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Chapter 1. Introduction

1.1. Global Warming And Greenhouse Gases

Beginning in the 18th and 19th centuries with the Industrial Revolution in Great Britain,
humankind has been in a period of full-scale industrialization. This industrialization has
dramatically increased greenhouse gas emissions, causing the Earth’s surface temperature to
increase exponentially in the 21st century. In response, the Intergovernmental Panel on
Climate Change (IPCC) has been established to assess the risk of climate change and to
establish international measures to mitigate it. According to the IPCC, the planet's average
temperature has increased by 0.85°C since the pre-industrialization year 1880, and the sea
level has increased by approximately 19 cm. However, if greenhouse gas emissions remain
at present levels, the Earth's average temperature will be 3.7°C higher than the present
value in 2100, and the sea level has been estimated to rise by a whopping 63 cm. The
increases in the average temperature and sea level are blamed for the many natural
disasters that have occurred recently, such as floods, storms, droughts, and other extreme
weather events. Predictions of the future increases in the average temperature suggest that
the occurrence of severe natural disasters may increase four-fold. Experts have determined
that humanity will be able to adapt to a temperature increase that is less than 2°C lower
than presently forecasted value, which is similar to the 1.7°C increase from the onset of
industrialization to the present. Accordingly, international conferences aiming at reducing
greenhouse gas emissions and addressing issues surrounding global climate change have
been ongoing. In 1997, 37 major developed countries signed the Kyoto Protocol, pledging
emission reductions; this agreement is the most widely adopted climate change agreement
to date. The period of global greenhouse gas emission reductions set forth by the Kyoto
Protocol can be divided into two equal commitment periods: 2008 to 2012 and 2013 to
2020. One of the goals of the first period was to create a new response system [1].
However, this goal has not been implemented properly and has thus extended into the

second period. The existing Kyoto system has a number of limitations. First, the United
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States did not participate. Second, many of the greenhouse gas emissions of developing
countries, such as China and India, were omitted. Finally, Canada, Russia, Japan, and New
Zealand may decide to leave the protocol starting in the second transitional period. As a
result, at the 17" Conference of the Parties (COP17), held in Durban, South Africa, in
2011, it was concluded that there is a need for an all-encompassing system for reducing
greenhouse gas emissions that involves all of humanity, but not all countries were in
agreement. Accordingly, a total of 193 countries, including all UN member states, are
participating in COP21 discussions on climate change up to 2020, which ended on March
12, 2015, in Paris, France. In these talks, a proposal for the voluntary greenhouse gas
reductions by all 193 countries, including all UN member states, was put forward in terms
of intended nationally determined contributions (INDCs). The Kyoto Protocol and the Paris

Agreement differ in terms of the following key points:

Table 1.1. Kyoto Protocol and Paris Agreement

Kyoto Protocol Paris Agreement

Comprehensive response, including
reductions

Focus on reducing greenhouse gas

Scope emissions Reductions, adaptation, 'ﬁnanc'ing,
technology transfer, capacity building,
transparency
37 developed countries and the European
Reduction Union . .
. - - All developed and developing countries.
target station United States, Russia, Japan, Canada,
New Zealand absent
Means of
setting
reduction Top-down Bottom-up
targets
Implementation First commitment: 2008 ~ 2012
: After 2012
period Second commitment: 2013 ~ 2020

Source: Ministry of the Environment 15. 11. 30
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The Paris Agreement has launched greenhouse gas emission reduction efforts throughout
the world. As the seventh-highest emitter of greenhouse gases, South Korea was assigned a
reduction target of 37% of business as usual (BAU) by 2030. BAU is defined as a
scenario in which no restrictions or reduction efforts were implemented and is thus based
on assumptions and expectations. South Korea proposed an INDS commitment to reduce
greenhouse gas emissions by 37% of the BAU value by 2030. To achieve this target,
fossil fuels must be replaced by alternative energy resources in every industry. The
replacement of nuclear power by renewable energy is being discussed as a possibility. The
International Energy Agency, the largest energy-related organization, defines renewable
energy as energy that is constantly supplied by nature. Thus, renewable energy resources
can be obtained from a variety of sources, including indirectly from the Earth’s core (e.g.,
geothermal energy) or directly from the sun. Specifically, electrical and thermal energy
obtained from sun, wind, ocean, hydropower, biomass, geothermal, biofuels, etc., are

classified as renewable energy [1].

1st-Generation 2nd-Generation 3rd-Generation
Wafer-Based Silicon Thin-Film New Emerging Technology
*  Mono-Crystalline *  Amorphous Si Thin- + Nanocrystal-Based
Silicon Solar Cells Film Solar Cells Solar Cells
*  Polycerystalline Silicon * (CdTe Thin-Film Solar +  Polymer Solar Cells
Solar Cells Cells
+ Dye-Sensitized Solar
¢ CIGS Solar Cells Cells
* Concentrated Solar
Cells
¢ Pervoskite-Based Solar
Cells
J AN S

Figure 1.1. Various solar cell technologies and current development trends.
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1.2. Solar Cells

The photovoltaic effect was first recognized by French physicist Alexandre-Edmond
Becquerel in 1839 [2], and the modern (silicon-based) solar cell was invented by Russel
Ohl in 1946 [2, 3]. In modern photovoltaic technology, each cell is composed of two
different layers of semiconductor material (p-type and n-type) [4]. In this arrangement,
when a photon of appropriate energy impinges on the p-n junction, it provides an electron
with sufficient energy to eject the electron, and the electron then moves from one layer to
another [4]. This process creates an electron and a hole and generates electrical power [4].

The materials used in photovoltaic solar cells are mainly based on silicon (single-crystal,
multi-crystalline, amorphous) [5-7], cadmium telluride [5, 6], copper indium gallium selenide
(CIGS) [5, 6, 8], and copper indium gallium sulfide [4, 9]. Photovoltaic solar cells are
categorized into various classes, as discussed in the following sections (also shown in

Figure 1.1).

1.2.1. First-Generation Solar Cell

The oldest first-generation (wafer-based) solar cells are fabricated on silicon wafers. This
technology is the most widely used due to its high efficiencies. Silicon-wafer-based solar
cells are divided into two subgroups: those based on mono-crystalline silicon
(single-crystalline silicon) and those based on polycrystalline silicon (multi-crystalline

silicon) [4-6, 9, 10].

1.2.1.1. Mono-Crystalline Silicon Solar Cell (Single-Crystalline Silicon Solar Cell)
Mono-crystalline solar cells are manufactured from single-crystalline silicon by the

Czochralski process [4, 11, 12], which is a method for growing crystals that is used to

obtain single crystals of semiconductors [13]. During the manufacturing process, Si crystals
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are sliced from very large ingots. Obtaining high-quality single crystals requires precise
processing, as recrystallizing the cell is expensive and labor-intensive. The efficiency of

mono-crystalline silicon solar cells is 17 ~ 18% [8].

1.2.1.2. Polycrystalline Silicon Solar Cell (Multi-Crystalline Silicon Solar Cell)

Polycrystalline photovoltaic modules are commonly composed of a number of different
crystals, coupled to one other in a single cell. The processing of polycrystalline Silicon
solar cells is more economical, which are produced by cooling a graphite mold filled
containing molten silicon. Polycrystalline silicon solar cells are currently the most popular
solar cells. They are believed to charge most up to 48% of the solar cell production
worldwide during 2008 [14]. During solidification of the molten silicon, various crystal
structures are formed. They are slightly cheaper to fabricate compared to monocrystalline

silicon solar panels. The efficiency is approximately 12 ~ 14% [15].
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1.2.2. Second-Generation Solar Cells

Most a-Si and thin-film solar cells are second-generation solar cells and are more
economical than first-generation silicon solar cells. Silicon cells feature light-absorbing
layers up to 350 pm thick, while thin-film solar cells have a very thin light absorbing
layers, generally ~1 pm in thickness [16]. Thin-film solar cells are classified as a-Si, CdTe,

or CIGS [4].

1.2.2.1. Amorphous Silicon (a-Si) Thin-Film Solar Cell

Amorphous (uncrystallized) silicon thin-film solar cells offer cell efficiencies of 4 ~ 7%.
Amorphous silicon exists in several varieties, including amorphous silicon carbide (a-SiC),
amorphous silicon germanium (a-SiGe), microcrystalline silicon (lc-Si), and amorphous
silicon-nitride (a-SiN). Yang et al. discussed the advances made in a-Si PV technology that
led to the achievement of a stable cell efficiency and provided the foundation for the
manufacturing of spectrum splitting multi-junction devices by the roll-to-roll continuous
deposition process [17]. Lund et al. reported on laboratory and field studies on the nature
of the Staebler-Wronski effect (SWE) in a-Si:H solar cells and how the stability of these
cells is affected by their operating conditions [18]. Tawada et al. developed a series of
production technologies for stable 8% efficiency direct-super-straight-type modules along
with large-area monolithic amorphous silicon pin single-junction cells on 910 mm x 455

mm glass substrates [19].

1.2.2.2. Cadmium Telluride (CdTe) Thin-Film Solar Cell

Cadmium telluride (CdTe) thin-film solar cells are among the leading candidates for the
development of cheaper solar cells. Cadmium telluride thin-film solar cells are economically
viable photovoltaic devices and constitute the first low-cost photovoltaic technology [8, 20,

21]. Cadmium telluride has a band gap of ~ 1.5 eV, a high optical absorption coefficient,

_6_
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and chemical stability. These properties make CdTe an extremely attractive material for
designing new devices. CdTe is an excellent direct band gap crystalline semiconductor, as
it facilitates light absorption and improves the efficiency. These solar cells are generally
constructed by sandwiching between cadmium sulfide layers to form a p-n junction diode.
The manufacturing process involves three steps. First, the CdTe-based solar cells are
fabricated from polycrystalline materials using glass as a substrate. In the second process,
deposition, the multiple layers of CdTe solar cells are coated onto the substrate using
different economical methods. As previously mentioned, CdTe has an optimum direct band
gap (~ 1.45 eV) with a high absorption coefficient (over 5 sorp'’/cm) [22]. Therefore, its
energy conversion efficiency is usually 9 ~ 11% [8, 23]. CdTe solar cells can be fabricated
on flexible polymer substrates. However, the cadmium component of these solar cells poses
various environmental issues. Cadmium is regarded as a heavy metal and a potential toxin
that can accumulate in humans, animals, and plants. The disposal toxic Cd-based materials
as well as their recycling can be highly expensive and damaging to the environment and
society [9]. The limited supply of cadmium and the environmental hazard associated with

its use are the main disadvantages of these solar cells [21-24].

1.2.2.3. Copper Indium Gallium Diselenide (CIGS) Solar Cells

CIGS is a quaternary semiconductor composed of copper, indium, gallium, and selenium
[9]. CIGS is also a direct band gap semiconductor. Compared to CdTe thin-film solar cells,
CIGS has a higher efficiency (10 ~ 12%). Due to their significantly high efficiency and
economy, CIGS-based solar cells are one of the most viable thin-film technologies. The
processing of CIGS is achieved by the following techniques: sputtering, evaporation,
electrochemical coating, printing, and electron beam deposition [4, 25]. In addition,
sputtering can be a two- or multi-step process involving deposition and subsequent
interaction with selenium or a one-step reactive process instead. Meanwhile, evaporation is
similar to sputtering in that it can be performed in one or more processing steps. The
substrates for CIGS may include glass plates, polymer substrates, steel, and aluminum,

among others. The advantages of CIGS thin-film solar cells include a prolonged life

_’7_
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without considerable degradation. These properties of CIGS provide an easy solution to
enhancing the efficiency [8, 23, 26]. Table 1 shows a comparison of popular wafer-based

solar cells and thin-film solar cells [4, 11].
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1.2.3. Third-Generation Solar Cells

Third-generation cells are a promising new technology but have not been widely
commercialized. Most of the developed third-generation solar cells are nanocrystal-based,

polymer-based, dye-sensitized, or concentrated solar cells [10].

1.2.3.1. Nanocrystal-Based Solar Cells

Nanocrystal-based solar cells are also known as quantum dot (QD) solar cells. These
solar cells are composed of a nanocrystal-sized semiconductor, generally a transition metal.
The term “QD” refers to materials with crystals of a few nanometers in size, for example,
porous Si or porous TiO, [27]. With the advance of nanotechnology, these nanocrystals of
semiconducting material are expected to replace semiconducting material in the bulk state,
such as Si, CdTe, or CIGS. This concept of QD-based solar cells with a theoretical
formulation was employed for the design of a p-i-n solar cell over a self-organized
As/GaAs system [27]. Generally, the nanocrystals are mixed in a bath and coated onto the
Si substrate. These crystals rotate very fast and flow away due to centrifugal force. In
conventional semiconductor solar cells, a photon excites an electron by creating an
electron-hole pair [28]. However, when a photon strikes a QD made of these semiconductor
materials, numerous electron-hole pairs can be formed: usually 2 or 3, but the formation of

7 pairs has been observed in a few cases [10, 24].

1.2.3.2. Polymer Solar Cells

Polymer solar cells (PSCs) are generally flexible due to the flexibility of their polymer
substrates. The first PSC was developed by Tang et al. [10]. A PSC is composed of
serially connected thin functional layers coated on a polymer foil or ribbon. It usually
works as a combination of a polymer (donor) and a fullerene (acceptor). Various materials
are used for the absorption of sunlight, including organic materials, such as a

conjugate/conducting polymers [10, 29]. In 2000, Heeger, MacDiarmid, and Shirakawa were

_9_
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awarded the Nobel Prize in Chemistry for the discovery of a new category of polymer
materials known as conducting polymers [30, 31]. The PSC and other organic solar cells
operate on the principle of the photovoltaic effect, in which electromagnetic radiation is
transformed into electrical current [32]. Yu et al. mixed
poly[2-methoxy-5-(2’-ethylhexyloxy)-p-phenylene vinylene] (PPV), C60, and its derivatives to
develop the first polymer solar cell and obtained a high power conversion efficiency [33].
This process triggered the dawn of a new age in the use of polymer materials to capture
solar energy. After substantially optimizing the parameters, researchers achieved an
efficiency of over 3.0% for PPV-type PSCs [33-35]. The unique properties of PSCs
enabled the development of stretchable solar devices, including textiles and fabrics [34]. A
modern recycling concept known as polarizing organic photovoltaics (ZOPVs) was also
developed to increase the applicability of liquid crystal displays utilizing the same polarizer,

a photovoltaic device, and proper light conditions/solar panels [34-36].

1.2.3.3. Dye-Sensitized Solar Cells (DSSC)

Recent research has focused on improving solar efficiency by molecular manipulation and
the use of nanotechnology for harvesting light energy [37-40]. The first dye-sensitized solar
cell (DSSC) was introduced by Gratzel [4, 9]. DSSCs generally employ dye molecules
between the electrodes. A DSSC consists of four components: a semiconductor electrode
(n-type TiO, and p-type NiO), dye sensitizer, redox mediator, and counter electrode (carbon
or Pt) [41]. DSSCs are attractive due to their simple and conventional processing methods,
such as printing techniques, as well as their high flexibility, transparency, and low cost [9].
The novelty of DSSCs is based on the photosensitization of nanograined TiO, coatings
coupled with visible optically active dyes, increasing the efficiencies by more than 10%
[37-39, 41, 42]. However, certain challenges remain, such as degradation of the dye
molecules, which creates stability issues [9]. This is due to the poor optical absorption of
sensitizers, which results in poor conversion efficiency. The dye molecules generally
degrade after exposure to ultraviolet and infrared radiation, leading to a decrease in the

lifetime and stability of the cells. Moreover, coating with a barrier layer may also increase
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the manufacturing costs and lower the efficiency [8].

1.2.3.4. Concentrated Solar Cells

Concentrating photovoltaics (CPVs) were first developed in the 1970s [40, 43, 44] and
represent the newest technology in solar cell research and development. The main principle
of concentrated cells is to collect a large amount of solar energy onto a tiny region within
the PV solar cell. The principle of this technology is based on optics, using large mirrors
and lens arrangements to focus sunlight onto a small region on the solar cell [8]. The
convergence of the sunlight radiation thus produces a large amount of heat energy. This
heat energy is further driven by a heat engine controlled by a power generator with
integrated. CPVs have shown promise in the solar world [44, 45]. These devices can be
classified into low-, medium-, and high-concentrated solar cells depending on the power of
the lens systems [44]. CPV technology such merits as solar cell efficiencies > 40%, the

absence of moving parts, no thermal mass, low response times, and high scalability.

1.2.3.5. Perovskite Based Solar Cell

Perovskites are a class of compounds defined by the formula ABX; where X represents
a halogen (such as I , Br, or Cl ) and A and B are cations of different sizes. Perovskite
solar cells are a recent discovery within the solar cell research community and possess
several advantages over conventional silicon- and thin-film-based solar cells. Conventional
Si-based solar cells require expensive, multi-step processing, including high temperatures (>
1273 K) and vacuum facilities [46]. Perovskite-based solar cells can have efficiencies of up
to 31% [47]. An investigation recently performed by Volkswagen suggests that these
perovskites may also play an important role in next-generation electric automobile batteries
[47]. However, perovskite solar cells currently suffer from poor stability and durability. The
material degrades over time, decreasing the overall efficiency. Therefore, more research is

needed to bring these cells to the marketplace.
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Table 1.2. Comparison of various types of solar cells

Cell type Efficiency
Monocrystalline 14 ~ 17.5%
Crystalline silicon
Polycrystalline 12 ~ 14%
CdTe 9 ~ 11%
Thin film CIGS 10 ~ 12%
Amorphous silicon 4 ~ 8%
Nanocrystal 7 ~ 8%
Dye-sensitized ~10%
Third Generation
Polymer =3 ~ 10%
Concentrated ~40%
Perovskite 31%
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1.3. DSSC Components

1.3.1. Transparent Conductive Oxide (TCO)

Transparent conductive oxide (TCO) substrates must be highly transparent (transparency >
80%) to allow the maximum passage of sunlight to the active area [48]. Typically, DSSCs
are constructed from two sheets of TCO material as current collectors for the deposition of
the semiconductor and catalyst. The characteristics of the TCO material determine the
efficiency of the DSSC [49] because the efficiency of the charge transfer process
determines the energy loss. Fluorine tin oxide (FTO, SnO:F) and indium tin oxide (ITO,
In,O5:Sn) are typical conductive oxide substrates consisting of soda lime glass coated with
fluorine tin oxide or indium tin oxide, respectively. The transmittance of ITO films is over
80% in the visible region, with a sheet resistance of approximately 18 2/cm’, whereas
FTO films exhibit a transmittance of approximately 75% with a sheet resistance of 8.5 2
/em* [48]. Sima et al. conducted a study based on FTO and ITO glass substrates sintered
at 726 K [50]. They found that upon sintering, the sheet resistance of ITO increased from
18 Q/cm® to 52 Q/cm’ while that of FTO remained constant. The overall conversion
efficiencies (7) of DSSCs based on FTO and ITO are approximately 9.4% and 2.4%,
respectively. Thus, FTO is strongly recommended for use in DSSC fabrication due to its
conduction properties and stable sheet resistance temperature.

Murakami et al. used a polyethylene terephthalate (PET) polymer substrate coated with
ITO and obtained a conversion efficiency of approximately 3.8% [51]. Meanwhile, Ito et al.
reported an efficiency of 7.8% wusing polyethylene naphthalate (PEN) [52]. Polymer
substrates are attractive alternatives due to their flexibility and low cost. Nevertheless, the
use of polymer substrates in DSSCs limits their viability due to the requirement of a
relatively low fabrication temperature. Another alternative is the use of metals, such as
stainless steel, tungsten, and titanium, as conducting layer substrates. Jun et al. reported an
efficiency of 6.1% [53] using a stainless steel substrate. However, the high cost and

corrosion caused by the electrolyte restrict the use of metals as substrates. Launching a
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new research trend, Braga et al. demonstrated the reliable front contact of cadmium
stannate (CTO) and titanium dioxide (TiO,) deposited entirely by magnetron sputtering. The
CTO contact results in a high optical transmittance of approximately 90% along with a

sheet resistance of 15 Q/cm? [54].

1.3.2. Semiconductor Oxide Material

The central part of a DSSC device is a thick nanoparticle film that provides a large
surface area for light-harvesting molecules to accept electrons from the excited dye [55],
such as TiO,, ZnO [56], SnO, [57], Nb,Os, WO;, Ta,0Os, CdSe, CdTe, and CdS. These
molecules are interconnected to allow electronic conduction [58]. The efficiency of DSSCs
depends on the electron transfer rates, which in turn depends on the crystallinity,
morphology, and surface area of the semiconductor. However, previous research has shown
that DSSCs based on ZnO and SnO, exhibit lower efficiencies than those based on
nanocrystalline TiO, [57, 59, 60] due to the latter’s superior morphological and photovoltaic
properties [61]. TiO, is considered by some to be the most efficient and environmentally
benign photocatalyst [62]. Bulk TiO, is dominated by three main phases: rutile, anatase,
and brookite [63]. Anatase TiO, is preferred due to its high conduction band edge energy
(3.2 eV), which provides chemical stability. In comparison, the conduction band edge
energy of rutile TiO, is approximately 3 eV. In rutile TiO,, electron transport is hindered
by the high packing density, and for the same film thickness, anatase-based DSSCs produce
a 30% [50] higher short-circuit current than rutile-based DSSCs.

Recent trends in research have involved the fabrication of anatase TiO, as nanoparticles,
nanofibers [64], nanowires [65], hollow spheres [66], hollow hemispheres [67], nanotubes
[68], and hierarchical spheres [69] and ellipsoid spheres [70] via the solvothermal reactions
of titanium n-butoxide and acetic acid. The one-dimensional (1D) nanostructure of TiO,
nanowires has also attracted considerable attention in terms of its application to DSSCs. A
novel method involving hydrothermal growth has been reported for the synthesis of a TiO,
nanowire array on FTO glass substrates [71]. TiO, nanowires in a standard DSSC

configuration exhibited a conversion efficiency of approximately 5%, which is considerably
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higher than the value of 1.2 ~ 1.5% attained by ZnO nanowires with lengths of up to ~
40 um [71]. Anatase TiO, spheres have an overall 7, of 3.5% with a current density I
of 17.94%, open circuit voltage V,. of 803 mV and FF of 0.65%. This /7 value is much
lower than those of DSSCs based on nanoparticles (7.37%), nanofibers (8.15%), and
ellipsoid TiO, spheres (7.93%) [72]. The superior 7 and I, of the hierarchical
sphere-based DSSCs are a result of higher dye loading, improved light-scattering ability,
faster charge transfer, and longer electron lifetime [73, 74]. To produce higher 7 and I,
several strategies are used to minimize electron-hole recombination. These approaches
include the deposition of an insulating layer on the semiconductor electrode. ZnO [75],
niobium pentoxide (Nb,Os) [76], ALO; [77], and SiO, [78] have been used as energy
barriers to slow charge recombination due to their insulating character, which reduces the
interaction between the electrons injected into the semiconductor and the electrolyte solution
[79]. The surface treatment of TiO, with TiCl, also reduces charge recombination by
increasing the interfacial charge transfer resistance of the TCO/electrolyte interface [80, 81],
as demonstrated by Melhem et al. [, was up to 10% higher when using DSSCs based on
an N-doped electrode compared to the pure anatase configuration [82]. This improvement is
associated with the electronic and optical properties of the starting nanopowder.

ZnO is an alternative semiconductor oxide material due to its wide band gap, which is
similar to that of TiO,, and its ability to be synthesized in a simple manner and with
different nanostructures. Recently, Keis et al. achieved a conversion efficiency of ~5%
under illumination (10 mW/cm?®) with a porous ZnO electrode prepared using the
high-pressure compression method and Ru complexes with a carboxylate polypyridine ligand
[83]. The advantages of ZnO over TiO, include the following [58]: (i) a direct band gap
of approximately 3.37 eV, (ii) a higher excitation binding energy (60 meV) compared with
TiO, (4 meV), and (iii) higher electron mobility (200 cm*/V s) compared with TiO, (30
cm’/V s). The grain size of ZnO is overly large, and its effective surface area is
insufficient; hence, the efficiency of ZnO is low. Therefore, the key to improving the
performance of ZnO-based DSSCs is the preparation of a nanoporous ZnO film. Law et al.
first reported the use of ZnO nanowire arrays in DSSCs with the aim of replacing the
traditional nanoparticle film to increase the electron diffusion length [84]. ZnO

nanowire-based DSSCs have been reported to achieve a conversion efficiency of 0.5% and

Collection @ chosun



an internal quantum efficiency of 70% due to their high surface area and good connectivity
to the electrode. Compared with TiO,, the similar electron mobility and conduction band
energies of ZnO, in combination with its high excited-state binding energy, make it a
promising candidate for lasing devices and stable room-temperature luminescence [85]. Thus,

ZnO nanowires are an alternative material for high-efficiency DSSCs.

1.3.3. Dye Sensitizer

An efficient solar cell sensitizer should adsorb strongly to the surface of the
semiconductor oxide via anchoring groups, exhibit intense absorption in the visible region
of the spectrum, and possess an appropriate energy level alignment between the dye excited
state and the conduction band edge of the semiconductor. The performance of DSSCs
mainly depends on the molecular structure of the photosensitization. Sensitization of the
semiconductor in DSSCs has been achieved using numerous chemical compounds, such as
phthalocyanines [86-88], coumarin 343 (C343) [69, 89], carboxylated derivatives of
anthracene [90, 91], and porphyrins [92-94]. However, the best photosensitization has been
attained using transition metal materials [95]. Three classes of dye sensitizers are used in
DSSCs: metal complex sensitizers, metal-free organic sensitizers, and natural sensitizers.

Ru(Il) is the most efficient dye due to its numerous advantageous features, such as good
absorption, long excited-state lifetime, and highly efficient metal-to-ligand charge transfer.
Ru bipyridyl complexes are excellent photosensitizers due to the stability of their excited
states and the long-term chemical stability of oxidized Ru(Ill) [96]. The standard dye used
in traditional DSSCs is tris(2,2’-bipyridyl-4,4’-carboxylate) ruthenium (II) (N3 dye) [97]. N3
and N719 dyes contain four and two photons, respectively, and have been reported to
successfully absorb solar light and undergo charge transfer. Another promising candidate is
tri(cyanato-2,2°2,2°’-terpyridyl-4,4’,4°’-tricarboxylate) Ru (II) (black dye), whose response
extends approximately 100 nm further into the infrared (IR) region than the response of the
N3 dye [97]. Therefore, many researchers have studied Ru bipyridyl complexes as
photosensitizers for the reactions of homogeneous photocatalytic and dye-sensitization

systems. However, these complexes also have disadvantages, including high cost and the
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need for sophisticated preparation techniques.

Coumarin is a synthetic organic dye sensitizer obtained from a natural compound found
in many plants. C343 is an excellent organic-dye photosensitizer for efficient electron
injection into the conduction band of semiconductors. However, the efficiency 7 for
nanocrystalline DSSCs based on the C343 dye is lower than those of DSSCs based on

Ru-complex photosensitizers because of a lack of absorption in the visible region [89].

Table 1.3. Various types of plant pigmentation [98]

Plant Pigment Common Types Occurrence
) Betacyanins ) .
Betalains ; Caryophyllales and betaxanthins some fungi
Betaxanthins
Carotenes Photosynthetic plants and bacteria
Carotenoids Xanthophylls Retained from the diet by some birds, fish, and
crustaceans
Chlorophyll Chlorophyll All photosynthetic plants
Anthocyanin
Aurones
Widespread and common in plants including
. Chalcones .
Flavonoids angiosperms, gymnosperms, ferns, and
Flavonols bryophytes
Proanthocyanidins

Natural dyes are a viable alternative to expensive organic-based DSSCs. The overall solar
energy conversion efficiency of natural dyes extracted from pigments containing
anthocyanins and carotenoids has been demonstrated to be less than 1% [99]. Different
parts of the plant, including the flower petals, fruits, leaves, stems, and roots, typically
have different pigments. The advantages of natural dyes are their low cost, easy extraction,
non-toxicity, and environmentally benign nature [100]. The orange-red lawsone, red-purple
anthocyanin (sensitization of wide-bandgap semiconductors) [101], and yellow curcumin are
the main components in the natural dyes obtained from these natural products [102]. Plant

pigmentation occurs due to the electronic structure of the pigments, and exposure to
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illumination modifies the wavelengths that are either transmitted or reflected by the plant
tissue. Table 1.3 describes the plant pigmentation groups based on a common structure and

biosynthesis basis.

Table 1.4. Photoelectrochemical parameters of DSSCs sensitized by various natural
dyes [99, 105-107]

Dye Sensitizer Jie (mA/cm?) Voe (V) Fill Factor Efficiency
Wormwood 0.196 0.585 0.47 0.538%
Purple Cabbage 0.208 0.660 0.53 0.75%
Turmeric 0.288 0.529 0.48 0.03%

Lemon Leaves 0.272 0.537 0.05 0.05%
Morinda Lucida 0.256 0.440 0.47 0.53%
Wild Silican Prickly Pear 7.320 0.400 0.41 1.21%
Red Turnip 9.500 0.450 0.37 1.70%
Bougainvillea 2.100 0.300 5.7 0.36%

Carotenoid pigments are obtained from fruits and plants with distinctive red, orange, and
yellow colors and carotenoid-derived aromas. The skeleton of carotenoids may be linear or
may contain cyclic end groups, and the major two classes consist of carotenes and their
oxygen-generated derivatives, xanthophylls [103]. In addition, carotenoids also provide
protection from excess light through the dissipation of energy and free radical
detoxification, limiting the damage to the membrane. Flavonoids and their conjugates form
a large group of natural products. These components have been observed in many plant
tissues, where they can be found inside the cells or on the surfaces of different types of
plant organs. The three major classes of flavonoid compounds are anthocyanins,
proanthocyanidins, and flavonols. Anthocyanins do not display vivid colors until they are
grouped together in acidic vacuoles. Some of the flavonols have protective roles as UV-B

filters and function as co-pigments for anthocyanin, especially for special tissues.
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The achievement of wide-bandgap semiconductor sensitization using natural pigments is
typically attributed to anthocyanin. Anthocyanins comprise a major flavonoid group that is
responsible for cyanic colors ranging from salmon pink to red and dark violet to dark blue
in most flowers, fruits, and leaves of angiosperms [103]. The anthocyanin molecule
possesses carboxyl and hydroxyl groups and occurs in fruit, leaves, and flowers, where it is
responsible for colors ranging from visible red to blue [104]. The bonding causes the
electron to move from the anthocyanin molecule to the conduction band of TiO..
Anthocyanins are often used in organic solar cells due to their ability to absorb light and
convert it into electrons. Table 1.4 describes the performances of various types of natural

dyes used as photosensitizers in DSSCs.

1.3.4. Electrolyte

Electrolytes are used to regenerate the dye after electron injection into the conduction
band of the semiconductor and act as a charge transport medium for the transfer of
positive charge toward the counter electrodes [48]. The liquid electrolyte is based on an
organic solvent with a high ionic conductivity and distinctive interfacial contact properties;
nevertheless, the leakage and volatility of the solvent affect the long-term performance of
DSSCs [103]. Therefore, the electrolyte must have the following characteristics [108, 109]:
(1) high electrical conductivity and low viscosity for faster electron diffusion; (ii) good
interfacial contact with the nanocrystalline semiconductor and counter electrode; (iii) no
tendency to induce the desorption of the dye from the oxidized surface or dye degradation;
and (iv) no absorption of light in the visible region.

A liquid electrolyte consists of a solvent, a redox couple (the most important
component), and one or more additives. Other redox couples used include [I/I5, Br/Br;
[110], (SCN)/SCN), (SeCN)»SeCN [111, 112], and bipyridyl cobalt (III/II) complexes
[113], which have also been investigated for use in DSSCs [114]. Generally, the liquid
electrolyte used in DSSCs contains I, I/I;, and I; redox ions as mediators between the
TiO, photoelectrode and counter electrode. Compared with /5, the other redox couples

exhibit lower DSSC light-to-electricity conversion efficiencies because the energy cannot be
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matched with the sensitized dye or as a result of their intrinsically low diffusion
coefficients in the electrolyte [114].

There are two types of solid-state DSSCs: one using a hole transport material (HTM) as
the medium and one using a solid-state electrolyte containing an [/I; redox couple as the
medium. A solid-state device has recently been described in which the liquid electrolyte
based on a porous nanocrystalline oxide film is replaced by a wide-bandgap p-type
semiconductor as a medium for hole transport [103]. The solid-state device containing a
p-type semiconductor has advantages over all solid-state cells due to its easy preparation
and higher stability, whereas solar cells occupied with polymer electrolytes exhibit a higher
efficiency and have additional future practical applications with proper encapsulation [103].
Organic and inorganic electron HTMs cannot be used as a transport material in DSSCs for

practical applications due to their low power conversion efficiencies [114].

1.3.5. Counter Electrode

Counter electrodes are mainly used to regenerate the -electrolyte, with the oxidized
electrolyte diffusing towards the counter electrode [48]. The counter electrode transports the
electron that arrives from the external circuit back to the redox electrolyte system. Hence,
for efficient charge transfer, the counter electrode should exhibit a high catalytic activity
and high electrical conductivity [115]. Thus, the catalyst must accelerate the reduction
reaction. On this basis, platinum (Pt) is considered a preferred catalyst. Pt is a superior
catalyst for use as a counter electrode for /5 reduction because of its high exchange
current density, good catalytic activity, and transparency. The performance of the counter
electrode depends on the method of Pt deposition on TCO substrates, such as the thermal
decomposition of hexachloroplatinic acid in isopropanol [116], electrodeposition [117],
sputtering [118], vapor deposition [119], and screen-printing.

However, Pt is a rare and expensive metal, and some researchers have reported that Pt
erodes via reaction with /5 in the electrolyte to form Ptly [120]. The Pt catalytic activity
was reported to decrease upon exposure to the dye solution and in the presence of I/l

redox couples [121], likely because its surface is blocked by the adsorbed dye. The major
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causes of the deactivation of a Pt counter electrode are the alteration of its electrocatalytic
properties and the removal of Pt from substrates [116], as demonstrated experimentally.
Therefore, carbon, graphene, and conductive polymers have also been used as counter
electrodes [122].

Carbon is an interesting low-cost alternative because it offers sufficient conductivity and
heat resistance in addition to corrosion resistance and electrocatalytic activity for I3
reduction [123]. Carbonaceous materials exhibit numerous advantageous features, such as
high electronic conductivity, corrosion resistance toward /; reduction, and low cost as
substitutes for Pt. In 1996, Kay et al. reported the use of carbon black as a counter
electrode, resulting in a conversion efficiency of approximately 6.7% [120]. Josef et al.
demonstrated the substitution of a Pt catalyst with a nanocomposite of dry-spun carbon
multi-walled nanotube (MWNT) sheets with graphene flakes (Gr-F) in a DSSC, reporting
an improvement in the catalytic behavior and power conversion efficiency (7.55%) relative
to MWNTs alone (6.62%) or graphene alone (4.65%) [124]. The latest study by Arman et
al. used a Pt-multi-walled carbon nanotube (MWCNT) counter electrode to obtain a current
density J,. of 17.2 mA/cmZ, open-circuit voltage V,. of 0.690 V, and efficiency 77 of 8.6%,
which is the highest photovoltaic performance to date [125]. Table 1.5 shows the

performance of the various counter electrodes.

Table 1.5. Photoelectrochemical parameters of DSSCs with different counter
electrodes [125]

Counter Electrode Jse (mA/cmz) Voe (V) Fill Factor Efficiency, n
Pt 15.3 0.670 0.70 7.2
Pt-MWCNT 17.2 0.690 0.71 8.6
MWCNT 15.1 0.655 0.68 6.7
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1.3.6. Application

Building-integrated photovoltaics (BIPV) are one of the fastest growing segments of the
photovoltaic industry. Photovoltaic materials may be used to replace conventional building
materials in parts of the building envelope, such as the roof, skylights, or facades.

In 2009, G24 Innovations, a DSSC license holder, announced the first-ever commercial
shipment of DSSC photovoltaic modules. The first consumer product, backpacks coated
with cheap and flexible DSSCs for on-the-go recharging of portable gadgets, was made

available in stores in January 2010.

Figure 1.2. Applications of dye-sensitized solar cells.
Although DSSCs are still in relatively early stages of development, they show great
promise as a reasonably priced substitute to costly silicon solar cells and an attractive

candidate as a new renewable energy source. DSSCs could play an important role in the

future of alternative renewable energy.
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1.4. Purpose and Outline of This Dissertation

The thesis is arranged into six chapters. This first chapter introduces the thesis and
describes the history of global warming and greenhouse gases, the current state of
photovoltaics technologies, and the components of DSSCs as well as the outline of this

thesis. The overall structure of this thesis is shown in Figure 1.3.

Chapter 2 provides the theoretical background of DSSCs. The operating principle of the
DSSCs is presented along with the mechanism. In addition, the theoretical basis
of DSSC operation is systematically explained. The fundamental physical and
chemical processes of the cell operation are discussed. The fabrication of
DSSCs is described in this work. Finally, a simple electrochemical model of

the DSSC is introduced.

Chapter 3 investigates the photovoltaic properties of TiO, electrodes prepared using a
mesoporous silica template. In this chapter, hierarchical structures for TiO,
photoelectrodes, biotemplated from Parpilio paris butterfly wings, were
synthesized and applied to DSSCs. The adsorption kinetics of N719 dye
molecules on thin TiO, films was measured and interpreted using a
pseudo-second-order model. The morphology of the films plays an important
role in their light-harvesting behavior, and hierarchical structures lead to
increased absorption. The synthesized samples were characterized by various
instrumental analysis techniques. The influence of the properties of the
adsorption of N719 molecules onto nanoporous BW-TiO, thin-film surfaces on
the efficiency of the DSSC was also systematically investigated on the basis of

the photovoltaic performance calculated from the J-V curves.

Chapter 4 describes the photovoltaic properties of successive DSSCs prepared using
synthetic dyes. The preparation of photoelectrodes by a typical successive

adsorption method is discussed in this chapter. The adsorption properties of the

Collection @ chosun



prepared photoelectrode toward two dyes (N719 and MK-2) were also
investigated. To improve the photovoltaic conversion efficiency, a double layer
of the two natural dyes as sensitizers was successfully formulated on the
nanoporous TiO, surface to harvest light over a wide wavelength range. The
adsorption properties of photoelectrodes adsorbed with a single dye were

compared with those attained with a mixture of the two dyes.

Chapter 5 addresses the enhanced photovoltaic properties of rainbow DSSCs achieved by
natural dye. In this chapter, three natural dyes (yellow, blue, and red) were
extracted from gardenia and used as sensitizers in the assembly of rainbow
DSSCs to harvest light over a wide wavelength range. The adsorption
characteristics, photovoltaic efficiencies, and electrochemical properties of the
rainbow DSSCs were investigated. The adsorption kinetics for the dyes were
measured in a small adsorption chamber. The data fitted a pseudo-second-order
model. The photovoltaic performance of a photoelectrode with an adsorbed

mixture of the three dyes was evaluated from current-voltage measurements.

Finally, in Chapter 6, overall conclusions are drawn on the basis of the theoretical and
experimental results. This thesis includes 114 pages, 36 figures and 16 tables and 198

references.
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Chapter 2. Dye-Sensitized Solar Cells

2.1. Operational Principles of DSSCs

The operating principle of dye-sensitized solar cells (DSSCs) entails the surface &
transfer and interfacial dynamics resulting from the ultrafast e’ injection from the molecular
excited state into the conduction band of the oxide. The produced dye cations must be
intercepted by the oxidized dye prior to recombination with conduction band electrons. This
charge transfer between the oxidized dye at the semiconductor surface and the hole
transport arbitrator determines the photon-to-current efficiency. At the heart of the system is
a mesoscopic semiconductor oxide film, which is placed in contact with an electrolyte or

an organic hole conductor [126].
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Figure 2.1 Working principle of dye-sensitized solar cells.
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As a result, the rate must be sufficiently high to prevent indirect recombination. The
photophysical e transfer processes taking place at the TiO./dye/electrolyte interface for
state-of-the-art DSSCs are summarized in Figure 2.1 and Equation 2.5.

The regenerative working cycle of the DSSC and the comparative energy levels of a
working DSSC are presented schematically in Figure 2.1. The incoming photon is absorbed
by the dye molecule adsorbed on the surface on the nanoporous TiO, particle and an

electron from a molecular excited state S° to the nanoporous TiO, [127].

S+ h —e + 85 Excitation process Equation 2.2
"+ Tio, = e + S Injection process Equation 2.3
¢ + CE — TiO, + ¢ + energy Energy generation Equation 2.4
n 3 .. 1. . . .
ST+ 5[ — 513 Regeneration of dye Equation 2.5
1. . 1. i . .
513 + e — 51 + CE ¢ recapture reaction Equation 2.6
o ki'n,j .
Ginj = A Equation 2.7

inj+ k,

DSSCs are characterized by excited-state lifetimes typically in the range of excited state
Smolecule adsorbed on the surface on the nanoporhich is placed in contact with n the
nanoporous TiOce conventefficient charge injection should occur within a sub-picosecond
time frame. The lifetimes of the excited state of Ru-complex dyes are usually longer, with
sually longerecond time frae” injection efficiency can be determined by Equation 2.7. The
rate constants for e injection (k) and decay (k;) were used for the equation. For efficient
injection, k; should be approximately 100 times larger than k;. The oxidized dye is

intercepted by an e donor, normally I, typically on a pgn timescale. In addition, the
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charge transport mechanism in nanoparticles is still under debate and is determined by the
inherent conductivity, low built-in electrical potential, and many phase boundaries with
relatively slow diffusion (ms domain) at the interface of TiO,, in the bulk of the particles,
and/or at grain boundaries, which can serve as e traps [127, 128]. To complete the
electrical circuit of a DSSC, a Pt-coated counter electrode with an I;/I electrolyte should
be used for the reduction of ¢ acceptors in the electrolyte. At the surface of the counter

electrode, triiodide is reduced to iodide [128, 129]:

Iy + 2¢ < 31" Equation 2.8

A benefit of DSSCs is their imitation of natural photosynthesis, in which the light
absorption is separated from the e collection. In the DSSCs, the driving force for the
transport of ions or electrons is the gradient of the electrochemical potential or free energy.
Consequently, knowledge of the kinetics and relative positions of the energy levels at the
oxide/dye/electrolyte interface are important for understanding the e transfer dynamics in
DSSCs [130, 131].

The configuration of the sensitizer, the energy separation gap and the highest occupied
molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) level strongly affect
the e flow. Figure 2.2 presents a schematic illustration of the kinetics in DSSCs. Hagfeldt
et al. and Gratzel et al. reported the timescales of each component: relaxation of the
excited level, 60 ns; ¢ injection from the dye (LUMO) to the TiO, (conduction band, CB),
50 fs ~ 1.7 ps; recombination of the electrons with the hole in the dye (HOMO), ns ~ ms
timescale; regeneration of the oxidized dye by electrolytes ('), 10 ns; recombination of the
electrons in the TiO, (CB) with a hole in the electrolyte (/5), 10 ms [127].

The electrons injected from the photoexcited dye into TiO, pass through the
interconnected nanoporous networks to reach the anode. In nanoporous TiO,, the electrons
diffuse to the anode by hopping 10° ~ 10° times between particles [132]. With each hop,

there is a considerable probability of the photoexcited e  recombining with the electrolyte
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because both the diffusion and recombination rates are on the order of milliseconds. This
recombination limits the cell efficiency. The excess electric charge of the oxide
nanoparticles arising from the injected e (from the sensitizer) is balanced by the net ionic
charge in the electrolyte. To develop efficient DSSCs, a high quantum efficiency for

injection is very important. The e injection efficiency is defined as follows [133-135]:

50 fs~1.7 ps

:fe ) * v LUMO |3_
CcB ‘4\Y 10 ms Q
i | 60ns |
ns~ms (V) :

\ J’ HOMO

I
10 ns (_
VB — Is

Semiconductor Dye Electrolyte
Electron Dye Electron Interfacial
injection regeneration transport recombination
10" 10" 10° 107 10° 10° 107
ps ns us ms

Time,s —»

Figure 2.2. Schematic illustration of the kinetics in DSSCs with the electron
dynamics timescales [127].

inj

Pinj = Equation 2.9

inj+k,
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where @, ki, and k; are the e injection efficiency, rate constant for e injection, and rate
constant for e decay of the photoexcited dye, respectively. To achieve efficient injection,
ki should be approximately 100 times larger than k; for times larger than ratof the system.
The kinetics of e is related to the performance. If the ¢ injection of the device is slowed
by increasing the energy of conduction band (E.), V,. should increase. However, the driving
force for e injection (E;,;) will decrease, resulting in a decreased ¢;,; and J,. The positive
ionic charge in the electrolyte is delivered from the regeneration of the dye by e transfer
from iodide ions. Due to the high density of ionic charge in the electrolyte, the excess
charges in the oxide nanoporous can be efficiently blocked, and electric fields can be
formed. However, the diffusion of electrons is also complicated by trapping and de-trapping
processes, influencing the time response [136, 137].

At open-circuit conditions under illumination, the total rate of ¢ transfer to I5 ions in
the electrolyte and to the oxidized sensitizer must be balanced by the net rate of ¢
injection. After photoexcited e  injection from the dye into the conduction band of the
nanoparticles, the dye molecules are in their oxidized state and should be reduced by the
electrolyte (regeneration). The regeneration time is subject to diffusion-limited kinetics. The
diffusion rate constant (ks;;) in non-viscous redox coupling electrolyte is in the range of
10° ~ 10"%ms. On the basis of kay, the regeneration efficiency, @, can be determined

[138-140].

k

reg

res = T Tk

reg rec

Equation 2.10

This equation gives the probability that an oxidized dye will be regenerated by an
electrolyte rather than by recombination. The k., and k. are the rate constants for
regeneration and the first oxidized dye recombination, respectively. In DSSCs, the standard
¢ donor in the electrolyte is iodide. After photoinduced e injection from the dye to the
conduction band of TiO,, the oxidized sensitizer (S*) should be reduced by iodide as

follows [141]:
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St + I = (S - e Equation 2.11

(S — Dol 4+ [T — (S - L) Equation 2.12
(S - L) —§ + Iy Equation 2.13
2y, = Iy + I Equation 2.14

First, one-electron transfer from I to S* occurs to reduce the oxidized dye. The
oxidation of iodide produces free iodine radicals bound to the dye, and an (S-/) complex is
formed. Next, a second iodide leads to the formation of an (S-I;) complex, which
dissociates into the reduced dye S and /,. Finally, two I, produce triiodide (/;) and iodide
(I'). In the absence of e recombination, the steady-state e density under illumination at
open circuit is determined by Equation 2.15, where Vi, and Vi, are the rates of e injection

and e recombination with I3, respectively [141-143].

dn

g = Ving T Ve = 0 Equation 2.15

The rate of the back-reaction (2.8) depends on the concentration of the reactant. This
back-reaction consists of several steps. An e at the surface of the counter electrode is
captured by /; ions to form the iodine radical ion (2.16). Subsequently, two possible steps
with I, can occur (2.17, 2.18) [112, 144, 145].
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I +e =1, +1° Equation 2.16

L+ e — 20 Equation 2.17
2y, = Iy + I Equation 2.18
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2.2. Characterization of dye-sensitized solar cells (DSSCs)

2.2.1. Efficiency measurement with J-V curve

The current-voltage (J-V) characteristics of DSSCs under illumination are used to
determine the power-conversion efficiency, /7. From these data, the open-circuit voltage
(Vo) is determined as the / = 0 intercept, while the short-circuit current (/) or
short-circuit current density (J,) are found at V = 0. DSSCs have a fairly slow
electrochemical response with high interfacial capacity. Therefore, the voltage scan rate
should be sufficiently slow in the current measurement. The maximum power can be
achieved when [/ X V] reaches a maximum. The power conversion efficiency is defined as

follows [146, 147]:

Pout _ Vmax ° Jmax _ Jsc>< VocXFF
P, B P,

m m

X 100 Equation 2.19

P, is the power density at a given photon flux (100 mW/cm® for an air mass of 1.5),
and FF is the fill factor of the device, which a value between 0 to 1 that describes the
shape of the J-V curve. FF is calculated by multiplying the photocurrent and voltage,
resulting in the maximum electrochemical power. If the value is high, the shape is more
rectangular, with high energy conversion efficiency. The open-circuit voltage and the
short-circuit current are the maximum voltage and current. However, at both of these
operating points, the power from the solar cell is 0. FF is a parameter that, in conjunction
with V,. and [, determines the maximum power from a solar cell. The fill factor is
defined as the ratio of the maximum power from the solar cell to the product of /. and
Voe. Graphically, the fill factor is a measure of the "squareness" of the solar cell and is

also the area of the largest rectangle that fits in the /I-V (or J-V) curve. The fill factor is
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illustrated below [148, 149].

As the fill factor is a measure of the "squareness" of the /-V curve, a solar cell with a
higher voltage has a larger possible fill factor because the rounded portion of the /- curve
takes up less area. The maximum theoretical fill factor from a solar cell can be determined

by differentiating the power from a solar cell with respect to voltage and finding where

this differential is equal to zero.
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Figure 2.3. Photocurrent-voltage curve of solar cells with short-open-circuit points
(Voe, Isc) and maxima (Vimax, Imax) [148].

=0 Equation 2.20

V!TL[I.’L‘ = VOC -

nkT ( Vmax
in

Wk Tld + 1) Equation 2.21
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However, the above technique does not yield a simple or closed-form equation. The
equation only relates V. to V., and additional equations are needed to find /,., and FF.
A more commonly used expression for the fill factor can be determined empirically as

follows [148, 150]:

= T quation 2.
= —q 1
V,e T Ve Equation 2.23

The above equations show that a higher voltage will have a higher possible fill factor.
However, large variations in the open-circuit voltage within a given material system are
fairly rare. For example, at one Sun, the difference between the maximum open-circuit
voltage measured for a silicon laboratory device and a typical commercial solar cell is
approximately 120 mV, giving maximum fill factors of 0.85 and 0.83, respectively.
However, the difference in the maximum fill factors can be significant for solar cells made
from different materials. For example, a GaAs solar cell may have a fill factor approaching
0.89. The equation also demonstrates the importance of the ideality factor, also known as
the "n-factor" of a solar cell. The ideality factor is a measure of the junction quality and
the type of recombination in a solar cell. For the simple recombination mechanisms
discussed in the Types of Recombination section, the n-factor has a value of 1. However,
some recombination mechanisms, particularly if they contain many steps, may introduce
recombination mechanisms, providing an n-factor of 2. A high n-value not only degrades
the fill factor but also gives low open-circuit voltages because it usually signals high
recombination. A key limitation in the equations described above is that they represent a
maximum possible fill factor, whereas the actual fill factor will be lower due to the
presence of parasitic resistive losses, which are discussed in the Effects of Parasitic

Resistances section. Therefore, the fill factor is most commonly determined by measurement
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of the I-V curve and is defined as the maximum power divided by the product of I

culty,., i.e., [127, 148]

o
max

o I

sc

max

FF= Equation 2.24

oc

2.2.2. Incident photon-to-current efficiency (IPCE)

The solar spectral response of DSSCs depends on the absorption properties of the
sensitizer. The spectral response is determined by measuring the monochromatic incident
photon-to-current efficiency (IPCE). Because DSSCs have fairly slow relaxation times, it is
important to ensure that the measurement duration for a given wavelength is sufficient for
the current to be stabilized. In addition, DSSCs have slower response times than solid-state
photovoltaics, so a low chopping frequency should be chosen. To check the IPCE spectra,
two measurement methods can be used: AC and DC methods. In the AC method, the
monochromatic light is mechanically chopped by a chopper, and the current response is
measured by a lock-in amplifier. Moreover, white bias light can be added in the AC
method. In the DC method, monochromatic light is obtained by passing white light through
a monochromator, and the photocurrent is measured. The J,. in full sunlight is obtained by

integrating the IPCE spectrum using the following expression [151, 152]:

Jse = /]PCE M) 0i; N1y (X) Equation 2.25
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Figure 2.4 The quantum efficiency of a solar cell.

In Equation 2.25, the parameters LHE, ¢y, and n. are the light-harvesting efficiency,
efficiency of the e injection, and charge collection, respectively. From a fundamental
viewpoint, the IPCE value, which is also called the external quantum efficiency (EQE), is
the ratio of the observed photocurrent divided by the incident photon flux, uncorrected for
reflective losses during optical excitation through the conducting glass electrode. This value

shows how efficiently the photons are converted into current [153].

(1240 (e V nm)] x [J,. (uA/em?)) .
- E 2.26
PCE (o)) = [P G fem?)] quation
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2.2.3. Electrochemical methods: cyclic voltammetry and electrochemical impedance

spectroscopy

Electrochemical methods, such as cyclic voltammetry (CV) and electrochemical impedance
spectroscopy (EIS), are powerful techniques for characterizing DSSCs. The most widely
used electrochemical technique, CV, can be performed using a potentiostat connected with a
three electrode cell composed of a working electrode, counter electrode, and reference
electrode. In CV, the potential is swept at a constant rate and reversed at a certain point,
while the current is monitored continuously [154, 155]. The measured current results from
faradaic and non-faradaic reactions. The obtained data can be used to obtain the formal
redox potentials and information on the reversibility of the e transfer process. EIS is
widely used to study either the DSSC system as a whole or its individual components,
such as the counter/working electrode or electrolyte diffusion. EIS can be performed with a
sinusoidal modulated voltage. In this system, the applied potential is perturbed by a sine
wave modulation, and the resulting current is measured as a function of modulated
frequency. The impedance response of a DSSC is related to the response of the various
components of the device. For a resistor, the impedance is a real value, independent of the
modulated frequency, while the capacitor and inductors are imaginary values that vary with
the frequency. Moreover, the impedance is associated with ion transport in the electrolyte
by a finite Warburg element (W), which appears in series with the charge transfer
resistance associated with e transfer at the cathode. The remaining elements are the
double-layer capacitance of the cathode and the series resistance of the DSSC. Using EIS,
the following parameters can be obtained: series resistance, charge transfer resistance,
diffusion resistance, resistance of ¢  transport and recombination in the working electrode,
and the chemical capacitance of the working electrode [156]. The equivalent circuit of the

DSSC is shown in Figure 2.5 [157].
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Figure 2.5 Equivalent circuit of the dye-sensitized solar cell [126].

In this circuit, R;, CPE, R;, and R, represent the series (sheet) resistance in
high-frequency region, constant phase element (equivalent electrical circuit component), and
two resistances, respectively. A Nyquist plot with a commonly suggested circuit was
employed to investigate the interfacial properties of DSSC, and Figure 2.6 shows the
Nyquist plot of a general DSSC. In Figure 2.6, the first semicircle, at high frequency, is
ascribed to the charge transfer at the interface between the counter electrode and electrolyte
(Ret1), and the second semicircle, at intermediate frequency, is associated with the charge
transfer across the dye/TiO./electrolyte (Rcp). The third semicircle is attributed mainly to
the Nernst diffusion of I~ ions within the electrolyte (Rgfr). To analyze this system in

more detail, a Bode phase plot can be composed [158, 159].
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Chapter 3. Hierarchically Structured Photoelectrodes of
Biomimetic Replication from Butterfly Wings

3.1. Introduction

Dye-sensitized solar cells (DSSCs) were first reported by Gratzel in 1991 [61]. The
initial design consisted of a dye-adsorbed mesoporous titania film filled with iodide/triiodide
redox electrolyte and a Pt counter photoanode. Much effort has since been devoted to
improving the photovoltaic conversion efficiency. Theoretically, a perfect photoelectrode for
DSSCs must provide fast electron injection and separation, fast electron transport, slow
electron recombination, a high surface area, and excellent light collection [160]. The
photonic structures in butterfly wings have been found to have promising applications in
infrared detectors, photo-trappers, and flat-panel displays [161]. Recently, a novel
photoelectrode structure biotemplated from a butterfly wing has been developed to improve
the light-absorbing performance of DSSCs.

Liu et al. proposed a facile one-step approach for the replication of butterfly wings in
TiO,, with the resulting structures containing ordered mesopores [162]. Han et al. reported
light-trapping phenomena in the wing scales of the butterfly Papilio peranthus. A complex
functional structure is formed by a wvariety of monolayer films with different refractive
indexes and thicknesses. Interference between neighboring ridges in the multilayer film
structure creates a light-trapping effect [163]. Zang et al. synthesized a novel photoanode
templated from butterfly-wing scales, with a quasi-honeycomb structure composed of
shallow concavities and cross-ribbing. The quasi-honeycomb-structured TiO, replica
photoanode was found to have a higher surface area and light absorbance, both of which
are advantageous in terms of light-harvesting efficiency and dye sorption [164]. A number
of studies have focused on their structural properties [165-167]. However, to date, no
systematic study has investigated the influence of dye sorption and electron lifetime on the

photovoltaic conversion efficiency of DSSCs.
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3.2. Experimental

3.2.1. Synthesis of TiO, replicas from butterfly wings

The wings of the Papilio paris butterfly were used as biological templates. Figure 3.1
shows the preparation method for the butterfly-wing architecture TiO,. A Pluronic P123
triblock copolymer (EOPO7EO,, Mw. 5,800 g/mol, Sigma-Aldrich Co.) was used as the
structure-directing agent for the butterfly wings. The titanium tetrachloride (i.e., TiCly,
Sigma-Aldrich Co.) was used as the TiO, source for the modified butterfly-wing

architecture.

Butterfly wings
|

L

Pretreatment
T O IWHCL 2N NaOH
=

3 EIOH-TICL
':,-j" 2 EtOH+P123~TiCi;

Ultra sonication
4L 90 40T, 90 min

Washing
5N

.

Calcination

O A50T S hr(l T mum)

[ )
( )
[ Dipping )
[ )
[ )
(

Butterfly wings Pretreated wings

Soaked wings

Calcination at 700°C

Pretreated with Ultra-sonication TiO; replica with mesopores
HCI, NaOH formed in-situ

Figure 3.1. Synthesis process for the butterfly-wing TiO, replicas.

Collection @ chosun



The butterfly wings were pretreated with 10 ml of HCl (35 wt%, Sigma-Aldrich Co.) at
room temperature and 2 N NaOH (98%, Sigma-Aldrich Co.) aqueous solution to remove
proteins. The pretreated wings were then carefully immersed in a solution of Pluronic P123
triblock copolymer (10 g), and 3 mM TiCly was added with 10 ml of ethanol. The
mixture was ultrasonicated at room temperature using a high-intensity ultrasonic probe. The
sonicated butterfly wings were washed five times with distilled water, dried in air, and
then calcined at 723.15 K for 2 h. The chitin substrates and surfactant were removed by
reaction with the air. A metal oxide in the form of the ceramic butterfly wings is then
obtained. The resulting replicas are named ‘butterfly-wing TiO,” (BW-TiO;) in the

following text.

3.2.2. Fabrication of hierarchically structured photoelectrodes for DSSCs

Figure 3.2 shows a schematic diagram of the fabrication of photoelectrodes using
nanoporous TiO, particles through the repetitive coating method. For the preparation of the
nanoporous TiO, thin films, TiO, slurry was prepared by mixing 1 g nanoporous TiO,
particles, 0.2 ml acetic acid, 5 ml distilled water, 6 ml ethanol, 20 g terpineol, and 3 g
ethylcellulose for 3 h at 1,250 rpm using a paste mixer (DAEWHA TECH PDM-300,
Korea). A nanoporous TiO, film was then obtained by coating the slurry onto
fluorine-doped tin oxide (FTO) glass (Pilkington, TEC-8, 80% transmittance in the visible
region) by doctor blade coating (an adhesive polymer film was used as a spacer of ca. 58
Um thickness). The nanoporous TiO, film was treated by heating at 723.15 K for 2 h. The
nanoporous TiO, film formed on the FTO glass was 8~9 pm thick and 0.5 x 0.5 cm? in
size. In addition, multi-layer coating of the nanoporous TiO, film was conducted to study
its influence on the efficiency enhancement of the DSSC. The coated nanoparticle TiO,
(NP-TiO,) films were re-coated with nanoporous BW-TiO, paste and calcined. To fabricate
the DSSC, the prepared thin film electrode was immersed in 0.3 mM N719 dye (Solaronix
Co.) solution at 303.15 K for 12 h, rinsed with anhydrous ethanol, and dried. A
Pt-paste-coated TEC glass electrode was prepared as a counter electrode with an active area

of 0.5 x 0.5 cm’. The Pt electrode was placed over the dye-adsorbed nanoparticle TiO,
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photoelectrode, and the edges of the cell were sealed with 2-mm-wide stripes of a 60-u
m-thick sealing sheet (SX 1170-60, Solaronix Co.). Sealing was accomplished by
hot-pressing the two photoelectrodes together at 373.15 K. The electrolyte was filled into
the cell through the holes, and the filling ports were sealed with a sealant glue (Amosil 4,
Solaronix Co.). The redox electrolyte was 0.3 M 1,2-dimethyl-3-propylimidazolium iodide
(Solaronix Co.), 0.5 M Lil (Sigma-Aldrich Co.), 0.05 M I, (Sigma-Aldrich Co.), and 0.5 M
4-tert-butylpyridine (4-TBP, Sigma-Aldrich Co.) with 3-methoxypropionitrile (3-MPN, Fluka

Co.) as the solvent.

I Mono-layer Coating I'

Nanoporous TiO, Paste; Mixer ( TiO, PBStEI : lanopo
TiO,+H;0 +Acetyle H o
Powder 1,250 rpm, 3h Acetone + Hydropropylcellulose) Doétocg;iilgade:

Heat Treatment .
(353.15 K, 0.5 h)l Recoating

I Multi-layer CoatingJ"":
Heat Treatment } terfly Wings TiO :

77345 K. 2h | SRR

FTO glass

Figure 3.2. Fabrication of nanoporous TiO, electrodes.

3.2.3. Fabrication of adsormption photoelectrodes for DSSCs

This work presents important experimental data obtained from direct measurements of the
amounts of dye adsorbed on the TiO, thin films. The adsorption apparatus consists of a
water circulation jacket (a), vessel (b), photoelectrode holder (c), magnetic stirrer bar (d),
and TiO;-coated thin film (e). The water circulation jacket was connected to a
thermo-circulator. All runs were conducted at 298.15 K. The volume of the vessel was
approximately 25 ml, and that of the dye solution was 20 ml. To prevent the magnetic
stirrer bar from destroying the TiO, thin film, we maintained a distance of 3 mm between

the bottom of the vessel and the TiO, thin film. To increase the amount of dye adsorbed
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on the TiO, thin film in the adsorption apparatus, we placed the photoelectrode in the
photoelectrode holder with its TiO»-coated surface facing downward. The stirrer bar was
centered with respect to the vessel such that it could rotate without wobbling inside the
vessel, while the dye was agitated continuously to facilitate its adsorption on the TiO, thin
film. To measure the amount of dye adsorbed on the TiO, thin film without involving a
desorption step, we periodically extracted samples using a micro-pipette. The amount of dye

adsorbed was calculated using Equation 3.1:

o= (G- C)VIW Equation 3.1

where Cyp and C are the liquid-phase concentrations (mg/L) of N719 at time 0 and time t,
respectively. The concentration of the N719 dye solution was determined using a UV
spectrophotometer (Shimadzu UV-160A, Japan) based on the absorbance of the solution at
528 nm.

3.2.4. Characterization of BW-TiO, photoelectrodes for DSSCs

In this work, TiO, photoelectrodes were biotemplated from a Parpilio paris butterfly
wing, and their fine hierarchical structure was characterized by field-emission scanning
electron microscopy (FE-SEM; Hitachi S-4700, Japan) and X-ray diffraction (XRD, Rigaku
D/MAX-1200, Japan). The resulting concentration was analyzed on the basis of the
absorbance of the solution at 528 nm using a UV/vis spectrophotometer (Shimadzu
UV-160A, Japan). The adsorption kinetics of the N719 dye molecules on thin TiO, films
was measured and analyzed using a pseudo-second-order model. The electron lifetime in
hierarchical TiO, photoelectrodes was determined from open-circuit-voltage-decay (OCVD)
curves and electrochemical impedance spectroscopy (EIS; CH Instruments CHI660E, USA).

The current-voltage (I-V) curves were recorded under white-light irradiation from a 200-W
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xenon lamp (McScience, Korea). The active cell area and the incident light intensity were
100 mW/cm* and 0.5 x 0.5 cm’ respectively. The J-V curves were used to calculate the
short-circuit current density (Jy.), open-circuit voltage (V,.), fill factor (FF), and efficiency

(1) of DSSC.
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3.3. Results and discussion

3.3.1. Characteristics of biotemplated BW-TiO,

Figure 3.3 shows the wing architecture of Papilio paris, a species of butterfly found in
Asia, and its TiO, replica. The scales in the original butterfly wing have parallel ridges
spaced several microns apart and aligned lengthwise. The lamellae (ridges) are hollow and
comprise cross-ribs on the bottom surface. The ridges are composed of nanoscale ribs (~10
nm in width) approximately 50 nm apart. The fine microstructural details of the original
butterfly-wing scales are still observed after calcination in the BW-TiO, samples. However,
the interlamellar spacing has decreased by ~ 48% to approximately 0.56 Um due to the

elevated calcination temperature.

- ¥l

Figure 3.3. FE-SEM images of butterfly wings and templated TiO,.
Figure 3.4 shows the XRD patterns obtained from BW-TiO, samples calcined at 450 °C.
Peaks are observed at 20 values of 25.2, 37.8, 48.0, 55.0, 62.6, 68.7, 70.3, and 75.0°,

corresponding to the (101), (004), (200), (211), (204), (116), (220), and (215) crystal planes
of anatase TiO, (JCPDS no. 211272), respectively. The average crystallite size of BW-TiO;
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is approximately 12.1 nm, as calculated from the XRD patterns using Scherrer’s formula:

kX

D= Feosd Equation 3.2

where D is the crystallite size, A is the wavelength of the X-rays, B is the width of the

diffraction line measured at half the maximum intensity, and & is the corresponding angle.

Intensity

20 30 40 S0 60 70 80 90
20, deg.

Figure 3.4. XRD patterns obtained from NP-TiO, and BW-TiO, cells.
3.3.2. Adsomption study of BW-TiO, photoelectrodes toward N719 dye

The photovoltaic conversion efficiency of materials is known to be highly dependent on
their adsorption properties. Adsorption kinetics can be used to understand the sorption

mechanism on nanoparticle TiO, thin films.
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Figure 3.5. Adsorption kinetics of N719 dye onto NP-TiO, and BW-TiO, cells.
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Figure 3.5 shows the adsorption kinetics of N719 onto NP-TiO, and BW-TiO, thin films
obtained in a small-batch adsorption chamber without a desorption step [168]. The
parameters obtained from pseudo-second-order models of the kinetics of N719 adsorption
onto the NP-TiO, and BW-TiO; thin films are listed in Table 3.1. The models fit the
experimental data very well (R* > 1.0). For NP-TiO, and BW-TiO,, the second-order rate
constants are 2.57 and 1.18 g/(mol-min), respectively, with the same ¢., 0.052 mmol/g, for

both samples.

Table 3.1. Kinetic adsorption characteristics of NP-TiO, and BW-TiO, cells

Samples k> [g/mol - min] g. [mmol/g] R’
NP-TiO; 2.57 0.052 1.00
BW-TiO; 1.18 0.052 1.00
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3.3.3. Characteristics of hierarchically structured photoelectrodes

3.0
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Figure 3.6. UV-vis absorption spectra of NP-TiO, and BW-TiO; cells.

The light-harvesting properties of the samples were examined using absorbance
spectroscopy. Figure 3.6 shows the optical properties of the BW-TiO, and NP-TiO, films.
The UV-vis curve for the BW-TiO, film is redshifted relative to that for the NP-TiO, film.
In addition, the BW-TiO, film strongly absorbed visible wavelengths between 400 and 500
nm. The absorption edge for the two samples was determined using the following equation

[169]:

B = 1239.8

Equation 3.3
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where E, is the band gap (e}) of the sample and A (nm) is the wavelength of the onset
of absorption. The band gaps for the NP-TiO, and BW-TiO, films are thereby calculated to
be 3.22 and 3.18 eV, respectively. The BW-TiO, sample has a greater absorbance than
NP-TiO,, suggesting that film morphology plays an important role in light-harvesting and

that hierarchical structures have high absorption properties.

0.7
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Figure 3.7. Incident photon-to-current efficiency curves for NP-TiO, and BW-TiO..

The incident photon-to-current efficiency (IPCE) spectra obtained from the NP-TiO, and
BW-TiO, samples are shown in Figure 3.7 The peak efficiency at 530 nm corresponds to
the maximum absorption wavelength of the N719 dye. For all wavelengths, the external
quantum efficiency is higher for the BW-TiO; electrode than the NP-TiO, electrode, which
is consistent with the J;. values obtained by photocurrent-voltage measurements (see below).
The IPCE peak height at 530 nm for the BW-TiO, electrode is 61.8%, which is much
higher than the value of 50% obtained with the NP-TiO, electrode. Figure 3.8 shows the
photocurrent-voltage curves obtained for the NP-TiO, and BW-TiO, photoelectrodes. The
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BW cell achieved a short-circuit current density (J,) of 10.66 mA/cm® and an energy
conversion efficiency (n) of 4.32% (Figure 3.8 and Table 3.2). In comparison, the DSSC
based on the NP-TiO, film had J,. and n values of 8.17 mA/cm’ and 3.48%, respectively.
These results indicate that the 24% improvement in n results mainly from the 30%
increase in J,. The increase in the latter is most likely due to the improved light

scattering and dye uptake afforded by the BW-TiO,.
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Figure 3.8. Photocurrent-voltage (J-V) curves for NP-TiO, and BW-TiO, cells.

Table 3.2. Photocurrent-voltage (J-V) characteristics of NP-TiO, and BW-TiO, cells

Samples Jye [MA/cm?] Voe [V] Fill Factor [%]  Efficiency [%]
NP-TiO, 8.17 0.73 58.6 3.48
BW-TiO, 10.66 0.71 57.3 4.32

Collection @ chosun



To investigate the recombination kinetics in fine hierarchical structures, OCVD
measurements reported by Zaban and Greenshtein are used [170]. As shown in Figure 3.9,
OCVD measurements were conducted by monitoring the V,. transient during relaxation from
an illuminated quasi-equilibrium state to the dark equilibrium. The photovoltage decay rate

is directly related to the electron lifetime by the following expression:

Equation 3.4

T, =

—k;BT[dVOC]1

e dt

where T, is the reciprocal of the derivative of the decay curve normalized by the thermal
voltage, kT is the thermal energy, e is the elementary charge, and dV,/dt is the derivative
of the open-circuit voltage transient. Equation 3.3 is obtained based on the assumption that
the recombination is linear with a first-order dependence on the electron concentration and
that electron recombination occurs only with the electrolyte.

Figure 3.9(a) shows the OCVD curves measured for NP-TiO, and BW-TiO, cells. The
voltage decay of the BW-TiO, cell is slower than that of the NP-TiO,. Figure 3.9(b)
shows the response times obtained by applying Equation 3.3 to the data in Figure 3.9(a).
Electron recombination is slow in both the BW-TiO, and NP-TiO, cells, allowing them to
sustain significant voltages many seconds after the light is turned off. The T, values are
much larger in the BW-TiO; cell than in the NP-TiO, cell. This result suggests that the
recombination of the photogenerated electrons with electrolyte-oxidized species is slower in
the BW-TiO, electrode. This effect may also explain the higher performance of the
BW-TiO, DSSC electrode.
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Figure 3.9. (a) OCVD curves and (b) the corresponding response times for
NP-TiO, and BW-TiO; cells.
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To examine the internal resistance and charge transfer kinetics of the samples, EIS was
performed under illumination at an applied bias of V. with an AC amplitude of 10 mV.
Figure 3.10(a) shows the Nyquist plots obtained for the NP-TiO, and BW-TiO, cells. Two
well-defined semicircles are charge transfer resistance at the electrolyte-Pt-FTO interface
(Ro;) and charge transfer resistance at the TiO,-dye-electrolyte interface (R.2). The
equivalent-circuit model of the DSSCs is shown in the inset of Figure 3.10(a). The serial
resistance (R;) of the NP-TiO, cell is slightly larger than that of the BW-TiO, cell, such
that the former has a lower fill factor than the latter.

The R, resistances of the two DSSCs are almost identical, whereas the R.» resistance of
the BW-TiO; cell is smaller. Resistances of approximately 37.1 imatelys r. BW- obtained
for the NP-TiO, and BW-TiO, cells, respectively, by fitting the Nyquist plots to the
equivalent circuit model. These values indicate faster electron transfer in the BW-TiO, cell.
As supported by the UV-vis spectra, this can be attributed to more efficient
light-harvesting.

The electron lifetime (is) in the TiO, films can be obtained from the characteristic
angular frequency (img) of the middle frequency (f.i) peak in the Bode phase plots using
the relation f; = 1/g,s = 1/2 thf,.. The Bode phase plots for the NP-TiO, and BW-TiO,
cells are shown in Figure 3.10(b). The characteristic frequency for the BW-TiO, cell is
downshifted by 26.1 Hz with respect to the corresponding peak for the NP-TiO, cell. The
electron lifetimes for the NP-TiO, and BW-TiO, cells obtained from these peaks are 6.1
and 7.4 ms, respectively. This result implies that film morphology plays an important role

in DSSC electron recombination.
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Figure 3.10. (a) Nyquist plots and (b) Bode phase plots for NP-TiO, and
BW-TiO, cells. The inset in (a) shows the equivalent circuit
model of both cells.
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3.4. Conclusions

Fine hierarchical TiO, structures were successfully synthesized using Parpilio paris
butterfly wings as biotemplates. The prepared samples have homogeneous pores, ca. 0.1 ~
0.5 nm in size, and large pore volumes and surface areas. The electron lifetimes in
NP-TiO, and BW-TiO, films, determined from EIS measurements, are 6.1 and 7.4 ms,
respectively, with photovoltaic conversion efficiencies of 3.48 and 4.32%, respectively.
These results show that hierarchical structures have an important and positive impact on

light absorption and light-harvesting properties.
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Chapter 4. Successive Adsorption of N719 and MK-2 for
Co-Sensitization in Dye-Sensitized Solar Cells

4.1. Introduction

Dye-sensitized solar cells (DSSCs) consist of a nanoporous semiconductor metal oxide
electrode, an adsorbed dye, an electrolyte, and a counter electrode. They have many
advantages for the conversion of visible light into electrical energy, such as high
conversion efficiency, low cost, and easy fabrication [61, 171, 172]. Many research groups
have developed strategies to improve the photovoltaic performance of DSSCs [160,
173-178]. One of these strategies is to improve the efficiency of the dye adsorption

characteristics.

Table 4.1. Literature review

Authors Dyes Effi.(%) Method Ref.
Kazuhiro Noda et al. N749/D131 11.0 cocktail [179]
Shuzi Hayase et al. Z907/NK3705 7.1 cocktail [180]
Michael Gratzel et al. C106/D131 11.1 cocktail [181]
Michael Gratzel et al. TT1/JK2 7.74 cocktail [182]
Eric Wei-Guang Diau et al. LD12/CD5 9.0 cocktail [183]
Kuo-Chuan Ho et al. N719/FL 5.1 successive [184]
Nam-Gyu Park et al. N719/N749/P5 4.8 cocktail [185]
Kazuhiro Sayama et al. Cy0/Cy1/SQ 3.1 cocktail [186]
Sheng-Min Cai et al. A/B 34 cocktail [187]
Kuo-Chuan Ho et al. SQ2/5¢ 6.2 cocktail [188]
Shyam S. Pandey et al. NK3705/2907 7.1 cocktail [189]
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Recently, Gratzel et al. reported a high performance of 12.3% using single ruthenium
dye [190]. Park et al. employed N719, N749, and P5 dyes as sensitizers for DSSC with an
efficiency of 4.8% [185]. Wei et al. achieved a conversion efficiency of 7.64% using the
successive adsorption method [191]. It has been reported that the electron lifetime increases
with the length of the alkyl chains of MK-2 because longer chains prevent the approach of
acceptors (i.e., I3 ions) to the TiO, surface and/or reduce the reorganization energy of the
dye, resulting in the desired situation for the kinetic competition for the reduction of the

dye cation (Figure 4.2).

ye 2 Ads

Panchromatic

A Panchromatic

Panchromatic

[Cycle method] |Cocktail method] |Successive method]

Figure 4.1. Adsorption mode.

In addition, the aggregation of dye molecules would also be suppressed by the steric
hindrance due to the long alkyl chains [192]. It is generally known that the photovoltaic
performance of DSSCs is strongly influenced by adsorption properties of dyes on TiO, thin
films. Unfortunately, research on the adsorption properties (i.e., equilibrium and kinetics) of
dye molecules is still nascent. In this work, the influence of the adsorption mode of the
N719 and MK-2 dye onto the TiO, thin film on the energy conversion efficiency of the
DSSCs was systematically investigated. To this end, experimental and theoretical studies on
the adsorption equilibrium and kinetics were conducted to control the adsorption amount

and understand the mechanism of the adsorption of N719 and MK-2 as photosensitizers
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onto TiO, thin films. The equilibrium data were fitted by the Langmuir isotherm model,
and the adsorption kinetic data were obtained and analyzed on the basis of
pseudo-second-order models to understand the adsorption mechanisms of successive

adsorption of N719 and MK-2 dyes.
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Figure 4.2. Molecular structure of N719 dye (a) and MK-2 dye (b).
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4.2. Experimental

4.2.1. Fabrication of nanoporous TiO, electrodes for successive adsorption DSSCs

TiO, paste (DSL18NR-T, Dyesol co.) was used to prepare TiO, films for the DSSCs.
The paste was coated on pre-cleaned fluorine-doped tin oxide (FTO) conducting glass
(Pilkington, TEC-8, 80% transmittance in the visible region) by a squeeze-printing technique
followed by annealing at 723.15 K for 30 min. The TiO, photoelectrodes were deposited
on FTO glass substrates with active areas of 2.0 x 2.0 cm® and 0.5 x 0.5 cm’ for

adsorption kinetics and photovoltaic efficiency measurements, respectively.

‘Mixing’ 3M Tape (ca. 65 pm)

00 w Wo 0 ; Glass  s—
) : LSOV 0
00 ‘ 0 : 'A
o o o . o o ° : 4

TiO, powder TiO, paste FTO substrate

TiO, thin film
(Doctor blade, thickness : 5~10 pm)

Figure 4.3. Preparation of TiO, film using the doctor blade method.

4.2.2. Fabrication of an adsorption apparatus for measurement of adsorption

properties

The prepared photoelectrodes were immersed overnight (ca. 24 h) in a 5 x 10* mol/L
ethanol solution of di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2” -bipyridyl-4,4”
-dicarboxylato) ruthenium (II) (N719, Solaronix co.) and 5 x 10* mol/L toluene solution
of 2-cyano-3-[Sluene soluti-9H-carbazol-3-yl)-3luti-9 of 5 othiocn-hexyl-[2,2-yl)-31uti-9 of
5 othrter-thiophen-5-yl] acrylic acid (MK-2, Sigma-Aldrich Co.), rinsed with anhydrous
ethanol, and dried. A TiO, film, approximately 8 ~ 9 um thick, was deposited on a
0.25-cm® FTO glass substrate.
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Figure 4.4. Schematic diagram (A) and photograph (B) of the adsorption experiment
apparatus.
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Figure 4.5. Detailed diagram of the adsorption experiment apparatus.

(*)Collection @ chosun



This work presents important experimental data obtained from the direct measurement of
the amount of dye adsorbed on the TiO, thin film. Figure 4.4 shows a schematic of the
apparatus used in this work for the direct measurement of the amount of dye adsorbed.
The adsorption apparatus consists of a water circulation jacket (a), vessel (b),
photoelectrode holder (c), magnetic stirrer bar (d), and TiO,-coated thin film (e). The water
circulation jacket was connected to a thermo-circulator. All runs were conducted at 298.15
K. The volume of the vessel was approximately 25 ml, and that of the dye solution was
20 ml. To prevent the stirrer bar from destroying the TiO, thin film, the distance between
the bottom of the vessel and TiO, thin film was fixed at 3 mm. To improve the
adsorption efficiency of the dyes on the TiO, thin film in the adsorption apparatus, the
coated TiO, surface of the photoelectrode was faced downwards in the photoelectrode
holder. The stirrer bar was centered such that it could rotate properly inside of the vessel,
while the dye was agitated continuously to facilitate its adsorption on the TiO, thin film.
Figure 4.5 shows a detailed diagram of the adsorption experiment apparatus. The diameter
of the chamber including the water circulation jacket was 100 mm. The outer and inner
lengths of the photoelectrode holder were 30 and 20 mm, respectively. The height and
diameter of the adsorption chamber were 54 and 51 mm, respectively. To measure the
amount of dye adsorbed on the TiO, thin film without a desorption step, samples were
taken periodically using a micropipette. The concentrations of the N719 and MK-2 solutions
adsorbed on the TiO, thin film were analyzed based on the absorbance of the solution at
528 or 378 nm, respectively as measured by a UV spectrophotometer (Shimadzu
UV-1601A, USA). The amounts of N719 and MK-2 at equilibrium on the TiO, thin film

were calculated from the following equation:

q=(C,— Q) VvIw Equation 4.1

where ¢ (mg/g) is the equilibrium amount of the dyes adsorbed on the TiO, thin film. C,

and C (mg/l) are the initial and equilibrium liquid phase concentrations of the dyes,
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respectively. 7 (I) is the volume of the solution, and W (g) is the mass of the TiO, thin

film used.

4.2.3. Photoelectrochemical measurements of successive DSSCs

The two identical dye-adsorbed TiO, electrodes were sealed with a sealing sheet (SX
1170-60, Solaronix Co.), which served as a spacer. The electron transfer rates between the
TiO, electrode and the electrolyte under the illuminated and dark conditions were obtained
from the cyclic voltammograms (CVs) of a DSSC consisting of a TiO, photoanode,
platinized counter electrode, and / /I; redox couple electrolyte recorded at a scan rate of
100 mV/s. Electrochemical impedance spectroscopy (EIS) measurements were performed
using an AC impedance (CH Instruments CHI 660E, USA) over the frequency range of 0.1
~ 10° Hz with amplitudes of V,. £ 5 mV. The photovoltaic properties were investigated by
measuring their current-voltage (/-V) characteristics under white-light irradiation from a
200-W xenon lamp (McScience, Korea). The obtained I-V curves were used to calculate the
short-circuit current (/;.), open-circuit voltage (V,.), fill factor (FF), and overall conversion

efficiency (/%.p) of the DSSCs.
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4.3. Results and discussion

4.3.1. Adsorption study of nanoporous TiO, electrodes toward N719 and MK-2 dyes

It has been reported that the photovoltaic conversion efficiency is strongly influenced by
the adsorption characteristics of the dye molecules and the electrochemical properties of the
TiO, electrode. Therefore, it would be very meaningful to systematically examine the
adsorption characteristics of the dyes onto the TiO, films. Many studies have been
conducted on the adsorption equilibria and kinetics based on the differences in the amounts
of dye adsorbed and subsequently desorbed onto TiO, thin films. However, as described in
the experimental section, the adsorption kinetics data were directly obtained in a small
adsorption chamber in the absence of a desorption step. The adsorption kinetics of N719
and MK-2 dyes on the TiO, film were obtained and then analyzed by employing a
pseudo-second-order model. The kinetics data provide valuable information for understanding
the mechanism of the sorption process [168]. Figure 4.6 shows the obtained concentration
decay curves of the single-component adsorption of N719 and MK-2 onto the TiO, film
obtained in a small adsorption chamber. The solid lines are the results simulated using the
kinetics model. The kinetics data were analyzed with a pseudo-second-order model [168,

193].

% =ky(q —q) Equation 4.2

where k, (g/mmol - min) is the second-order rate constant determined by the plot of #/¢q, vs.
t. Note that the correlation coefficients (R’) of the pseudo-second-order model for the linear
plots of TiO, were very close to 1. This result implies that the adsorption kinetics was
successfully described by the pseudo-second-order model. As listed in Table 4.2, the
determined rate constants of ¢, and %k, were in the ranges 0.410 ~ 2.787 mmol/g and

0.0049 ~ 0.3659 g/mmol/min, respectively.
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Figure 4.6. Adsorption kinetics of a single dye, N719 (a) or MK-2 (b), on TiO;
electrodes.
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Table 4.2. Adsorption kinetics parameters of the adsorption of N719 and MK-2
dyes onto TiO; film

Samples k> [g/mmol- min] q. [mmol/g] R’
N719 N 0.0049 2.594 1.00
MK-2 M 0.0233 2.745 1.00
N 0.0052 2.535 1.00
N719/MK-2
M 0.3623 0.511 1.00
M 0.0197 2.787 1.00
MK-2/N719
N 0.3659 0.41 0.99

The adsorption kinetics of MK-2 involving the anchorage of the long alkyl chains of the
dye on the TiO, film surface was much greater than that of N719. Recently, Wei et al.
reported the effects of rubrene co-sensitized TiO, photoanodes on the performance of
ruthenium dye N719 sensitized solar cells. The result showed that rubrene is an efficient
co-adsorbent for improving the performance of N719-sensitized solar cells [191]. However,
unfavorable interactions between the two dye molecules often decreased the photovoltaic
performance. It is well known that competitive adsorption generally occurs between binary
components on the TiO, film during the adsorption process, unlike in single-component
adsorption. To understand the adsorption mechanism, two successive adsorption cases were
also employed: adsorption of N719 followed by MK-2 (N719/MK-2) and adsorption of
MK-2 followed by N719 (MK-2/N719). Figure 4.7 shows that for the dye-bilayer
formation, interesting results are observed for dye double-layer formation of the N719/MK-2
and MK-2/N719. Figure 4.7(b) shows the adsorption of MK-2 followed by the adsorption
of N719 on the same TiO, film. In this case, MK-2 dye adsorbed at the TiO, surface was
gradually replaced by N719. However, the N719/MK-2 sample showed that N719 adsorbed
on the TiO, surface was not replaced by MK-2 because of the latter’s lower adsorption
(i.e., adsorption equilibrium) affinity on TiO, films (Figure 4.7(a)). This result implies that
the adsorption affinity of N719 was higher than that of MK-2. However, the rate of
adsorption of MK-2 on the nanoporous TiO, surface is faster than that of N719, which

could be attributed to its smaller molecular size, leading to greater diffusion through the
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nanoporous layer. The amounts of N719 and MK-2 adsorbed on the nanoporous TiO,
surface can be successfully controlled based on the adsorption equilibria and Kkinetics
differences of N719/MK-2 vs. MK-2/N719. In the case of the adsorption of N719 and
successive adsorption of MK-2 on the same TiO, film, the adsorption capacities of former
and latter were 2.535 mmol/g and 0.511 mmol/g, respectively. Meanwhile, for the
adsorption of MK-2 and successive adsorption of N719 on the same TiO; film, the MK-2
and N719 adsorption capacities were 2.787 and 0.410 mg/g, respectively. It is interesting to

compare the influence of the adsorption mode on the nanoporous TiO, surface.

4.3.2. Improvement of photovoltaic performance for DSSCs

18
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Figure 4.8. Photocurrent-voltage curves of DSSCs adsorbed with N719, MK-2,
N719/MK-2, and MK-2/N719.
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Table 4.3. Photocurrent-voltage (J-V) curves of N719 and MK-2 dyes

Samples Jee [MA/cm?] Voe [V] Fill Factor [%]  Efficiency [%]
N719 12.86 0.65 60 5.04
MK-2 14.74 0.66 61 5.94

N719/MK-2 11.2 0.67 58 441
MK-2/N719 15.39 0.67 61 6.22

The photocurrent-voltage curves and parameters obtained by recording the /—V curves are
shown in Figure 4.8 and listed in Table 4.3. The energy conversion efficiencies of the
single-dye-sensitized solar cells based on N719 and MK-2 were 5.04% and 5.94%,
respectively. Contrary to our expectations, the successive adsorption of the N719 and MK-2
dyes (i.e., N719/MK-2) showed a decreased photovoltaic conversion efficiency because of
the unfavorable interactions between the two dyes [189]. However, the MK-2/N719 solar
cell yielded a short-circuit current density (Ji) of 1539 mA/cm® an open-circuit
photovoltage (V,.) of 0.67 V, and a fill factor (FF) of 61%, corresponding to a higher

energy conversion efficiency (n) of 6.22%.

Table 4.4. Internal resistance of the cells studied by impedance analysis

Samples R, [R] Ry [R] R [R]
N719 20.0 17.9 26.5
MK-2 20.3 19.9 26.0

N719/MK-2 18.3 20.6 33.6
MK-2/N719 18.0 19.9 25.2

To investigate the factors responsible for the improvement in cell performance, we
conducted impedance analysis to investigate the internal resistance properties of the cells.

The EIS fitting results are shown in Figure 4.9, and the analyzed data are summarized in
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Table 4.4. Generally, the DSSC spectra exhibited two or three semicircles, which were
assigned to the electrochemical reaction at the Pt counter electrode, charge transfer at the
TiO,/dye/electrolyte, and the Warburg diffusion process of I /I5 [194]. The circuit elements
consisted of the interface charge-transfer resistance (R.), constant phase element (CPE),
Warburg impedance (R,), and series resistance (R;). The R.; is the electron transfer
resistance at the Pt/electrolyte interface, and the R.. is the electron transfer resistance at

the TiO,/dye/electrolyte interface.
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Figure 4.9. Nyquist plots (a) and Bode phase plots (b) of TiO, films adsorbed
with N719, MK-2, N719/MK-2, and MK-2/N719.
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The CPE reflects the interfacial capacitance, taking into account the roughness of the
electrodes, which causes the semicircle to be depressed into an ellipse in the Nyquist plots
[195]. The R, values of the four cells, namely, 20.0 four cells, namely,t plots [1, were
similar, as expected. The R.; values decreased obviously from 20.6 d.for N719/MK-2 to
17.9 y for N719. The trend correlated with the cell performance. The cell with N719/MK-2
as the sensitizer had an R.; (33.6 ly markedly higher than those of N719 (26.5 ed MK-2
(26.0 ), and MK-2/N719 (252 6.5 ed difference in R., can be associated with the
binding between the dye molecules and TiO, because the two main dyes in the N719 and
MK-2 extracts aggregated or mixed together on the TiO, films, leading to weaker binding
and higher resistance. The high R, led to a decrease in the J,. This may also explain
why the efficiency of the cell based on N719/MK-2 was so low. Therefore, to improve the
cell efficiency, it is necessary to improve the binding strength between the dyes and
nanoporous TiO, surfaces.

CVs of the DSSC prepared using TiO, films of different adsorption modes are shown in
Figure 4.10. The CVs do not include significant peaks, which would indicate
oxidative-reductive processes, but they do show different current densities under the
illuminated and dark conditions. This difference in current density (Al) with adsorption
mode is ascribed to the different electron transfer rates between the TiO, electrode and the
electrolyte. The values of Al are 12.86, 14.74, 11.20, and 15.39 mA/cm® for the N719,
MK-2, N719/MK-2, and MK-2/N719 electrodes, respectively. The MK-2/N719 layered
electrode has the highest electron transfer value, thus indicating improved dye regeneration
and higher charge collection efficiency, which results in an increase in current density
[129]. The diffusion length of the electron for the MK-2/N719 electrode is shorter than that
for the N719/MK-2 electrode. When an MK-2/N719 electrode was used, the injected
electrons did not reach the electrode and underwent electron recombination. Additionally,
the different electron transfer rates between the TiO, electrode and the electrolyte optimized
at the MK-2/N719 electrode according to the diffusion-limited current density (is,) were

used to obtain the diffusion constant of /3.
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4.4. Conclusions

To improve the photovoltaic conversion efficiency, a double layer of the N719 and
MK-2 dyes as sensitizers was successfully formulated on the nanoporous TiO, surface. The
adsorption properties of photoelectrodes that either adsorbed a single dye (N719 or MK-2)
or underwent a successive adsorption of both dyes were compared with respect to electron
generation and electron transfer. The energy conversion efficiency in terms of adsorption
mode was in the range of 4.41 ~ 6.22%. The amounts of N719 and MK-2 dyes adsorbed
on the nanoporous TiO, surface could be successfully controlled based on the adsorption
equilibria and kinetics differences of the two dyes. The MK-2 dye was adsorbed faster and
with weak binding to TiO,, whereas the N719 dye diffused relatively slower but
experienced stronger binding. The systematic studies of the adsorption equilibria and

kinetics reported in this work can be widely applied for co-sensitized TiO, electrodes.
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Chapter 5. Light-Harvesting over a Wide Wavelength
Range using a Variety of Natural Dyes with
Rainbow Dye-Sensitized Solar Cells

5.1. Introduction

Dye-sensitized solar cells (DSSCs) have attracted considerable attention due to their
environmental-friendliness and low cost of production [171]. DSSCs consist of a
nanocrystalline porous semiconductor oxide electrode, an adsorbed dye, an electrolyte, and a
counter electrode [196]. Many metal complexes and organic dyes have been used as
sensitizers in DSSCs. In general, the ruthenium dyes N719 and N3 are very expensive and
environmentally toxic. Therefore, numerous metal-free organic dyes have been investigated
as potential candidates in DSSCs [160]. Natural dyes provide a viable alternative to
expensive organic-based DSSCs because of their cost-efficiency, non-toxicity, and complete
biodegradation. Many natural dyes extracted from various plants, flowers, fruits, and leaves
have been utilized as sensitizers in DSSCs.

The energy conversion efficiencies of natural dyes are much lower than those of organic
dyes. To enhance the DSSC performance, some researchers have investigated dye cocktail
solutions, which consists of two different dyes, one of which absorbs at a lower
wavelength, to capture light from the visible to the near-infrared. Recently, DSSC
performance enhancements using two or more dyes in such combinations have been
reported [197]. Furthermore, it is well known that combinations of yellow, blue, and red
give various green, violet, orange, and black colors (Figure 5.1). It is therefore useful to
investigate the adsorption and electrochemical properties of two or three dyes on TiO, thin
films for rainbow DSSCs.

The aim of this work was to enhance the photovoltaic performance based on the
adsorption characteristics and electrochemical properties of dyes on TiO, thin films. To this
end, adsorption kinetics data were obtained and analyzed using a pseudo-second-order

model to clarify the adsorption mechanisms of gardenia yellow, blue, and red dye mixtures
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for harvesting light over a wide wavelength range in rainbow DSSCs.
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Figure 5.1. Wavelengths of rainbow colors.

Table 5.1. Wavelengths of rainbow colors

Wavelengths(nm) Color Wavelengths(nm) Color
380~430 Bluish purple 558~569 Yellow green
430~467 Purplish blue 569~573 Greenish yellow
467~483 Blue 573~578 Yellow
483~488 Greenish blue 578~586 Yellowish orange
488~493 Blue green 586~597 Orange
493~498 Bluish green 597~640 Reddish orange
498~530 Green 640~780 Red
530~558 Yellowish green - -
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5.2. Experimental

5.2.1. Fabrication of nanoporous TiO, electrodes for rainbow DSSCs

TiO, paste (DSL18NR-T, Dyesol co.) was used to prepare TiO, films for the DSSCs. The
paste was coated on pre-cleaned fluorine-doped tin oxide (FTO) conducting glass
(Pilkington, TEC-8, 80% transmittance in the visible region) by a squeeze-printing technique
followed by annealing at 723.15 K for 30 min. TiO, photoelectrodes were deposited on
FTO glass substrates with active areas of 2.0 x 2.0 cm”* and 0.5 x 0.5 cm® for adsorption

kinetics and photovoltaic efficiency measurements, respectively.

“Mixing’ 3M Tape (ca. 65 um)
8 g 8 \ b o oooo N Glass T—
- I & E |
00 8 7 oo © ’ V
TiO, powder TiO, paste FTO substrate
TiO, thin film

(Doctor blade, thickness : 5~10 pm)

Figure 5.2. Preparation of TiO, film using the doctor blade method.

5.2.2. Adsomption properties of rainbow photoelectrodes

Natural yellow, blue, and red dyes from gardenia were purchased as powders from the
Naju Nature Dyeing Culture Center (Korea). The dyes were dissolved in distilled water.
The preparation of the electrode and electrolyte and the assembly of the rainbow DSSCs
have been described in our previous work [198]. The adsorption kinetics experiments were
conducted by immersing a TiO, cell with an active area of 4 cm’ in a small adsorption
chamber filled with an aqueous solution of gardenia dyes [168]. The amount of adsorption

at time (¢q,) was calculated using Equation 5.1:
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o= (C—C)VIW Equation 5.1

where Cj and C; are the liquid-phase concentrations (mg/L) of the natural dyes at the start
and at time ¢, respectively; V' is the volume of the solution; and W is the mass of
adsorbent used. The concentrations of mixtures consisting of gardenia yellow, blue, and red
(denoted by YBR) were determined from the Beer-Lambert law at 442, 582, and 530 nm
using an ultraviolet (UV) spectrophotometer (Shimadzu UV-160A, Japan).

5.2.3. Characterization of rainbow DSSCs

The resulting concentration was analyzed based on the absorbance of the solution at 442
nm, 582 nm and 530 nm using a UV/vis spectrophotometer (Shimadzu UV-160A, Japan).
Electrochemical impedance spectroscopy (EIS) measurements were performed using AC
impedance (CH Instruments CHI 660E, USA) over the frequency range of 0.1 ~ 10° Hz
with amplitudes of V,. + 5 mV. The current-voltage (/-V) curves were measured using
white-light irradiation from a 200-W xenon lamp (McScience, Korea). The active cell area
and the incident light intensity were 0.25 cm’ and 100 mW/cm®, respectively. The J-V
curves were used to calculate the short-circuit current density (J,.), open-circuit voltage

(Voe), fill factor (FF), and overall conversion efficiency (/%4 of the DSSC.
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5.3. Results and discussion

5.3.1. Characteristics of photoelectrode rainbow dyes

Figure 5.3 shows photographs and the UV-visible absorption spectra of the gardenia
yellow, blue, and red dyes dissolved in aqueous solution. Clear differences among the
absorption characteristics of the three dyes were observed. The absorption maxima for the
yellow, blue, and red dyes were observed at wavelengths of approximately 442, 582, and
530 nm, respectively. Rainbow DSSCs with these three dyes adsorbed could therefore
potentially be very effective for harvesting light over a wide range of wavelengths,
resulting in higher photovoltaic conversion efficiencies. To systematically study the influence
of the properties of the adsorption of the dye molecules onto the TiO, films on the power
conversion efficiency of rainbow DSSCs, the effects on the DSSC photovoltaic performance

of the quantity of dye adsorbed were analyzed.
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Figure 5.3. Absorption spectra of gardenia yellow, blue, and red and a mixture
of the three dyes (YBR).
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5.3.2. Improvement of the photovoltaic performance for DSSCs

Figure 5.4 shows the effect of the adsorption time (i.e., the adsorbed amount) on the /—
V' curves for a nanocrystalline solar cell. The short-circuit currents (J,), open-circuit
voltages (V,.), fill factors (FF), and overall conversion efficiencies (Nes) of the rainbow
DSSCs are summarized in Table 5.2. It is interesting to compare the amount of adsorbed
dye with the photocurrent density of the corresponding DSSC. To control the adsorption
amount, the working electrodes were immersed in cocktail dyes of yellow, red, and blue
for different adsorption times (3, 6, 12, 24, 30, 36, 48, 72, 96, and 120 h) before

constructing the cell.
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Figure 5.4. Photocurrent-voltage curves for YBR dye adsorption in terms of time.
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As expected, the photocurrent density increased with increasing adsorption amount (i.e.,
adsorption time). The high adsorption capacity (i.e., increase in adsorption time up to 30 h)
with low charge-transfer resistance may give rise to a superior J,. for the rainbow DSSCs,
most likely because of monolayer adsorption. However, the photocurrent density decreased
with increasing immersion time (36 h). This result implies that dye molecules adsorbed on

the surface negatively affected the charge-transfer resistance (i.e., dye agglomeration).

Table 5.2. Energy conversion efficiency of YBR dye adsorption in terms of time

Time [h] Je [mA/cm’] Voe [V] Fill Factor [%]  Efficiency [%]
3 0.42 0.055 52 0.012
6 0.46 0.070 68 0.022
12 0.48 0.117 64 0.036
24 0.49 0.111 67 0.036
30 0.48 0.119 66 0.037
36 0.45 0.102 68 0.031
48 0.44 0.087 60 0.023
72 0.41 0.044 54 0.010
96 0.35 0.031 47 0.005
120 0.24 0.025 33 0.002
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Figure 5.5. Nyquist plots of YBR dye in terms of adsorption time.
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The Nyquist complex plane impedance plots, Z' (real) versus Z" (imaginary), are
presented in Figure 5.5. The Nyquist plots for the rainbow DSSC in terms of adsorption
time show that the resulting impedance spectra differ depending on adsorption time.

The R, value of the middle frequency range (1 ~ 1000 Hz) is the electron-transfer
resistance at the TiO,/rainbow dye/electrolyte interface. Variations in R. are associated with
binding between the natural dye molecules and the TiO, film. The R, values decreased for
adsorption times up to 30 h and then increased after 36 h, as cocktail dye aggregation on
the TiO, films led to weaker binding and higher resistance. The series resistances (R;) of

the cells were similar for all adsorption times except 3 h (Table 5.3).

Table 5.3. Internal resistances determined by the impedance analysis of YBR dye
in terms of adsorption time

Time [h] Ry [R] R [kR]
3 87.3 2.03
6 14.2 3.88
12 22.1 1.80
24 21.8 1.71
30 17.3 1.56
36 18.6 1.57
48 18.2 2.48
72 17.2 7.15
96 17.1 14.01
120 18.2 15.28

_ 86 —
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5.3.3. Adsomption study of nanoporous TiO, electrodes on rainbow dyes

To avoid agglomeration of dye molecules, the dye adsorption should be conducted under
supercritical conditions. The conversion efficiency of the rainbow DSSC was strongly
dependent on the adsorption properties of the dye cocktail on the TiO, film. The
adsorption kinetic data were directly obtained in a small adsorption chamber, without a
desorption step. The adsorption kinetics of gardenia yellow, blue, and red dyes on a TiO,
film from aqueous solutions were obtained and then analyzed using a pseudo-second-order
model. Kinetic data provide valuable information for understanding the mechanism of
sorption processes. Figure 5.6 shows the obtained concentration decay curves of the
multicomponent adsorption of gardenia yellow, blue, and red on the TiO, film in a small
adsorption chamber. The solid lines are the simulated results obtained using the Kkinetic
model. With increasing time, the amounts of gardenia yellow, blue, and red dyes adsorbed
gradually increased. The adsorption affinity of gardenia yellow, involving anchorage of the
hydroxyl groups of the dye on the TiO, film surface, was much greater than those of
gardenia blue and red. As expected, the adsorption of any of these three dyes was infl
uenced by the other components. The adsorption capacities of gardenia yellow, blue, and
red were 1532 mg/g, 262 mg/g, and 192 mg/g, respectively (Table 5.4). The adsorption
kinetic values determined from the pseudo-second-order model were in the range 8.01 x

10° to 3.32 x 107 g/(mg min).

Table 5.4. Pseudo-second-order kinetic parameters of YBR dyes

Dye k; [g/mg-min] q. [mg/g] R’
Yellow 8.01x107 1532 0.96
Blue 9.13x10™ 262 0.79
Red 3.32x107 192 0.68
— 8’7 —_
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Figure 5.6. Adsorption kinetics (a) and absorption spectra (b) of YBR dye



5.3.4. Characteristics of commercial natural black dye

As shown in Figure 5.1, black can be obtained by mixing yellow, blue, and red. Figure
5.7(a) shows the absorption spectra of the commercial natural black dye dissolved in water
at various concentrations from 78 to 5000 mg/L. Three sharp peaks were observed in the
range 300 ~ 700 nm. Based on the fact that the black dye consisted of three dyes, namely
gardenia yellow, blue, and red, we analyzed the concentration using the Beer-Lambert law.

Because the total absorbance (Aww) of the solution at a given wavelength is equal to the
sum of the absorbances of the individual components (as in Equation 5.2), it is possible to

analyze the individual constituents of a mixture, even when their spectra overlap.

Atotal = ABSl + ABSZ + ABS3 Equation 52

Clearly, from Figure 5.7, every wavelength contains contributions from each of gardenia
yellow (442 nm), blue (582 nm), and red (530 nm). To overcome this problem, we must
first choose wavelengths that are well separated from another (i.e., A;, A, and A; in
Figure 5.7)

The absorbance of a solution containing three chromophores, gardenia yellow (442 nm),
blue (582 nm), and red (530 nm), is then equal to the sum of the absorbances of each of

the components at A;, A, and As:

At Al=¢e) Co+ &) G+ &) G, Equation 5.3
Ay i AP =¢e2 Ci+ e/ C+ e/ C, Equation 5.4
Az A =€ C+ ey C+ e,/ C, Equation 5.5

2

Nine molar extinction coefficients (exl, €, Ex, syl, syz, 5y3, e, €, and 623) can
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be derived from standard solutions containing only gardenia yellow (442 nm), blue (582
nm), and red (530 nm). Then, if the absorbances of the mixture are measured at A, A,
and A3, the concentrations of the individual components can be calculated by solving the
three simultaneous equations (Equations 5.3, 5.4, and 5.5) using the Gauss-Jordan method.
Before applying the law, we constructed calibration curves for pure gardenia yellow,
blue, and red at 442, 582, and 530 nm (Table 5.5). The determined concentrations of the
commercial black dye were 273 mg/L of yellow, 5868 mg/L of red, and 318 mg/L of
blue. Figure 5.7(b) shows the absorption spectra of a synthetic YBR dye consisting of
gardenia yellow (273 mg/L), blue (318 mg/L), and red (5,868 mg/L) dissolved in water.
The spectra observed for the commercial black dye and synthetic black dye (YBR) were
similar. These results suggest that the Beer-Lambert law can be successfully used to

determine the concentrations of natural dye mixtures for rainbow DSSCs.

Table 5.5. Calibration parameters of gardenia yellow, blue, and red for the Beer-Lambert

law
UV [nm] Yellow [L/mg] Blue [L/mg] Red [L/mg]
442 2.385x107 2.927x10* 3.010x107
530 8.737x10° 6.474x10™ 5.718x107
582 8.308x10° 9.646x10™ 2.069x107

Collection @ chosun



3.5

——35,000 mg/L
% ——2,500 mg/L
—1,250 mg/L
—625mg/L
2.5 —313 mg/L
g 156 mg/L
3l —— 78 mg/L
2
s
= 1.5
=
-
1.0
0.5
0.0
300 400 500 600 700 800
Wavelength, nm
3.5
===Qriginal
e 1 /2 dilution
3.0 ——1/4 dilution
e 1 /8 dilution
25 ——1/16 dilution
e 1/32 dilution
2y L ——1/64 dilution
=
2
| =
2 15
£
-
1.0
0.5
0.0 : - e
300 400 500 600 700 800

Wavelength, nm

Figure 5.7. Absorption spectra of commercial black dye(a) and synthetic YBR dye(b).
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5.4. Conclusions

We investigated rainbow DSSCs for light-harvesting over a wide wavelength range. It
was found that a rainbow DSSC could be successfully produced using natural dyes, namely
gardenia yellow, blue, and red. The adsorption capacities of gardenia yellow, blue, and red
were 1532 mg/g, 262 mg/g, and 192 mg/g, respectively. The adsorption kinetics values
determined from a pseudo-second-order model were in the range 8.01 es d” to 3.32 eter”
g/(mg min). The photocurrent density decreased with increasing adsorption time (36 h). The
conversion efficiency of the rainbow DSSCs was highly dependent on the adsorption

properties of the cocktail dyes onto the TiO, films.
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Chapter 6. Overall Conclusions

The studies conducted in this work mainly focused on comparing the adsorption
properties of photoelectrodes that had adsorbed either a single dye or a mixture of the two
and three dyes with respect to electron generation and electron transfer. The energy
conversion efficiency in terms of adsorption mode (i.e., successive or cocktail adsorption)
was measured. The amounts of dyes adsorbed on the nanoporous TiO, surface could be
successfully controlled based on the adsorption equilibria and kinetics differences of two
and three dyes. The first dye adsorbed faster and with weak binding to TiO,, whereas the
second dye diffused more slowly but with stronger binding. To improve the photovoltaic
conversion efficiency, the dyes from adsorption mode as sensitizers were successfully
formulated on the nanoporous TiO, surface to harvest light over a wide wavelength range.
The systematic studies of the adsorption equilibria and kinetics obtained in this work can
be widely applied for other DSSCs. According to the performed experiments and

calculations, the following conclusions can be drawn.

B Hierarchically Structured Photoelectrode Biomimetic Replication from Butterfly Wings
B Fine hierarchical TiO, structures were successfully synthesized using butterfly-wing
templates as biotemplates and used as a DSSC electrode.
* The prepared samples have homogeneous pores, ca. 0.1 ~ 0.5 nm in size, and
large pore volumes and surface areas.
* BW-TiO, showed almost single-phase anatase TiO, (JCPDS no. 211272).
* The average crystallite size of BW-TiO, is approximately 12.1 nm.
B The photoelectrode performance is strongly dependent on the light adsorption and
light-harvesting properties.
* The band gaps for the NP-TiO, and BW-TiO, films were calculated to be 3.22
and 3.18 eV, respectively.
e The electron lifetimes in NP-TiO, and BW-TiO, films determined from EIS

measurements are 6.1 and 7.4 ms.
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The photovoltaic conversion efficiencies were found to be 3.48 and 4.32%,
respectively.
The hierarchical structures have an important and positive impact on light

absorption and light-harvesting properties.

B Successive Adsorption of N719 and MK-2 for Co-Sensitization in Dye-Sensitized Solar
Cells

B The systematic studies of the adsorption equilibria and kinetics obtained in this work

can be widely applied for co-sensitized TiO, electrodes.

The adsorption properties of photoelectrodes adsorbing either a single dye (N719 or
MK-2) or two dyes successively were compared with respect to electron generation
and electron transfer.

The energy conversion efficiency in terms of adsorption mode was 4.41 ~ 6.22%.
The determined rate constants of g. and k, were approximately 2.594 mmol/g and
0.0049 g/mmol min (N719) and 2.745 mmol/g and 0.0233 g/mmol min (MK-2),
respectively.

The adsorption capacities of the former and latter were 2.535 mmol/g and 0.511
mmol/g, respectively. On the other hand, for the adsorption of MK-2 and
successive adsorption of N719 on the same TiO, film, the MK-2 and N719
adsorption capacities were 2.787 mmol/g and 0.410 mg/g, respectively.

The amounts of N719 and MK-2 dyes adsorbed on the nanoporous TiO, surface
could be successfully controlled based on the adsorption equilibria and kinetics
differences between the two dyes.

The MK-2 dye adsorbed faster with weak binding to TiO,, whereas the N719 dye

diffused more slowly but with stronger binding.

B Light-Harvesting over a Wide Wavelength Range using a Variety of Natural Dyes by
Rainbow Dye-Sensitized Solar Cells

B The conversion efficiency of the rainbow DSSC was strongly dependent on the

adsorption properties of the cocktail dyes on TiO; films.

The adsorption capacities of gardenia yellow, blue, and red were 1532 mg/g, 262
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mg/g, and 192 mg/g, respectively.

* The adsorption kinetic values determined from a pseudo-second-order model were in
the range of 8.01 x 10° to 3.32 x 107 g/(mg min).

* The photocurrent density decreased with increasing adsorption time (36 h).

* The determined concentrations of the commercial black dye were 237 mg/L of
yellow, 5868 mg/L of red, and 318 mg/L of blue.

* The absorption spectra of a synthetic YBR dye consisting of gardenia yellow (237
mg/L), blue (318 mg/L), and red (5,868 mg/L) dissolved in water were recorded.

* The spectra observed for the commercial black dye and synthetic black dye (YBR)
were similar. These results suggest that the Beer-Lambert law can be successfully
used to determine the concentrations of natural dye mixtures for rainbow DSSCs.

* It was found that a rainbow DSSC could be successfully produced using natural

dyes, namely gardenia yellow, blue, and red.
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