }^{-1}$ MEF cells (Figure 8D). These results showed that 53bp1 regulate histone polyadenylation via Slbp expression is not only MEFs specific phenomenon but also human cells.

Figure 8. Replication-dependent histone mRNA polyadenylation decreased in 53bp1 depleted cells
A. RT-qPCR analysis of 3' UTR polyadenylated histone mRNAs in 53bp1 depleted HeLa
cells ($\mathrm{P}<0.05$). B. Western blot analysis of histone in 53bp1 depleted HeLa cells. C. RT-
qPCR analysis of histone 3' UTR processing factors in 53bp1 depleted HeLa cells ($\mathrm{P}<0.05$).
D. Western blot analysis of histone 3^{\prime} UTR processing factors in 53bp1 depleted HeLa cells.
E. Cell cycle analysis was performed on 53bp1 depleted HeLa cells (Left panel).

Quantification of cells in G0/G, S-phase (intermediate), and G2 of the cell cycle is shown in the each histogram. Quantification of BrdU incorporation in 53bp1 depleted HeLa cells (Right panel).

9. Slbp regulates histone polyadenylation

Recent reports showed that Slbp regulates histone polyadenylation [30, 33-35, 50]. We transiently knockdown Slbp on HeLa cells for confirming that histone polyadenylation. We performed RT-qPCR to check histone polyadenylation of two histone genes (Hist1h2ac and Hist1h2bd). RT-qPCR results showed that decreased total histone mRNA expression and increased polyadenylated histone expression same as previously reported (Figure 9A) [35, 51-53]. We also tested other histone 3^{\prime} UTR processing factors mRNA level. RT-qPCR results show that Lsm10 and Cpsf3 are no significant changed; however, Lsm11 and Sympk mRNA level are increased (Figure 9B), however in western blot analysis, no significant change of histone 3 ' UTR processing factors even though RNA level were changed, and decreased histone expression level (Figure 9C).

Figure 9. Slbp regulates histone polyadenylation
A. RT-qPCR analysis of 3' UTR polyadenylated histone mRNAs in Slbp depleted HeLa cells ($\mathrm{P}<0.05$). B. RT-qPCR analysis of histone 3' UTR processing factors in Slbp depleted HeLa cells ($\mathrm{P}<0.05$). C. Western blot analysis of histone 3' UTR processing factors and histone in Slbp depleted HeLa cells.

10. Slbp controls 53bp1 dependent histone polyadenylation

To elucidate whether the expression of Slbp is dependent on 53 bp 1 , $53 \mathrm{bp} 1^{-1-}$ MEF cells and 53bp1 depleted HeLa cells were transfected with siRNA-resistant full-length 53bp1 expression construct and measuring Histone 3' UTR processing factors by RT-qPCR and western blot analysis. As expected, overexpression of full-length 53bp1 in both 53bp1/MEF cells and 53bp1 depleted HeLa cells led to increased Slbp mRNA expression (Figure 10A and Figure 11A) and expression of Slbp protein recovered (Figure10B and Figure 11B). Also, RT-qPCR and western blot analysis result showed that polyadenylated Histone mRNAs are decreased and protein expression level of histones is recovered (Figure 10B, C and Figure 11B, C). These results support that histone expression regulated by 53 bp 1 via Slbp.

Figure 10. Slbp expression depends on 53bp1 in MEF cells
A. Histone 3^{\prime} UTR processing factor was measured using total RNAs isolated from 53bp1 ${ }^{-}$
${ }^{\text {- }}$ MEF cells with $53 \mathrm{bp1}$ overexpression by RT-qPCR ($\mathrm{P}<0.05$). B. Western blot analysis of histones and histone 3^{\prime} UTR processing factors in 53bp1 overexpressed 53bp1-/ MEF cells.
C. RT-qPCR analysis of 3' UTR polyadenylated histone mRNAs in 53bp1 overexpressed

53bp1 1^{--}MEF cells $(\mathrm{P}<0.05)$.

Figure 11. 53bp1 regulate Slbp expression in HeLa cells
A. Histone 3' UTR processing factor was measured using total RNAs isolated from 53bp1 depleted HeLa cells with 53bp1 overexpression by RT-qPCR (P<0.05). B. Western blot analysis of histones and histone 3' UTR processing factors in 53bp1 overexpressed 53bp1 depleted HeLa cells. C. RT-qPCR analysis of 3' UTR polyadenylated histone mRNAs in

53bp1 overexpressed 53bp1 depleted HeLa cells ($\mathrm{P}<0.05$).

11. 53bp1 regulates expression of Slbp through histone acetylation

53bp1 has a new function which regulates most histone acetylation binding with Acl and acetylation of histones is decreased in the $53 \mathrm{bpl}^{-1-}$ MEF cells (not yet published). To examine whether Slbp expression is regulated by Acl, we performed histone 3' UTR processing factors and histone polyadenylation RT-qPCR. Acl knockdown HeLa cells showed that decrease Slbp mRNA expression same as a 53bp1 knockdown, however, other histone 3' UTR processing factors were not a correlation between Acl knockdown and 53bp1 knockdown (Figure 12A). Histone polyadenylation RT-qPCR showed that Acl depleted HeLa cells were increased histone polyadenylation similar as 53bp1 depleted HeLa cells (Figure 12B). In western blot analysis, only Slbp protein was decreased both 53bp1 and Acl depleted cells and no significant change of other histone 3' processing factors. Also, histone protein expressions were decreased in Acl knockdown cells same as 53bp1 knockdown cells (Figure 12C). Histone acetylation is generally associated with activation of transcription via the neutralization of the lysine residues, consequently reducing the affinity of histones for DNA and opening the chromatin [54-56]. It has been
reported that histone acetylation correlates with transcriptional activation and that histone deacetylation correlates in many cases with repression in yeast [57]. To examine whether Slbp expression is regulated by histone acetylation on its promoter, we performed total acetyl histone H3 ChIP assay for Slbp, Cpsf3, and Lsm10 promoter. As the ChIP assay result, total acetyl histone H 3 enrichment is dramatically decreased on Slbp promoter region of 53bp1-1 MEF cells and 53bp1 depleted HeLa cells, whereas others do not (Figure 12D). These data suggested that decrease of histone acetylation on Slbp promoter causes reduction of Slbp expression by novel function of 53bp1.

Figure 12. Slbp promoter activation requires 53bp1
A. Histone 3' UTR processing factor was measured using total RNAs isolated from Acl depleted HeLa cells by RT-qPCR (P<0.05). B. RT-qPCR analysis of 3^{\prime} UTR polyadenylated histone mRNAs in Acl depleted HeLa cells ($\mathrm{P}<0.05$). C. Western blot analysis of histone 3' UTR processing factors and histone in Acl depleted HeLa cells. D. ChIP assays of total acetyl histone H 3 in 53bp1 ${ }^{-/-}$MEF cells and 53bp1 depleted HeLa cells. RT-qPCR primers located within the promoter region on Slbp, Cpsf3, and Lsm10.

DISCUSSION

In this study, we have utilized genetically defined mouse embryonic fibroblasts to examine the growth regulatory properties of the molecular signatures of p53 or 53bp1 knockout transcriptome and discovered widespread 3' UTR-APA. We showed that knockout of p53 or 53bp1 read to global APA change by RNA-seq and RT-qPCR. These are a novel function for APA regulation of p53 and 53bp1. Although an explicit mechanism of how p53 or 53bp1 knockout leads to the 3' UTR-APA in selected transcripts is unknown. We found that almost known 3' end polyadenylation factors alter their expression on changes in $\mathrm{p} 53^{-/-}$MEF cells or $53 \mathrm{bp} 1^{-/-}$MEF cells compared with wild-type MEF cells. Recent reports showed that embryonic development is associated with reprogramming of APA, which is correlated with the change in the set of genes encoding the polyadenylation factor level [2, 58]. This observation indicated that 3^{\prime} UTR-APA is likely caused by expression or activity change of mRNA 3' UTR polyadenylation factors. Similarly, our analysis identified expression change of multiple 3^{\prime} UTR polyadenylation factors in $\mathrm{p} 53^{-/-}$ or $53 \mathrm{bp} 1^{-/}$MEFs. These suggested that p 53 or 53 bp 1 mediated 3 ' UTR-APA may occur by
multiple 3' UTR polyadenylation factors. p53 is a well-known transcription factor. However, there are no known p53 regulatory elements in the promoter region of 3 ' UTR polyadenylation factors. Therefore, p53 may indirectly regulate 3' UTR polyadenylation factors. Previously, De novo motif discovery analysis result showed many promoters of key 3' UTR polyadenylation factors to be bound by the transcription factor, E2f family and E2f enhance APA event and cell proliferation [11]. E2f has nonreciprocal functional interactions with p53 [59]. Summarize of these results, the intricate interactions between E2f and p53 is one of the potential mechanisms. p53 regulate embryonic development and differentiation to diverse environmental stresses [60]. 3' UTR-APA events associated with both proliferation [12] and oncogenic transformation [4]. Recently, Fu et al. [61] found opposing pattern of 3'UTR-APA between transformed breast cancer cell lines and nontransformed cells, further indicating the APA regulation depend on cellular context over the effect of cell proliferation, differentiation and transformation states [11]. Previous studies that reported tumorigenesis and embryonic development have a direct link and relevance to each other [62-65]. The sum of these results, p53 and its binding protein, 53bp1, may regulate cell proliferation, differentiation, and tumorigenesis through a new pathway, 3'

UTR-APA, which is not yet known. Further studies are required to understand how p53
and 53bp1 regulate 3' UTR-APA via 3' UTR polyadenylation factors.

RNA-seq analysis of $53 \mathrm{bp} 1^{-/-}$MEF cells displayed a remarkable increase in replicationdependent histone mRNAs. This is the first report 53bp1 knockout increase the expression of the replication-dependent histone genes on a large scale. We showed that the increase in replication-dependent histone gene expression was at least in part due to the aberrant polyadenylation of replication-dependent histone mRNAs. Histone modification and mRNA 3^{\prime} end formation are necessary for normal cell cycle progression and maintaining genomic stability [33, 53, 66-68]. In this report, we were screening histone 3^{\prime} UTR processing factors in 53bp1-1 MEF cells and 53bp1 depleted cells by RT-qPCR and western blot analysis. As these results, we identified 53bp1 works to deplete Slbp at the mRNA and protein levels. Several studies have shown the Slbp is a key component of the machinery processing histone mRNA 3^{\prime} ends and functions in the initiation of cap-dependent translation of histone mRNA [52, 69, 70]. Transient recovery of 53bp1 in 53bp1 ${ }^{-/-}$MEF and 53bp1 depleted cells showed that both Slbp and Histone 3' UTR processing are
recovered. These results revealed that 53bp1 is an up-stream regulator of Slbp. 53bp1 regulate gene expression acts as a transcriptional co-activator of p53 [22] and modulate histone acetylation with Acl, epigenetically (not yet published). The data from total acetyl histone H3 ChIP assay showed that knockout or depletion of 53bp1 decrease acetyl histone H3 on Slbp promoter. This result suggested that decreasing Slbp expression in 53bp1 depleted cells induced by epigenetic changes at the Slbp promoter. These events subsequently lead to an increase in polyadenylated canonical histone mRNA and decrease in histone protein levels. The tight regulation of histone expression is critical for cell viability and chromatin maintains [42]. A recent report showed that decrease histone level by knockdown or mutation of Slbp cause genomic instability and impaired cellular proliferation in Drosophila [53]. 53bp1 is a key transducer of the cell cycle checkpoint control and DNA damage response [71]. It also highly involved in maintaining genomic stability via multiple pathways [71-76]. Our data suggest that 53bp1 regulates histone expression by epigenetic regulation of Slbp, which is a novel and unexpected function of 53bp1 in genome stability pathway.

ABSTRACT

Genomewide characterization of messenger RNA alternative

polyadenylation

Semo Jun
Advisor: Prof. Ho Jin You, Ph.D.
Department of Biomedical Sciences,
Graduate School of Chosun University

Messenger RNAs (mRNAs) have to go through a series of post-transcriptional processing steps prior to translation. One of the post-transcriptional steps is 3' end processing, which is composed of cleavage and polyadenylation, is important for delimiting the 3^{\prime} untranslated region (3^{\prime} UTR) of mRNA and determining the regulatory elements for downstream post-transcriptional/ translational regulation. 3' UTR processing is very flexible because of the variety of trans-acting and cis-acting elements at the 3 ' end
of the mRNA. In recent years, experimental and computational studies have revealed the differential use of alternative polyadenylation (APA) sites of the same gene leading to different 3 'UTR mRNA. More importantly, overall changes in 3 'UTR length is observed in cancer cells. Another important polyadenylation phenomenon is histone polyadenylation. As contrasted with other metazoan mRNAs, replication-dependent histone transcripts are not polyadenylated and alternatively have a conserved stem-loop structure at the 3'end. Recently, histone polyadenylation increase sensitivity to DNA damage as well as increase the frequency of missing chromosomes and induce genomic instability. In this study, we use well-known Tumor protein p53 and p53 Binding protein 53bp1, which are play a role in tumorigenesis, apoptosis, and genomic stability, for analyze ApA. We identify 3' UTR alternative polyadenylation of mRNAs as an additional molecular signature of p 53 or 53bp1. Also, 53bp1 is key-molecule to regulate histone polyadenylation. Together, these findings identify a previously uncharacterized role for p 53 or 53 bp 1 in the modulating 3 , UTR length of mRNAs.

REFERENCES

1. Chang, J.W., et al., mRNA 3'-UTR shortening is a molecular signature of mTORC1 activation. Nat Commun, 2015. 6: p. 7218.
2. Ji, Z., et al., Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci U S A, 2009. 106(17): p. 7028-33.
3. Mangone, M., et al., The landscape of C. elegans 3'UTRs. Science, 2010. 329(5990): p. 432-5.
4. Mayr, C. and D.P. Bartel, Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 2009. 138(4): p. 673-84.
5. Tian, B., et al., A large-scale analysis of $m R N A$ polyadenylation of human and mouse genes. Nucleic Acids Res, 2005. 33(1): p. 201-12.
6. Di Giammartino, D.C., K. Nishida, and J.L. Manley, Mechanisms and - 59 -
consequences of alternative polyadenylation. Mol Cell, 2011. 43(6): p. 853-66.
7. Chen, C.Y. and A.B. Shyu, AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci, 1995. 20(11): p. 465-70.
8. Wu, L. and J.G. Belasco, Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell, 2008. 29(1): p. 1-7.
9. Farh, K.K., et al., The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science, 2005. 310(5755): p. 1817-21.
10. Singh, P., et al., Global changes in processing of mRNA 3' untranslated regions characterize clinically distinct cancer subtypes. Cancer Res, 2009. 69(24): p. 9422-30.
11. Elkon, R., et al., E2F mediates enhanced alternative polyadenylation in proliferation. Genome Biol, 2012. 13(7): p. R59.
12. Sandberg, R., et al., Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science, 2008. 320(5883): - 60 -
p. 1643-7.
13. Masamha, C.P., et al., CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature, 2014. 510(7505): p. 412-6.
14. Vogelstein, B. and K.W. Kinzler, p53 function and dysfunction. Cell, 1992. 70(4): p. 523-6.
15. Riley, T., et al., Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol, 2008. 9(5): p. 402-12.
16. Olivier, M., et al., The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat, 2002. 19(6): p. 607-14.
17. Beckerman, R. and C. Prives, Transcriptional regulation by p53. Cold Spring Harb Perspect Biol, 2010. 2(8): p. a000935.
18. Ho, J. and S. Benchimol, Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ, 2003. 10(4): p. 404-8.
19. Ewen, M.E. and S.J. Miller, p53 and translational control. Biochim Biophys Acta, 1996. 1242(3): p. 181-4.
20. Bertrand, P., Y. Saintigny, and B.S. Lopez, p53's double life: transactivationindependent repression of homologous recombination. Trends Genet, 2004. 20(6): p. 235-43.
21. Vaseva, A.V. and U.M. Moll, The mitochondrial p53 pathway. Biochim Biophys Acta, 2009. 1787(5): p. 414-20.
22. Iwabuchi, K., et al., Two cellular proteins that bind to wild-type but not mutant p53. Proc Natl Acad Sci U S A, 1994. 91(13): p. 6098-102.
23. Koonin, E.V., S.F. Altschul, and P. Bork, BRCA1 protein products ... Functional motifs. Nat Genet, 1996. 13(3): p. 266-8.
24. Charier, G., et al., The Tudor tandem of 53BP1: a new structural motif involved in DNA and RG-rich peptide binding. Structure, 2004. 12(9): p. 1551-62.
25. Bork, P., et al., A superfamily of conserved domains in DNA damage-responsive - 62 -
cell cycle checkpoint proteins. FASEB J, 1997. 11(1): p. 68-76.
26. Adams, M.M. and P.B. Carpenter, Tying the loose ends together in DNA double strand break repair with 53BP1. Cell Div, 2006. 1: p. 19.
27. Botuyan, M.V., et al., Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell, 2006. 127(7): p. 1361-73.
28. Huang, J., et al., p53 is regulated by the lysine demethylase LSD1. Nature, 2007. 449(7158): p. 105-8.
29. Ward, I.M., et al., p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol, 2003. 23(7): p. 2556-63.
30. Dominski, Z. and W.F. Marzluff, Formation of the 3' end of histone mRNA. Gene, 1999. 239(1): p. 1-14.
31. Davila Lopez, M. and T. Samuelsson, Early evolution of histone mRNA 3' end processing. RNA, 2008. 14(1): p. 1-10.
32. Wu, R.S. and W.M. Bonner, Separation of basal histone synthesis from S-phase histone synthesis in dividing cells. Cell, 1981. 27(2 Pt 1): p. 321-30.
33. Marzluff, W.F., E.J. Wagner, and R.J. Duronio, Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet, 2008. 9(11): p. 843-54.
34. Wang, Z.F., et al., The protein that binds the 3' end of histone mRNA: a novel RNAbinding protein required for histone pre-mRNA processing. Genes Dev, 1996. 10(23): p. 3028-40.
35. Battle, D.J. and J.A. Doudna, The stem-loop binding protein forms a highly stable and specific complex with the 3' stem-loop of histone mRNAs. RNA, 2001. 7(1): p . 123-32.
36. Mowry, K.L. and J.A. Steitz, Identification of the human U7 snRNP as one of several factors involved in the 3' end maturation of histone premessenger RNA's.

Science, 1987. 238(4834): p. 1682-7.
37. Dominski, Z. and W.F. Marzluff, Formation of the 3' end of histone mRNA: getting closer to the end. Gene, 2007. 396(2): p. 373-90.
38. Strub, K. and M.L. Birnstiel, Genetic complementation in the Xenopus oocyte: coexpression of sea urchin histone and U7 RNAs restores 3' processing of H3 pre$m R N A$ in the oocyte. EMBO J, 1986. 5(7): p. 1675-82.
39. Pillai, R.S., et al., Unique Sm core structure of U7 snRNPs: assembly by a specialized SMN complex and the role of a new component, Lsm11, in histone RNA processing. Genes Dev, 2003. 17(18): p. 2321-33.
40. Pillai, R.S., et al., Purified U7 snRNPs lack the Sm proteins D1 and D2 but contain Lsm10, a new 14 kDa Sm D1-like protein. EMBO J, 2001. 20(19): p. 5470-9.
41. Kolev, N.G. and J.A. Steitz, Symplekin and multiple other polyadenylation factors participate in 3'-end maturation of histone mRNAs. Genes Dev, 2005. 19(21): p. 2583-92.
42. Singh, R.K., et al., Histone levels are regulated by phosphorylation and
ubiquitylation-dependent proteolysis. Nat Cell Biol, 2009. 11(8): p. 925-33.
43. Cloutier, J.M., et al., Histone H2AFX Links Meiotic Chromosome Asynapsis to Prophase I Oocyte Loss in Mammals. PLoS Genet, 2015. 11(10): p. e1005462.
44. Trapnell, C., L. Pachter, and S.L. Salzberg, TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 2009. 25(9): p. 1105-11.
45. Beaudoing, E., et al., Patterns of variant polyadenylation signal usage in human genes. Genome Res, 2000. 10(7): p. 1001-10.
46. Trapnell, C., et al., Transcript assembly and quantification by $R N A-S e q ~ r e v e a l s ~$ unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010. 28(5): p. 511-5.
47. Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 2001. 29(9): p. e45.
48. Jacks, T., et al., Tumor spectrum analysis in p53-mutant mice. Curr Biol, 1994. 4(1): p. 1-7.
49. Marzluff, W.F. and R.J. Duronio, Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences. Curr Opin Cell Biol, 2002. 14(6): p. 692-9.
50. Whitfield, M.L., et al., Stem-loop binding protein, the protein that binds the 3' end of histone mRNA, is cell cycle regulated by both translational and posttranslational mechanisms. Mol Cell Biol, 2000. 20(12): p. 4188-98.
51. Zheng, L., et al., Phosphorylation of stem-loop binding protein (SLBP) on two threonines triggers degradation of SLBP, the sole cell cycle-regulated factor required for regulation of histone $m R N A$ processing, at the end of S phase. Mol Cell Biol, 2003. 23(5): p. 1590-601.
52. Brocato, J., et al., Arsenic induces polyadenylation of canonical histone mRNA by down-regulating stem-loop-binding protein gene expression. J Biol Chem, 2014. 289(46): p. 31751-64.
53. Salzler, H.R., et al., Loss of the histone pre-mRNA processing factor stem-loop
binding protein in Drosophila causes genomic instability and impaired cellular proliferation. PLoS One, 2009. 4(12): p. e8168.
54. Grunstein, M., Histone acetylation in chromatin structure and transcription. Nature, 1997. 389(6649): p. 349-52.
55. Millar, C.B., S.K. Kurdistani, and M. Grunstein, Acetylation of yeast histone H4 lysine 16: a switch for protein interactions in heterochromatin and euchromatin. Cold Spring Harb Symp Quant Biol, 2004. 69: p. 193-200.
56. Wolffe, A.P. and D. Pruss, Hanging on to histones. Chromatin. Curr Biol, 1996. 6(3): p. 234-7.
57. Robyr, D., S.K. Kurdistani, and M. Grunstein, Analysis of genome-wide histone acetylation state and enzyme binding using DNA microarrays. Methods Enzymol, 2004. 376: p. 289-304.
58. Ji, Z. and B. Tian, Reprogramming of 3' untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different
cell types. PLoS One, 2009. 4(12): p. e8419.
59. Vaishnav, Y.N. and V. Pant, Differential regulation of E2F transcription factors by p53 tumor suppressor protein. DNA Cell Biol, 1999. 18(12): p. 911-22.
60. Choi, J. and L.A. Donehower, p53 in embryonic development: maintaining a fine balance. Cell Mol Life Sci, 1999. 55(1): p. 38-47.
61. Fu, Y., et al., Differential genome-wide profiling of tandem 3' UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res, 2011. 21(5): p. 741-7.
62. Hochedlinger, K., et al., Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev, 2004. 18(15): p. 1875-85.
63. Durr, M., et al., Chimaerism and erythroid marker expression after microinjection of human acute myeloid leukaemia cells into murine blastocysts. Oncogene, 2003.

22(57): p. 9185-91.
64. Tzukerman, M., et al., The influence of a human embryonic stem cell-derived - 69 -
microenvironment on targeting of human solid tumor xenografts. Cancer Res, 2006.

66(7): p. 3792-801.
65. Papaioannou, V.E., B.K. Waters, and J. Rossant, Interactions between diploid embryonal carcinoma cells and early embryonic cells. Cell Differ, 1984. 15(2-4): p. 175-9.
66. Yang, L., et al., Genomewide characterization of non-polyadenylated RNAs. Genome Biol, 2011. 12(2): p. R16.
67. Celeste, A., et al., Genomic instability in mice lacking histone H2AX. Science, 2002. 296(5569): p. 922-7.
68. Rondinelli, B., et al., Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer. J Clin Invest, 2016. 126(11): p. 4387.
69. Djakbarova, U., W.F. Marzluff, and M.M. Koseoglu, Translation regulation and proteasome mediated degradation cooperate to keep stem-loop binding protein low in G1-phase. J Cell Biochem, 2014. 115(3): p. 523-30.
70. Rattray, A.M., P. Nicholson, and B. Muller, Replication stress-induced alternative $m R N A$ splicing alters properties of the histone RNA-binding protein HBP/SLBP: a key factor in the control of histone gene expression. Biosci Rep, 2013. 33(5).
71. Fink, L.S., et al., 53BP1 contributes to a robust genomic stability in human fibroblasts. Aging (Albany NY), 2011. 3(9): p. 836-45.
72. Cescutti, R., et al., TopBP1 functions with 53BP1 in the G1 DNA damage checkpoint. EMBO J, 2010. 29(21): p. 3723-32.
73. Wang, B., et al., 53BP1, a mediator of the DNA damage checkpoint. Science, 2002. 298(5597): p. 1435-8.
74. Lukas, C., et al., 53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress. Nat Cell Biol, 2011. 13(3): p. 243-53.
75. Shibata, A., et al., Role of ATM and the damage response mediator proteins 53BP1 and MDC1 in the maintenance of $G(2) / M$ checkpoint arrest. Mol Cell Biol, 2010.

30(13): p. 3371-83.
76. Fernandez-Capetillo, O., et al., DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol, 2002. 4(12): p. 993-7.

Table 1. Primer sequences for alternative polyadenylation

Gene name	Forward for total	Reverse for total	Forward for long	Reverse for long
mRpl22	AAGTTCAC	GTGATCTT	TGGGCATC	GCTTGTTGCA
	CCTGGACTGC	GCTCTTGCTG	TGGGCTTTTA	GACTTGCTCA
	AC	CG	GG	
mTimp2	GACTTCAT	CCATCCAG	ACCCAGAG	CTGCCTGGTG
	TGTGCCCTGG	AGGCACTCAT	TGGAATGCAT	TGGCTAGAAA
	GA	CC	GG	
mTomm20	GAGAGCTG	GGTCGGAA	GGCTTTGG	GTTTGCAGGC
	GGCTTTCCAA	GCTTGGTCAG	CACTGTCACT	TGGTTCAAGG
	GT	AA	T G	
mAlcam	GGAGCGGATT	TCCTGTGACA	CTCACTCAAG	ATAGGGGGTG
	GGATAGCCTG	GCTTGGTAGA	AGCACCTCCA	AACCGTGAA
				C
mKras'	AGACACGA	AGAAGGC	GTTAGCTC	ATTCCCTAGG
	AACAGGCTCA	ATCGTCAACA	CAGTGCCCCA	TCAGCGCAAC
	GG	CCC	AT	
mRan	TGGGCTTC	CCACTGGA	TACAGCAA	TCATCCCAGT
	GAGTGAATGT	TATTGCGATG	GCCATTCCGT	CAGGGGAGA
	GG	GGA	GT	G
mCamk2d	TGTCAACAGT	AAGAGGAGA	GAGCGTTATT	GAGCTCCCCA
	GCCACTTCTT	GGACGTCCCA	GGGCATGCTG	TGGTAAAGCA
	C	G		
mCol11a1	TATGATGGCT	AAGCAAGCT	AGAATTCTGT	AGTTCCAAAG
	GTGCGTCTCG	GGACCGACTT	AACCCTTGCA	TCAAAAGTAT

		C	TGT	GAGAC
mNcam1	AACCACAAA	AAGCTCAGA	GTGGGAAGG	GGCCCCCGA
	CCCTTCCCAG	GGCTTGTCCA	TTACCCAGGT	AGTACAGAAT
	GElk1	GAGATCACCC	GTGCCTGAAG	AGGGTTGTGC
	ACACAAACCA			
	AACCGCAGA	ACCAGAGCTT	AAAGCAAGT	TTTCTCAAAA
	A	C	G $2 n$	GTGAGAGC
	TTTAGGTG	TGTGGACA	AGCTCCTTAA	
	AACGCCCGTT	CTGCCATTGG	GTTGGTTGGC	AAGGCGGCAT
	AT	GT	TT	
				CCAT

Table 2. Primer sequences for confirming the expression of genes

Gene name	Forward	Reverse
mCpsf1	ACATACCGACGCTTGCTGAT	TAGCGGTTTAGCAGTTCCCC
mCpsf2	CGGAATTTGTAGGGGGCGTA	ATCCGATGCGTCCAGTTTCT
mCpsf3	GCACGTTTACAGCAAGAGGC	TTCTACAGCCCGAGTCTCCA
mCpsf4	GCACCCTCGATTTGAACTGC	CTGCATGACCCCAATGACCT
mCpsf5	AAGCCTTGTTTGCAGTCCCTA	AATGATGGGTCCATACCCCG
mCpsf6	TCACGGGAAAAGAGTCGTCG	CGGTATTCTCGCTCTCGGTC
mCpsf7	AAACGAATACCTCCACGGGC	GGCTTATCCACACGAGCAGA
mCpeb1	CAGCAGGACGGTGTTTGTTG	TCACACGACCAGACCCAATG
mPabpn1	GCCCGCTCTATCTACGTTGG	ACACGGTTGACTGAACCACA
mCstf1	GACGCTGGTGAGGTACACAG	CAGGCTGATGGTCCTTTCGT

mCstf2	CAAGTGCCAATGCAAGACCC	TCTCATGTCATGTGGAGGCG
mCstf3	ACTGTTGAGGAAGCCGTGAG	GGGACTACAGCCCCCTTTTC
U1	GATACCATGATCACGAAGGTG	CACAAATTATGCAGTCGAGTTT
	GTT	CC
U2	TTTGGCTAAGATCAAGTGTAGT	AATCCATTTAATATATTGTCCTC
	ATCTGTTC	GGATAGA
U4	GCGCGATTATTGCTAATTGAAA	AAAAATTGCCAATGCCGACTA
U6	GCTTCGGCAGCACATATACTAA	ACGAATTTGCGTGTCATCCTT
	AAT	
5 s	CGGCCATACCACCCTGAAC	GCGGTCTCCCATCCAAGTAC
5.8s	CGGCTCGTGCGTCGAT	CCGCAAGTGCGTTCGAA
7sk	CACCCCATTGATCGCCAGGGTT	TTGACCGAAGACCGGTCCTCCT
	GA	CT
mU7	AAGTGTTACAGCTCTTTTAGAA	AGGGGTTTTCCGACCGAAGTC
	TTTGT	AGA
hU7	CAGTGTTACAGCTCTTTTAGA	AGGGGCTTTCCGGTAAAAAGC
	TTTG	
mSlbp	TCTGGAAGGTGGCTTTGCAT	GTGCCAGCATACACATCAAAGT
		T
hSlbp	AAGTCCCAAGACACCTTCGAC	TCACATCCTTCTTCCGCTGG
mLsm10	CGGTGAAGGAGCGAACTATTT	CTCGGGCCACACTCTCATC

hLsm10	GGCATGGTTTCTCCGTCCT	CCTGCTTGCACGCGACATT
mLsm11	GCAATGTGCTTACGCGGATG	TGAAGGTGCGGATGTGAACG
hLsm11	TGGGTGAACTCCATCGCTGTA	GTCGAATGCAACAAGGAAGCC
mSympk	CGGAGTGTGGCATCACAGTTT	CGCACTTCAATGGATTTGTCTG
hSympk	GAGATCATCGCATTCCAAGCA	TCACATTCTCGTCCCTCAAGAG
m53bp1	CCTCCTTTGCCTTCAGTGAG	TGCTTGTCATCAGCCACTTC
h53bp1	ATTGAGGATACGGAACCCATGT	TGCTGGATTCATCAGGATACTAT
		CA
Acl	TGGATGCCACAGCTGACTAC	GGTTCAGCAAGGTCAGCTTC
mp53	TGAACCGCCGACCTATCCTTA	GGCACAAACACGAACCTCAAA
Gapdh	TGCACCACCAACTGCTTAGC	GGCATGGACTGTGGTCATGAG

Table 3. Primer sequences for histone polyadenylation

Gene name	Forward for total	Reverse for total	Forward for PolyA	Reverse for PolyA
mHist1h2ac	CAACGACGA	TTCTGTTGCT	AAGCCTACC	GGAACAACC
	GGAGCTCAA	TATTTCCCCT	ACCTACTCCG	AAGGAGCTT
mHist1h2bg	TGTTTCTACC	CTTGGTCAC	ACGCTGGGA	CGTTGGTTAC
	CAAG	TGG	T	GC
	ATGCCCGAG	GGCCTTCTTG	AATGACACA	ACTGAGGCA
	CC	G	ATA	A

hHist1h2ac	GACGAGGAG	ACCTGTCAA	CCTGTCCACT	TTCACTTACC
	CTCAACAAA	ATCACTTGCC	GTTGGTAGG	ACCATTCCAG
	CTG	C	C	C

hHist1h2bd ACGATGCCT AGCCTTAGTC CCAACTCATC TCCCCTCGGT GAACCTACC ACCGCCTTCT CTGGTTTGCT AACCTTCTTT AA

Table 4. 3' UTR shortened transcripts in p53 ${ }^{-/-}$MEF

Gene Name	Transcript Name	Shortening P-values	log2 fold change $\left(\mathbf{p 5 3}^{-1} / \mathbf{p 5 3}\right.$
Nadk	NM_138671	0.002270635	-9.473843295
Mme	NM_008604	0.039689234	-4.22985422
Ccdc80	NM_026439	0.028259053	-2.717481141
Fzd8	NM_008058	0.003401358	-2.710499863
Rgs5	NM_009063	0.047370497	-2.626426757
Ccng1	NM_009831	0.001156014	-2.503682711
Sgk1	NM_001161850	0.014280375	-2.439432382
Serpine2	NM_009255	0.015643642	-2.32291134
Npr3	NM_001039181	0.012876631	-2.193612874
Ssbp1	NM_212468	0.02320321	-2.107699987
Col11a1	NM_007729	$3.97 \mathrm{E}-09$	-1.986279716
Hr	NM_021877	0.041641943	-1.982100367
Lox14	NM_001164311	0.003528497	-1.928070828
Abi3bp	NM_001014399	0.003597091	-1.859927169
Fam20c	NM_030565	0.015743623	-1.740494419

Ppap2b	NM_080555	0.028688744	-1.721269809
Aspn	NM_001172481	$2.37 \mathrm{E}-06$	-1.707855641
Alcam	NM_009655	0.000212505	-1.685117913
Ogn	NM_008760	0.019546534	-1.663179098
Maob	NM_172778	0.000462135	-1.602119709
Edil3	NM_001037987	0.049792193	-1.575732255
Pqlc3	NM_172574	0.012045374	-1.547778463
Klf2	NM_008452	0.017666514	-1.537670055
Rpl39	NM_026055	$8.35 \mathrm{E}-11$	-1.460933717
Osr1	NM_011859	0.001071898	-1.451358689
Slc12a2	NM_009194	0.028259009	-1.441115128
Timp2	NM_011594	$2.30 \mathrm{E}-07$	-1.348461997
Nrk	NM_013724	0.007515853	-1.262736177
Get4	NM_001163316	0.049347735	-1.25286215
Vim	NM_011701	0.000382295	-1.242988117
Gnb1	NM_001160016	0.004953171	-1.240412477
Qars	NM_001168270	0.029583518	-1.227485533
Fam53b	NM_175268	0.026881018	-1.11396985
Med15	NM_001040683	0.028619358	-1.112636378
Aen	NM_001162939	0.001334537	-1.103462096
Adamts5	NM_011782	0.001358686	-1.087638086
Megf9	NM_172694	0.027694652	-1.066939035
Higd1a	NM_019814	0.014955162	-1.063743198
BC056474	NM_001001493	0.002810255	-1.052332827
Cd9	NM_007657	0.005589512	-0.965737427
Itm2a	NM_008409	0.040574259	-0.958678337
Rcn2	NM_011992	0.045081884	-0.93768394

Keap1	NM_001110305	0.01187661	-0.928497888
Tmem106b	NM_027992	0.000102891	-0.872129703
Ell2	NM_138953	0.031954297	-0.848522392
Lmbrd1	NM_026719	0.010606945	-0.830633441
Fam114a1	NM_026667	0.00739316	-0.808094642
Pias1	NM_019663	0.042840394	-0.798573242
Rpl23	NM_022891	0.000477042	-0.79365085
Itm2b	NM_008410	0.013010648	-0.781458976
Sh3bgrl	NM_019989	0.014133455	-0.778573237
Cd109	NM_153098	0.008481515	-0.774296029
Anxa7	NM_001110794	0.019670252	-0.720114241
Tmed10	NM_026775	$2.37 \mathrm{E}-05$	-0.702409598
Tmem134	NM_001078649	0.015478416	-0.679994881
Slc35e1	NM_177766	0.011363311	-0.67812888
Chmp3	NM_025783	0.033592441	-0.62752048
Vma21	NM_001081356	0.01069244	-0.599513485
Stk3	NM_019635	0.016625496	-0.599209871
Asah1	NM_019734	$3.62 \mathrm{E}-08$	-0.58962975
Srsf3	NM_013663	0.045667405	-0.58712236
Oraov1	NM_028184	0.046116991	-0.574000635
Zfp747	NM_175560	0.019523255	-0.573997797
Sgms2	NM_028943	0.047220116	-0.571035528
Fto	NM_011936	0.003415505	-0.56975872
Tmtc3	NM_001110013	0.016876892	-0.569525837
Atp11c	NM_001037863	0.002442142	-0.568475837
Aldh6a1	NM_134042	0.037652442	-0.55963897
Usp47	NM_177249	0.043545707	-0.551236068

Rab28	NM_027295	0.014843403	-0.540663888
Rnf217	NM_001146349	0.0416157	-0.539068014
Exoc3	NM_177333	0.013651305	-0.532401015
Fads3	NM_021890	0.039976689	-0.524551812
Sparc	NM_009242	0.049992789	-0.506335524
Tvp23b	NM_026210	0.015352185	-0.503918083
Tomm20	NM_024214	0.000137571	-0.499372763
Sfrs18	NM_025669	0.007096247	-0.498387866
Haus8	NM_001163042	0.003148997	-0.487749703
Wdr41	NM_172590	0.043931696	-0.484014187
Dnajc3	NM_008929	0.049597794	-0.481169574
Cthre 1	NM_026778	0.004516954	-0.475654166
Nt5c3	NM_001252374	0.000238394	-0.468949452
Zfp654	NM_028059	0.009081687	-0.463299147
Rdh14	NM_023697	0.015254968	-0.445681088
Ebf1	NM_007897	0.010144121	-0.445457625
Ren1	NM_009037	0.046506833	-0.442709407
Map3k7	NM_009316	0.013770916	-0.428348623
Serinc1	NM_019760	0.003414556	-0.42741452
Eif4g3	NM_001256195	0.012991964	-0.425997708
Marcks	NM_008538	0.004626708	-0.421370639
H3f3a	NM_008210	$9.27 \mathrm{E}-14$	-0.416080693
Sec 24 d	NM_027135	0.000397174	-0.415239196
Cmpk1	NM_025647	0.000241398	-0.409868714
Ggcx	NM_019802	0.007381093	-0.39912198
Col4a5	NM_001163155	0.017392051	-0.39218664
Nr2f6	NM_010150	0.001361575	-0.390069731

Zdhhc20	NM_029492	0.029795155	-0.388555173
Fbxo31	NM_133765	0.031402531	-0.386437505
Lman2	NM_025828	0.00110839	-0.384334981
Scp2	NM_011327	0.034467407	-0.383644742
Rnf11	NM_013876	0.023819497	-0.380282569
Calm1	NM_009790	0.000246143	-0.379491505
Sec24a	NM_175255	0.043767731	-0.375642337
Slc25a3	NM_133668	0.010588607	-0.374910207
Dynlt3	NM_025975	0.007271182	-0.368324937
Fopnl	NM_025345	0.045477989	-0.362397419
Sec22b	NM_011342	0.023691609	-0.361340359
Angel2	NM_001199020	0.026159151	-0.360303166
Erbb2ip	NM_001005868	0.007226404	-0.345779301
Prrc1	NM_028447	0.000755571	-0.344666155
Rpl22	NM_009079	0	-0.343499014
Ccdc90b	NM_001162918	0.029007238	-0.339773193
Wls	NM_026582	0.001045896	-0.335312065
Ubl3	NM_011908	0.012133738	-0.335122725
Serinc3	NM_012032	0.009267082	-0.334665161
B3galtl	NM_001081204	0.047108805	-0.333902648
Slain2	NM_153567	0.024569068	-0.332538101
Rab21	NM_024454	0.035779507	-0.33074985
Zc3h11a	NM_144530	0.005271498	-0.326635418
Smim14	NM_133697	0.021871589	-0.324624555
Btbd1	NM_146193	0.017675494	-0.304896458
Rab1	NM_008996	0.023404919	-0.304051165
Rac1	NM_009007	$9.19 \mathrm{E}-11$	-0.301545994

Tpm4	NM_001001491	0.01235255	-0.300554816
Mtpn	NM_008098	0.030293811	-0.292921059
Zfp503	NM_145459	0.016270064	-0.288965264
Map1lc3b	NM_026160	$2.02 \mathrm{E}-08$	-0.285381372
Rpl15	NM_025586	$2.10 \mathrm{E}-05$	-0.284904213
Sec63	NM_153055	0.004351316	-0.281263687
Pdia 3	NM_007952	0.008229022	-0.269917879
Mbnl2	NM_207515	$3.93 \mathrm{E}-05$	-0.268891135
Oaz2	NM_010952	0.034208111	-0.266210287
Ripk1	NM_009068	0.018887723	-0.25482088
Ufd11	NM_011672	0.049565234	-0.249043696
Idua	NM_008325	0.022569929	-0.247915796
Pskh1	NM_173432	0.035467907	-0.246253802
Srp9	NM_012058	0.003142255	-0.241329995
Heca	NM_001033432	0.023296961	-0.230244671
Tm9sf3	NM_133352	$4.95 \mathrm{E}-07$	-0.228914497
Rps6	NM_009096	0.000514993	-0.22537355
Gxylt2	NM_198612	0.022162291	-0.221433386
Reep5	NM_007874	$2.65 \mathrm{E}-08$	-0.217497478
Copg	NM_017477	0.036479855	-0.212992389
Srsf5	NM_001079695	0.001767923	-0.212634182
Cxcl14	NM_019568	0.003596061	-0.212436762
Cast	NM_009817	0.017789142	-0.212161574
Yipf5	NM_023311	0.043196013	-0.211512546
B2m	NM_009735	0.026445494	-0.201187325
Dlgap4	NM_001042487	0.012569503	-0.199289216
Hnrpdl	NM_016690	0.022302966	-0.197675759

Aamp	NM_146110	0.029659338	-0.192303279
Sacm11	NM_030692	0.008545754	-0.190898005
Slc25a12	NM_172436	0.045043758	-0.188676137
Strn3	NM_001172098	0.020273494	-0.18845981
Pik3c3	NM_181414	0.018407644	-0.183576025
Actb	NM_007393	0.036358838	-0.18146677
Rint1	NM_177323	0.044244722	-0.178839324
Ddx5	NM_007840	8.81E-09	-0.178676755
Top2b	NM_009409	0.049400421	-0.173125603
Sbf2	NM_177324	0.023965774	-0.17151966
Tjp1	NM_009386	0.046047916	-0.170198164
Mdp1	NM_023397	0.010845482	-0.168166305
Brwd3	NM_001081477	0.043764473	-0.166513554
Ipo8	NM_001081113	0.033790967	-0.16320578
Col3a1	NM_009930	0.000680545	-0.163127849
Tsc22d2	NM_001081229	0.038452472	-0.159670789
Egln 1	NM_053207	0.022028786	-0.159613204
Nedd4	NM_010890	0.001034673	-0.157512186
Nxn	NM_008750	0.004647204	-0.155996436
Hcfc2	NM_001081218	0.000876552	-0.153218626
Limch1	NM_001001980	0.006747461	-0.15201797
Vps13a	NM_173028	0.042992808	-0.150405122
Ube2b	NM_009458	0.008945722	-0.148965737
Cisd2	NM_025902	0.000995992	-0.147117768
Man1a	NM_008548	0.034337954	-0.146663207
Bmpr2	NM_007561	0.002161634	-0.146629944
Vta1	NM_025418	0.011210986	-0.138804035

C330007P06Rik	NM_029951	0.010118437	-0.132613819
Dr1	NM_026106	0.037691015	-0.124427573
Prpf4b	NM_013830	0.025111653	-0.119665403
Ywhab	NM_018753	0.031672522	-0.114011246
Tfdp2	NM_001184711	0.039888955	-0.1139567
Zmpste24	NM_172700	0.043311663	-0.11339945
Pgap2	NM_145583	0.035050915	-0.113049611
D8Ertd738e	NM_001007571	0	-0.1114535
Col5a1	NM_015734	0.037066945	-0.109655338
Mapre2	NM_153058	0.043501244	-0.109527559
Chtop	NM_023215	0.041136362	-0.107403013
Mbd2	NM_010773	0.014066949	-0.107209715
Sucla 2	NM_011506	0.001954328	-0.107103061
Ankrd39	NM_026241	0.011647288	-0.10314828
Nxf1	NM_016813	0.004380856	-0.102962376
Snapc5	NM_183316	0.01995693	-0.097254307
Ccnl1	NM_019937	0.019621475	-0.094984025
Ccde115	NM_027159	0.028572661	-0.09471836
Setd3	NM_028262	0.043170637	-0.093400937
Ralgapb	NM_177658	0.023390568	-0.091437147
Rsph3a	NM_025789	0.045573084	-0.083569959
Fxr2	NM_011814	8.87E-06	-0.081625066
Guf1	NM_172711	0.044532902	-0.081042381
Snapc1	NM_178392	0.03872605	-0.079358848
Tial1	NM_009383	0.001348663	-0.075388442
Zfr	NM_011767	0.009399516	-0.072917391
Itgb1	NM_010578	0.02027728	-0.064430649

Mrpl33	NM_025796	0.00365216	-0.062335557
Recq15	NM_130454	0.029004152	-0.057992191
Rwdd4a	NM_203507	0.012333694	-0.056914476
Vps37a	NM_033560	$2.96 \mathrm{E}-05$	-0.056157297
Gatad2a	NM_001113346	0.006058894	-0.048724896
Mapkap1	NM_177345	0.029629464	-0.040189778
Slc27a1	NM_011977	0.000426317	-0.036078644
Gm2a	NM_010299	0.017267182	-0.036016763
Vapa	NM_013933	0.027914895	-0.033977416
Rps3	NM_012052	0.020393516	-0.028250204
Tmem101	NM_029649	0.034622694	-0.026220468
Map4k5	NM_201519	0.001364672	-0.023184795
Cwc15	NM_023153	0.021568962	-0.018910274
Spast	NM_016962	0.037175399	-0.017472603
Actr2	NM_146243	0.006641268	-0.016889042
Ywhae	NM_009536	0.008612403	-0.01607104
Zfp617	NM_133358	0.003422274	-0.01546712
Npc2	NM_023409	0.047088441	-0.013882119
Hnrnpa2b1	NM_016806	$6.15 \mathrm{E}-06$	-0.012257713
Pdhb	NM_024221	0.02774968	-0.004454767
Ccdc117	NM_134033	0.03819422	-0.002463985
Thbs 1	NM_011580	0.026614163	0
Dimt 1	NM_025447	0.01456881	0.00457307
Tcf4	NM_001083967	0.006839863	0.006750245
Fam32a	NM_026455	0	0.012757463
Idh3a	NM_029573	0.002760123	0.016360305
Cggbp1	NM_178647	0.015831461	0.018257631

Hnrnpk	NM_025279	0.010462743	0.020909379
Rala	NM_019491	0.00132815	0.023715425
Nvl	NM_026171	$5.55 \mathrm{E}-05$	0.023788788
Ccdc122	NM_175369	0.046895509	0.024388074
Nek4	NM_011849	0.019263417	0.025058596
Gpr137	NM_207220	0.033769477	0.025308742
Mapk1ip11	NM_178684	0.000790582	0.025661598
Smc6	NM_025695	0.008085776	0.027912075
Ankrd26	NM_001081112	0.032389295	0.034538052
Ddx46	NM_145975	0.004448333	0.037433992
Nkrf	NM_029891	0.021062394	0.039922784
Acta2	NM_007392	0.0403986	0.044196923
Ccnh	NM_023243	0.039808794	0.044311228
Rap1b	NM_024457	0.033208056	0.044992076
R3hcc11	NM_177464	0.03993453	0.048362137
D1Bwg0212e	NM_028043	0.013765235	0.051587011
Ube2d3	NM_025356	0.001442091	0.052200509
Ywhaq	NM_011739	0.006772115	0.053389243
Tsen 15	NM_025677	0.038991132	0.054703047
Rap1a	NM_145541	0.009773009	0.055168276
Fgd6	NM_053072	0.031181574	0.055679677
Trmt5	NM_029580	0.000343831	0.062044636
Ranbp2	NM_011240	0.00438552	0.064102351
Kpnb1	NM_008379	0.026614163	0.067885046
Tpp2	NM_009418	0.012446278	0.072179756
Rnf128	NM_023270	0.008815635	0.074046346
Vcan	NM_001134475	0.030381034	0.075107857

Utp20	NM_175158	0.0355848	0.076370878
Tmem38a	NM_144534	0.018460546	0.079294532
Rps8	NM_009098	7.42E-07	0.09350564
Mtmr2	NM_023858	0.015333594	0.094567698
Iqgap1	NM_016721	0.024728862	0.096678151
Anapc 16	NM_025514	0.000686254	0.097231684
Faim	NM_011810	0.01514966	0.105386761
Kctd5	NM_027008	0.003207622	0.107637355
Gulp1	NM_028450	0.005944957	0.107671156
Nif311	NM_022988	0.048600256	0.113855994
Kif5b	NM_008448	0.046753615	0.114513412
Obfc1	NM_175360	0.009346365	0.114595738
Sdccag3	NM_026563	0.004054888	0.115157816
Wtap	NM_001113533	0.025077647	0.115247763
Smg1	NM_001031814	0.011075461	0.117054767
Spcs2	NM_025668	0.008743046	0.117749372
Insr	NM_010568	0.004501137	0.118022576
Hmgb1	NM_010439	5.22E-05	0.120366326
Hnrnpu	NM_016805	0.032104149	0.120659022
Ide	NM_031156	0.005639452	0.120799232
Tra2a	NM_198102	0.018192869	0.121741356
Usp36	NM_001033528	0.021827654	0.128597376
Bclaf1	NM_001025392	0.001507186	0.131094654
Josd1	NM_028792	0.003776795	0.131746538
Pak1	NM_011035	0.045251777	0.133250969
Dnajc11	NM_172704	0.02267077	0.133732035
Ldha	NM_001136069	$1.51 \mathrm{E}-07$	0.138310221

Uba3	NM_001111106	0.036118301	0.142559577
Prdx 4	NM_016764	0.030382278	0.154406194
Eif4g2	NM_001040131	0.031788879	0.157913855
Rsl24d1	NM_198609	0.030615168	0.161460609
Csnk1a1	NM_146087	0.000332975	0.162688258
Eln	NM_007925	0.003316025	0.166552604
Pnkp	NM_021549	0.044136594	0.169546896
Apmap	NM_027977	0.015714342	0.169684504
Hnrnph1	NM_021510	0.012732088	0.170081531
Eif3a	NM_010123	0.000335866	0.172717782
Zfp71-rs1	NM_145622	0.012372335	0.175816663
Wdr5	NM_080848	0.019287318	0.183450489
Snrpd3	NM_026095	0.024066098	0.183846311
Snapc3	NM_029949	0.005857036	0.191634048
Psmd11	NM_178616	0.017070785	0.192575393
Sh3glb1	NM_019464	0.042885299	0.193720378
Rbl1	NM_011249	0.035830043	0.19399814
Atp6v1d	NM_023721	0.019386874	0.196397513
Gzf1	NM_028986	0.026181581	0.198523753
Srsf7	NM_001195487	0.000178153	0.201294559
Rdh13	NM_175372	0.024984607	0.201783591
Pla2g4a	NM_008869	0.013588485	0.20613882
Tmem60	NM_177601	0.003428297	0.206309492
Serbp1	NM_001113565	0.041752671	0.208600199
Ptma	NM_008972	0.001670593	0.209803213
Zfyve20	NM_030081	0.042069948	0.21311167
Mtch2	NM_019758	0.001726418	0.214194955

Ppp4r2	NM_182939	0.002018311	0.216288547
Yap1	NM_009534	0.035881207	0.220446979
Fnbp4	NM_018828	0.013664294	0.222072993
Tstd3	NM_029840	0.002781	0.230111458
Scaf11	NM_028148	0.032724929	0.232313285
Kif11	NM_010615	0.048639731	0.244113255
Nf1	NM_010897	0.011238265	0.24546468
Ube2i	NM_001177609	$4.88 \mathrm{E}-08$	0.250599769
Kras	NM_021284	0.003470009	0.251410889
Frg1	NM_013522	0.018630212	0.253301425
Aaed1	NM_025370	0.004726932	0.254665881
Ran	NM_009391	$1.21 \mathrm{E}-05$	0.257127852
Nedd1	NM_008682	0.018356549	0.257880381
Zfp277	NM_178845	0.031812247	0.259620562
Grsf1	NM_178700	0.048136623	0.260838449
Srek1ip1	NM_026075	0.000712871	0.266620192
Stag1	NM_009282	0.00185379	0.267819297
Slit3	NM_011412	0.017873668	0.269020071
C2cd3	NM_001017985	0.04999238	0.271237258
Anapc 1	NM_008569	0.012333269	0.27235959
Myolb	NM_010863	0.027734904	0.284570019
Proser1	NM_173382	0.023289959	0.285328825
Cep110	NM_030000	0.04108657	0.291839335
Pdap1	NM_001033313	0.024165509	0.292519545
Zmynd11	NM_144516	0.043047082	0.292525996
Dnpep	NM_016878	0.046471776	0.296992079
Spry2	NM_011897	0.007922037	0.298706166

Dnmt3a	NM_007872	0.00298667	0.30422008
Lss	NM_146006	0.032610689	0.305306453
Mpzl1	NM_001001880	0.038667207	0.311313702
Rbm34	NM_172762	0.047401088	0.3139419
Tmem209	NM_178625	0.010063317	0.316570285
Hmgn5	NM_016710	0.021232074	0.329958725
Hspa4	NM_008300	0.003483676	0.33079122
Etf1	NM_144866	0.037471376	0.340492492
Tceb1	NM_026456	0.04019729	0.340887634
Iars	NM_172015	0.021717263	0.343280723
Gnb4	NM_013531	0.009106455	0.345563651
Psma3	NM_011184	0.009922233	0.347579778
9430038I01Rik	NM_029886	0.017975572	0.349990226
Galm	NM_176963	0.008261626	0.351757206
Rbm33	NM_028234	0.006807743	0.353826427
Orc6	NM_019716	0.012640187	0.353952369
Dhodh	NM_020046	0.032371932	0.366462829
Atp6v1b2	NM_007509	$7.52 \mathrm{E}-10$	0.367645044
Rfc2	NM_020022	0.029070084	0.368574343
Tex 2	NM_198292	0.002184619	0.369635533
Mtap	NM_024433	0.022491829	0.377745203
Usp1	NM_146144	0.009543113	0.379404631
Nsg1	NM_010942	0.017824929	0.386129674
Ghitm	NM_078478	$6.30 \mathrm{E}-06$	0.390301275
Acn9	NM_001077713	0.033618427	0.390949103
Tfpi	NM_011576	0.001867215	0.394637576
Ckap21	NM_181589	0.03320224	0.398970792

Set	NM_023871	0.003356913	0.403325015
Lrch2	NM_001081173	0.012895919	0.403506779
Pcm1	NM_023662	$8.23 \mathrm{E}-05$	0.413826328
Ptar1	NM_028208	0.018642171	0.416590164
Zfp330	NM_145600	0.033643412	0.418468036
Pdcd6ip	NM_001164677	0.031551534	0.437059519
Pus1	NM_001025561	0.013352887	0.448173813
Farsb	NM_011811	0.024568538	0.46585601
Wbp5	NM_011712	0.000108246	0.466335197
Rsrc1	NM_025822	0.019637378	0.467700075
Ranbp1	NM_011239	0.000631013	0.472452186
Ubqln1	NM_026842	0.02878865	0.472685769
Exosc8	NM_027148	$4.31 \mathrm{E}-07$	0.480144804
Rnaseh2b	NM_026001	0.042133212	0.491095657
Cbfb	NM_022309	0.042995223	0.51208926
Mtx 2	NM_016804	0.046885554	0.536482693
Hmgcs1	NM_145942	0.003279854	0.56541287
Rbm28	NM_133925	0.030058202	0.566220885
Trim37	NM_197987	0.045557463	0.568333019
Prpf38a	NM_172697	0.01811914	0.568691628
Bmp2k	NM_080708	0.025041637	0.576889442
Pwwp2a	NM_001164231	0.001665638	0.579980848
Lbr	NM_133815	0.034337299	0.605327338
Irx3	NM_008393	0.005687504	0.619146058
Cep76	NM_001081073	0.040122412	0.62399453
Rassf8	NM_027760	$4.90 \mathrm{E}-06$	0.628135049
Psmc6	NM_025959	0.000892871	0.630263644

Zfp60	NM_009560	0.00674271	0.653705973
Hn1	NM_008258	0.000103425	0.66046758
Lin9	NM_001103182	0.026358838	0.665029632
Dis3	NM_028315	0.019480302	0.692832384
Ick	NM_019987	0.044618087	0.736524339
Naa25	NM_172722	0.001489937	0.753418478
Sms	NM_009214	0.048996516	0.757853556
Zdhhc2	NM_178395	0.021251135	0.768430052
Atp11c	NM_001001798	0.002021255	0.791825014
Ssbp3	NM_023672	0.001037956	0.828542271
Rcc2	NM_173867	$9.88 \mathrm{E}-06$	0.871253249
Abca1	NM_013454	0.026535299	0.920976172
Chek2	NM_016681	0.035238995	0.92662375
Vcam1	NM_011693	0.044087321	0.94690625
Snx 10	NM_001127348	0.002090973	0.976906537
Rbpms2	NM_028030	0.039063037	0.987883433
Tcf12	NM_001253864	0.000878164	1.034816346
Klhl2	NM_178633	0.025185545	1.079327973
Scarb2	NM_007644	0.010809188	1.132588129
Dgkh	NM_001081336	0.027222482	1.190717873
Limd2	NM_172397	0	1.204983844
Ocel1	NM_029865	$2.94 \mathrm{E}-09$	1.332293257
Anp32e	NM_001253757	0.037195985	1.860350672
Ankrd1	NM_013468	0.005379162	2.047986902
Gbp2	NM_010260	0.007773691	2.187512423
Thbs2	NM_011581	0.007420898	2.235048033
Gdf10	NM_145741	0.028788625	2.433620991

Slc16a3	NM_001038653	0.011909358	2.434540474
Ptprz1	NM_001081306	0.036722378	3.152268748
Rcan2	NM_030598	0.036471931	3.969189382
Clca1	NM_009899	0.049871938	4.01891501

Table 5.3' UTR lengthened transcripts in $\mathrm{p} 53^{-/-}$MEF

Gene Name	Transcript Name	Shortening P-values	$\log 2$ fold change ($\mathrm{p53}^{-/} / \mathrm{p53}^{+/+}$)
Xaf1	NM_001037713	-0.00016	4.327928
Ncam1	NM_001113204	-0.00064	3.613468
Bche	NM_009738	-0.04685	2.953972
Rpp25	NM_133982	-0.01322	2.904772
Rasl10b	NM_001013386	-0.01726	2.886988
Hoxb7	NM_010460	-0.03115	2.873238
Bcam	NM_020486	-0.01841	2.864856
Gng2	NM_001038637	-0.01402	2.533142
Gdpd1	NM_025638	-0.04108	2.23576
Tgif1	NM_001164074	-0.04673	2.218879
Mogat2	NM_177448	-0.02717	2.12754
Igfbp5	NM_010518	-0.00048	1.703104
Frmd4a	NM_001177843	-0.02157	1.579885
Uba7	NM_023738	-0.02897	1.578136
Ermp1	NM_001081213	-0.0212	1.513295
Bcl2111	NM_207680	-0.02827	1.294806
Nhsl1	NM_001163592	-0.03434	1.294688
Frmd4a	NM_001177844	-0.02666	1.231694
Slc7a11	NM_011990	-0.00071	1.230798

Glrb	NM_010298	-0.02881	1.193454
Hs6st1	NM_015818	-0.02276	1.086756
Trip13	NM_027182	-0.01563	1.004429
Cldn12	NM_022890	-0.04996	0.967975
Cdkn2aipnl	NM_029976	-0.01235	0.95889
Fbln2	NM_001081437	-3.30E-05	0.923297
Tspan5	NM_019571	-0.00781	0.900928
Grem2	NM_011825	-0.03522	0.882022
Alg11	NM_183142	-0.01495	0.871699
Tmeff1	NM_021436	-0.00951	0.855545
Gas7	NM_001109657	-0.02047	0.83369
Tnk2	NM_001110147	-0.01989	0.808891
Dtl	NM_029766	-0.03608	0.80428
Gm13212	NM_001205101	-0.00445	0.795427
Hmgcr	NM_008255	-0.03363	0.788314
Aldh112	NM_153543	-0.03273	0.767937
Pdgfra	NM_001083316	-0.04936	0.746243
Scly	NM_016717	-0.00893	0.728569
Dus41	NM_028002	-0.0156	0.688201
Tubb2b	NM_023716	-0.00123	0.683731
Rab6a	NM_001163663	-0.03364	0.647368
Zfp930	NM_001013379	-0.04297	0.643135
Sc4mol	NM_025436	-0.01925	0.618494
Basp1	NM_027395	-0.00549	0.604799
Sertad2	NM_001038625	-0.02208	0.583754
Zfp827	NM_178267	-0.03209	0.581935
Hbs 11	NM_001042593	-0.03454	0.575888

Sulf1	NM_172294	-0.00078	0.569318
Lman21	NM_001013374	-0.03393	0.553003
Zranb3	NM_027678	-0.01108	0.551464
Lipa	NM_021460	-0.03293	0.533458
Smc5	NM_001252684	-0.0298	0.532682
Gm14295	NM_001205057	-0.04519	0.523637
Chchd4	NM_133928	-0.00976	0.520132
Stk38	NM_134115	-0.0044	0.495112
Gsr	NM_010344	-0.02519	0.48663
Myd88	NM_010851	-0.02464	0.473021
Slc39a8	NM_026228	-0.02588	0.472095
Kctd9	NM_134073	-0.04134	0.463762
Cdon	NM_021339	-0.00673	0.461677
Ill3ra1	NM_133990	-0.03352	0.459726
Rlim	NM_011276	-0.01635	0.445735
Grb10	NM_001177629	-0.00017	0.444548
Cic	NM_001110132	-0.03734	0.442394
Mrpl13	NM_026759	-0.02968	0.428897
Fbx112	NM_001002846	-0.04617	0.422862
1110059E24Rik	NM_025423	-0.01473	0.411543
Rrs1	NM_021511	-0.02847	0.404517
Arl8b	NM_026011	-0.01278	0.403303
Slc43a3	NM_021398	-0.02533	0.395432
Rbms2	NM_001039080	-6.18E-05	0.38527
Ep400	NM_029337	-0.00725	0.370048
Midn	NM_021565	-0.00169	0.363895
Rnf4	NM_011278	-0.01519	0.363393

Papd5	NM_001164499	-0.04606	0.357361
Rarg	NM_001042727	-0.0007	0.342488
Patl1	NM_172635	-0.03868	0.333632
Trmt6	NM_175113	-0.03821	0.328875
Topbp1	NM_176979	-0.03315	0.323678
Elf2	NM_023502	-0.03343	0.315205
2310044G17Rik	NM_173735	-0.03144	0.315019
Hmbs	NM_013551	-0.03815	0.313382
Aff4	NM_033565	-0.01294	0.308015
Baz2b	NM_001001182	-0.00873	0.306539
Mllt6	NM_139311	-0.03166	0.300566
Spcs3	NM_029701	-0.00728	0.298784
Pgam5	NM_028273	-0.00087	0.297133
Ankrd28	NM_001024604	-0.01328	0.275482
Papola	NM_011112	-0.01524	0.272971
Zadh2	NM_146090	-0.011	0.272847
Hoxal1	NM_010450	-0.01503	0.268993
Wapal	NM_001004436	-0.0373	0.26629
Atp5f1	NM_009725	-0.04946	0.254822
Prdm4	NM_181650	-0.00438	0.254528
Pa2g4	NM_011119	-0.01287	0.250461
Myl12b	NM_023402	-0.0072	0.249665
Thoc3	NM_028597	-0.04467	0.249382
Cep5711	NM_001243074	-0.02475	0.241969
Smarcd2	NM_001130187	-0.00057	0.234736
Snx6	NM_026998	-0.03193	0.233404
Rad50	NM_009012	-0.01959	0.230442

Pnrc2	NM_026383	-0.01819	0.22468
Chmp4b	NM_029362	-0.03478	0.216905
Tars2	NM_027931	-0.00208	0.216884
Dld	NM_007861	-0.00234	0.216405
Ube 2 f	NM_026454	-0.01067	0.213627
Wbscr16	NM_033572	-0.0005	0.212182
Gcsh	NM_026572	-0.02573	0.211645
Sirt5	NM_178848	-0.02756	0.206625
Eif1	NM_011508	-2.66E-05	0.20625
Rbm 22	NM_025776	-0.00611	0.205249
Ttl	NM_027192	-0.02697	0.199918
Ubxn7	NM_177633	-0.03577	0.19833
Mmache	NM_025962	-0.01426	0.197534
Cltc	NM_001003908	-0.00027	0.190379
Spsb1	NM_029035	-0.02364	0.186202
Abcc1	NM_008576	-0.04617	0.181197
Gja1	NM_010288	-0.01933	0.180818
Csde1	NM_144901	-0.00808	0.180291
Lamc1	NM_010683	-2.78E-06	0.174213
Usp54	NM_030180	-0.02913	0.173065
Psmc4	NM_011874	-0.04363	0.170862
Dazap2	NM_011873	-0.01113	0.167009
Ppfibp1	NM_001170433	-0.01524	0.16537
Slc39a14	NM_001135152	-0.0107	0.155108
Cotl1	NM_028071	-0.04924	0.152192
Lemd2	NM_146075	-0.04227	0.15054
Alg6	NM_001081264	-0.01042	0.146803

Clic4	NM_013885	-1.77E-07	0.142635
Rhobtb2	NM_153514	-0.03232	0.1419
Khsrp	NM_010613	-0.00355	0.132772
Chorde1	NM_025844	-0.00555	0.132184
Aven	NM_028844	-0.03119	0.130698
Sik3	NM_027498	-0.03488	0.128049
Coll6a1	NM_028266	-0.02411	0.127216
Mrpl36	NM_053163	-0.00561	0.124579
Ccdc25	NM_145944	-0.00017	0.12312
Zbtb2	NM_001033466	-0.03622	0.122466
Dffb	NM_007859	-0.01798	0.118907
Dnajc8	NM_172400	-0.01263	0.118122
Rpl13a	NM_009438	-0.03217	0.116105
Foxj3	NM_172699	-0.00233	0.115492
Tns3	NM_001083587	-0.04896	0.114099
Specc1	NM_001029936	-0.04943	0.109117
Fkbp1a	NM_008019	-0.00381	0.103215
Lgals1	NM_173752	-0.0311	0.09893
Exoc1	NM_027270	-0.00216	0.095754
Hsp90ab1	NM_008302	-0.00879	0.092975
Coq2	NM_027978	-0.01089	0.091674
5031439G07Rik	NM_001033273	-0.01557	0.088889
Hnrnpr	NM_028871	-0.00176	0.088246
Col4a1	NM_009931	-2.10E-06	0.084225
Phactr4	NM_175306	-0.03478	0.080367
Osbpl11	NM_176840	-0.03124	0.07635
Txnip	NM_001009935	-0.01534	0.07085

Kpna6	NM_008468	-0.02554	0.069753
Zfp825	NM_146231	-0.01894	0.069181
Cd164	NM_016898	-0.00629	0.064302
Hdgf	NM_008231	-0.01127	0.063592
Gltpd1	NM_024472	-0.0206	0.043996
Cfl1	NM_007687	-6.93E-08	0.0437
Casp7	NM_007611	-0.00694	0.039861
Spty2d1	NM_175318	-0.04507	0.034125
Slc 7 a 6	NM_178798	-0.00094	0.033462
M6pr	NM_010749	-0.01948	0.031739
Marf1	NM_001081154	-0.03847	0.03098
Trim44	NM_020267	-0.00464	0.029373
Hnrnpul2	NM_001081196	-0.00024	0.028341
Ndufc1	NM_025523	-0.0323	0.027932
Rbm4b	NM_025717	-0.00225	0.017628
BC005537	NM_024473	-0.00524	0.016485
Ctr9	NM_009431	-0.02258	0.015458
Msn	NM_010833	-0.03509	0.013507
Sf3b3	NM_133953	-0.00172	0.004574
Vhl	NM_009507	-0.01068	0.003767
Rabif	NM_145510	-0.00355	0.003479
Hibch	NM_146108	-0.04871	0.002295
E2f8	NM_001013368	-0.03129	-0.00127
Cent2	NM_028399	-0.02145	-0.00484
Cpsf7	NM_001164272	-0.03611	-0.00545
Zdhhc24	NM_001168516	-0.04563	-0.00669
Cldn25	NM_001252450	-0.01692	-0.00693

Elk3	NM_013508	-0.03122	-0.01663
Glipr2	NM_027450	-0.03071	-0.01786
Tmem165	NM_011626	-0.00016	-0.01947
Nubp2	NM_011956	-0.0166	-0.03171
Purg	NM_001098233	-0.0119	-0.03837
Elk1	NM_007922	-0.04764	-0.04158
Pgpep1	NM_023217	-0.00142	-0.04238
Ftl1	NM_010240	-0.04652	-0.04638
Ar18a	NM_026823	-0.0172	-0.04678
Tmed4	NM_134020	-0.02679	-0.04703
Prune	NM_173347	-0.00371	-0.04913
Col6a3	NM_001243008	-0.00023	-0.05507
Slc30a4	NM_011774	-0.01464	-0.05539
Clcn7	NM_011930	-0.04475	-0.0564
Plcb3	NM_008874	-0.00084	-0.06268
Srsf2	NM_011358	-0.00418	-0.06401
Trim 23	NM_030731	-0.00099	-0.06765
Golga7	NM_001042484	-0.00211	-0.07129
BC030336	NM_001164580	-0.01859	-0.077
Zxdc	NM_173002	-0.00668	-0.08138
Mdm4	NM_008575	-0.01233	-0.08139
Ano6	NM_175344	-0.03102	-0.08271
Elf1	NM_007920	-0.01686	-0.08776
Srf	NM_020493	-0.03256	-0.08832
Actrla	NM_016860	-0.02369	-0.09698
Atxn3	NM_029705	-0.02534	-0.09751
Ube2q1	NM_027315	-0.02196	-0.10053

Zbtb9	NM_001005916	-0.04781	-0.10907
Adss	NM_007422	-0.02791	-0.11106
Tnrc18	NM_001122730	-0.02295	-0.11227
Pofut 1	NM_080463	-0.01588	-0.11274
Itpr1	NM_010585	-0.00919	-0.11359
Cdc42bpb	NM_183016	-0.01507	-0.1145
Dusp3	NM_028207	-0.04361	-0.12175
Slmap	NM_032008	-0.02814	-0.12548
BC005624	NM_144885	-0.00927	-0.12651
S1pr2	NM_010333	-0.00072	-0.12814
Ghr	NM_010284	-0.01728	-0.13182
Psen1	NM_008943	-0.01195	-0.13435
Tm9sf2	NM_080556	-0.02832	-0.13518
Fbxo46	NM_175530	-0.0185	-0.13631
Nudcd2	NM_026023	-0.00153	-0.14135
Ppic	NM_008908	-0.0007	-0.14518
Krtcap3	NM_027221	-0.00781	-0.15054
Hp1bp3	NM_001122897	-0.01093	-0.15254
Plin3	NM_025836	-0.00092	-0.15959
Dnajc5	NM_016775	-0.00058	-0.1597
Ube2z	NM_172300	-0.04734	-0.16691
Pak2	NM_177326	-0.00399	-0.17429
Tmed7	NM_025698	-0.00564	-0.17742
Trabd	NM_026485	-0.02458	-0.17838
Myh9	NM_022410	-0.03668	-0.20178
Aes	NM_010347	-0.00129	-0.20381
Flrt2	NM_201518	-0.00779	-0.20445

Gns	NM_029364	-0.00998	-0.20586
Eef2	NM_007907	-0.00011	-0.20781
Fut11	NM_028428	-0.00713	-0.21071
Ccdc90a	NM_001081059	-0.01301	-0.21297
Ostc	NM_025509	-0.02745	-0.2149
Fem1a	NM_010192	-0.00035	-0.2152
Sec31a	NM_026969	-0.02087	-0.21629
Csk	NM_007783	-0.01403	-0.21648
Hmg20a	NM_025812	-0.0238	-0.21913
Eef1a1	NM_010106	-0.02478	-0.22086
Fkbp10	NM_010221	-0.01353	-0.2233
Oxsm	NM_027695	-0.01658	-0.22368
Myh10	NM_175260	-2.81E-06	-0.23015
Msl1	NM_028722	-0.02218	-0.23098
Cap1	NM_007598	-0.01439	-0.23344
Smarca 2	NM_026003	-0.01245	-0.23673
Asb7	NM_080443	-0.01556	-0.24102
Ccdc82	NM_025534	-0.00704	-0.24609
Aff1	NM_001080798	-0.02875	-0.24655
Hccs	NM_008222	-0.02605	-0.2558
Tmem19	NM_133683	-0.03051	-0.25607
Slc35b4	NM_021435	-0.02689	-0.25626
Sgpp1	NM_030750	-0.03001	-0.26444
Lass5	NM_028015	-0.02417	-0.27316
Cep350	NM_001039184	-0.00184	-0.27821
Rfx1	NM_009055	-0.00762	-0.28368
Dhx33	NM_178367	-0.00935	-0.28636

Oxct1	NM_024188	-0.00895	-0.29469
Uhmk1	NM_010633	-0.01263	-0.29616
Nudcd1	NM_026149	-0.0027	-0.30058
Echdc2	NM_001254754	-0.00499	-0.31636
Nedd9	NM_017464	-0.02872	-0.32023
Slc25a37	NM_026331	-0.01977	-0.32239
Prnp	NM_011170	-0.00024	-0.33423
Pigk	NM_025662	-0.00279	-0.33836
Stx18	NM_026959	-0.0231	-0.34112
3110001D03Rik	NM_025849	-0.01368	-0.34952
Figf	NM_010216	-0.02241	-0.35244
Canx	NM_001110500	-0.04635	-0.37117
Mob3a	NM_172457	-0.01317	-0.37142
Myo10	NM_019472	-0.04466	-0.37373
Rnf38	NM_001038993	-0.02283	-0.37658
Iscu	NM_025526	-0.01233	-0.37785
Twist1	NM_011658	-0.02407	-0.39811
Pja2	NM_001025309	-2.82E-06	-0.40333
Tnpol	NM_001048267	-0.00807	-0.41176
Ankrd13a	NM_026718	-0.03478	-0.41472
Arpc5	NM_026369	-0.00483	-0.41476
Golga4	NM_018748	-0.01812	-0.41853
Nono	NM_001252518	-0.00266	-0.42946
Ap2b1	NM_001035854	-0.01659	-0.43596
Cog2	NM_029746	-0.01243	-0.4415
2410002O22Rik	NM_001093759	-1.94E-05	-0.45181
Ckap4	NM_175451	-0.00098	-0.45962

Cnn2	NM_007725	-0.02603	-0.46481
B4galt6	NM_019737	-0.01214	-0.47704
Lyrm5	NM_133688	-0.00637	-0.49518
Nckipsd	NM_030729	-0.03277	-0.50596
Rassf3	NM_138956	-0.00892	-0.51872
Myadm	NM_016969	-2.87E-08	-0.52206
Ptpn1	NM_011201	-0.0329	-0.52744
Sun2	NM_001205345	-0.03522	-0.52754
Timp3	NM_011595	-0.00525	-0.54591
Adamts15	NM_001113548	-0.00934	-0.54781
Actn 1	NM_134156	-0.02329	-0.5709
Smim7	NM_172396	-0.00696	-0.57664
Ndrg3	NM_013865	-0.00548	-0.58199
Rangap1	NM_011241	-1.87E-06	-0.601
Ddr1	NM_001198831	-0.03676	-0.60141
Fbxo34	NM_030236	-0.02953	-0.60291
Flnb	NM_134080	-0.03126	-0.60772
2610305D13Rik	NM_145078	-0.04672	-0.61003
Gtpbp8	NM_025332	-0.0176	-0.6255
Tram1	NM_028173	-0.02249	-0.64947
Fam3a	NM_025473	-0.00585	-0.6733
Mfge8	NM_001045489	-0.02027	-0.67582
AI480653	NM_198626	-0.03149	-0.68351
Nptn	NM_009145	-0.02753	-0.68372
Sh3bp2	NM_011893	-0.01315	-0.68499
Csgalnact2	NM_030165	-0.03076	-0.68671
Plxna3	NM_008883	-0.03317	-0.69796

Sft2d3	NM_026006	-0.04694	-0.70981
Fbxo25	NM_025785	-0.01726	-0.7156
Msrb3	NM_177092	-6.61E-05	-0.73303
Ski	NM_011385	-0.00167	-0.73621
Rgs3	NM_134257	-0.00024	-0.73703
Tgfb2	NM_009367	-0.0017	-0.73897
Sptbn1	NM_175836	-0.0007	-0.73935
Six2	NM_011380	-0.01117	-0.74756
Man1a2	NM_010763	-0.01781	-0.75464
Wnt5a	NM_001256224	-0.01982	-0.76339
Ankrd13d	NM_026720	-0.03987	-0.78065
Dag1	NM_010017	-0.00126	-0.80168
Tprgl	NM_026388	-0.01143	-0.80509
Hist1h1c	NM_015786	-0.01906	-0.81004
2310045N01Rik	NM_001145552	-0.0009	-0.84263
Nfat5	NM_133957	-0.01037	-0.84313
Atf5	NM_030693	-0.03071	-0.85838
Mgat 1	NM_010794	-0.00232	-0.86173
Robol	NM_019413	-0.03969	-0.88133
Tspan 12	NM_173007	-0.02226	-0.90545
H2afj	NM_177688	-0.00667	-1.00523
Rpl37a	NM_009084	-0.00376	-1.03046
Hist1h2bc	NM_023422	-0.00898	-1.03994
Rb1	NM_009029	-0.04381	-1.0485
Sec16b	NM_033354	-0.04518	-1.06245
Tcf712	NM_001142923	-0.0362	-1.08551
Ss18	NM_009280	-0.02513	-1.09926

Rap2a	NM_029519	-0.01164	-1.15385
Pphln1	NM_175363	-0.01858	-1.20049
Rnpc3	NM_001038696	-0.04121	-1.20102
Dlc1	NM_015802	-0.00044	-1.25027
Nrbp2	NM_144847	-0.0037	-1.27865
Fat4	NM_183221	-0.01929	-1.38881
Sdc2	NM_008304	-0.00015	-1.4805
Dpt	NM_019759	-0.00819	-1.48814
Ids	NM_010498	-0.02071	-1.56982
Agtr2	NM_007429	-0.02564	-1.57914
Tom112	NM_001039092	-0.01828	-1.63318
Pik3r1	NM_001024955	-0.00103	-1.67609
Myo1c	NM_001080774	-0.03771	-1.90426
Co18a1	NM_007739	-0.00015	-1.93285
Ltbp2	NM_013589	-0.02366	-2.03732
Lynx1	NM_011838	-0.04623	-2.05528
Mgp	NM_008597	-0.0279	-2.26817
Scoc	NM_001039137	$-1.45 \mathrm{E}-10$	-2.40506
Cox7a21	NM_001159529	-0.02475	-2.43993
Thbd	NM_009378	$-2.91 \mathrm{E}-05$	-2.52601
Chodl	NM_139134	-0.04544	-2.72301
Perp	NM_022032	-0.02791	-3.75153
S100b	NM_009115	-0.02397	-4.18927

Table 6. 3' UTR shortened transcripts in 53bp1 ${ }^{-/-}$MEF

| Gene Name | Transcript Name | Shortening P-values |
| :---: | :---: | :---: | | log2 fold change |
| :---: |
| $\left(53 b p 1^{-/} / 53 \mathrm{bp1} 1^{+/+}\right)$ |

Ctss	NM_001267695	0.032188	13.7838
Nxt2	NM_001161430	0.024999	11.6861
Lum	NM_008524	0.006338	2.24696
Coll0a1	NM_009925	0.017829	1.62176
9930013L23Rik	NM_030728	0.035751	1.24607
Arvcf	NM_001272032	0.011206	1.00654
Casc4	NM_001205370	0.003422	0.869332
Mxd4	NM_010753	0.011644	0.837635
Pros1	NM_011173	0.016754	0.790169
Epha1	NM_023580	0.020217	0.760779
Prnp	NM_011170	0.001043	0.683845
Cnksr3	NM_172546	0.020111	0.637525
Cog6	NM_026225	0.025452	0.610895
B2m	NM_009735	$1.35 \mathrm{E}-12$	0.606737
Sdc2	NM_008304	0.019268	0.56431
Tmem230	NM_001141971	0.022413	0.563902
Trib3	NM_175093	0.025109	0.527591
Nono	NM_001252518	$4.52 \mathrm{E}-05$	0.519716
Wdr37	NM_001039388	0.030728	0.505438
Itch	NM_001243712	0.044734	0.505081
Tprgl	NM_026388	0.034804	0.501038
Pfn2	NM_019410	0.043104	0.461953
Ppt1	NM_008917	$8.47 \mathrm{E}-09$	0.454568
Coa4	NM_183270	0.01093	0.419251
Rdh14	NM_023697	0.043009	0.403955
Kdm3a	NM_001038695	0.012137	0.400004
Cic	NM_001110132	0.043454	0.384998

Twist1	NM_011658	0.037977	0.381642
Prickle1	NM_001033217	0.020052	0.381443
Ppfibp1	NM_001170433	0.004987	0.371478
Lyrm1	NM_029610	0.049371	0.365536
Slc39a1	NM_013901	0.00545	0.35977
Tmsb4x	NM_021278	0.035571	0.358407
Zfp503	NM_145459	0.008543	0.345096
Lrp1	NM_008512	0.000123	0.337137
Mospd2	NM_029730	0.001105	0.336132
Hmgcs1	NM_145942	$9.42 \mathrm{E}-06$	0.327239
Frk	NM_010237	0.018005	0.311759
Cln5	NM_001033242	0.016095	0.309533
Bloc1s5	NM_139063	0.027366	0.304952
Pla2g15	NM_133792	0.049435	0.299736
Mocs1	NM_020042	0.031244	0.294514
Vipas39	NM_001142580	0.018948	0.29159
Zbtb33	NM_001079513	0.028965	0.269057
Ttf1	NM_009442	0.048412	0.264814
Ralbp1	NM_009067	0.030482	0.25936
Dynlt3	NM_025975	0.023263	0.255262
Rusc 1	NM_028188	0.012758	0.25301
Tbc1d20	NM_024196	0.010765	0.246077
Rbm39	NM_133242	0.033203	0.242756
Derl1	NM_024207	0.026869	0.228186
Rpl13a	NM_009438	0.000112	0.226174
Snx18	NM_130796	0.000483	0.219026
Rbbp9	NM_015754	0.029447	0.211185

Dennd5a	NM_021494	0.042329	0.200475
Pja2	NM_001025309	0.001041	0.19206
Pik3c3	NM_181414	0.048599	0.191803
Capn7	NM_009796	0.036466	0.190784
Rnd3	NM_028810	0.032376	0.180532
Nptn	NM_009145	0.015367	0.168717
Ltbp2	NM_013589	0.014271	0.168233
Hps3	NM_080634	0.049503	0.163076
Gfer	NM_023040	$1.35 \mathrm{E}-06$	0.158488
Plekhf1	NM_024413	0.031158	0.132397
Mat2b	NM_134017	0.011596	0.111132
Slc15a4	NM_133895	0.027246	0.099576
Morf411	NM_001039147	0.015913	0.092889
Slc39a7	NM_001077709	0.030888	0.080452
Commd4	NM_025417	0.013476	0.067274
Ap1ar	NM_145964	0.004697	0.065553
Nudt3	NM_019837	0.016989	0.062057
Mpdz	NM_010820	0.034969	0.037708
Aplp2	NM_001102456	0.014247	0.036381
Chmpla	NM_145606	0.024644	0.035668
Haus2	NM_025475	0.039026	0.034712
Sgpl1	NM_009163	0.013714	0.02999
Hypk	NM_026318	0.001556	0.025327
Pxn	NM_133915	0.043077	-0.0029
Slc30a4	NM_011774	0.016217	-0.01177
Pnpo	NM_134021	0.036032	-0.02433
Chp1	NM_019769	0.001979	-0.02587

Pcyt1a	NM_009981	0.047881	-0.03365
Bmpr2	NM_007561	0.002523	-0.03499
Cdk2	NM_183417	0.037588	-0.0411
Setd7	NM_080793	0.025168	-0.04673
Eif2s3y	NM_012011	0.020551	-0.04899
Snx 2	NM_026386	0.040865	-0.0619
Ano6	NM_175344	0.028569	-0.07009
Fat1	NM_001081286	0.003854	-0.07604
Tm2d2	NM_027194	0.018627	-0.07879
Ptpn9	NM_019651	0.018011	-0.09067
Ssr2	NM_025448	0.007063	-0.10059
Pdia3	NM_007952	0.014826	-0.10534
Nr2f6	NM_010150	0.011125	-0.1083
Mbd3	NM_013595	0.04066	-0.1149
Phtf2	NM_172992	0.021272	-0.11675
Zmpste24	NM_172700	0.042196	-0.12097
Cent2	NM_028399	0.023675	-0.14228
Kif5b	NM_008448	$2.90 \mathrm{E}-06$	-0.15062
Bcap29	NM_001164090	0.047958	-0.15078
Ubqln 2	NM_018798	0.036749	-0.17722
Capza2	NM_007604	0.010033	-0.18293
Picalm	NM_001252521	0.021973	-0.18362
Rabif	NM_145510	0.029208	-0.18558
Ktn1	NM_008477	0.008745	-0.19162
Chtop	NM_023215	0.015166	-0.19317
Gnl31	NM_198110	0.024862	-0.19457
Pard3	NM_033620	0.044875	-0.20247

Tctex1d2	NM_025329	0.008409	-0.2025
Pcbp1	NM_011865	0.000215	-0.20854
Ehd2	NM_153068	0.002599	-0.21204
Pxk	NM_145458	0.04253	-0.21308
Lhfp	NM_175386	0.003029	-0.22383
Ppme1	NM_028292	0.005608	-0.2239
Pigq	NM_011822	0.001755	-0.24241
Kpna1	NM_008465	0.048086	-0.24445
Pip4k2a	NM_008845	0.027845	-0.25311
Cep85	NM_144527	0.010119	-0.25377
Sap130	NM_172965	0.04568	-0.26884
Ndst2	NM_010811	0.01077	-0.29212
Hp1bp3	NM_001122897	0.009964	-0.30045
Gp49a	NM_008147	0.03248	-0.3012
Qk	NM_001159517	0.01199	-0.31073
Zc3h15	NM_026934	0.024922	-0.33077
Tmem131	NM_018872	0.004002	-0.33227
Fmr1	NM_008031	0.040457	-0.33805
Ankrd13c	NM_001013806	0.007929	-0.33867
Mier1	NM_001039081	0.035083	-0.34049
Zfp143	NM_009281	0.045184	-0.34563
Tars	NM_033074	0.039104	-0.36589
Ngdn	NM_026890	0.018268	-0.36966
Psma5	NM_011967	0.009186	-0.37978
Cabin1	NM_172549	0.040517	-0.38153
Fkbp1a	NM_008019	$2.46 \mathrm{E}-05$	-0.38178
Parl	0.041615	-0.392	
NM		005767	0

Mob3a	NM_172457	0.038355	-0.39692
Snx5	NM_001199188	$6.83 \mathrm{E}-10$	-0.41229
Alg9	NM_133981	0.025112	-0.41756
Tmem128	NM_025480	0.049133	-0.42277
Myadm	NM_016969	0.030028	-0.4347
Fam178a	NM_001081225	0.002185	-0.44007
Cfl1	NM_007687	0.000238	-0.45074
Ubap2	NM_026872	0.001217	-0.4534
Hnrnpr	NM_028871	0.022687	-0.46063
Fbln2	NM_001081437	0.027843	-0.46587
Nvl	NM_026171	0.019788	-0.46614
Bmper	NM_028472	0.035096	-0.50731
Smarcc1	NM_009211	0.005003	-0.5081
Rsl24d1	NM_198609	0.01152	-0.50838
Rdh13	NM_175372	0.00574	-0.54425
Sun1	NM_001256116	0.023896	-0.55531
Tpm4	NM_001001491	0.044388	-0.55941
Polm	NM_017401	0.001029	-0.57306
Nme1	NM_008704	0.010399	-0.57775
Glipr2	NM_027450	0.002017	-0.58123
Ube2f	NM_026454	0.021657	-0.58195
Mlf2	NM_145385	$3.01 \mathrm{E}-05$	-0.58442
Tomm5	NM_001134646	0.005117	-0.59789
Tmem48	NM_028355	0.022571	-0.60797
Ptges3	NM_019766	0.046528	-0.61408
Rfc2	NM_020022	0.0014	-0.61484
2810474O19Rik	NM_026054	0.004424	-05857

Dstn	NM_019771	$1.08 \mathrm{E}-13$	-0.67883
Smim15	NM_001048250	0.003137	-0.72485
Nup160	NM_021512	0.041827	-0.73493
Eef1e1	NM_025380	0.024282	-0.75661
Katnbl1	NM_024254	0.045787	-0.7653
Bag2	NM_145392	0.033215	-0.7973
Usp10	NM_009462	0.044516	-0.80026
Nol10	NM_001008421	0.015644	-0.85876
Hnrnpm	NM_029804	0.029507	-0.90891
Hes 1	NM_008235	0.004753	-0.92095
Nr1d1	NM_145434	0.027568	-0.94722
Cdca5	NM_026410	0.031199	-1.03234
Cyr61	NM_010516	0.017635	-1.10882
Ddx21	NM_019553	0.044076	-1.14343
Slc20a1	NM_015747	0.009162	-1.15787
Hmga2	NM_010441	0.004319	-1.21498
Ccnb1	NM_172301	0.004775	-1.25464
H2afy	NM_001159513	0.006198	-1.27879
Kif23	NM_024245	0.037069	-1.27888
Rrm2	NM_009104	0.007811	-1.31595
Hmgb3	NM_008253	0.038337	-1.31905
Aif11	NM_145144	0.00123	-1.34203
Prr11	NM_175563	0.042414	-1.41378
Pole	NM_011132	0.035284	-1.56413
Fhl1	NM_001077362	0.011966	-1.88461
Tpm1	NM_001164250	0.00086	-2.03308
Ptgs2	NM_011198	0.032098	-2.77484

Table 7.3' UTR lengthened transcripts in 53bp1/- MEF

Gene Name	Transcript Name	Shortening P-values	$\log 2$ fold change $\left(53 \mathrm{bp1}^{-/} / 53 \mathrm{bpp}^{+/+}\right)$
Ube2h	NM_001169577	-0.02395	-8.343
Arhgef40	NM_001145922	-0.01782	-3.22011
Krt19	NM_008471	-0.01163	-2.2587
Anp32e	NM_001253757	-0.02219	-1.2715
Prc1	NM_145150	-0.04845	-1.16398
Slc38a1	NM_134086	-0.0071	-1.10762
Plk2	NM_152804	-0.03949	-1.10463
Cenpq	NM_031863	-0.02245	-0.92818
Plau	NM_008873	-0.01553	-0.89162
Cenpa	NM_007681	-0.04633	-0.88376
Ctgf	NM_010217	-0.00731	-0.87979
Exosc8	NM_027148	-0.00198	-0.85992
Vgll3	NM_028572	-0.00483	-0.84936
Idh3a	NM_029573	-0.01961	-0.82096
Socs5	NM_019654	-0.01344	-0.8186
Spcs3	NM_029701	-0.03582	-0.78164
Mat2a	NM_145569	-0.00162	-0.77796
Ranbp1	NM_011239	-0.00075	-0.77656
Ank2	NM_001034168	-0.02209	-0.77253
Sdad1	NM_172713	-0.00329	-0.76924
Rbpms2	NM_028030	-0.01994	-0.72429
Mrpl18	NM_026310	-0.04215	-0.71352
Zdhhc2	NM_178395	-0.00581	-0.71235
Ppid	NM_026352	-0.00261	-0.68298

Corolc	NM_011779	-0.02967	-0.67901
Smg7	NM_001005507	-0.03417	-0.67126
Clca1	NM_009899	-0.03327	-0.66482
Ran	NM_009391	-0.04276	-0.64228
Eif1ax	NM_025437	-0.03331	-0.63277
Gpd2	NM_010274	-0.0376	-0.58975
Adss	NM_007422	-0.04849	-0.58125
Etf1	NM_144866	-0.01953	-0.57841
Jub	NM_010590	-0.0161	-0.57609
Hdgf	NM_008231	-0.01257	-0.57333
Uhrf1bp1l	NM_029166	-0.04668	-0.54562
Cnih4	NM_030131	-0.03404	-0.54502
Hn1	NM_008258	-3.55E-05	-0.54253
Gypc	NM_001048207	-0.02263	-0.51924
Usp24	NM_183225	-0.04631	-0.51796
Rbm 28	NM_133925	-0.01292	-0.51749
Vasp	NM_009499	-0.0252	-0.51693
Nudcd3	NM_173748	-0.02025	-0.50556
Pdlim5	NM_019808	-0.00738	-0.50184
Ube 2 i	NM_001177609	-6.35E-06	-0.47246
Hnrnpu	NM_016805	-0.00132	-0.45562
Asns	NM_012055	-0.0106	-0.45179
Setd8	NM_030241	-0.0409	-0.45146
Yap1	NM_009534	-0.00774	-0.44329
Lrrc58	NM_177093	-4.26E-06	-0.43383
Tnpo3	NM_177296	-0.02611	-0.42062
Mapk1ip11	NM_178684	-0.00461	-0.4182

Polh	NM_030715	-0.00454	-0.41662
Map3k7	NM_009316	-0.03896	-0.41063
Nt 5 c 3	NM_001252374	-0.04135	-0.4044
Cpne1	NM_170588	-1.10E-05	-0.3992
Ube2d3	NM_025356	-0.01627	-0.39627
Csnk1d	NM_139059	-0.02516	-0.39133
Ddx5	NM_007840	-3.02E-05	-0.38899
Limd2	NM_172397	-1.90E-07	-0.37468
Ltbp1	NM_206958	-0.03017	-0.37336
Nemf	NM_025441	-0.02004	-0.36238
Wapal	NM_001004436	-0.02606	-0.35419
Ptbp3	NM_144904	-0.01312	-0.35198
Hspa4	NM_008300	-0.00021	-0.35192
Cenc	NM_016746	-0.01944	-0.34697
Nek7	NM_021605	-0.00478	-0.34121
Vim	NM_011701	-0.00319	-0.33981
Tgs 1	NM_054089	-0.02401	-0.32988
Rac1	NM_009007	-2.08E-10	-0.31108
Psmd11	NM_178616	-0.04362	-0.30431
Smarca2	NM_026003	-0.0389	-0.30356
Tcf12	NM_001253864	-0.00392	-0.30323
Tcf19	NM_025674	-0.02203	-0.29986
Cast	NM_009817	-0.0099	-0.2976
Sec63	NM_153055	-0.0156	-0.28759
Anapc 1	NM_008569	-0.00379	-0.28367
Gabpa	NM_008065	-0.01676	-0.28232
Ppp4r2	NM_182939	-0.01328	-0.27973

AI314180	NM_172381	-0.03992	-0.27946
Edc3	NM_153799	-0.03544	-0.27845
Taf12	NM_025579	-0.04768	-0.26958
Fblim1	NM_133754	-0.02047	-0.2634
Rwdd1	NM_025614	-0.03822	-0.26062
Dbnl	NM_013810	-0.00835	-0.25507
Prrx1	NM_175686	-0.04099	-0.23663
Rbm8a	NM_025875	-0.00904	-0.23455
Cux 1	NM_198602	-0.00275	-0.2345
Med29	NM_026042	-0.02419	-0.23114
Parva	NM_020606	-0.01106	-0.22403
Col5a1	NM_015734	-0.01322	-0.21923
Pcmt1	NM_008786	-0.00617	-0.2123
Lox12	NM_033325	-7.55E-12	-0.19853
Mettl6	NM_025907	-0.04333	-0.18838
Immp11	NM_028260	-0.02063	-0.18663
Calm1	NM_009790	-6.65E-08	-0.18457
Rbpms	NM_001042674	-0.02886	-0.18401
Ptgr2	NM_001252626	-0.02184	-0.17782
Fam126a	NM_053090	-0.03262	-0.17759
Stt3b	NM_024222	-0.00094	-0.17675
Lsm14a	NM_025948	-0.02687	-0.171
Sdccag3	NM_026563	-0.00824	-0.16887
Eif2s2	NM_026030	-6.84E-06	-0.16498
Brix 1	NM_026396	-0.00201	-0.16374
Eif2c2	NM_153178	-0.00896	-0.16368
Blmh	NM_178645	-0.00419	-0.1595

Rab14	NM_026697	-0.04943	-0.1559
Szrd1	NM_001025608	-0.04839	-0.15536
Ctsc	NM_009982	-0.01298	-0.14757
Hnrnpul2	NM_001081196	-0.0306	-0.13921
Wipi2	NM_178398	-0.00387	-0.12334
R3hdm1	NM_181750	-0.03698	-0.12159
Nudcd1	NM_026149	-0.01296	-0.11045
Tm9sf3	NM_133352	-1.05E-05	-0.10797
Pafah1b1	NM_013625	-0.00787	-0.1074
Aggf1	NM_025630	-0.02028	-0.10662
Ube2a	NM_019668	-0.04829	-0.10203
Tmem209	NM_178625	-0.01182	-0.09975
Rps3	NM_012052	-0.02242	-0.09838
Tceb3	NM_013736	-0.0372	-0.09742
Lmbrd2	NM_177178	-0.01841	-0.09534
Pafahlb2	NM_008775	-0.03301	-0.08906
Tsc22d2	NM_001081229	-0.00233	-0.0889
Cds2	NM_138651	-0.01801	-0.08781
Cmip	NM_001163262	-0.04032	-0.08727
2810403A07Rik	NM_028814	-0.01293	-0.08389
Vapa	NM_013933	-0.03436	-0.07439
Sike1	NM_025679	-0.03169	-0.0689
Tex261	NM_009357	-0.01497	-0.0639
Usp45	NM_152825	-0.02754	-0.06382
Spryd7	NM_025697	-0.01137	-0.0616
Pdxk	NM_172134	-0.01585	-0.06133
Luc71	NM_028190	-0.03903	-0.05266

Apaf1	NM_001042558	-0.03347	-0.04888
Pmepa1	NM_022995	-0.00656	-0.04279
Csnk1d	NM_027874	-0.04344	-0.04195
Mtmr2	NM_023858	-0.04763	-0.03378
Vamp3	NM_009498	-0.01857	-0.03094
Ppm11	NM_178726	-0.0206	-0.02825
Rabl6	NM_001024616	-0.00127	-0.02741
Slc35a1	NM_011895	-0.0049	-0.0271
Cyb5b	NM_025558	-0.00231	-0.02695
Zfp106	NM_011743	-0.0003	-0.021
Copg	NM_017477	-0.03008	-0.01886
Fam149b	NM_001024512	-0.02687	-0.01382
Ldlrad4	NM_172631	-0.01424	-0.00912
Atrnl1	NM_181415	-0.04165	-0.0079
Epn2	NM_010148	-0.04064	-0.00349
Rcbtb1	NM_027764	-0.01686	-0.00188
Dpp8	NM_028906	-0.00344	0.013792
Hdac4	NM_207225	-0.04889	0.013885
Snap29	NM_023348	-0.02566	0.022669
Tmem14c	NM_025387	-0.01414	0.024402
Psmd8	NM_026545	-0.00061	0.025359
Mcl1	NM_008562	-0.00833	0.029337
Arl14ep	NM_001025102	-0.0383	0.036042
Cggbp1	NM_178647	-0.01243	0.036539
Timp3	NM_011595	-0.00091	0.045351
Arl6ip1	NM_019419	-0.0358	0.051163
Ube213	NM_009456	-0.00106	0.061472

Ppp3ca	NM_008913	-0.01913	0.063797
Dcaf7	NM_027946	-8.27E-05	0.068055
Faf2	NM_178397	-0.00574	0.068576
Ganab	NM_008060	-0.04934	0.072626
Kank2	NM_145611	-0.00974	0.073747
Rrbp1	NM_024281	-0.01421	0.074052
Unc5c	NM_009472	-0.04343	0.08587
Ubtd2	NM_173784	-0.00449	0.085974
Lman2	NM_025828	-0.01896	0.088069
Rbx 1	NM_019712	-0.01442	0.089079
Camk2d	NM_001025438	-0.01493	0.090691
Pcgf3	NM_172716	-0.00176	0.092171
Adipor2	NM_197985	-0.03369	0.092298
Dnajc3	NM_008929	-0.03221	0.092878
Postn	NM_001198766	-0.00011	0.098695
Trim23	NM_030731	-0.00954	0.100938
Sacm11	NM_030692	-0.02198	0.103742
Tomm20	NM_024214	-8.00E-06	0.105042
Prps2	NM_026662	-0.04376	0.106142
Cog 3	NM_177381	-0.01716	0.108831
Rpl22	NM_009079	$-1.39 \mathrm{E}-09$	0.116099
Zfand3	NM_148926	-0.02784	0.11671
Col1a2	NM_007743	$-3.09 \mathrm{E}-05$	0.116721
Rab22a	NM_024436	-0.02975	0.117104
Ier3ip1	NM_025409	-0.00267	0.12874
AU022252	NM_001012400	-0.03553	0.134758
Gng12	NM_001177557	-0.00022	0.135212

Zmat 3	NM_009517	-0.00023	0.139435
Hook3	NM_207659	-0.03335	0.145563
Sh3glb1	NM_019464	-0.00063	0.158699
Ccng1	NM_009831	-0.0024	0.16093
Tmed10	NM_026775	-2.81E-06	0.169934
Ghitm	NM_078478	-0.0021	0.171758
Ubxn4	NM_026390	-0.00356	0.174127
Adam10	NM_007399	-0.00713	0.181839
Nrf1	NM_010938	-0.0407	0.182277
Rspry1	NM_026274	-0.02411	0.189472
Reep5	NM_007874	-0.00011	0.212931
Ripk1	NM_009068	-0.03499	0.223971
Cdkn1b	NM_009875	-0.00675	0.224832
Ubfd1	NM_138589	-0.00478	0.235754
Bnip31	NM_009761	-0.00742	0.237349
Rp127a	NM_011975	-0.02243	0.24306
Alcam	NM_009655	-0.01222	0.245407
Rpl15	NM_025586	-0.00625	0.245799
Ccni	NM_017367	-0.01066	0.251712
Extl3	NM_018788	-0.02896	0.257441
Btbd1	NM_146193	-0.011	0.259618
Mpp7	NM_001081287	-0.03879	0.260221
Thbs2	NM_011581	-0.0121	0.261684
Clmp	NM_133733	-0.04449	0.267566
Nedd4	NM_010890	-0.00055	0.268983
Sccpdh	NM_178653	-0.02042	0.271529
Exoc3	NM_177333	-0.04308	0.274809

Sec22b	NM_011342	-0.02587	0.278451
Stard4	NM_133774	-0.01299	0.291018
Vma21	NM_001081356	-0.00736	0.295919
Cnih	NM_009919	-0.00051	0.297342
Mfap1a	NM_026220	-0.01124	0.299242
Zdhhc20	NM_029492	-0.003	0.299684
Ube2b	NM_009458	-0.017	0.301178
Arhgap5	NM_009706	-0.00617	0.304093
Cacna2d1	NM_009784	-0.01144	0.315623
Aldh3a2	NM_007437	-0.02019	0.319175
2410131K14Rik	NM_001081236	-0.00027	0.320617
Gnpda2	NM_001038015	-0.0263	0.324312
H3f3a	NM_008210	-0.02249	0.328287
Acox 1	NM_015729	-0.04231	0.33503
Col5a2	NM_007737	-0.00043	0.359119
Oxct1	NM_024188	-0.00168	0.374614
Prrc2b	NM_001159634	-0.02841	0.378799
Hsd17b7	NM_010476	-0.02278	0.389723
Gpr 107	NM_178760	-0.00683	0.391539
Prrc1	NM_028447	-8.64E-05	0.395095
Sh3pxd2a	NM_008018	-0.01133	0.403305
Ankrd12	NM_001025572	-0.04745	0.406671
Ebf1	NM_007897	-0.00614	0.422417
Ren1	NM_009037	-0.03531	0.437749
Zbtb7b	NM_009565	-0.02519	0.444149
Pik3r3	NM_181585	-0.04182	0.446487
Dhcr7	NM_007856	-0.03166	0.455317

Rab11fip3	NM_001162868	-0.01382	0.456337
Mdfic	NM_175088	-0.02043	0.462409
Atp5s	NM_026536	-0.00505	0.46301
Sc5d	NM_172769	-0.03315	0.48571
AW549877	NM_145930	-0.01524	0.486831
Pdgfd	NM_027924	-0.03878	0.506482
P4ha1	NM_011030	-0.02611	0.525364
Dync1li2	NM_001013380	-0.00082	0.526026
App	NM_001198823	-0.00943	0.533024
Lix11	NM_001163170	-0.02478	0.541819
Tmem106b	NM_027992	-0.00055	0.546943
Timp2	NM_011594	-4.93E-22	0.550144
Oaz2	NM_010952	-0.0366	0.55215
Mlec	NM_175403	-4.59E-11	0.571506
Scp2	NM_011327	-0.03601	0.575564
Tpp1	NM_009906	-0.0019	0.58674
Scarb2	NM_007644	-0.0001	0.589584
Zfp874a	NM_177712	-0.02027	0.594137
Chchd5	NM_025395	-9.28E-05	0.595418
Map1lc3b	NM_026160	-4.77E-06	0.60303
Lox	NM_010728	-0.01098	0.689869
Camk2d	NM_023813	-0.02327	0.723367
Zfp810	NM_145612	-0.03626	0.727511
Phactr2	NM_001033257	-0.03218	0.730095
Impact	NM_008378	-0.04406	0.732997
Triqk	NM_001171801	-0.00706	0.736895
Sirt2	NM_001122766	-0.00245	0.749707

St3gal5	NM_001035228	-0.02628	0.763436
Laptm4a	NM_008640	-0.01025	0.766407
Bloc1s6	NM_019788	-0.00015	0.771208
ORF63	NM_144854	-0.04544	0.778333
Plxdc2	NM_026162	-0.01911	0.816558
Spp1	NM_001204203	-0.02697	0.826694
Ptp4a2	NM_001164745	-0.00891	0.875069
C1qtnf3	NM_001204134	-0.02717	0.903337
Col3a1	NM_009930	-0.00444	0.907479
Dkk3	NM_015814	-0.00067	0.980646
Gas6	NM_019521	-0.04498	1.0206
Colec12	NM_130449	-0.02781	1.05743
Rnase4	NM_021472	-0.00222	1.0934
Dnmt3a	NM_007872	-0.0242	1.16792
Serpine2	NM_009255	-0.00628	1.18851
Klh124	NM_029436	-0.01337	1.21799
Perp	NM_022032	-0.02279	1.35249
Snx10	NM_001127348	-0.04857	1.56591
Kif1a	NM_001110315	-0.04703	1.64168
Pdcd6ip	NM_001164677	-0.0005	2.17136
Rasgrp3	NM_001166493	-0.00115	2.24249
Gpr64	NM_001079847	-0.04816	2.34329
Eln	NM_007925	-0.04795	2.66854
Fbxo34	NM_030236	-0.03188	3.58743
Angel2	NM_001199020	-0.03461	6.02346

