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Abstract 

Alzheimer disease prediction using lower dimensional features 

from brain MRI and SVM classifiers 

 

Saruar Alam 

Advisor: Prof. Goo-Rak Kwon 

Associate Professor 

Dept. of Information and 

Communication Engineering 

Chosun University 

 

Alzheimer’s disease (AD) is the most frequent form of dementia, causes 

more health and socioeconomic problem. This progressive 

neurodegenerative disorder causes damage of brain cells, affects cognitive 

acts, behavioral problems, and memory disorder. At present, a lot of 

computer-aided diagnosis (CAD) based research is going on using Magnetic 

Resonance imaging (MRI) as a biomarker. Early diagnosis could help the 

patient to take preventive cure to get rid of AD risk factors to generate 

further. Around 50% MCI (Mild Cognitive Impairment) patient develop AD 

in three to four years. In this paper, a novel method is proposed to predict 

AD from normal controls (NC) here. In this work, maximum relevant 

minimum redundant principal components of dual tree complex wavelet 

transform (dtCWT) coefficients are extracted. The transaxial slices of MR 

images are selected for extracting dtCWT coefficients here. After linear 

discriminant analysis (LDA) of those coefficients, kernel SVM is trained and 

tested.  The accuracy, sensitivity, and specificity we have achieved using 

proposed approach are comparable or superior to those obtained by various 

conventional AD prediction methods found in the literature. 
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초록 

뇌 MRI와 SVM 분류기로부터 낮은 차원의 특징을 이용한 알츠하이머 병 예측 

기술 

알람 사루아르 

지도교수 : 권구락 교수  

정보통신공학과 

조선 대학교 대학원 

 

알츠하이머성 치매는(AD) 치매의 가장 흔한 형태이며, 치료 비용으로 인한 

경제적 문제와 더불어 사화적 문제가 발생한다.  이는 뇌 세포 손상으로 인한 

신경 퇴행성 장애로서 인지장애, 행동장애, 기억장애를 유발한다. 현재 

컴퓨터를 이용한 진단으로써 많은 연구가 이루어지며 대표적으로 자기 공명 

영상(MRI)의 바이오마커를 이용하여 진단하는 방법이 있다. 치매 조기 진단은 

알츠하이머성 치매의 초기치료를 통해 추가적으로 환자가 늘어나지 않게 

조치 할 수 있다. 50%의 MCI(경도인지장애) 환자는 3~4년 동안 알츠하이머성 

치매가 진행된다. 본 논문에서는 정상인 대조군(NC)에서 알츠하이머성 

치매를 예측하는 방법을 제안한다. 본 연구에서는, dtCWT(듀얼 트리 

콤플렉스 웨이블릿 변환)의 최대에서 최소한의 중복 주성분 계수를 추출한다. 

뇌 MRI 영상의 시상면, 관상면, 가로면(Transverse Plane) 영상은 dtCWT 

계수를 추출하기 위해 사용된다. 이후 계수들은 LDA(선형 판별 분석)를 거쳐 

Kernal-SVM 학습을 통해 트레이닝되고 테스트된다. 이 논문에서 제안하는 

방법은 기존의 다양한 연구들에서 찾을 수 있는 AD 예측방법과 정확성, 

민감도, 특이도를 따졌을 때 더욱 우수하거나 대등한 성능을 보인다. 
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Chapter 1 

 

Introduction 

 
1.1 Thesis motivation and overview 

Alzheimer disease (AD) is the most frequent form of dementia, for which 

neurological disorder, declination of mental state occurs. Its wide range of 

symptoms affects the patient to carry out normal daily activities.  The disease 

causes loss of function, metabolic alterations and structural changes in the 

brain.  It is not just an ordinary disease, but significantly 6
th

 leading cause of 

death in USA, for which no significant cure or effective treatment is 

currently manifested. AD is major cause of dementia, a growing health and 

socioeconomic problem, due to the progressive ageing of the world 

population. Early diagnosis of Alzheimer disease (AD) and Mild Cognitive 

Impairment (MCI) is always constitutive. The preventive measure might get 

an impact to degenerate AD risk factors. Earlier diagnosis method was based 

on clinical observation and cognitive evaluation. Recently, Many Computer-

Aided Diagnosis (CAD) based methods have been studied to predict 

AD/MCI from Healthy Controls. Structural Magnetic Resonance Imaging 

(sMRI), one of the most important biomarker widely used to visualize the 

changes in brain morphology as it is non-invasive. Using MR images, it can 

be distinguished among different brain tissues, such as Gray Matter (GM), 

White Matter (WM), and CerebroSpinal Fluid (CSF). One of most popular 

research initiatives for early detection and tracking AD progression is the 

Alzheimer ’s disease Neuroimaging Initiative (ADNI) which is an ongoing, 

longitudinal, multicenter study designed to develop clinical, imaging, 

genetic, and biochemical biomarkers.  
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Due to the widening interest in this technique, lots of researchers around the 

world are keen for CAD based AD/MCI prediction, and several research 

organizations have started neuroimaging recruiting. The discovery of robust 

CAD based stratification of AD/MCI and robust image biomarkers will let 

the researchers to focus treatments on the early affected regions. It will also 

assist to make a diagnosis before the disease symptomatology appears.   

 

1.2 Goals of this work 

In this context, the main aim is to propose accurate noble method to classify 

AD from HC using brain MR image as biomarker. Our goal is to use dual 

tree wavelet based feature from extracted 2D MR image slices, and also use 

segmented volumetric feature from 3D MRI. ONIS Viewer is used to extract 

2D MR image slice from 3D MRI. To extract segmented volumetric feature, 

FreeSurfer tool is used. For The details about preprocessing and feature 

extraction are explained in section 2.3. The kernel SVM will be fed with the 

extracted feature after reducing dimension and analyzing the discrimination. 

The 2D MR image slices are extracted and subjectively selected. To extract 

almost shift invariant wavelet based coefficients, dual tree complex wavelet 

transform (dtCWT) is applied on those 2D MR image slices. After discarding 

less relevant and high redundant dtCWT coefficients, and reducing the 

dimension, kernel SVM is be trained and tested. 
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1.3 Contribution 

According to best of my knowledge, a noble approach is applied in this work. 

In this method, subcortical segmented volumetric feature is extracted. The 

dual tree complex wavelet transform is applied on selected 2D MR image 

slices to extract almost shift invariant feature, maximum relevance and 

minimum redundant feature subset is selected, and principal component 

analysis is used for dimensionality reduction. The principal components are 

projected into another dimensional space applying Fisher Linear 

Discriminant Analysis (Fisher LDA) to ensure variability of features within 

and between classes, and then kernel SVM is trained and tested on linear 

discriminant of principal components of max-relevant min redundant dtCWT 

coefficients.  

A simulation code has been programmed in Matlab 2015b to analyze the 

prediction performance with reference to accuracy, sensitivity, specificity, 

and compared with other conventional AD classification methods  

 

1.4 Thesis Structure 

 The remaining chapters of the paper is arranged as follows: in chapter 2, it 

will reviewed about Alzheimer Disease, MR Image processing and feature 

extraction, briefly about feature subset and dimensionality reduction 

technique, and mathematical formulation of linear Support Vector machine 

classifier. 

Then, mathematical formulation lying behind dtCWT based coefficients 

extraction, feature subset selection, dimensionality reduction, classification 

problem of our proposed method will be summarized in Chapter 3. Then, the 
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experimental results will be analyzed in Chapter 5. Finally the conclusion 

and the future research possibilities will be presented in Chapter 6. 
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Chapter 2 

Background 

 

2.1 Alzheimer’s disease 

 

The Alzheimer disease (AD) is a most frequent type of dementia, primarily 

suffered by the elders. The condition is named for Alois Alzheimer, a 

German psychiatrist who was the first credited with identifying and 

describing the conditions, later linking its symptoms and pathology in 1906 

[1]. A progressive neurodegenerative disorder, AD, instigates to damage 

brain cells, and then induces cognitive assessment, behavioral dilemma, and 

memory disarray. It is a progressive neurological disorder, gradually it 

worsens over time, for which there is currently no cure, leading eventually to 

death, however promising research and development for early detection and 

treatment is underway. The percentage of people over 84 years old suffering 

from the disease is up to 42% [2]. According to statistical report, it is 

predicted that above 35 million people worldwide will suffer from dementia 

by 2030, is triple than the number of patients who develop at present. The 

ubiquity of AD varies among many different factors, including age, co-

morbidities, genetics, and education level. The diagnosis cost of AD patients 

is estimated to $220 billion per year and $ 605 billion per year globally. The 

cerebral atrophy in entorhinal cortex and hippocampus is instigated by senile 

plaque which consists of amyloidal beta-42 protein. Neurofibrillary tangle 

consists of tau protein also causes atrophy at hippocampus.  Early diagnosis 

of AD or MCI is always indispensable because it can possibly help to control 

the development of AD.  
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AD progresses over time. There are mainly three stages of the disease 

progression. At each stage the symptoms and challenges are different. 

Unique set of symptoms varying in severity could be observed at each stage 

of AD. While identifying current stage, the physician can predict its next 

stage and follow up symptoms, and purveys possible course of treatment 

accordingly.  

Mild Alzheimer's disease (early-stage): 

The early stage lasts 2 to 4 years. In this stage, gradual decline of patient’s 

cognitive ability can be realized. Common symptoms at this stage include [3]: 

 Problems presenting the right word or name 

 Trouble memorizing names when introduced to new people 

 Having greater difficulty performing tasks in social or work settings 

 Failing to remember material that one has just read 

 Losing or misplacing a useful object 

 Increasing trouble with planning or arranging 

Moderate Alzheimer’s Disease (Middle Age): 

This stage endures for 2 years, longest stage, more difficulties are 

experienced by AD patients. The patient needs special assistance of others to 

carry on daily living activities. The most common symptoms reported at this 

stage include [3]: 

 Forgetfulness of incident or about one's own personal history 

 Feeling moody or withdrawn, especially in socially or mentally 

challenging circumstances 
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 Being unable to recall their own address or telephone number or the 

high school or college from where they graduated 

 Confounder about where they are or what day it is 

 The need for help choosing proper clothing for the season or the 

occasion 

 Trouble controlling bladder and bowels in some individuals 

 Alteration in sleep patterns, such as sleeping during the day and 

becoming restless at night 

 An increased danger of wandering and becoming lost 

 Personality and behavioral changes, including suspiciousness and 

deception or compulsive, repetitive behavior like hand-wringing or 

tissue shredding 

Severe Alzheimer’s disease: 

The severe stage lasts between 1 to 3 years. In this stage, cognitive 

functioning continues to decline and physical condition gets worse. At this 

stage, individuals may: 

 Require full-time, around-the-clock assistance with daily personal 

care 

 Lose awareness of recent experiences as well as of their surroundings 

 Require high levels of assistance with daily activities and personal 

care 

 Experience decline in physical abilities, including the ability to walk, 

sit, and eventually swallow 

 Have increasing difficulty in communication 

 Become vulnerable to infections, especially pneumonia 



8 
 

The Clinical Dementia Rating (CDR) is a numeric scale, can be 

described to quantify dementia rating based on different set of severity. 

The patient’s cognitive and functional performance is graded numerically 

based on six areas: memory, orientation, judgment & problem solving, 

community affairs, home & hobbies, and personal care [4]. The 

numerical scores of each area are integrated to get composite score of 

each patient ranging from 0 through 3. 

The qualitative equivalence of CDR scaling are shown in Table 1.1. 

Composite Rating Symptoms 

0 none 

0.5 very mild 

1 mild 

2 moderate 

3 severe 

 

Table 1.1: CDR of different stage of severity. 

 

2.2 Magnetic Resonance Imaging 

  

The biomarker, structural Magnetic Resonance Imaging (sMRI) can be used 

for brain atrophy measurement to identify abnormal volumetric changes 

related to AD [22]. MRI employs the phenomenon of nuclear magnetic 

resonance (NMR) to produce high quality structural images of the internal 

organs and other tissues. Magnetic resonance imaging (MRI) technique was 

first used in 1977. It creates two or three dimensional images of the body that 

can be used to diagnose abnormalities, injury, and illness. The vital 

component of the MRI system is the superconducting magnet, which 



9 
 

produces a large and stable magnetic field [5]. The smaller gradient magnets 

are there to create weaker magnetic fields. These magnets allow for distinct 

parts of the entire body to be scanned. The human body constitutes of 

billions of atoms. However, it is the hydrogen atoms that are responded by 

the magnetic field. Each hydrogen atoms are randomly spinning around an 

axis, but inside the magnetic field of the MRI, the molecules are lined up 

with the orientation of the field. Half of the atoms direct towards the 

patient’s head, and rest half direct towards the feet, cancelling each other out. 

A few atoms out of every million are left out without cancelling out. Then 

the machine emits a radio frequency (RF) pulse specific to hydrogen, which 

causes these protons to spin towards a different point. When the spinning 

breaks off, the protons release energy, which is defined by the system. Using 

a contrast dye, each type of tissue responds differently and appears as a 

unique intensity of gray color when the image is created [6].  

 

Knowing how the system works, researchers are able to determine if an MRI 

can effectively ascertain the occurrence of the structural changes and cellular 

death seen in the brain of an AD patient. Atrophy of the hippocampus is 

often viewed in AD, even before the appearance of clinical symptoms [7]. 

The Nun Study, conducted in 2002, collected postmortem MRI scans of 56 

participants with varying stages of cognitive impairment. The MRI was used 

to detect the hippocampal volume and determine its significance as a 

biomarker of AD neuropathology [8]. Temporal lobe atrophy is closely 

associated with the development of AD [9], and histological studies show 

that the hippocampus, amygdala and entorhinal cortex are particularly 

sensitive to AD pathology [10]. Correlation has been found between the rate 

of temporal lobe atrophy and both current cognitive performance and future 

cognitive decline, even among normal healthy individuals [11]. Increased 
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rates of hippocampal atrophy compared with cognitively healthy individuals 

have been measured using MR image in both AD and MCI patients [12, 13]. 

Longitudinal studies have additionally shown that the rate of hippocampal 

atrophy beefs up over time in both AD and MCI patients [14, 15]. However, 

hippocampal atrophy alone is not sufficient to classify conversion from MCI 

to AD, and other structures may prove more sensitive [16]. 

 

Several ADNI MRI data studies found that an increased rate of hippocampal 

volume loss was associated with presence of the ApoE e4 allele in AD 

patients, and with reduced levels of CSF Aβ in MCI patients [12]. Another 

study showed that the rate of temporal lobe atrophy in AD is associated with 

reduced CSF Aβ and elevated CSF tau, and that it is significantly faster in 

MCI subjects that later develop to AD than in non-converters [17]. The result 

and discussion prompted that the scans could be used to identify non-

demented elderly with AD neuropathology who have not yet presented with 

memory impairment. By identifying the risk for these patients to convert AD 

well before the appearance of symptoms, physicians may be able to carry out 

treatment to slow the progression of the disease. 

 

A recent study conducted in 2009 by the Departments of Radiology and 

Neurology at the University of Pennsylvania explored the use of sodium 

magnetic resonance imaging in the development of AD. This imaging 

technique uses the same principle as illustrated above. However, instead of 

measuring the hydrogen atoms, naturally abundant sodium, Na was used by 

this technique [18]. This ion was chosen for this because of the capability of 

sodium in the brain to detect tumors and track cell death [19]. The 

participants included five healthy normal elderly adults and five who had a 

probable diagnosis of AD. When neuronal death occurs, the intracellular 
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space is shrunk. Therefore, there is an increased concentration of sodium in 

the extracellular space, generating stronger signal intensity from the MRI for 

patients who have AD. Though this technique is not yet perfected, studies are 

being conducted to determine if the increased signal intensity is induced by a 

change in ion concentration or a change in volume [20]. 

 

MRI Pros and Cons: 

 

When taking the effectiveness of this technique into consideration, there are 

both pros and cons. Potential advantages of choosing this procedure are that 

it is painless, noninvasive, and can detect very minute abnormalities without 

the radiation exposure of an X-ray. The resulting reconstructed image also 

has high spatial resolution. However, this process is very expensive and may 

not be covered by insurance. The space inside the scanning machine is very 

small, which may make it hard to examine a claustrophobic patient. If a 

patient has metallic objects inside of their body, they cannot use the MRI 

system due to high sensitivity to strong magnetic field. 

 

MRI Accuracy: 

 

A study conducted by the Florida Alzheimer’s Disease Research Center 

found that MR image scans are effective in detecting the brain atrophy 

observed in AD. They collected brain MRI for 260 participants, some with 

mild cognitive impairment, others with probable AD, and a control group of 

elderly healthy adults with no memory decline. The researchers effectively 

matched the scans with the correct group of patients based on the amount of 

atrophy in the mid-brain. Some scans showed brain atrophy before any 

symptoms were present, hinting that this technique would be effective for 
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early diagnosis of the disease [21]. Sample transverse slices from MR images 

of healthy individuals, Mild Cognitive Impairment, and AD patients are 

depicted in Fig 2.1. These images hint that AD patients typically show 

evidence of cortical atrophy, and enlarged ventricles in comparison with 

healthy controls. 
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(a) 

 

(b) 

 

(c) 

Fig. 2.1: Transverse slices from MR images of (a) healthy individuals, (b) Mild 

Cognitive Impairment, and (c) AD patients. These images indicate that AD patients 

typically show evidence of cortical atrophy, and enlarged ventricles in comparison 

with healthy controls. 
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2.3 MR Data Preprocessing 

2.3.1. FreeSurfer 

 

Freesurfer [23] is most broadly used software for analysis of structural and 

functional imaging biomarkers. It is fully automatic brain imaging tool 

pipeline used for displaying of cortical surface between white and gray 

matter, representation of the pial surface, segmentation of white matter from 

the rest of the brain, skull stripping, B1 bias field correction, nonlinear 

registration of the cortical surface of an individual with a stereotaxic atlas, 

labeling of regions of the cortical surface, statistical analysis of group 

morphometric differences, and labeling of subcortical brain structures etc. 

Fischl [23] demonstrated the implementation of complex image processing 

pipeline and the subsequent computation of corresponding volume of 

segmented plenty numbers of image scans of anatomical structures. 

Freesurfer has the disadvantage of taking more time for processing as 

compared to Statistical Parametric Mapping (SPM) tool. By using Freesurfer 

total GM, the TIV (called intracranial volume), and hippocampus and 

ventricular volumes were obtained directly from the asegstats output file, left 

and right temporal GM volumes were extracted by summing up several ROI 

volumes found in the lh.aparc.stats and rh.aparc.stats files, respectively. 34 

gyral based cortical ROIs are detected [24] at each hemisphere from human 

cerebral cortex. In automatic subcortical segmentation, each voxel in the 

normalized brain volume is assigned one of about 40 labels [25], including: 

Cerebral White Matter, Cerebral Cortex, Lateral Ventricle, Inferior Lateral 

Ventricle, Cerebellum White Matter, Cerebellum Cortex, Thalamus, Caudate, 

Putamen, Pallidum, Hippocampus, Amygdala, Lesion, Accumbens area, 

Vessel, Third Ventricle, Fourth Ventricle, Brain Stem, Cerebrospinal Fluid.  
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It also registers the individual cortex surfaces to surface-based anatomical 

atlases (Desikan-Killiany, Destrieux) [26, 27]. Techniques are implemented 

for automatically assigning a neuroanatomical label to each region on a 

cortical surface model based on probabilistic information estimated from a 

manually labeled training set (implemented using FreeSurfer). This 

procedure incorporates both geometric information derived from the cortical 

model, and neuroanatomical convention, as found in the training set. The 

result is a complete labeling of cortical sulci and gyri. A subcortically 

segmented 2D MRI slice of AD and healthy patient have been shown in Fig. 

2.2.  
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(a)  

 

 

(b)  

 

Fig. 2.2: Subcortically segmented Transverse slices from MR images of (a) AD 

patients, and (b) healthy individuals by using FreeSurfer tool. 
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2.3.2. Discrete Wavelet Transform 

The discrete wavelet transform (DWT) is an implementation of the wavelet 

transform using a discrete set of the wavelet scales and translations obeying 

some defined rules. The DWT captures both frequency and location 

information (location in time). It is an effective mathematical tool for feature 

extraction, its wavelet coefficients can be used as feature of MR image. The 

scale parameters are discretized for practical reason. The scale parameter, d 

is quantized with respect to translation parameter,  as shown below, 

 

2 2 , ,m md and n wherem n Z   .         (2.1) 

 

Thus, the family of wavelet functions can be denoted as 

 

/2

, ( ) 2 (2 )m m

m n t t n   .     (2.2) 

 

The DWT segregates input signal x( )t into a set of synthesis wavelets as 

depicted in Eqs. (2.3) and (2.4), 

 

, ,x( ) m n m n

m n

t q    ,    (2.3) 

where, , ,(t), (t)m n m nq x    . 

 

Considering discrete signal x[n], the wavelet segregation on J octaves is 

shown by 

   

 i,k ,k1
[n] [n 2 k] [n 2 k]i J

J Ji to J k Z k Z
x q g u h

  
      ,      (2.4)       
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where, the wavelet coefficients i,k , 1,...,q i J , and scaling coefficients

J,k , 1,...,u i J . 

 

*

i,k [n]g [n 2 k],i

in
q x       (2.5)

*

i,k [n]h [n 2 k]J

Jn
d x  , 

 

where, g [n 2 k]i

i  and h [n 2 k]J

J   denotes discrete wavelets and scaling 

sequences respectively, (*) indicates complex conjugate. 

 

 The DWT can be represented in 2D image also. The resultant of image S  is 

breaking into first level of low approximation coefficient 
1

aS , detailed 

horizontal component 
1

hS , and detailed vertical component 
1

vS , 
1

dS  [28]. The 

approximation coefficient aS consist of low frequency components, and 
1

vS  

and 
1

dS contain high frequency components. 

Thus image can be represented as follows: 

 

1 1 1 1

a h v dS S S S S    .     (2.6) 

 

 Similarly image can be decomposed into multi scale wavelets. The 

particular level approximation and detailed components are obtained 

applying DWT in previous level approximation component. If the process is 

repeated up to L level, the image S can be represented as Lth terms 

approximation component (
L

dS ), and detailed components as depicted below 

in Eq. (2.7), 
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1
{N i i i

a h v di toL
S Y S S S


     .   (2.7) 

  

The dimension of decomposed image is reduced by half at each 

decomposition level. Hence the dimension of all detailed components 

achieved from first level of decomposition of an *N N image is / 2* / 2N N , 

second level is / 4* / 4N N , and so on. The more the level increases, the 

more the image gets compact as shown in Fig.2.3. Thus a simple hierarchical 

framework is obtained for interpreting image transform [29]. 
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(a) 
 

 
 

(b)  
 

Fig. 2.3: Transverse slices from MR images of (a) Original Image for wavelet 

transform, and (b) Detailed components of 1st, 2nd, 3rd level decomposition. 
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2.3.3. Feature selection 

 

In this work, 2 sample t test is used to discard features, hence it reduces 

dimension also. It calculates a confidence interval and executes a hypothesis 

test of the difference between two population means when sample 

distribution is independent to each other and standard deviations are 

unknown. Confidence level in the result increases when the sample size 

increases. If sample size is small, it works best if the data in normally or 

close to normally distributed.   

The two-sample t-test compares the location parameter of two independent 

data samples. 

The test statistic is 

22
yx

x y
t

ss

n m






,       (2.8)  

where, x and y are the means of samples, n and m are the sample sizes, and 

ys  and xs  are sample standard deviations.  

If it can be assumed that the two samples having equal variance from 

populations, the test statistic under the null hypothesis has Student's t 

distribution with 2n m   degrees of freedom, and then the sample standard 

deviations are substituted with the pooled standard deviation as shown below. 

 

2 2( 1)s (m 1)s

2

x yn
s

n m

  


 
,    (2.9) 
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The significance level of null hypothesis can be determined by using two 

sample t test. 

 

2.3.4. Dimensionality reduction technique 

Higher dimensionality of feature is a curse for pattern classification. For 

smooth classification, dimensionality reduction technique transforms data 

from higher dimensional space to lower dimensional space. The data 

transformation may be linear or nonlinear. One of most frequently used 

linear transformation is Principal Component Analysis (PCA). PCA is 

orthogonal transformation to convert possibly correlated samples into 

linearly uncorrelated variables. The number of principal components is less 

than or equal to the number of original variables. The PCA is summarized as  

 Finding mean of the data matrix and zero mean matrix. 

 Constructing covariance matrix. 

 Getting the eigenvalue and the eigenvector.  

 Projecting the data matrix with eigenvectors corresponding to highest 

to lowest eigenvalues. 

 

2.4 Support Vector Machine 

 

Support Vector Machine, basically a binary classifier is very efficient for 

classification of both linearly separable and non-separable data. It finds best 

hyper plane that separates both the classes having optimum margin from 

support vectors during training phase as portrayed. While testing with new 

data point, classifier takes decision on the basis of hyper plane.   
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Let consider the training set 1{( , )}n

i i ix y  , where d

ix R training sample is and 

its corresponding class level is { 1, 1}iy    . It is needed to find maximum-

margin hyperplane that divides one group (+1) from other (-1). 

 

The hyperplane can be represented as  

 

. 0w x b  ,       (2.10) 

 where, w  is weight vector which is normal to hyperplane, b is bias term. 

 

Hard-margin: 

 

If the data samples are linearly separable, then two parallel hyperplane can 

be drawn to classify two classes of data so that distance between them is 

optimum. The region bounded by these two hyperplanes is called the 

"margin".  

 

The optimization problem can be represented as 

 

minimize || ||

Subject to y ( . 0) 1, 1,..., n ,i

w

w x b for i

n Z

   



  (2.11) 

 

The decision function is 

 

f(x) sign( . 0)w x b   .     (2.12) 
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Soft-margin: 

 

If the samples are not linearly separable, SVM optimization problem is 

extended introduction hinge loss function without using kernel trick as 

 

 

1

1
max(0,1 y ( . )) || ||

n

i

i

w x b C w
n 

 
   

 
 ,       (2.13) 

 

where, max(0,1 y ( . ))i w x b   is hinge loss function, C is trade of parameter 

to get optimum margin to ensure ix to be on the right side of class or 

hyperplane. If there are small value of trade of parameter C and linearly 

separable data samples, soft-margin SVM will behave indistinguishably like 

hard-margin SVM. 
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Chapter 3 

The Proposed Method 

 

 

3.1 Overview 

   Early preventive care could help to degenerate its risk factors gradually. 

The noninvasive biomarker Magnetic Resonance (MR) images are used here 

because morphometric difference and cerebral atrophy could be realized. MR 

image slices are used after to extract feature. A novel approach is applied for 

predicting AD from HC using complex dual tree wavelet coefficients 

extraction, principal components of min-redundancy and max relevance 

feature subset selection, and linear discriminant analysis. The method is 

compared with segmented volumetric feature based AD prediction where 

FreeSurfer is used for feature extraction.  By using Freesurfer, the TIV 

(called intracranial volume), total GM, and hippocampus and ventricular 

volumes were obtained directly from the asegstats output file, left and right 

temporal GM volumes were extracted by summing up several ROI volumes 

found in the lh.aparc.stats and rh.aparc.stats files, respectively. 34 gyral 

based cortical ROIs are identified [24] at each hemisphere from human 

cerebral cortex. 

 

3.2 Dual tree complex wavelet transforms 

    Wavelet is one of most frequently used feature extraction technique for 

MR images. The advantage of WT over Fourier transform is its multiple 

scaled representations, frequency components with spatial domain 

information. Fourier coefficients only purvey frequency information of 
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image, but Wavelets contains powerful observation of both spatial and 

frequency domain in multiple scaled format. Wavelets representation is 

spatially localized in space, but Fourier functions are not spatially localized 

because it consists of only frequency components of image. MR images can 

be represented and processed at various resolutions; hence it can be used as 

incisive framework for processing multi resolution images. The DWT 

coefficients can be extracted by using array of low and high pass filter banks.  

    But conventional wavelet transformation has multiple drawbacks. The 

disadvantage includes drift in wavelet coefficient oscillation towards positive 

and negative around singularities, shift variance of signal which may cause 

oscillation of wavelet coefficient sample around singularities, the substantial 

aliasing of amply spaced wavelet coefficients patterns, and lack of 

directional selectivity perturbs to process and model geometric image 

features like edges and ridges. Then flaws regarding conventional DWT are 

not experienced by Fourier transform.  To overcome the drawbacks, the 

improved dual tree complex wavelet transform (dtCWT) is used [30]. 

Getting inspired by Fourier transform, CWT can be represented as complex-

valued scaling function and complex-valued wavelets. Dt-CWT engages two 

real DWTs; the first DWT purveys the real part of the transform and second 

SWT provides the imaginary part. Two kinds of filter set, analysis filter 

banks and synthesis filter banks are used for implementing dual tree wavelet 

transform to safeguard that overall transformation becomes approximately 

analytic as show in Fig. 3.1.  

  

The dt-CWT can be denoted in matrix form                              

[D D ]h gD  ,                         (3.1) 
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Fig. 3.1: Block diagram for a 3-level DTCWT. 

where, Dh , Dg are rectangular matrices. 

 The input image x, its complex wavelet coefficients can be represented as 

h gT jT                      (3.2) 

where, D *h hT x  is the real part, and D *g gT x is the imaginary part. 

The dt-CWT coefficients of input image are shift invariant because it does 

not change when the image is shifted in time and space domain. Dt-CWT 

employs segregation of 6 different directions ( ±15, ±30, ±45 ) for 2D image, 

28 different direction for 3D image while conventional DWT only allows 

isolation of horizontal and vertical direction . For each 2D slice of a subject, 

4-level dtCWT coefficients are extracted in one particular scale. In Fig. 3.2, 

it has been shown the reconstructed image, and error after DWT and DtCWT 

coefficients of a 2D sample slice. When compared both the reconstructed 
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images, the dual tree complex wavelet transform more faithfully reproduces 

line and curve singularities. 

 

 
 

(a) 

 

 
 

(b)        (c) 

 

Fig. 3.2: Transverse slices from MR images of (a) Original image for 

reconstruction, and (b) Reconstructed image from dtCWT, reconstructed error 

0.7326 (c) Reconstructed image from DWT, reconstructed error 0.8812. 
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3.3 Max-Relevance and Min-Redundancy feature subset 

Higher dimensional feature is a curse for pattern classification. The entire 

feature doesn’t purvey disease signature. The dimension is reduced selecting 

feature subset based on maximum dependency, max-relevance, and min 

redundancy [31].  

Let { }ix  is n dimensional feature, S is subset of m features of ix having the 

maximum dependency towards target class or level l . The max-dependency 

can be expressed as 

 

max ( , ), ({x ;i 1,...,m};c)iD S l D I  .       (3.3) 

 

The features are added one by one, and last feature is selected which have 

highest contribution to the increase of (S ;l)mI  as shown in Eq. (3.4). 

 

,

(S , l)
(S ;l) (S l) log ,

(S ) (l)

m
m m m

m

p
I p dS

p p
             

1
1, 1

1

(S , x , l)
(S , l) log ,

(S , x ) (l)

m m
m m m m

m m

p
p x dS dx dl

p p


 



      (3.4) 

1
1 1

1

( ,..., , l)
.... ( ,..., , l) log ... ,

( ,..., x ) (l)

m
m m

m

p x x
p x x dx dx dl

p x p
    

  

As max-dependency has a drawback of slow computational speed, maximum 

relevance features are chosen with mean value of all mutual information 

between 1x and its assigned level l . 

 

1
max D(S, l), D ( ; )

| S |
i

i

x S

I x l


  .      (3.5) 
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The extracted relevant feature may have high redundancy. To discard similar 

kind of features, min Redundancy is formulated as 

 

2
,x

1
min (S), ( ;x )

| S |
i j

i j

x S

R R I x


  .      (3.6) 

 

The norm of incorporating above two constraints is called min-redundancy 

and max-relevance (mRMR), ( , )D R . The simple optimization of D and R 

simultaneously can be defined as 

 

max ( , ),D R D R    .            (3.7) 

 

Selection ofSm -th from nearest 1Sm -th feature 1{X S }m is set by 

incremental search algorithm maximizing (.) . The respective incremental 

search method is optimized as follows: 

 

1
1

1
max ( ; ) ( ; )

1j m
i m

j j i
x X S

x S

I x l I x x
m



 


 
 

 
 .     (3.8) 

 

3.4 Principal component Analysis 

It is a dimensionality reduction technique [32] as higher dimensional feature 

has the disadvantage for pattern classification. Extracting principal 

components are illustrated mathematically below,  
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Let *X be N d , (N=number of patients, d-dimensionality) dimensional 

imaging feature,  

After getting data into zero centered,  

1

1
0

i

N

i

x
N 

 .                     (3.9) 

Diagonalizing the covariance matrix A, 

1

1 N
T

i i

i

A x x
N 

  .               (3.10)
 

Applying eigenvalue and eigenvector decomposition
       

 

, 1,2,.., ..,i i iA i k d   ,   (3.11) 

 where,   is eigenvalue and   is eigenvector of A . The eigenvalue is 

ordered in descending order  

1 2 3 ....... d      .     (3.12) 

The corresponding eigenvector will be 

1 2 3, , ....... mv v v v .       (3.13)
 

After selecting k nonzero eigenvalue, eigenvector matrix is constructed as  

1 2 3[ ....... ] ,kv v v v v k m  .   (3.14) 

Now input data is projected into k principal component axis as depicted here 

*pcX X v .     (3.15) 
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3.5 Linear Discriminant Analysis 

The most general fisher linear discriminant [33] is used for linear projection 

of feature to separate two or more classes. After PCA, the classification may 

not be efficient, because PCA does not deal with variability of features 

within class and between classes. To make effective and discriminative 

projected feature, PCA coefficients can be projected on to new LDA 

projection axis.   

To find out class separation projection axis, there is a need to find out 

between-class scatter and within class variability. 

The between class variable matrix can be denominated by sample variance  

1

1
( )( )

c
T

B j j

j

S m m m m
c 

   ,  (3.16) 

where, c  is number of classes, m  is overall mean, im is i-th class mean. 

Within class variance matrix can be denotes as 

1

( )( )
k i

c
T

w k i k i

j z w

S z m z m
 

   ,  (3.17) 

  
where, kz  is k-th sample variable belongs to a class.

 
 

The generalized Rayleigh Coefficient is 

( )
t

B

t

w

W S W
J w

W S W
 ,    (3.18)

 

where, W matrix is for LDA coefficients. It can be characterized the 

generalized eigenvalue problem as 

 

B wS W S W ,    (3.19) 
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where,  is eigenvalue. 

 

If wS  is singular matrix, the above equation (3.19) can be simplified as 

 
1

w BS S W W  ,    (3.20) 

 

where, the eigenvectors of 
1

w BS S
 will beW . The eigenvector matrix will be

ldaW ,

 

1 2 3[ ... ],lda kW W W W W k Z   .   (3.21) 

The PCA coefficients can be projected into l  lower dimensional LDA 

projection termed by eigenvectors corresponding non-zero higher energy 

eigenvalues, 

'

1 2 3[ ... ],lda lW W W W W l Z   ,   (3.22) 

where, l k .  

The finally feature matrix, F is evaluated   

'( ) . ( )T

lda pcF W x .    (3.23) 

 

3.6 Kernel Support Vector Machine 

Support Vector Machine is one of most frequently used classifier for binary 

classification. When the patterns are linearly separable in simplest case, 

linear SVM is used. When the pattern becomes non-separable, linear SVM is 

extended using kernel trick, mapping input pattern to higher dimensional 

space.  The algorithm finds optimal hyperplane which maximally distant 
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from support vector from both classes [34]. RBF kernel SVM problem is 

solved by using LibSVM package [35]. 

 

The nonlinear decision function is 

( ) ( ) 0Tf x w x w   ,    (3.24) 

 where, the kernel mapping function : ( )d fR R f d   , translates the 

feature data to higher dimensional space so that it becomes linearly separable.  

 

Let consider the training set 1{( , )}n

i i ix y  , where 
d

ix R training sample is and 

its corresponding class level is { 1, 1}iy    , for SVM with L1 soft margin 

regularization can be solved with the primal problem 

2

, 0
1

0

1
min || ||

2

. . ( , ( ) ) 1 , ,

0

n

i
w w

i

i i i

w T

s t y w x w i



 







     





  (3.25)   

where, T is the trade-off parameter of training error and margin 1*n  is slack 

vector having non-zero elements. 

The Lagrange dual space optimization solution is  

,

1
min ( , )

2

. . 0 , ; 0

i i j i j i j

i i j

i i i

i

y y k x x

s t T i y


 

 



   

 



,  (3.26)
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Fig. 3.3: Block diagram of dtCWT based proposed method. 

  

where, k
 
is the kernel matrix, i , j are the Lagrange multipliers. 
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Chapter 4 

Performance Evaluation 

 

4.1. Accuracy, Sensitivity, Specificity 

 

The performance of a binary classifier can be visualized using a confusion 

matrix, as shown in Table 4.1. The number of examples correctly predicted 

by the classifier is located on the diagonal. These may be divided into true 

positives TP, representing correctly identified patients, and true negatives TN, 

representing correctly identified controls. The number of examples wrongly 

stratified by the classifier may be divided into false positives FP, 

representing controls incorrectly classified as patients, and false negatives 

FN, representing patients incorrectly classified as controls. 

 

The accuracy measures the proportion of examples that are correctly labelled 

by a classifier, 

TP+TN
accuracy=

TP+TN+FP+FN
  ,   (4.1) 

True Class Predicted Class 

S1(Patients) S2(Controls) 

S1(Patients) TP FN 

S2(Controls) FP TN 

Table 4.1: Confusion matrix for a binary classifier to distinguish between two 

classes (S1, and S2 ). 
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This may not be a good performance metric if the class distribution of the 

dataset is unbalanced. 

For example, if class C1 is much larger than C2, a high accuracy value could 

be obtained by a classifier which labels all examples as belonging to class C1. 

Sensitivity is the rate of true positives (TP), and specificity is rate true 

negatives (TN). The sensitivity and specificity is defined as  

TP TN
= ansensitivity specificitd =

TP+FN T
y

N+FP
,  (4.2) 

It may provide a better assessment of the overall performance of a classifier. 

Sensitivity measures the proportion of correctly identified patients, and 

specificity measures the proportion of correctly identified controls. The 

balanced accuracy, which treats both classes with equal importance, may 

then be expressed as 

sensitiv +
balanced

ity spec
acc

ifi
uracy=

city

2
 ,  (4.3) 

An ideal classifier would achieve 100% sensitivity and specificity, but in 

general there is a trade-off between these two measures. This can be 

investigated using a receiver operating characteristic (ROC) curve. As shown 

in Fig. 4.1, a ROC curve shows the relationship between the true positive 

rate (sensitivity) and false positive rate (100 − specificity) as the 

discrimination threshold of the binary classifier is varied. This curve could 

be used to select the optimal threshold for a particular application. For 

example, to identify patients in the earliest stages of disease, it may be 

desirable to select a threshold which results in high sensitivity, at the expense 
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of reduced specificity. The area under a ROC curve (AUC) may be 

interpreted as an aggregated measure of classifier performance [36]. 

 

4.2. Cross-validation 

The parameters of a classifier are optimized based on the training data. An 

independent test set is therefore required for making a reliable assessment of 

the applicability of the classifier to new data. Cross-validation provides a 

way to measure this generalization performance when no such test data are 

available. One commonly used method is k-fold cross-validation, in which 

the data are randomly partitioned into k subsets. A single cross-validation 

 
Fig. 4.1: Illustration of the ROC curve for a binary classifier. The colored 

solid lines show the relationship between the sensitivity and specificity as 

the discrimination threshold of the classifier is varied. This may be 

compared with the grey line of no-discrimination, and the red line depicting 

an ideal classifier. 
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fold involves using (k − 1) subsets for training the classifier, and the 

remaining data for testing. This process is repeated k times, such that each of 

the subsets is used once for testing, and the results are averaged over the 

folds. An alternative method is repeated random sampling, in which the 

dataset is randomly partitioned into training and test sets of fixed sizes. For 

example, a single round may involve randomly selecting 75% of the data for 

training, with the remaining 25% used for testing. This process can then be 

repeated, and the results averaged over the repetitions. Repeated random 

sampling has the advantage that the proportions of the training and test sets 

are not dependent on the number of repetitions. However, there may be some 

overlap between test sets, and the method also exhibits Monte Carlo 

variation. This means that the results will vary if the analysis is repeated 

using different partitions of the data. If two classes C1 and C2 are not of 

equal in size, the training and test sets should be selected such that they 

contain examples from the two classes in approximately equal proportions to 

the full dataset. This is known as stratified cross-validation, and has been 

shown to produce results with a lower variance than regular cross-validation 

[37].  

 

Both the k-fold and repeated random sampling cross-validation methods 

generate a distribution of performance values which may be averaged across 

the folds or repetitions. The statistical significance of differences between the 

results of two classifiers may be assessed by performing unpaired t-tests 

between these distributions. In addition, permutation testing may be applied 

to assess whether the results of a classifier are significantly different from 

chance. Permutation testing involves performing cross-validation on data for 

which the diagnostic labels have been randomly permuted. This results in a 

distribution of classification results under the null hypothesis that the 
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classifier cannot accurately predict the clinical labels from the data. Unpaired 

t-tests between the distribution of observed results and that obtained from 

permutation testing indicate whether the observed results are significantly 

different from chance. 
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Chapter 5 

Performance Analysis 

5.1. Overview of Experimental Data 

Data used in the preparation of this article were obtained from the 

Alzheimer’s disease Neuroimaging Initiative (ADNI) database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The 

primary goal of ADNI has been to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of mild cognitive impairment (MCI) and early 

Alzheimer’s disease (AD). For up-to-date information, one can visit 

www.adni-info.org.  

 

 

 

 AD Normal 

No. of subjects  86 

Male-43, 

Female-43 

86 

Male-46, 

Female-40 

Average Age 77.30 76.05 

Average Education Points 14.65 15.93 

MMSE 23.48 29.08 

 

Table 5.1: Summary of subject’s demographics status. 
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5.2. Dual Tree Complex Wavelet Transform feature 

 

All the MR images used here are viewed using ONIS visualization tool, and 

extracted all the 2D slices. Some slices are subjectively selected manually 

where all the labels is clearly visible for wavelet based feature extraction 

purpose. The preprocessing and volumetric feature extraction algorithms of 

MR images by FreeSurfer are briefly explained in section 2.3. All MR 

imaging subjects details applied here are shown in Table 5.1.    

 

5.3. Result and Discussion 

In the present study, A novel approach is proposed to analyze prediction of 

AD based on structural MR image and its usefulness for dual disease 

classification. The propose method detail is sketched in Fig.3.3. To train the 

kernel SVM for classifying AD from NC, the training samples are prepared. 

The 4th level dual tree wavelet coefficients of specific scale are excerpted 

from selected MR slices to get comparatively optimal dimensional feature so 

that classifier can be trained and tested without much hassle.   

The principal components of max-relevant and min-redundant dual tree 

wavelet coefficients are used for linear discriminant analysis. These linear 

discriminant coefficients are used to train kernel SVM and tested 

performance of accuracy, sensitivity, specificity with 10 cross validation 

running the program at least 20-30 times as shown details in Table 5.2. To 

the best of my knowledge, it is novel approach for the purpose of diagnosis 

which is combination of dual tree wavelet coefficients of a particular scale 

from selected 2D MRI image, principal components of max-relevant and 

min-redundant of those coefficients, linear discriminant coefficients and 
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Radial Basis Function kernel support vector machine for classification of the 

disease. The number of principal components (PCs) versus accuracy graph is 

shown in Fig. 5.3, and it is obvious that when the number PCs are 22, the 

accuracy is highest. The number of PCs is selected in similar way in all other 

method used here. For nonlinear mapping to higher dimensional space, 

Radial Basis Function (RBF) kernel is used as it performs better than 

polynomial kernel [38]. When principal MRMR components along with 

LDA are used, the performance gets higher. As explained earlier, the MRMR 

method selects most relevant and least redundant feature subset, and LDA 

does effective and discriminative projection of feature which can deal with 

variability within the class and between classes. Thus higher accuracy can be 

obtained while combining both. It has been obtained 91.807±1.15 accuracy 

with high sensitivity and specificity which outperforms the methods used by 

Zhang et al. [39], and El-Dahshan et al. [40]. The performance of these two 

methods is shown in Table 5.3. There is also the classification performance 

without using MRMR, or without LDA, or without both the methods 

exhibited. When the feature subset selection method is not used, the accuracy 

gets down. Similarly when LDA is not performed, accuracy goes down. It is 

depicted details in Fig. 5.1, Fig. 5.2, and Table 5.2. 

There is a comparison of the method with conventional DWT based 

classification, and also with the proposed approaches by Zhang et al. [39], 

and El-Dahshan et al. [40]. The novel proposed method performs better as 

appeared in Table 5.3, Fig. 5.4, and Fig. 5.5. The classification performance 

is shown here without using max-relevant and min-redundant algorithm, or 

without LDA coefficients, or without both. As compared to all those method, 

our proposed method performs better. While principal max-relevant, min-

redundant DWT coefficients are considered for classification, it performs 

better than principal DWT coefficient based classification. Similarly, when 
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those coefficients are projected into different efficient space using LDA, the 

performance of stratification increases.  The proposed approach method 

achieves better accuracy with sensitivity, specificity than principal 

components of dtCWT and DWT coefficient based classification. 

 

 

 

 

 

 

 

 

 

 

Method Accuracy Sensitivity Specificity 

Proposed 91.807±1.15 92.286±1.49 91.319±1.63 

dtCWT+PCA+LDA+Kernel 

SVM 

90.181±0.97 90.276±1.60 90.101±1.23 

dtCWT+MRMR+PCA+Kernel 

SVM 

84.779±0.85 84.738±0.99 84.812±1.54 

dtCWT+PCA+Kernel SVM 82.735±1.24 84.4275±1.51 81.181±1.85 

 

Table 5.2: DtCWT based classification performance of AD from HC. 
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Fig. 5.1: Line chart of dtCWT based classification performance of AD from 

HC. 
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Fig. 5.2: Bar chart of dtCWT based classification performance of AD from 

HC. 
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Fig. 5.3: The number of Principal Components vs Accuracy graph of 

proposed method. 
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Fig. 5.4: Line chart of DWT based classification performance of AD from 

HC. 
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Method Accuracy Sensitivity Specificity 

DWT+MRMR+PCA+LDA+

Kernel SVM 

86.427±1.08 86.101±2.05 

 

86.166±2.05 

 

DWT+PCA+LDA+Kernel 

SVM 

84.8219±1.1

3 

84.648±1.54 85.100±1.32 

DWT+MRMR+PCA+Kernel 

SVM 

83.296±1.21 82.797±1.85 83.749±1.46 

DWT+PCA+Kernel SVM 81.369±1.04 82.863±1.88 81.323±1.46 

DWT+PCA+ANN, Zhang et 

al.[39] 

80.05±0.72 81.538±1.41 78.974±1.09 

DWT+PCA+KNN, El-

Dahshan et al. [40] 

79.964±1.19 78.771±2.37 81.08±1.67 

 

Table 5.3: DWT based classification performance of AD from HC. 
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Fig. 5.5: Bar chart of DWT based classification performance of AD from HC. 
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The prediction accuracy has also been calculated on same dataset using 

FreeSurfer volumetric feature as depicted in Table 5.4, Fig. 5.6, and Fig. 5.7. 

The classification accuracy has been achieved up to 84.38 ±0.63 having 

sensitivity 85.06±1.06 and specificity 83.66±0.76. There is a similar trend 

observed here. When MRMR feature subset selection, or LDA coefficients 

are used, the performance shows an upward trend.   

 

 

 

 

 

 

 

 

 

Method Accuracy Sensitivity Specificity 

MRMR+PCA+LDA+Kernel 

SVM 

84.382±0.63 85.066±1.06 83.668±0.76 

PCA+LDA+Kernel SVM 82.795±0.54 83.934±0.93 81.690±0.74 

MRMR+PCA+Kernel SVM 84.067±0.67 86.749±1.20 81.39±1.20 

PCA+Kernel SVM 81.629±0.71 83.629±1.15 79.627±1.47 

 

Table 5.4: Volumetric feature (FreeSurfer) based classification 

performance of AD from HC. 
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Fig. 5.6: Line chart for Volumetric feature (FreeSurfer) based classification 

performance of AD from HC. 

 

 

Fig. 5.7: Bar chart for Volumetric feature (FreeSurfer) based classification 

performance of AD from HC. 

76

78

80

82

84

86

88

Accuracy

Sensitivity

Specificity

76

78

80

82

84

86

88

Accuracy

Sensitivity

Specificity



51 
 

Using volumetric feature extracted by FreeSurfer, the classification accuracy 

has been obtained up to 85% with 88% specificity and 82% sensitivity [41].   

The proposed method outperforms volumetric feature based AD prediction 

method, and also the method studies by Schmitter et al. [41] as illustrated in 

Table 5.5, Fig 5.8, and Fig 5.9.  

 

Method Accuracy Sensitivity Specificity 

Proposed 91.807±1.15 92.286±1.49 91.319±1.63 

Schmitter et al., 2015 85 82 88 

Volumetric feature 

(FreeSurfer)  
84.382±0.63 85.066±1.06 83.668±0.76 

 
Table 5.5: Performance comparison of AD prediction. 
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Fig. 5.8: Line chart of performance comparison of AD prediction. 

Fig. 5.9: Bar chart of performance comparison of AD prediction. 
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Chapter 6 

Conclusion 

   AD prediction method plays a very significant rule in the arena of 

diagnosis of disease. In the modern era, plenty number of old-aged people 

worldwide develop AD. The irreversible neurological disorder is one major 

factor of death. In many countries, the amount spent for the diagnosis of the 

disease is also exemplary. Therefore, efficient computer aided diagnosis 

method is highly appealing because it beefs up the diagnosis process. 

Computerize aided diagnosis of a disease based on MR image has always 

advantage over manual perception based diagnosis done by clinicians 

because it may differ to other based on their experience. 

   In this work, dual tree complex wavelet transform (dtCWT) provides 

discriminative feature for selected MR slices as it considers feature details in 

multiple directions. The MR images are collected from publicly available 

ADNI dataset. Then proposed method selects feature subset from dTCWT 

coefficients of particular scale which is most relevant and least redundant, 

and then principal components are selected using PCA to get rid of curse of 

higher dimensionality so that classifier can be trained in lower dimensional 

space with hassle free. After taking variability within class and between 

classes into account, linear discriminant coefficients are obtained using fisher 

LDA.  RBF Kernel SVM is trained and tested because nonlinear mapping 

feature to kernel space creates separable hyperplane to classify. It is 

presented that the feature contains substantial disease signature (disease 

related pattern).  

   To evaluate the effectiveness of the proposed method, experiments are 

performed and repeated 20-30 times with 10-fold cross-validation. The 
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performance is evaluated in terms of sensitivity, specificity and classification 

accuracy. It has been observed that the proposed method outperforms 

existing methods in terms of all three performance measures. So the 

proposed method has higher decision potential to assist neuro-radiologists 

for the diagnosis of AD from NC. 
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