

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

2016 년 2 월

박사학위 논문

An Autonomously Self-Aware

and Adaptively Reconfigurable

System for FPGA-Based

Network-on-Chips

조선대학교 대학원

컴 퓨 터 공 학 과

Abba Sani

[UCI]I804:24011-200000265165

An Autonomously Self-Aware

and Adaptively Reconfigurable

System for FPGA-Based

Network-on-Chips

2016 년 2 월 25 일

조선대학교 대학원

컴 퓨 터 공 학 과

Abba Sani

An Autonomously Self-Aware

and Adaptively Reconfigurable

System for FPGA-Based

Network-on-Chips

지도교수 이 정 아

이 논문을 컴퓨터공학 박사학위신청 논문으로 제출함

2015 년 10 월

조선대학교 대학원

컴 퓨 터 공 학 과

Abba Sani

- 1 -

Table of Contents

LIST OF TABLES .. 6

LIST OF FIGURES ... 9

LIST OF ABBREVIATIONS .. 13

초 록 .. 17

ABSTRACT .. 20

I. INTRODUCTION .. 23

A. OVERVIEW ... 23

B. MOTIVATION ... 28

C. DISSERTATION OBJECTIVES .. 31

D. CONTRIBUTIONS .. 32

E. DISSERTATION OUTLINE .. 35

II. BACKGROUND AND RELATED WORKS 39

A. THE TARGET NOC ARCHITECTURES .. 39

1. 2D mesh network.. 40

2. 2D torus network .. 41

3. Fat-tree network ... 42

B. NOC ROUTER MICRO-ARCHITECTURE .. 43

- 2 -

1. NoC credit-based virtual channel router micro-architecture 43

2. NoC switch micro-architecture .. 44

3. NoC buffer management ... 46

C. FPGA-BASED NOC AND ROUTER PARAMETERS .. 47

1. Configurable NoC and router parameters 47

2. Scalable on-chip networks and router configurations 50

D. RELATED WORKS ... 51

1. FPGA-based network-on-chips ... 51

2. Self-adaptive and fault tolerant routing 53

3. Self-selective routing .. 57

4. Self-healing routing ... 58

5. On-chip sensor network monitoring and control using dynamically

reconfigurable autonomous sensor agents .. 60

E. CHAPTER SUMMARY... 65

III. A PARAMETRIC-BASED PERFORMANCE EVALUATION AND

DESIGN TRADE-OFFS FOR THE INTERCONNECT ARCHITECTURES

USING FPGAS FOR NETWORK-ON-CHIPS 66

A. FPGA-BASED NETWORK PERFORMANCE AND SELF-ADAPTIVE MODELS 66

1. Bayesian networking model .. 66

2. Proposed FPGA-Based network performance model 66

3. Proposed Self-adaptability model .. 70

B. FPGA EXPERIMENTAL RESULTS ... 71

- 3 -

1. FPGA synthesis results .. 72

2. Performance comparison of the synthesized FPGA network clock

frequency (CLK_FREQ) results ... 74

3. FPGA network cost performance evaluation 87

4. Performance analysis of the critical path delay............................. 93

C. NETWORKS-ON-CHIP SIMULATION RESULTS ... 99

1. Simulation environment .. 99

2. Synthetic workload and traffic pattern .. 100

3. Performance evaluation metrics .. 101

4. Comparison of the On-chip network latency and throughput 102

5. Packet latency versus accepted network traffic 111

D. CHAPTER SUMMARY... 118

IV. AN AUTONOMOUS SELF-AWARE AND ADAPTIVE FAULT

TOLERANT ROUNTING TECHNIQUE (ASAART) 119

A. AUTONOMOUS SYSTEM .. 119

1. Methodology to autonomous self-aware and adaptation for routing

in wireless sensor networks .. 121

2. Modular approach to fault propagation in wireless sensor networks

 124

B. PROPOSED METHODOLOGY TO AUTONOMOUS SELF-AWARE AND ADAPTATIVE

FAULT TOLERANT ROUTING TECHNIQUE (ASAART) ... 126

1. Autonomous self-aware and adaptive route repair in ASAART

- 4 -

protocol ... 131

2. Reliable and secure route formation in ASAART 133

C. PERFORMANCE EVALUATIONS ... 134

1. Simulation environment .. 135

2. Simulation parameters .. 136

3. Performance evaluation metrics .. 137

D. SENSOR NETWORK SIMULATION RESULTS ... 138

1. Sensor network density test (First scenario) 139

2. Sensor network density test (Second scenario) 141

3. Sensor network density test (Third scenario) 144

4. Transient node failure test ... 147

5. Permanent node failure test .. 154

E. CHAPTER SUMMARY... 160

V. FPGA-BASED DESIGN OF AN INTELLIGENT ON-CHIP SENSOR

NETWORK MONITORING AND CONTROL USING DYNAMICALLY

RECONFIGURABLE AUTONOMOUS SENSOR AGENTS 162

A. THE IEEE 1451 STANDARD FOR SMART SENSOR INTERFACE 162

1. On-chip sensor network monitoring and control system 163

B. PROPOSED DESIGN METHODOLOGY .. 166

1. On-chip sensor network monitoring and controller interface design

 170

2. On-chip temperature sensor NI design 174

- 5 -

3. On-chip voltage sensor NI design .. 177

4. On-chip thermal sensor NI design ... 177

C. ON-CHIP SENSOR NETWORK SIMULATION RESULTS 179

1. Simulation procedure .. 179

2. Discussion of simulation results ... 180

D. FPGA ON-CHIP SENSOR NETWORK EXPERIMENTAL PROCEDURE AND CASE

STUDY 184

1. Experimental setup ... 184

2. Case study .. 186

3. FPGA logic resource utilization... 192

4. FPGA logic resource utilization comparison with previous works

 195

E. FPGA ON-CHIP SENSOR NETWORK EXPERIMENTAL RESULTS AND

DISCUSSION .. 197

F. EFFECT OF DYNAMIC RECONFIGURATION REFRESH TIME ON AN FPGA-

MEASURED ON-CHIP SENSOR READING ACCURACY .. 198

G. CHAPTER SUMMARY... 209

VI. CONCLUSIONS AND FUTURE WORK 210

BIBLIOGRAPHY ... 215

ACKNOWLEDGEMENT ... 234

LIST OF PUBLICATIONS .. 237

- 6 -

List of Tables

(Table 1) Router configurations for different network-on-chip architectures 50

(Table 2) Synthesis results of 96 different on-chip Interconnect network

configurations with (FDW of 8 bits, VCs from 2 to 6, and FBD of 8 bits to 64

bits) on Virtex-7 FPGA device. ... 77

(Table 3) Synthesis results for 96 different on-chip interconnect network

configurations with (FDW of 16 bits, VCs from 2 to 6, and FBD of 8 bits to 64

bits) on Virtex-7 FPGA device. ... 80

(Table 4) Synthesis results of 96 different on-chip Interconnect network

configurations with (FDW of 32 bits, VCs from 2 to 6, and FBD of 8 bits to 64

bits) on the Virtex-7 FPGA device. ... 83

(Table 5) Synthesis results of 96 different on-chip Interconnect network

configurations with (FDW of 64 bits, VCs from 2 to 6, and FBD of 8 bits to 64

bits) on the Virtex-7 FPGA device. ... 86

(Table 6) The critical path delay of 78 different NoC configurations with (FDW of

32 bits, VCs from 2 to 6, and FBD of 8 bits to 64 bits) on the Virtex-7 FPGA

device. ... 95

(Table 7) The critical path delay of 78 different NoC configurations with (FDW of

64 bits, VCs from 2 to 6, and FBD of 8 bits to 64 bits) on Virtex-7 FPGA

device. ... 95

(Table 8) Traffic Patterns used in this dissertation. .. 101

(Table 9) Simulation Parameters ... 137

- 7 -

(Table 10) FPGA post synthesis (device placement) resource utilization

implemented on Xilinx Zynq evaluation kit ZC702, XC7Z020 CLG484-1 FPGA

device. ... 193

(Table 11) FPGA post implementation (device routing) resource utilization

implemented on Xilinx Zynq evaluation kit ZC702, XC7Z020 CLG484-1.

FPGA device. .. 194

(Table 12) FPGA low-level primitive resource utilization implemented on Xilinx

Zynq Evaluation kit ZC702, XC7Z020 CLG484-1 FPGA device. 194

(Table 13) FPGA on-chip sensor component post placement and routing power

resource utilization implemented on Xilinx Zync evaluation kit ZC702,

XC7Z020 CLG484-1 FPGA device. .. 195

(Table 14) FPGA logic resource utilization comparison with previous works. ... 196

(Table 15) FPGA-measured on-chip Sensor #1 reading with dynamic

reconfiguration refresh time of 1000 ms ... 199

(Table 16) FPGA-measured on-chip Sensor #2 reading with dynamic

reconfiguration refresh time of 1000 ms ... 199

(Table 17) FPGA-measured on-chip Sensor #3 reading with dynamic

reconfiguration refresh time of 1000 ms ... 200

(Table 18) FPGA-measured on-chip Sensor #4 reading with dynamic

reconfiguration refresh time of 1000 ms ... 200

(Table 19) FPGA-measured on-chip Sensor #5 reading with dynamic

reconfiguration refresh time of 1000 ms ... 201

(Table 20) FPGA-measured on-chip Sensor #1 reading with dynamic

- 8 -

reconfiguration refresh time of 500 ms ... 202

(Table 21) FPGA-measured on-chip Sensor #2 reading with dynamic

reconfiguration refresh time of 500 ms ... 202

(Table 22) FPGA-measured on-chip Sensor #3 reading with dynamic

reconfiguration refresh time of 500 ms ... 203

(Table 23) FPGA-measured on-chip Sensor #4 reading with dynamic

reconfiguration refresh time of 500 ms ... 203

(Table 24) FPGA-measured on-chip Sensor #5 reading with dynamic

reconfiguration refresh time of 500 ms ... 204

(Table 25) FPGA-measured on-chip Sensor #1 reading with dynamic

reconfiguration refresh time of 100 ms ... 206

(Table 26) FPGA-measured on-chip Sensor #2 reading with dynamic

reconfiguration refresh time of 100 ms ... 206

(Table 27) FPGA-measured on-chip Sensor #3 reading with dynamic

reconfiguration refresh time of 100 ms ... 207

(Table 28) FPGA-measured on-chip Sensor #4 reading with dynamic

reconfiguration refresh time of 100 ms ... 207

(Table 29) FPGA-measured on-chip Sensor #5 reading with dynamic

reconfiguration refresh time of 100 ms ... 208

(Table 30) Comparison results of the sensor reading accuracy versus dynamic

reconfiguration refresh time. ... 208

- 9 -

List of Figures

(Figure 1) Illustration of the NoC topologies. .. 39

(Figure 2) Shows the NoC credit-based virtual channel router micro-architecture

 .. 44

(Figure 3) Shows NoC input-output buffered switch micro-architecture. 45

(Figure 4) NoC buffer management illustrating head-of-line blocking (HoL). ... 47

(Figure 5) Shows the proposed network performance model. 67

(Figure 6) Shows the FPGA synthesized clock frequency performance with 8-bit

FDW. ... 78

(Figure 7) Shows FPGA synthesized clock frequency performance with 16-bit

FDW. ... 81

(Figure 8) Shows the FPGA synthesized clock frequency performance with 32-

bit FDW. .. 84

(Figure 9) Shows FPGA synthesized clock frequency performance with 64-bit

FDW. ... 87

(Figure 10) Illustration of the FPGA Network Cost Performance with 8-bit FDW

 .. 91

(Figure 11) Illustration of the FPGA Network Cost Performance with 16-bit FDW

 .. 91

(Figure 12) Illustration of the FPGA Network Cost Performance with 32-bit FDW

 .. 92

(Figure 13) Illustration of the FPGA Network Cost Performance with 64-bit FDW

- 10 -

 .. 93

(Figure 14) Illustration of the critical path delay with 32-bit FDW 98

(Figure 15) Illustration of the critical path delay with 64-bit FDW. 98

(Figure 16) Shows the network performance under nearest neighbor traffic

pattern for Mesh100, Torus100 and Fattree100 network configurations. 105

(Figure 17) Shows the network performance under uniform traffic pattern for

Mesh100, Torus100 and Fattree100 network configurations. 106

(Figure 18) Shows the network performance under tornado traffic pattern for

Mesh100, Torus100 and Fattree100 network configurations. 108

(Figure 19) Shows the network performance under random permutation traffic

pattern for Mesh100, Torus100 and Fattree100 network configurations. 109

(Figure 20) Shows packet latency versus accepted traffics under nearest neighbor

traffic pattern for Mesh100, Torus100 and Fattree100 network

configurations. ... 114

(Figure 21) Shows packet latency versus accepted traffics under uniform traffic

pattern for Mesh100, Torus100 and Fattree100 network configurations. 115

(Figure 22) Shows packet latency versus accepted traffics under tornado traffic

pattern for Mesh100, Torus100 and Fattree100 network configurations. 116

(Figure 23) Shows packet latency versus accepted traffics under random

permutation traffic pattern for Mesh100, Torus100 and Fattree100 network

configurations. ... 117

(Figure 24) Shows modular approach to fault propagation in wireless sensor

network. .. 126

- 11 -

(Figure 25) Shows the proposed autonomous self-aware and adaptive route

repair technique in (ASAART). ... 132

(Figure 26) Shows SENSE simulator internal structure of sensor node. 136

(Figure 27) Shows sensor network density test (first simulated scenario) with

source node = 10 .. 141

(Figure 28) Shows sensor network density test (second simulated scenario) with

source node = 20 .. 144

(Figure 29) Shows sensor network density test (third simulated scenario) with

source node = 40 .. 147

(Figure 30) Shows transient node failure rate test (fourth simulated scenario)

with source node = 10 .. 149

(Figure 31)Shows transient node failure rate test (fourth simulated scenario) with

source node = 20 .. 151

(Figure 32) Shows transient node failure rate test (fourth simulated scenario)

with source node = 40 .. 154

(Figure 33) Shows permanent node failure rate test (fifth simulated scenario)

with source node = 10 .. 156

(Figure 34) Shows permanent node failure rate test (fourth simulated scenario)

with source node = 20 .. 158

(Figure 35) Shows permanent node failure rate test (fifth simulated scenario)

with source node = 40 .. 160

(Figure 36) Illustration of the IEEE 1451 standard for smart TI [65]............... 163

(Figure 37) Shows on-chip sensor network monitoring and control system using

- 12 -

autonomous sensor agents ... 166

(Figure 38) Shows the proposed on-chip sensor network monitoring and control

system using autonomous sensor agents on 4 × 3 mesh architecture 169

(Figure 39) Shows the proposed real-time-triggered on-chip sensor network

communication protocol ... 169

(Figure 40) Shows on-chip sensor network monitoring and controller hardware

interface design ... 173

(Figure 41) Illustration of the pseudocode for the bang-bang (on/off) controller

module operation ... 173

(Figure 42) Shows on-chip temperature sensor NI design 176

(Figure 43) Shows on-chip voltage sensor NI design 177

(Figure 44) Shows on-chip thermal sensor NI design 178

(Figure 45) Illustration of the simulation waveforms for transient analysis of the

variation in the reference voltage and the measured voltages over time...... 183

(Figure 46) Ilustration of the simulation waveforms of the transient analysisthe

voltagesvariation in the voltage source and measured voltages over time. .. 184

(Figure 47) Shows the block design of on-chip sensor network monitoring and

control system using XADC and SYSMON IP cores 186

(Figure 48) Illustration of the on-chip sensor network monitoring and control

system. ... 187

(Figure 49) Shows on-chip sensor network monitoring and control system

(hardware interface) ... 190

(Figure 50) Shows on-chip sensor network monitoring and control system...... 191

- 13 -

List of Abbreviations

Α Total Number of Network Packets.

 () Autuator Input.

 n() On-Chip Controller Input Signal.

2D Two Dimensions.

ADC Analog to Digital Converter.

AREA Synthesized PFGA Area used as logic and routing

ARM Advanced RISC Machine.

ASAART Autonomous Self-Aware and adaptive Routing

 Technique.

Auto-Self-Awareness- Auto Self-Awareness Back-off Delay Strategy.

Back-offDelay

Auto-Self-Awareness- Auto Self-Awareness Back-off Delay

Back-offDelay-Slotted Slotted Strategy.

Bdca Determines the Period in which Data are

 transmitted by the Cluster head to the Cluster

 Members.

BFT Butterfly Fat-tree.

CAN Controller Area Network.

CLK_FREQ, CLKF Synthesized FPGA Clock Frequency.

CPU Central Processing Unit.

DAG Directed Acyclic Graph.

DAMQ Dynamically Allocatable Multiple Queue.

do – d3 Input Pins.

E Set of Edges.

FBD Flit Buffer Depth.

- 14 -

FDW Flit Data Width.

FIFO First in First Out.

FREE Real-time Free Slot.

Global-Awareness- Global Awarness Back-off Delay Strategy.

Back-offDelay

HDL Hardware Description Language.

HoL Head on Line.

HopCountDest Number of Hop Counts from Current Node to the

Destination.

i Index Variable.

IEEE Institute of Electrical and Electronic Engineering.

INST Defines the Time Interval between the

 Transmission and Reception of the Sensor Data.

IP Intellectual Property.

K Network Packet.

K, t Network Nodes.

Kn() On-Chip Sensor Signal.

Lm () Monitored Controller Output.

Local-Awareness- Local Awareness Back-off Delay Strategy.

Back-offDelay

LUT Look Up Table.

MHz Megahertz.

MoT Mesh of Tree.

MUX Multiplexer Interface.

N, I Index Variables.

NCAP Network Capable Application Processor.

NI Network Interface.

NoC Network-on-Chip.

- 15 -

NumHopCountexpected Expected Number of Hops Contained in the

Destination Reference Packet Header.

P Probability of an Event.

Pa Probability of Parent of Random Variable (Xi).

Packetid Packet Identification Number.

PLUT Synthesized PFGA Logic Area.

R, Kref Disturbance Signals or Noise.

RAM Random Access Memory.

RAND Random Function Generator.

RouteMetric Route Computation Metric.

RouteMetricSeqn Route Computation Metric Sequence Number.

RRP Route Repair Packet.

Rxd Receiver.

ScaleFactor Parameter to Stretch the Random Function.

SHR Self- Healing Routing.

Slot-Size Slot Window Size.

Sourceid Source Node Identification Number.

SSR Self-Selective Routing.

SYN Defines the Real-time Synchronization Period

 between the Cluster Head (subcontroller) and

Cluster Members.

T Subset of Graphs from the Set V.

TI Transducer Interface.

Tj, Lj Jth Bit of the Source, Destination Address.

Tn, Ln The nth Radix-Q digit of the Source, Destination.

 Address.

Tx Transmitter.

V Set of Nodes.

- 16 -

VC Virtual Channel.

Vcc Source Voltage.

VHDL Very High-Level Design Language.

VoQ Virtual Output Ports.

WSN Wireless Sensor Network.

X Set of Random Variables.

β Operational Mode.

Β1,..., βN Real-time Interval which the Cluster members

tansmit data to the cluster head.

 Number of Switch Ports.

- 17 -

초 록

FPGA 기반의 네트워크 온 칩을 위한 자가인지 적응형 재구성시스템.

아바 사니

지도교수 : 이정아

컴퓨터공학과

조선대학교 대학원

본 논문에서는 FPGA 기반의 네트워크 온 칩의 설계구조 탐사, 성능 평가, 안정

적인 작동 관련 인프라 프레임 워크를 제공하는 설계 패러다임으로 자율적인 자가

인식과 상황에 따라 적응적으로 동적 재구성 가능한 시스템을 제안하고, 온 칩 연

결 및 센서 네트워크의 결함이 있는 경우에 런타임 라우팅을 보장하는 상세한 메

커니즘과 알고리즘을 제시한다. 이러한 설계 패러다임은 확장적이며, 안정적인 동

적 적응과 런타임 매개 변수의 제어가 가능함을 보인다.

본 논문에서는 먼저, FPGA 기반의 네트워크 온 칩의 확장성 및 적응형 맥락에

서 매개 변수가 성능에 미치는 영향을 평가하기 위한 방법론을 제시한다. 온 칩 연

결의 일반적인 구조, Torus, Mesh와 Fat-tree 세 가지를 고려하여, 네트워크 매

개변수에 따른 FPGA의 성능을 평가하고 관련된 설계 상충관계를 분석한다. 또한,

네트워크 온 칩 구조가 상호 연결 및 라우팅 파라미터에 의해 어떻게 영향을 받는

지, FPGA 합성 및 다양한 구성 테스트를 통해 유연성 및 성능에 관련된 분석을 제

- 18 -

시한다.

FPGA 기반의 네트워크의 성능 모델과 자가적응형 모델을 통하여, 자가 인식의

자율적인 적용과 적응적으로 재구성 가능한 시스템 패러다임을 보인다. 센서 데이

터를 라우팅하기위한 기존의 자가치유 및 셀프 선택적 라우팅 기술의 한계를 보이

고, 경로의 형성 오류와 실패에 탄력성을 제공하는 경로 수리를 위해 자율적인 자

가인식 및 적응형 장애 감지 및 복구 기술을 통합한, 자율적인 자가인식 라우팅 및

적응형 기법 (ASAART) 프로토콜을 제안한다. 제안된 프로토콜은 네트워크의 순

간 토폴로지 변경에도 효율적으로 적응한다. 연속적으로 우선 순위화된 슬롯을 이

용한 백 오프 지연전송을 활용하여 로컬 및 글로벌 네트워크 상태 정보를 얻고, 다

수의 랜덤 함수를 이용하여, 영구적 및 임시적 노드 실패에도 안정적인 경로 복구

의 빠른 수렴을 달성한다.

자율적 자가인식과 적응형 재구성 시스템 패러다임의 개념적 검증을 위해, 본

논문에서 실시간 모니터링 및 FPGA 온칩 센서 네트워크의 효율적인 제어를 위한

다른 낮은 수준의 마이크로 구조 설계 및 프레임 워크가 제시된다. 주된 목표는 자

율적 센서 에이전트를 사용하여 저전력, 저비용 고정밀 모니터링 및 제어 메커니즘

을 설계하고, 온 칩 센서 네트워크의 제어를 동적으로 재구성하는 것이다. 전압과

온도와 같은 파라미터를 실시간 모니터링하고 수집하며, 시스템의 자가인식을 통하

여 FPGA 로직 리소스 및 온 칩 센서 구성 모든 요소의 소비전력 이용을 효율적으

로 향상시킬 수 있다. 하나의 사례로, 온칩 FPGA 센서를 동적으로 모니터링하고

제어하며, 사용자 대화식 웹 애플리케이션을 사용하여 보고하는 설계 사례를 구현

한다. 실험 결과를 통하여 기존 방식에 비해 FPGA 로직 리소스 및 모든 온 칩 센

서 부품의 전력 소비가 효율적임을 보인다. FPGA 온칩 센서 전압 및 온도계측 결

- 19 -

과는 높은 정밀도와 정확도를 보였고, 1000 ms에서 동적 재구성 리프레시 시간을

설정하면 100, 500 ms에 비하여 계측값의 정확도가 높아짐을 관찰했다.

본 논문에서 제안된 설계 기법과 프레임 워크는 복잡한 온칩 센서 네트워크 및

원격 감지 애플리케이션의 유연하고 효율적인 실시간 모니터링 및 제어를 가능하

게 하여, 네트워크 엔지니어 및 시스템 설계자에게 도움이 될 것으로 기대된다.

- 20 -

Abstract

An Autonomously Self-Aware and Adaptively Reconfigurable

System for FPGA-Based Network-on-Chips

Abba, Sani

Advisor: Prof. Lee, Jeong-A, Ph.D.

Department of Computer Engineering,

Graduate School of Chosun University

This dissertation proposes an autonomously self-aware and adaptively

reconfigurable system for FPGA-Based network-on-chips design paradigm for

providing an infrastructural framework for the exploration, performance

evaluation, correctness and reliability issues of network-on-chips fabrics in the

Field Programmable Gate Arrays (FPGAs). It presents a design and

implementation of architectures that enable for self-adaptation, dynamic

reconfiguration, autonomic formation and self-awareness of network-on-chip

architectures. It considers the design of fault tolerant routing scheme and

algorithms for both on-chip interconnect and sensor networks that provide a low

level mechanism for ensuring runtime autonomous fault-tolerant routing in the

presence of faulty network components. Furthermore, it presents a system level

adaptation by runtime monitoring of environmental parameters and employing

evolutionary optimization methods to intelligently adapt and optimize its operation.

This paradigm, provides scalable, reliable and dynamic adaptation and control of

runtime parameters for on-chip networks.

The study motivates the paradigm shift towards FPGA-Based networks-on-

chip by examining the current and future technological trends in FPGA

- 21 -

architecture and embedded hardware system in order to address the limitations of

the existing techniques for the on-chip networks. The dissertation introduces a

methodology to evaluate the performance impacts of the NoC parameters in the

context of scalable and adaptive FPGA-Based network-on-chips. It proposes a

consistent parametric method and design trade-offs for evaluating the FPGA

performance of the three common on-chip interconnect architecture namely, the

Torus, Mesh and Fattree architectures. It also investigates how the NoC

architectures are affected by the interconnect and routing parameters and

demonstrate the flexibility and performance through FPGA synthesis and testing

of different NoC configurations. The dissertation overview the design

methodology for designing NoCs in the context of FPGAs and demonstrate the

hardware and software procedures for the design and implementation of FPGA-

Based NoCs. It then proposes two models namely, FPGA-Based network

performance and self-adaptive models.

In order to demonstrate the flexibility and applicability of the autonomously

self-awareness and adaptively reconfigurable system paradigm, the study

addresses the limitations of Self-healing and Self-selective routing technique for

routing sensor data and proposed the design of an autonomously self-aware and

adaptively routing technique (ASAART) protocol. It examines the integration of

autonomic self-awareness and adaptive fault detection and resiliency technique

for route formation and route repair to provide resilience to errors and failures.

This is achieved by using a combined continuous and slotted prioritized

transmission back-off delay to obtain local and global network state information

as well as multiple random functions for attaining faster routing convergence and

reliable route repair despite transient and permanent node failure rates and

efficient adaptation to instantaneous network topology changes.

To validate the autonomously self-aware and adaptively reconfigurable system

paradigm as a proof of concept, the dissertation also proposed different low-level

- 22 -

micro-architectural design and framework for real-time monitoring and efficient

control of on-chip sensor network using FPGAs. The main goals are to design a

low-power, low-cost and highly accurate monitoring and control mechanism

using autonomous sensor agents and to dynamically reconfigure control of on-

chip sensor networks using FPGAs. By collecting dynamic and real-time

monitoring parameters such as voltage and temperature the system becomes

self-aware and adaptive to improve the utilization of FPGA logic resources and

efficient power consumption of all on-chip sensor components. It then proposed a

case study to dynamically monitor and control the on-chip FPGA sensors and

reports the sensed parameters using an interactive user application webpage.

Experimental results show a significant low usage of FPGA logic resources and

efficient power consumption of all on-chip sensor components compared with

previous approaches. Finally, results from the FPGA-measured on-chip sensor

readings show high precision and accuracy in the measured voltage and

temperature. We found that setting the dynamic reconfiguration refresh time at

1000 ms produces highly accurate FPGA-measured on-chip sensor readings

compared with those at 100 and 500 ms. The proposed design technique and

framework presented in this dissertation will assist network engineers and system

designers by providing flexible and efficient real-time monitoring and control

design of large and complex on-chip sensor networks and remote sensing

applications.

- 23 -

I. Introduction

A. Overview

This chapter was written based on the published research papers [173], [174]

and [175]. In embedded hardware systems the complexity of designing efficient,

scalable, on-chip communication mechanisms is expected to increase as further

technical advances allow more processors to be incorporated onto a single die, and

as power dissipation and wire delay become more significant among design

constraints [1-2]. Network-on-Chip (NoC) architectures help to mitigate this

complexity. Their modular construction facilitates both design flexibility and

high-performance, while their structured wiring allows better use of abundant

wire resources and more control over electrical characteristics [2].

A NoC interconnect determines the physical layout and connections between

the nodes and channels of an on-chip network used as a Field-Programmable

Gate Array (FPGA). This, in turn, determines the number of nodes (or routers) a

message must traverse and the interconnect lengths between these nodes,

significantly affecting network latency and energy consumption [3]. Because the

interconnect also defines the total number of alternate paths between nodes, it

largely determines how well the network can spread traffic to support bandwidth

requirements [4]. The operational complexity and cost of an NoC interconnect

depends on two factors: (1) the number of channels at each node (node degree)

- 24 -

and (2) ease of layout (i.e., wire lengths and the number of metal layers required)

[3-4].

This dissertation describes a new paradigm shift for FPGA-Based network-on-

chip, namely autonomous self-aware and adaptive reconfigurable systems and

proposes a parametric-based technique for evaluating the performance of packet-

switched NoC interconnection architectures. The proposed approach incorporates

design space attributes for topology, network, and router parameters, including the

number of Virtual Channels (VCs), Flit Buffer Depth (FDB), Flit Data Width (FDW),

pipeline router core, pipeline router allocator, and pipeline links. This approach allows

customization of the network to make better application-specific trade-offs between

resource usage and performance. The dissertation demonstrates that by strategically

tuning multiple parameters of both the interconnect and routers, the system

performance can be increased without adversely affecting the area or speed of the

FPGA network. The dissertation also showed that the FDW and FBD parameters

account for much more consumption of FPGA resources than the VCs parameter, and

that, with proper tuning, Fat-tree networks offered much better performance in terms

of silicon area, clock frequency, critical path delay, network saturation throughput, and

latency under both benign and adversarial traffic patterns than the Mesh and Torus

networks. The findings in this dissertation will help engineers and designers select

the right interconnects and router parameters for large and complex NoCs, and that

the parametric method described in this dissertation offers a better means of

evaluating tiled on-chip interconnection architectures.

Autonomous self-aware and adaptive systems provide the means to solve the

computational complexities of a dynamic environment. Autonomous self-aware

- 25 -

routing algorithms possess the capability of configuring, healing, optimizing, and

protecting themselves autonomously [5-24]. This also entails the ability to find

the best means for optimizing performance in resource-constrained environments.

Sensor networks are exposed to inhospitable environments and need to be adapted

to changes in the environmental parameters or users. Sensor networks that are

resource constrained have low power, low communication, and minimal

computational capabilities. In addition, they possess low storage capabilities, low

cost, reliability and fault tolerance, which are the critical sensor network design

considerations [5-8].

Sensor nodes may fail for various reasons. These include radio interference,

battery failure, and synchronous and asynchronous communication mechanisms.

These failures mainly arise as a result of software or hardware faults, malicious

code, environmental changes, and timing closure. On the whole, the result of such

an event is that a sensor node becomes inaccessible or disrupts certain operating

conditions that are critical to providing the required service. Communication in

sensor networks is highly critical because the links in a network are prone to

faults and errors. For instance, the collision of network packets may result in a

failure. The presence of such a failure in a routing protocol will lead to

considerable network packet drops, resulting in excessive network delays and the

consumption of a substantial amount of energy [25-55]. The traditional fault-

tolerant approach to routing in a wireless sensor network introduces more

- 26 -

redundant transmission and retransmission of network packets and consumes an

excessive amount of energy. In addition, they are also deficient in terms of their

autonomous self-awareness and adaptive capabilities in routing packets from their

sources to their destinations in the presence of transient and permanent node

failures and in highly scalable and congested networks. The essential concerns

here are how to avoid the problem of packet flooding because of broadcasting and

network scalability issues. To address these issues, the dissertation attempts to

reduce the number of redundant network packets caused by flooding. In addition,

the dissertation focuses on the minimization of control packet overheads and

efficient end-to-end data delivery. In doing so, we combined both the continuous

and slotted prioritized transmission back-off delays to obtain local and global

network state information and a multiple randomize function for faster routing

convergence and efficient and reliable route repair in the presence of transient and

permanent node failures. This approach will provide resiliency to errors and

failures, minimize the end-to-end network delay, and improve the overall

network routing performance and energy efficiency.

The complexity imposed by on-chip sensor network monitoring and control

increases with the scalability of the on-chip sensor network. Therefore, there is

the need to have an intelligent and reliable low-level design of intelligent

monitoring and control systems using autonomous sensor agents. Because

different runtime physical parameters must be monitored, the need for accurate

- 27 -

and efficient sensor communication mechanisms is very essential to ensure

reliable monitoring and control of complex on-chip sensor network environment.

This process also entails the design of low-power and high-speed circuits for

efficient and reliable network monitoring and control. The use of field

programmable gate arrays (FPGAs) for autonomous sensor network monitoring

and control is an interesting research domain in which low power consumption and

accurate sensor readings are the major metrics for evaluation [56-64], [65-68].

As the flexibility and reliability of FPGAs increases, autonomous sensor agents

can be embedded in an FPGA to measure different runtime parameters. However,

designing a sensor network on an FPGA is a very difficult task to achieve in a

short time because designers are limited to do beyond the FPGA manufacturer

design specification. Similarly, the degree of complexity and sophistication of

design automation contained in the FPGA makes it difficult for designers to tweak

the FPGA circuitry to design and implement sensor networks. Hence, the use of

FPGA to implement sensor networks will be an efficient solution for a reliable

on-chip sensor network packet transmission and retransmission scheme because

logic and critical-path delays in FPGAs are minimal [61-63]. The dissertation

proposes a low-level micro-architectural design infrastructure for real-time

monitoring and control of on-chip sensor network-based systems using FPGA. The

dissertation, then develops the design and implementation of efficient and reliable

high-speed circuit technique of the on-chip sensor network runtime parameter

- 28 -

monitoring and control, which uses autonomous sensors that reside at the network

interface (NI), to be dynamically configured and to communicate the runtime ambient

parameters to the network monitor controller hardware. A detailed low-level design

methodology and procedure and a user application for efficient and reliable on-chip

sensor network monitoring and control using FPGAs was fully presented. In addition, a

webpage interface for the user to dynamically reconfigure the FPGA to conduct on-

chip sensor readings and adjust the sensor ranges and reconfiguration refresh time

was provided.

B. Motivation

 This dissertation considers the current and future trend in FPGA-Based NoC

design and was motivated by the fact that the NoC interconnect architecture

imposes new and complicated design issues in embedded hardware system.

Engineers must decide what topology is suitable for their applications, they must

design, network interfaces to access the on-chip network and routers, they must

choose appropriate communication protocols (including routing, switching, buffer

management, flow control, etc.), and they must find the right parameters for all of

the above. To address these design issues, the dissertation tries to answer

questions about the factors that affect the choice of an FPGA-Based NoC. There

are several factors that affect the choice of NoC topology, including [4], [69]:

1. Performance Requirements: These requirements are typically

characterized in terms of packet latency and throughput.

- 29 -

2. Scalability: A scalable architecture assumes that as more IPs are added,

input and output bandwidth, and network bandwidth, will steadily increase.

3. Simplicity: Simpler designs typically yield higher clock frequencies and

better performance.

4. Distance Span: Different topologies may have very different link lengths,

in some cases producing problems with coupling, electromagnetic noise,

and wire heaviness.

5. Physical Constraints: Packing components (e.g., processors, memory, i/o

devices, etc.) into a network imposes certain physical constraints, such as

limitations on space, wire length, and operating temperature.

6. Reliability and Fault Tolerance: A network should be able to deliver

information reliably, providing continuous operation with a limited number of

faults.

With regards to fault tolerance, the dissertation was motivated mainly by the

observation that the traditional fault-tolerant approach to routing for both on-

chip interconnect and wireless sensor network introduces more redundant

transmission and retransmission of network packets and consumes an excessive

amount of energy. In addition, they are also deficient in terms of their autonomous

self-awareness and adaptive capabilities in routing packets from their sources to

their destinations in the presence of transient and permanent node failures and in

highly scalable and congested networks. The essential concerns here are how to

avoid the problem of packet flooding because of broadcasting and network

scalability issues. To address these concerns, the dissertation attempts to reduce

the number of redundant network packets caused by flooding. The dissertation

focuses on the minimization of these control packet overheads and efficient end-

- 30 -

to-end data delivery. In doing so, the proposed approach combined both the

continuous and slotted prioritized transmission back-off delays to obtain local and

global network state information and a multiple randomize function for faster

routing convergence and efficient and reliable route repair in the presence of

transient and permanent node failures. In the proposed scheme, the sensor node

that transmits the packets contains information pertaining to its neighbors in the

control header packets. The sender node is self-aware and adaptive if it knows

both local and global state information contained in the control packets. In this

case, the receiver node knows whether its neighbors have been covered based on

the global information obtained in the neighbors’ control packet list information.

The sender node with the auto-self-awareness back-off information now has a

higher priority to forward the network packet to the destination. This approach

will provide resiliency to errors and failures, minimize the end-to-end network

delay, and improve the overall network routing performance and energy efficiency.

Another motivation of this dissertation lies on the fact that as the flexibility and

reliability of FPGAs and complexity and scalability of on-chip sensor network

continue increases, autonomous sensor agents can be embedded in an FPGA to

measure different runtime parameters. Therefore, a reliable and efficient low-level

design that not only detects runtime ambient parameters, but also offers better

network performance, scalability, and flexibility of on-chip sensor network design for

FPGAs is required. Hence, the use of FPGA for sensor network monitoring and control

is very important [61-63].

- 31 -

C. Dissertation Objectives

In embedded hardware systems, an autonomous self-aware and adaptive

reconfigurable system for FPGA-Based network-on-chip is a promising

paradigm shift aiming at providing an infrastructural framework for the

exploration, performance evaluation, correctness and reliability issues of

network-on-chips fabrics in the Field Programmable Gate Array (FPGA). The

dissertation aimed to achieve the following objectives:

1. To propose, design and implement networks-on-chip architecture that

provide flexible runtime, and autonomic formation for self-aware and

adaptive reconfigurable networks-on-chip using FPGA. To develop

methodologies and techniques for evaluating the performance and

correctness of the NoC in FPGA that provides high throughput and clock

frequency, low latency and efficient silicon area consumption.

2. To propose, design and implement fault tolerant routing schemes and

algorithms to ensure low level self-aware and adaptive routing decision in

the presence of faulty network components. To minimize network flooding

and enhance throughput and energy efficiency.

3. To develop a mechanism for self-adaptation of NoC in complex and

dynamic environments by runtime observability and monitoring of

environmental parameters and employing evolutionary optimization

techniques to intelligently adapt and optimize its operation and enhance

system performance.

4. To develop working prototypes suitable to be employed in real system

development. To employ the use of sensors to facilitate intelligent network

monitoring and control of on-chip networks and other related applications.

- 32 -

5. To propose a low-level micro-architectural design infrastructure for

real-time monitoring and control of on-chip sensor network-based

systems using FPGAs. To design and implement efficient and reliable

high-speed circuit technique for on-chip sensor network runtime

parameter monitoring and control. To achieve low power, low-cost and

highly accurate measured on-chip sensors reading accuracy.

In order to achieve the stated objectives, the dissertation through its new

design paradigm shift, namely, autonomously self-aware and adaptively

reconfigurable system, proposes the design and implementation of efficient and

reliable system level architectures, methodologies, algorithms and prototypes for

enhancing overall system performance in terms of throughput, latency, clock

frequency, silicon area, critical path delay, and energy consumption.

D. Contributions

This dissertation contributed towards a state-of-the-art embedded hardware

system. In order to achieve the stated objectives, the dissertation develops an

autonomously self-aware and adaptively reconfigurable system for FPGA-Based

network-on-chips design paradigm. The salient contributions of this dissertation

are as follows:

1. A parametric-based methodology to perform a parametric performance

evaluation and analysis of design trade-offs for the Mesh, Torus and Fat-

tree network interconnect architectures using FPGAs was developed. In

this process, the dissertation considers a number of salient NoC and router

parameters, and the presented results should provide immediate value to

- 33 -

engineers and architects tasked with finding the right parameters for large

and complex NoCs.

2. The dissertation achieved extensive design space coverage by synthesizing

392 different NoC configurations for the Mesh, Torus and Fat-tree

networks using Xilinx ISE 14.3 design tools and a Virtex 7 FPGA device.

In addition, the dissertation examined the impact of three basic NoC

parameters using FPGA. Experimental results show that Fat-tree network

produced the best utilization of the FPGA logic resources.

3. The dissertation demonstrated that for large and complex NoCs, an FDW

of size 8 to 64 bits, VCs of size 2 to 4 and FBD of size 8 to 16 bits

produced efficient FPGA area and clock frequency.

4. The dissertation investigated the network performance of the three NoC

architectures under benign and adversarial traffic patterns. Simulation

results showed that Fat-tree networks performed fairly well in terms of

throughput and latency for both benign and adversarial traffic patterns,

while the Mesh and Torus networks performed rather poorly for

adversarial traffic patterns.

5. The dissertation demonstrated that the propose methodology substantially

improves performance in a variety of experimental and simulated

scenarios, suggesting its utility and applicability to real-world systems.

6. The dissertation develops an autonomous self-aware and adaptive fault

tolerant routing technique (ASAART) as proof of concept for efficient and

reliable route formation and faster routing decision-making for wireless

sensor networks. This is achieved by combining both continuous and

prioritized slotted back-off delay and multiple randomize function

techniques for speedy routing convergence to obtain local and global

network state information for the efficient and reliable routing of sensor

data.

- 34 -

7. The dissertation develops a route repair technique using the greedy

algorithmic approach for reliable transmission of sensor data in the

presence of permanent and transient node failure rates, and efficient

adaptation to simultaneous network topology changes.

8. An extensive simulation to demonstrate the routing performance,

flexibility and efficiency of the autonomous self-aware and adaptive fault

tolerant routing technique (ASAART) under five different simulated

scenarios was conducted. The simulation results show that the ASAART

performs better in terms of high resiliency against errors and failure, and

has better routing performance and energy efficiency compared with SSR

and SHR protocols in the presence of transient and permanent node failure

rates and in highly congested, faulty, and scalable sensor networks.

9. As a proof of concept for the autonomous self-aware and adaptive

reconfigurable systems paradigm, the dissertation proposes a low-level

micro-architectural design and infrastructure for real-time intelligent

network monitoring and control for reconfigurable on-chip sensor network

using FPGA. The intelligent sensor agents collect runtime ambient

parameters such as voltage and temperature for efficient monitoring and

control of on-chip sensor networks.

10. The dissertation proposes a real-time triggered protocol for efficient

communication between the sensors and the monitoring and control unit.

11. A detailed low-level design procedure and implementation of the on-chip

sensor network, sensor NI, and monitoring and control unit using both

Synopsys and Xilinx design tools was provided. The proposed design and

framework was implemented as a case study using Xilinx Vivado 2013.3

integrated design environment and a Zynq 7000 FPGA device. The post

synthesis and implementation results, including the device resource utilization,

showed low FPGA logic resource consumption and efficient power utilization

- 35 -

by the on-chip sensor components compared with previous approaches.

12. The dissertation provided extensive experimental results using an FPGA to

measure and controls the on-chip sensors. The experimental results from

the FPGA-measured and controlled on-chip sensor readings show high

precision and accuracy in the voltage and temperature readings. The

dissertation demonstrates that setting the dynamic reconfiguration refresh

time at 1000 ms produced accurate FPGA-measured on-chip sensor

readings compared with those at 100 and 500 ms. This approach will help

network designers and engineers design efficient and reliable intelligent

monitoring and control system for on-chip sensors using FPGA and other

related remote-sensing applications.

E. Dissertation Outline

 The dissertation consists of six chapters, following the introduction that gives

the general overview of the dissertation, the objectives, motivations behind the

work and the major contributions. Chapter II motivates the proposed paradigm

shift towards FPGA-Based network-on-chip in the field of embedded hardware

systems. The chapter achieves one of the major objectives of the dissertation.

The chapter describes the target NoC architectures namely, the Mesh, Torus and

Fat-tree networks. Also the chapter discusses the NoC router and switch, micro-

architecture and buffer management of the on-chip networks and scalable NoC

and router configurations. The dissertation further describes an extensive

literature review of related previous works and how they differ from the proposed

- 36 -

approaches.

Chapter III describes a parametric performance evaluation and design trade-

offs for the FPGA-Based network-on-chip. It achieves the second objective of

the dissertation by evaluating the performance impacts of NoCs parameters in the

context of the FPGA. The chapter proposes two models namely, FPGA-based

network performance and self-adaptive models. The chapter describes extensive

experimental and simulation results of synthesizing NoC in FPGAs. The chapter

evaluates FPGA synthesis results in terms of area and clock frequency, it then

evaluates FPGA network cost performance and critical path delay analysis. The

chapter further describes extensive simulation and comparison results under

benign and adversarial traffic patterns for the three NoC architectures. The

chapter describes qualitatively the benefit of the proposed evaluation methodology

in the context of FPGA and its possible applicability in super computing and

related application domains.

Chapter IV proposes the paradigm shift towards autonomous self-aware and

adaptive routing technique ASAART. The chapter describes the proposed

methodology as applied to fault tolerant routing in wireless sensor networks. It

describes the technique for route formation and self-aware and adaptive route

repair in the ASAART routing protocol. In addition, it discusses the reliable route

formation in ASAART. The chapter describes an extensive simulation under five

different simulated scenarios. It evaluates the routing performance of ASAART

- 37 -

compared with the state-of-the-art fault tolerant routing namely, SHR and SSR

protocols. The chapter describes three scenarios of network density test and

transient and permanent node failure test scenarios. The chapter clearly showed

the benefit of the proposed approach in achieving high resiliency to errors and

failure and high routing performance in terms of throughput, latency, energy

efficiency and reduced MAC layer packet retransmissions.

Chapter V achieved the fourth and fifth objectives by proposing a proof of

concept of the design and implementation of FPGA-based intelligent on-chip

sensor network monitoring and control using dynamically reconfigurable

autonomous sensor agents. The chapter describes the design methodology of the

sensor network monitoring and controller interface design for various on-chip

sensor components for the temperature, voltage and thermal sensors. The chapter

then validates the proposed design by providing an RTL level simulation results in

form of waveforms for the monitoring and control unit. The chapter describes a

case study, an implementation of on-chip sensor network monitoring and control

using dynamically reconfigurable autonomous sensor agents. The chapter

describes the design of various hardware components and application user

interface in the form of a web page for the proposed case study. It then further

presents the FPGA utilization results of various on-chip sensor components and

shows qualitatively the significance of the proposed approach in terms of fewer

numbers of logic consumption. The chapter describes extensive experimental

- 38 -

results for monitoring and control of FPGA on-chip sensor networks. The results

show high accuracy in the monitored and control measured sensor reading with

dynamic reconfiguration capability which confirms the applicability of the

proposed paradigm shift to different application domains.

Chapter VI summarizes the autonomous self-aware and adaptive reconfigurable

system paradigm and a discussion of its possible areas of applications in future

embedded systems and other related applications.

- 39 -

II. Background and Related Works

A. The Target NoC Architectures

This chapter was written based on the published research papers [173],

[174] and [175]. This subsection describes the topologies of the three NoC

architectures evaluated in this dissertation. The topologies are illustrated in

Figure 1 (a-c). These illustrations were designed using [70].

 (a) 10x10 2D Mesh (Mesh100)

(b) 10x10 2D Torus (Torus100)

(c) Fat-Tree (Fat-tree144) networks

(Figure 1) Illustration of the NoC topologies.

- 40 -

1. 2D mesh network

Figure 1 (a) represents a k-array n mesh network (10x10 2D Mesh). A Mesh

network consists of m columns and n rows. The routers are situated at each

intersection of two wires and computational resources situated near these routers.

The Mesh network topology is one of the key network architectures in which

nodes are connected through many redundant routes between nodes. The 2D Mesh

is an obvious choice for tiled architectures, since it matches very closely with the

physical layout of the die [30]. Nodes in the Mesh network are connected in k-

ary n-dimensional mesh (k-ary n mesh) formation, as shown in Figure 1 (a).

The intellectual property nodes (IPs) are connected to a NoC switch by a

Network Interface (NI) incorporating the connection management and data

fragmentation functions. Because of the simple connection and easy routing

provided by adjacency, the Mesh network is widely used in parallel computing

platforms [16]. A Mesh network is orthogonal, providing a uniform interconnect

length between nodes and uniform performance across nodes [71].

Routing: The Mesh network uses dimension order routing, in which a packet is

routed towards the X axis and then towards the Y axis, to ensure reliable

transmission and to avoid deadlock [69].

Flow Control: This refers to the protocol for managing and negotiating the

available buffer space between routers. Due to physical separation and the speed

of router operations, it is not always possible for the sending router to have up-

to-date knowledge of the buffer status at the receiving router. Thus, a credit-

- 41 -

based flow control periodically sends credits that need to be tracked by the

endpoints. This establishes a dialog between sender and receiver nodes,

permitting and halting the advance of information. If a packet is blocked, it will

require some buffer space in which to be stored. Under credit-based flow control,

the sending router tracks credits from its downstream receiving routers. At any

moment, the number of accumulated credits indicates the guaranteed available

buffer space at the downstream router's buffer [4], [72].

2. 2D torus network

Figure 1(b) represents an m x n torus structure (10x10 2D Torus) based on an

m x n mesh topology with a wraparound channel added to each row and column.

The wraparound channels help reduce the diameter and the average distance per

node. The IPs are connected to a NoC switch by a Network Interface (NI)

incorporating the connection management functions. Each router is connected to

four neighboring routers. As such, each router has five ports. Adding wraparound

links to the mesh creates the torus topology, decreasing the average and

maximum hop counts and doubling the bisection bandwidth. These links also

double the number of wiring channels per tile edge. A Torus network has better

path diversity and more minimal routes than a Mesh network [69], [71].

Routing: The Torus network uses dimension order routing.

Flow control: The Torus network uses a credit based flow control for efficient

packet transmission.

- 42 -

3. Fat-tree network

In a Fat-tree topology nodes are routers and leaves are computational

resources. The routers above a leaf are known as the leaf's ancestors and the

leaves below an ancestor are known as its children. Each node has replicated

ancestors, allowing many alternative routes between nodes [69], [73]. In this

dissertation, the configurations of the Fat-tree provided in table 1 (an n-ary

fat-tree with a height of k) is selected and used. Fat-tree topology has a unique

characteristic: it allows all non-conflicting end-to-end connections to have full

wire bandwidth. That is, any node can communicate with any other node in the

network while keeping full per-channel bandwidth available for communication,

provided no other nodes are communicating with the two nodes involved [71,73].

We should be aware that implementation of a direct fat-tree network does not

require long wires; the maximum wire length is two tile spans. This is possible

because the tiles can be connected so that routing resources are shared [69],

[71,73]. This structure makes Fat-tree networks, superior in terms of hardware

resource (i.e. FPGA utilization as will be demonstrated in chapter III).

Routing: The Fat-Tree network uses nearest-common ancestor routing (nca).

Packets are adaptively routed upward to the common ancestor and

deterministically downward to the destination [69].

Flow control: The Fat-tree network uses credit-based flow control.

- 43 -

B. NoC Router Micro-Architecture

1. NoC credit-based virtual channel router micro-architecture

Network-on-chip routers forward packets from a source node to a

destination node within the network. They must be designed to meet latency and

throughput requirements while respecting the tight area and power constraints.

This is the primary challenge facing designers of many-core systems [1],

[71,73]. Even as bandwidth capacity and router complexity increase, very simple

routers (e.g., wormhole, un-pipelined, no virtual channel, etc.) may still be used

when high throughput is not needed, to keep the area and power overhead low.

The challenge arises when throughput demand increases [4], [71-75]. A router’s

architecture determines its critical path delay, which in turn affects per-hop delay

and overall network latency. Router micro-architecture also affects network

energy, as it determines the logic circuit components of a router and their activity.

The implementation of routing, flow control and the actual router pipeline will

affect the efficiency at which buffers and links are used, and thus, overall network

throughput. The area footprint of the router is directly determined by the chosen

router micro-architecture and underlying logic circuits [1], [75]. Figure 2 shows

the micro-architecture of a credit-based virtual channel router. The major

components of the router are the input buffers, route computation logic, virtual

channel allocator, switch allocator, and the crossbar switch. NoC routers are

generally input-buffered, meaning packet storage occurs only in buffers at the

input ports, allowing use of single-ported memory. In Figure 2, the dissertation

- 44 -

assumed four virtual channels at each input port, each with its own buffer queue

four flits deep. The buffers are responsible for storing flits when they enter the

router, and maintaining them for the duration of their stay at the router. The route

computation block computes (or looks up) the correct output port for the packets.

The virtual channel and switch allocators determine which flits are selected to

proceed to the next stage, where they traverse the crossbar. Lastly, the crossbar

switch is responsible for physically moving flits from the input port to the output

port [4], [69], [74].

(Figure 2) Shows the NoC credit-based virtual channel router micro-architecture

2. NoC switch micro-architecture

A network switch is a device that channels incoming data from any of multiple

input ports to the specific output port that will take the data toward its intended

destination. Network switches implement the routing, arbitration, and switching

functions of packet switched networks. The switches also implement buffer

management mechanisms. For some networks, switches also implement part of

the network management functions for exploring, configuring, and reconfiguring

- 45 -

the network topology in response to boot-up and failures [4], [74]. The internal

data path of a switch provides connectivity among the input and output ports.

Most high-performance switches implement an internal crossbar to provide non-

blocking connectivity within the switch, allowing concurrent connections between

multiple input-output port pairs [69], [74]. Buffering of blocked packets are

performed by First in First Out (FIFO) or circular queues, which can be

implemented as Dynamically Allocatable Multi-Queues (DAMQs) in static RAM

to provide high capacity and flexibility [4], [74]. These queues can be placed at

the input and output ports, centrally within the switch, or at both the input and

output ports of the switch. Figure 3 shows an input-output buffered switch. The

routing control unit is usually implemented as a centralized resource, although it

can be replicated at every input port. Routing is done only once for every packet,

and packets are usually large enough to need several cycles to flow through the

switch. As a result, a centralized routing control unit (as illustrated in Figure 3)

rarely becomes a bottleneck for the switch architecture [69], [74].

(Figure 3) Shows NoC input-output buffered switch micro-architecture.

- 46 -

3. NoC buffer management

A network buffer is a temporary storage area, usually in RAM. The purpose of

most buffers is to act as a holding area, enabling the CPU to

manipulate data before transferring it to a device. Buffer queues are

memory space set aside specifically for either storing a packet that is awaiting

transmission over a network or storing a packet that has been received over a

network [4], [74]. Buffer queues can be located at the switch input and or output.

Output-buffered switches have the advantage of completely eliminating Head-

of-Line blocking (HoL). Head-of-line blocking occurs when two or more

packets are buffered in a queue, and a blocked packet at the head of the queue

blocks other packets in the queue that would able to advance where they at the

head of the queue [4], [69], [74]. However, Head-of-Line blocking can occur

within input port queues, as shown in Figure 4 (a). This can reduce switch output

port utilization to less than sixty percent, even when packet destinations are

uniformly distributed [74]. As shown in Figure 4 (b), the use of two virtual

channels can diminish HoL blocking, but does not eliminate it. A more effective

solution is to consolidate the input queues as Virtual Output Queues (VoQs),

shown in Figure 4 (c). Under this solution, each input port implements as many

queues as there are output ports, thus providing separate buffers for packets

destined to different output ports. The major drawback of VoQ, however, is the

cost of redundancy and coordinate lack of scalability, as the number of VoQs

grows quadratically with the number of switch ports. One way to address this

limitation is to dynamically assign only a fraction of the queues to store those

- 47 -

packets headed for congested destinations [4], [69], [74-75].

(Figure 4) NoC buffer management illustrating head-of-line blocking (HoL).

C. FPGA-Based NoC and Router Parameters

1. Configurable NoC and router parameters

This subsection gives a brief explanation of the NoC and router parameters

used in this dissertation for the performance evaluation of the three target NoC

architectures [4], [70], [76], [77]. These parameters are as follows:

1. Flow control: This parameter refers to the protocol for managing and

negotiating the available buffer space between routers. This dissertation

uses a credit-based flow control that periodically sends credits that need

to be tracked by the endpoints. In contrast, peek flow control only exposes

bit masks indicating which virtual channels can accept flits [4], [70].

- 48 -

2. Router type: This parameter specifies the router type used. Input-queued

routers are simple and offer the lowest performance. VC-based routers

offer higher performance and traffic isolation, whereas VoQ-based routers

do not offer the highest performance, but do not require traffic isolation.

This dissertation used VC-based routers based on their superior

performance.

3. Exposed edges port: This parameter enables the unused ports at the edges

and corners of Mesh networks. Each corner router exposes two additional

ports. While the rest of the edge routers expose one additional port. This

parameter is enabled for all networks.

4. Virtual Channels (VCs): This parameter reduces Head of Line (HoL)

blocking, but increases hardware resource usage. This dissertation varied

the number of VCs from 2 to 6 and measured the FPGA area

(PLUT, %LUT) and clock frequency (CLK_FREQ) values as illustrated in

tables 2-5.

5. Flit Data Width (FDW): This parameter specifies flit data width in bits.

Flits maintain extra bits for flow control and bookkeeping purposes. This

parameter is varied to obtain the synthesized FPGA area and clock

frequency values in tables 2-5.

6. Flits Buffer Depth (FBD): This parameter specifies the depth of flit

buffers in flits. Deeper buffers offer better performance by allowing

packets to make more progress under heavy loads. This parameter is

varied to optimize the synthesized FPGA area and clock frequency values

shown in tables 2-5.

7. Allocator: This parameter specifies the type of the allocation algorithm

used for matching input requests with outputs. This dissertation used the

Separable Input -First Round Robin.

8. Pipeline router core: This parameter adds a pipeline stage right after the

- 49 -

router allocation unit. This parameter can produce a 1.5x to 2x clock

frequency improvement for typical router configurations [4]. This

parameter is enabled for all networks at design time to improve clock

frequency performance during FPGA synthesis.

9. Pipeline router allocator: This parameter pipelined the router allocator that

performs input-output matching and determines which flits will traverse

the router each cycle. This parameter feature is especially useful for

increasing frequency in networks containing many virtual channels or

higher-radix routers (i.e. routers with many send/receive ports, such as

the Mesh144, Torus144, and Fat-tree144 networks.), whose critical path

is dominated by the allocation stage. This parameter is enabled for all

networks at design time to offer higher frequencies during FPGA synthesis,

as shown in tables 2-5.

10. Pipeline links: This parameter adds a pipeline stage to all flit and credit

links in the network. It helps to increase clock frequency in large or

congested designs where router inputs are placed far apart. This parameter

is enabled for all networks at design time.

11. Virtual links: When this parameter is enabled, VCs and output ports are

locked while a packet is transmitted, in order to avoid interruption of

multi-flit packets. Only packets that belong to a higher-priority virtual

channel are allowed to interrupt packets on lower priority virtual channels.

Enabling the virtual links reduces the buffering requirements at the

receiving endpoint since, for any virtual channel, all flits of a packet are

guaranteed to arrive before any flits of another packet on the same virtual

channel [4], [70]. Virtual links require a small increase in hardware, but in

return, they can significantly reduce the reassembly buffering and logic

requirements at endpoints. This parameter is enabled for all networks at

design time.

- 50 -

In this dissertation, the analysis focuses on the three basic NoC parameters

(FDW, VCs, and FBD) and how they affect the performance of the three targeted

architectures on FPGA.

2. Scalable on-chip networks and router configurations

Table 1 gives the on-chip networks and router configurations for the

different interconnect architectures analyzed in this dissertation. A point to note

here is that the dissertation considered only the largest network grid sizes. For

better understanding, the number next to each network name indicates the number

of supported network endpoints (nodes). For example, Mesh100 corresponds to a

network with one hundred connected routers, while Torus121 corresponds to a

network with one hundred and twenty-one connected routers.

(Table 1) Router configurations for different network-on-chip architectures

2D Network Type Number of Routers

(Network Nodes)

Number of

Send/Receive Ports

Number of

Input/output Ports

10 x10 MESH (MESH100) 100 100 5/5

11x11 MESH (MESH121) 121 121 5/5

12 x12 MESH (MESH144) 144 144 5/5

10 x10 TORUS (TORUS100) 100 100 5/5

11x11 TORUS (TORUS121) 121 121 5/5

12 x12 TORUS (TORUS144) 144 144 5/5

FAT-TREE56 56 32 4/4

FAT-TREE100 100 56 4/4

FAT-TREE121 121 58 4/4

FAT-TREE144 144 64 4/4

- 51 -

D. Related Works

1. FPGA-based network-on-chips

A few number of recent efforts have shown ways to evaluate the performance

of NoC interconnect architectures [1-4], [78-92],[168]. Ju and Yang [78]

analyzed three common 2x4 topologies (2D Mesh, 2D Torus, and Hierarchical

Mesh) and compared their performance and resource consumption, but with

relatively few comparisons, the flexibility of their approach remains uncertain.

Kundu et al. [79] presented a detailed study of the Mesh-of-Tree (MoT)

topology and explored its potential in communication infrastructure design for 2-

D NoCs, compare its performance and cost with those of the Butterfly Fat-Tree

(BFT) topology and two variants of the mesh topology for a fixed number of

cores under the same bisection width constraint. Their simulation results showed

that MoT delivers better performance than other topologies, while consuming less

energy per packet than mesh networks that connect single cores to each router.

Although other efforts have shown ways to assess the performance of packet-

switched FPGA NoC and routers, a systematic understanding of router

performance evaluation [1-2], [78-87],[168]remains elusive. Abdelfattah and

Betz [1] presented detailed design tradeoffs for hard and soft FPGA-based NoCs.

Similarly, Papamichel and Hoe [82] presented CONNECT: Re-examining

conventional wisdom of designing NoCs in the context of FPGAs. Lee and Shannon

- 52 -

[84] presented a predicting the performance of application specific NoCs

implemented on FPGAs. The authors in the paper [82] performed systematic

comparisons between ASIC NoC designs and their FPGA-based NoC

optimizations, quantitatively demonstrating the benefits of the latter. Abba and

Lee [92] presented a Bayesian networking approach and self-adaptive scheme for

NoC parameter performance on FPGA-based NoC.

Most of the work on performance evaluation of NoCs is based on analytical

models and simulation. In general, the traffic generator and the traffic meter are

modeled at the transaction level using SystemC, and the network elements are

modeled at the register-transfer level using either SystemC or a hardware

description language, such as VHDL [93]. A number of previous works have used

more abstract models in which all components are modeled at the transaction level

[72]. The number of previous works in which NoCs are evaluated in hardware is

still quite small. Wolkotte et. al [94] presented a platform for on-chip

performance evaluation of an NoC. The traffic generator was run on an ARM9

processor and injected traffic into an FPGA on which a NoC was implemented.

Only a single router was synthesized on this FPGA, and the full NoC was emulated

sequentially. According to the authors, the proposed approach makes it possible to

evaluate large NoCs, since the network size is not constrained by the logic density

of the FPGA. Their on-chip evaluation was 80 to 300 times faster than

evaluations using a SystemC model running on a computer. In Genko et. al [95], a

hardware-based approach was used for performance evaluation of NoCs in FPGA.

- 53 -

They used instances of a synthesized traffic generator to create and inject packet

flows into the NoC based on stochastic models (Uniform distribution or Burst

mode) and on traces of actual traffic. They also used instances of a traffic

receptor to eject these flows from the NoC and collect data for performance

evaluation. Using their platform, a one billion packet emulation needed only three

minutes and twenty seconds to run on the chip. In a SystemC simulation, the same

experiment would take approximately six days to run, with a speedup of four

orders of magnitude [95]. This dissertation tries to address the limitations of the

aforementioned proposed approaches.

2. Self-adaptive and fault tolerant routing

Quite a few numbers of related works have been conducted with adaptive and

fault tolerant routing algorithms for wireless sensor networks [16-29], [36-45],

[96-98]. For instance, Gilbertt et al. [44,96] proposed a self-selective fault

tolerant routing protocol for a wireless ad hoc network. The protocol employs a

combined radio broadcast and autonomous programming technique to implement

routing with reduced overhead. The routing protocol routes the packets via a near

optimal path between nodes at runtime. Simulation results showed high routing

performance under heavy network traffic, as well as network node and link

failures. The authors in [28,97] presented a novel protocol for self-healing in

sensor network routing. The approach employs broadcast transmission and

prioritized slotted back-off delay for sensor nodes to use their hop distance from

- 54 -

the destination in order to determine how to transmit packets. By doing so, this

ensures a dynamic traversal of minimum routes without nodes that specifies those

neighboring nodes that transmit network packets. However, when faulty routes

are encountered, the scheme locally and dynamically re-routes packets in order

survive the shortest routes despite spontaneous network topology changes.

Other approaches that avoid neighbor state maintenance and allow destination

nodes to contend with transmitting network packets are given in [30-31]. These

two protocols are similar to SHR [28,97] and SSR [44,55,96], which use local

information instead of global network state information. Unfortunately, none of the

two proposed approaches provide route repair mechanisms. GRAB [30] employs a

very complex fault tolerant mechanism by allowing the flow of redundant network

packets to take multiple paths to destinations. Hellsenbttel et al. [32] employed a

location coordinate system to allow only destination nodes within a given region to

communicate with each other. Zori and Rao [33] used a concept similar to [32],

and incorporated a back-off delay mechanism. Such mechanism makes use of a

dual-radio concept with a busy tone signaling to enforce the channel to be clear

before transmitting data in order to minimize the probability of network packet

collisions. Another approach is given by Blum et al. [34], who employed an

eligibility region given as a 60% fan shape that extends from a source towards a

destination. Upon this, if a source node does not “hear” a response from any of its

neighbors, it moves the eligibility region and looks for other neighbors. All these

- 55 -

approaches use packet forwarding techniques, i.e., back-off delay and RTC/CTS

schemes that result in packets that forward overhead.

Other methods for direct routing are given in DSR [99], AODV [100], and

DSDV [35]. The work presented by Chokers and Elizabeth [100] is regarded as

the most popular directed routing protocol. Such protocol uses the route request

and a reply mechanism in order to set up network paths between sources and

destinations. This process yields a routing table by each node that contains a path

from the sources to destinations. Johnson et al. [99] employ a technique where

the source node should contain the complete route information in the packet

header. This also means that multiple routes are stored at the source node in

order to avoid node failure. The limitation of the DSR protocol is its increases in

the amount of memory use of the source node because of intermediate node

storage and routing overhead. AODV [100] employed the use of a hello message

in order to detect and fix broken network links. This results in an increase in

network latency, particularly when dynamically looking for new routes.

Gelenbe and Liu [55] presented a cognitive and quality of service approach to

routing in wireless sensor networks. They used the concept of smart packets for

network path discovery coupled with reinforcement learning and neural networks.

In addition, they used the ant colony concept to mimic the pheromone-based

technique ants use to find a given path and communicate the information to colony

members. Experimental results showed the efficiency of their approach in

- 56 -

adapting to network changes over time. Self-adaptive routing in multi-hop sensor

network was presented by Bourndenas et al. [36]. A study of an effective method

that uses time series analysis to forecast the occurrence of errors and faults was

presented. The work considered an autonomic routing service through adaptation

to avoid areas where failure or errors are expected. Simulation results showed the

benefit of their approach. The authors in [42,43] compared the performance of

three routing protocols, namely, the Multi-Parent Hierarchical (MPH), AODV,

and DSR protocols. The protocols are evaluated both when exposed to different

“jamming” attacks and without attacks, and considering diverse locations of the

jammer. Simulation results show that MPH routing has greater immunity to

tolerating attacks than DSR and AODV. This is because MPH reduces and

encapsulates the network segment when subjected to a network attack. In

addition, the self-configuring features of MPH yield higher resiliency and better

routing performance compared with AODV and DSR protocols. Del-Valle-Soto et

al. [43] proposed metrics for efficient energy consumption in wireless sensor

networks. They compared the performance of three routing protocols, namely

MPH, AODV, DSR, and Zigbee Tree Routing (ZTR). Simulation results

demonstrated the impacts of communication metrics on performance, throughput,

reliability, and energy consumption. They showed that MPH achieved a 19.3 %

reduction of network packet retransmissions, 26.9% reduction in routing overhead,

and 41.2% increase in protocol recovery from topology failure compared with

- 57 -

AODV routing. In addition, their approach achieved a 15.9 % decrease in energy

consumption compared with AODV, 13.7% compared with DSR, and 5% compared

with ZTR protocols. Apart from the few related works mentioned above and in the

bibliography, this dissertation proposes an autonomously self-aware and

adaptively fault-tolerant routing techniques for wireless sensor networks. The

dissertation integrates the autonomic self-aware and adaptive mechanism for

route formation and repair in the presence of transient and permanent node failure

rates in order to achieve high routing performance, energy efficiency and

resiliency against errors and failure of sensor nodes, and adapt to simultaneous

network topology changes.

3. Self-selective routing

The SSR routing [44,45,55,96] has the characteristics that network nodes

know their distance through the mechanism of route request and reply. In this

scheme, the nodes broadcast packets with an estimated distance to the destination

neighbors. The node then employs the SSR protocol to determine autonomously

the node that should transmit a given packet to the next node using a prioritized

transmission backup delay. Upon receiving the packet, the node, then schedules

further packet transmission immediately with a random delay that is proportional

to its path length of the destination. The transmission back-off delay is

expressed using the mathematical expression given in Equation (1) as

[44,45,55,96]:

- 58 -

 Trans_Back_off_Delay =
 ∗ −	 ∗ Random(0,1) 	if	α	 > 	

 	
∗ Random	(0,1)	if	α	 ≤ 	

 (1)

Where α is the hop count of the destination node, and is the sender node

expected hop counts in the destination reply packets. The random function is the

random number generator that produces real values uniformly distributed between

the interval [0,1]. This random function is used to randomize the delays and

reduce packet collisions. The parameter β is a scaling factor used to stretch the

random delay values generated by the randomize function. Equation (1) assigns a

Trans_Back-off_Delay greater than β to those nodes with hop counts that are

greater than αexpected. In this case, the smaller the value of α, the least is the

Trans_Back_off_Delay, and the node has the highest probability of transmitting the

packet [44,45,55,96]. The limitations of SSR are:

1. The SSR routine computes a node’s transmission back-off delay in

continuous time, in contrast to slotted time. The disadvantage is that it has

a higher rate of packet collisions.

2. Because of non-zero probability, the packets may travel a longer route

while a shorter route exists that increases network delay.

3. In SSR, there is no route repair mechanism for propagating packets around

faulty routes.

4. Self-healing routing

SHR routing [28,97] employs the concept of a prioritized time-slotted

transmission back-off delay and route repair routine. The first improvement on

- 59 -

SHR is as follows: when a given node receives a packet, the node employs

Equation (2) instead of Equation (1) to compute the delay before transmitting the

packet:

Trans_Back_off_Delay =	
 ∗ −	 + 	(0,1) 	 	 	 >	

 	
∗ (0,1)	 	 	 ≤ 	

 (2)

From Equation (2), we can determine that the computed delay is such that the

nodes closest to the destination forward their packets, rather than those far away.

Furthermore, Equation (2) assumes that there are delays, and thus ensures the

response of those nodes farther away from the destination than the sender,

according to their distance from the destination. In doing so, no packets travel

further than the necessary routes, even if there are no nodes closer to the

destination: Another addition to SHR is the transmission back-off delay in the

slotted time, in contrast to the continuous time used in SSR [44,45,55,96]. The

transmission back-off delay is given by Equation (3) as [28,97]:

 _ _ _ =	
 _ _ _

 ∗ (3)

Where Trans_Back_off_Delay is as given in Equation (2), and Wds is the width of

the used slot.

This dissertation addresses the limitations of the SHR and SSR routing

protocols by using combined continuous and slotted prioritized transmission back-

- 60 -

off delay to obtain local and global network state information and multiple

randomize function for faster routing convergence and efficient and reliable route

repair technique in the presence of transient and permanent node failure rates.

5. On-chip sensor network monitoring and control using

dynamically reconfigurable autonomous sensor agents

The on-chip sensor network runtime parameters such as voltage, current, and

crosstalk noise are used in controlling and monitoring information from the on-

chip sensor network environment. Therefore, as the signals are transmitted within

the logic blocks, they encounter delays. This delay component of the logic circuit

should be minimized. Hence, the use of FPGA to implement sensor networks will

be an efficient solution for a reliable on-chip sensor network packet transmission

and retransmission scheme because logic and critical-path delays in FPGAs are

minimal. Several methods to overcome these limitations include the use of

feedback control system [62-64], [101-103].

Chengun et al. [56] proposed a multiplexing scheme that is simple enough to

synchronize the sampling in a multichannel acquisition system with different

sampling rates and many combined analog inputs as well as an improved sampling

control to enhance system performance. FPGA was used in their design

implementation. They used a sampling lookup table (LUT) to design a rule-based

synchronous sampling frame to reduce the internal wiring and enhance resource

utilization. The results of their experiments demonstrated the benefit of the

- 61 -

proposed approach. The proposed scheme can be employed in other related

applications. Perera et al. [57] presented the design of low-cost, reconfigurable,

and programmable smart sensor node using ZigBee. Their design was implemented

using FPGA that incorporated the basic functionalities of the IEEE 1451 standard.

The design of the sensor nodes comprised a processing unit and transducers with

control capabilities in a single core to ensure reliable processing speed as a result

of interprocess communication within a die. The experimental results on the basis

of the measured pH value and temperature of water samples demonstrated the

benefit of their approach.

Nídia et al. [58] proposed a distributed autonomic inference machine. This

machine could allow the sensor nodes to self-manage and to contextualize the

tasks based on fuzzy logic. The results of their experiments demonstrated that the

proposed machine is energy efficient by minimizing the number of messages to

48.8% and achieving a 19.5% reduction in the energy consumed by the network.

The review paper by Jesús et al. [59] provided an overview of the recent wireless

sensor network (WSN) middleware systems that addressed the autonomic

properties. Their aims were to determine the best autonomic computing method

that will provide a self-management feature of WSNs for middleware systems

and to study the various interactions and behavior in WSN components. Their

conclusions were summarized as follows: first, they addressed the major concerns

about self-configuration, self-healing, self-optimization, and self-protection

- 62 -

properties of the autonomous systems. Second, their investigation used diverse

methods to manage the dynamic behavior of middleware systems for WSN, which

included policy-based reasoning, context-based reasoning, feedback control

loops, mobile agents, model transformations, and code generation. Finally, they

identified the lack of complete system architecture design that provides full

autonomy to the sensor network.

Designing an intelligent monitoring and control system requires the use of

smart or intelligent and reliable sensors. The recent work by Echanobe et al. [60]

has proposed a system-on-chip-based intelligent multiprocessor embedded

system to control ambient environmental parameters. They achieved the

intelligent capability of their proposed approach by employing the concept of

Neuro–fuzzy system, which can reason and adapt to situational environmental

changes. The authors Huijsing et al. [101] and Kirianaki et al. [104] proposed the

concept of intelligent sensors. These are sensors with embedded intelligence and

control system that can perform diverse functionality for environmental

monitoring, self-adaptation, runtime observability, and network packet

monitoring. Approaches to provide a smart interface for application-specific

integrated circuits and FPGAs are provided by the authors of [105-112].

Other approaches to intelligent sensor system monitoring are presented in

[113-116]. These approaches focused on the functionalities and communication

protocols using transducers to make network communication possible. Ring and

- 63 -

delay sensors have been used to study temperature and variations in FPGA

[61,63]. Franco et al. [63], a ring oscillator was proposed to monitor the

temperature in an FPGA. The work considered a quadratic frequency in relation to

a temperature-sensor transfer function and examined how voltage variations

affect the sensitivity of a sensor in relation to the number of stages in the

oscillator. The authors found that for larger oscillating chains, the voltage

variations can be easily analyzed. Xi et al. [105] used ring oscillators to measure

variability and temperature within the processor die. They also measured the

power consumption when the system processor die is operating and in idle state.

The use of sensor networks to measure diverse runtime parameters such as

crosstalk noise, on-chip interconnect temperature, switching activity, clock duty

cycle, and other parameters is given in [113-119]. Petrescu et al. [117]

proposed a signal integrity and efficient architecture to monitor diverse network-

on-chip physical parameters, particularly temperature and voltage. Similarly,

McGowan et al. [31] described the control system of a 90-nm Itanium processor,

which utilizes on-chip sensors to measure power and temperature and modulates

voltage and frequency to optimize the system performance. Sohn et al. [119]

proposed a sensor-based solution for static random access memory to mitigate

the uncertainties and fluctuation that exist among different device parameters.

A few number of methods have been proposed to collect useful information at

runtime for on-chip sensor networks. For instance, Chan et al. [120] proposed an

- 64 -

approach to use system management bus for communication between IP cores and

a thermal-aware power management IP for low-level power management

functions. Furthermore, Alexander et al. [113] proposed a hierarchical

architecture to collect runtime parameters using network on-chip. Another

approach was proposed by Ciordas et al. [114], which was a monitoring service

framework, to support runtime observability of network-on-chip NoC behaviors,

and application debugging was proposed.

The authors in [121,122] proposed a design of a web server for remote

monitoring and control using FPGA. They provided a procedure for the

implementation and application of their approach to remote monitoring of sensor

networks on FPGA. Gomez-Ouna et al. [122], the authors proposed a monitoring

infrastructure for FPGA self-awareness and dynamic adaptation. They employed

sensor networks to provide dynamic adaptation and obtain data from the FPGA

with reduced cost and easy implementation. They showed the significant benefit

of their approach. Finally, the authors Georgios and Dionisions [102] and Gabriel

et al. [103] provided a detailed survey of the taxonomy of network-on-chip

monitoring and control as well as FPGA-based design of sensor systems.

However, the limitations of the previous approaches are as follows: (1) they did

not provide real-time monitoring and a control mechanism for accurate

measurement of the on-chip sensor network runtime parameters, and (2) they

did not provide efficient and convenient interface between the user and the FPGA

- 65 -

to dynamically tune the operating ranges and reconfiguration refresh time to

measure different on-chip sensor values.

In order to address the limitations of the previously proposed approaches. This

dissertation, propose a low-level micro-architectural design infrastructure for

real-time monitoring and control of on-chip sensor network-based systems for

FPGAs.

E. Chapter Summary

This chapter describes the basic background on FPGA-Based networks-on-

chip. It gives an explanation on the three basic NoC interconnect architectures as

used in the dissertation. Also describe are the router and switch, micro-

architectures and buffer management. Furthermore, the chapter describes the

eleven configurable NoC and router parameters as used in the study. Finally, an

extensive review of the related works and how they are different from the

proposed methodologies are clearly explained and provided in the chapter.

- 66 -

III. A Parametric-Based Performance Evaluation and

Design Trade-offs for the Interconnect

Architectures using FPGAs for Network-on-chips

A. FPGA-Based Network Performance and Self-adaptive

Models

This chapter was written based on the published research papers [92] and[173].

1. Bayesian networking model

The dissertation defines a Bayesian network as a Directed Acyclic Graph

(DAG) where nodes in the graph represent a set of random variables X = {X1,

X2,... Xn}. It is represented as a set T = (V, E) where V represents a set of nodes

or vertices and E the set of arcs or edges that define conditional independence

assumptions. The DAG defines a factorization of the joint probability distribution

of the modeled random variable X. This joint distribution is obtained as a product

of all conditional probabilities specified for each variable given its parent in the

DAG [123]. We denote the vertices or nodes by Xi, i = 1,..., n. The joint

probability of any X can be represented as follows:

 P (X1, X2, X3, ...Xn) = П N
i=1 P(Xi / Pa (Xi)) (4)

2. Proposed FPGA-Based network performance model

Herein, the dissertation presents the proposed methodology. Let define the

following parameters:

- 67 -

VC: Virtual channel (size from two to six units)

FBD: Flit Buffer Depth (varies from two to six units in bits)

FDW: Flit Data Width (varies from two to six units in bits)

ARCH: Architectural parameters (router and switches, topology and flow control

etc.)

AREA: synthesized FPGA area PLUT (%LUT, slice LUT used as logic and

routing)

CLKF: synthesized FPGA clock frequency CLK_FREQ in (MHz)

P: Probability

X1, X2, ... Xn: are random variables representing these parameters.

(Figure 5) Shows the proposed network performance model.

In the proposed approach using the Bayesian network, the four parameters VC,

FBD, FDW and ARCH influence the FPGA network performance and impacts both

the area and clock frequency of the FPGA. The values of these parameters are

- 68 -

varied on the FPGA that is, X1, X2, X3 and X4 forming a different configurations and

the resulting area X5 and clock frequency Xn are observed. Figure 5 above shows

the proposed model, each variable representing a unique on-chip parameter. Using

the Bayesian network approach we define the following probabilities:

P (VC) = P (number of Virtual channels)

P (FBD) = P (size of Flit buffer depth)

P (FDW) = P (size of Flit data width)

P (ARCH) = P (architectural parameters router and switches, routing algorithms,

topology and flow control etc.)

P (AREA) = P (synthesized FPGA area due to VC, FBD, FDW and ARCH

parameters)

P (CLKF) = P (synthesized clock frequency due to VC, FBD, FDW and ARCH

parameters)

From equation (4), the probability of the synthesized FPGA area and clock

frequency are given as follows:

 P(AREA) = П N
i=1 P(AREA / parents(AREAi) (5)

 P(CLKF) = П N
i=1 P(CLKF / parents(CLKFi)) (6)

Now putting the parameters in the equation (5) and (6) we get

 P(AREA) = П N
i=1 P(AREA / VC, FBD, FDW) (7)

 P(CLKF) = П N
i=1 P(CLKF / VC, FBD, FDW) (8)

The probability of the synthesized FPGA area and a clock frequency depends on

- 69 -

the variation of the probability of any of the parameter more than one or all the

four parameters as in figure 5. More VCs reduce head_of_line (HoL) blocking, but

increases hardware resource usage. The FDW specifies flit data width in bits

internally, in addition to the bits used for data; flits maintain extra bits for flow

control and bookkeeping purposes. The FBD parameter specifies the depth of flit

buffers in flits, deeper buffers offer higher performance by allowing packets to

make more progress under heavy loads.

Definition 1.

The dissertation defines each network configuration as a set of 3-tuple

meaning that, each network configuration consists of different combination of the

three basic parameters (FDW, VC and FBD). When these configurations are

synthesized using the Xilinx ISE tools yields the resulting FPGA area

(AREA %LUT, slice LUT used as logic and routing) and clock frequency (CLKF)

in MHz. Therefore, we define each network configuration as:

Network_configuration (Parameter_1, Parameter_2, Parameter_3) = {AREA,

CLKF} (9)

Where Network_configuration is the on-chip network name and grid (node

size) of the network, Parameter_1 is the Flit Data Width (FDW) in bits ranges

from 8 to 64 bits, Parameter_2 is the size of Virtual channel (VC) ranges from 2

to 6 units and Parameter_3 is the Flit Buffer Depth (FBD) in bits ranges from 8 to

64 bits respectively. Therefore, we can write equation (9) as:

Network_configuration (FDW, VC, FBD) = {AREA, CLKF} (10)

Equation (10) can also be written as:

- 70 -

Network_configuration (X1, X2, X3) = {X5, Xn} (11)

3. Proposed Self-adaptability model

Herein, the dissertation presents the proposed self-adaptive model [123-

144]. In a more simplified form of the proposed model, as shown in figure 5, the

set X = { Xi / i = 1, ..., n} denotes all n parameters that are varied on the FPGA.

During run-time, different combinations of these parameters can be executed on

the available architecture, each representing an operational mode β of the system.

Ideally, each possible combination of parameters could be run as a network

configuration on the FPGA (i.e. X1, X2, X3 and X4). Therefore, the idea is to

additionally equip the system with an architectural parameter (X4) to detect

environmental changes (router and switches, topology, routing algorithm, flow

control etc.) and degeneration of the system’s performance. The system can then

react by modifying the network configuration by changing the value of different

parameters. The operational mode of the proposed model in an instant of time τ

is represented by the set of active parameters β (τ) ⊆ X, where each parameter

Xi ε β (τ) calculate the synthesized results AREAi (τ) and CLKFi (τ). These

results are computed by the FPGA synthesis function F (X) to produce the

resulting synthesized AREA (τ) and CLKF (τ) of the overall system at time τ.

Therefore, we have:

 AREA (τ) = F{Xi (τ)} Xi ε β (12)

 CLKF (τ) = F{Xi (τ) } Xi ε β (13)

The FPGA function evaluates the quality of each active parameter Xi ε β (τ) by

- 71 -

the FPGA function F(Xi (τ), AREA (τ), CLKF (τ)), which measure how well the

FPGA function is synthesizing the area and clock frequency of each network

configuration. Therefore, we have:

 F (Xi(τ), AREA(τ), CLKF(τ)) (14)

B. FPGA Experimental Results

This subsection demonstrates the experimental methodology carried out to

evaluate the performance of the Mesh, Torus and Fat-Tree architectures using

FPGA. A total of 392 different NoC configurations was designed using [70],

[144-146] on-chip network design tools. Each NoC architecture was redesigned

in the Verilog Hardware Description Language (HDL) and then synthesized each

NoC configuration using Xilinx ISE 14.3 to obtain the synthesis results in tables

2-5. The experiment targeted a large Xilinx FPGA Virtex-7 board (Device

XQ7VX980T, Package RF1930, speed -2L), [146]. Since the intention was to

employ a medium-sized FPGA device to observe the effects of varying

parameters, the higher Virtex-7 device with a large grid size was chosen so that

the impact of the parameters could be seen clearly as memory registers (routing

resources) are abundantly allocated on this device. The values of the router

parameters are tuned in order to optimize the area and clock frequency across

different network configurations. The synthesis results include FPGA area,

resource usage PLUT (percentage LUTs, slice LUT used as a routing and logic)

and clock frequency (CLK_FREQ) in MHz. A timing analysis was performed using

the Xilinx timing analyzer to determine the critical path delay for different

- 72 -

network configurations, and then evaluated the FPGA network costs for different

network configurations. The dissertation employed the use of a flexible cycle-

accurate simulation system [77] and simulate the NoCs under the benign (Nearest

Neighbor and Uniform) and adversarial (Tornado and Random Permutation) traffic

patterns. The resulting load-delay curves are provided in Figures 16-23.

1. FPGA synthesis results

Herein, the dissertation provides the FPGA synthesis results from the

conducted experiment. Tables 2 to 5 show the results of synthesizing different

network configurations using the Mesh, Torus and Fat-tree architectures. We

tuned three of the parameters (FDW, VC, and FBD) to optimize PLUT and

CLK_FREQ across different network configurations. For each combination of the

three parameters (FDW, VC and FBD) is a different network configuration and the

resulting synthesized FPGA area (PLUT) and clock frequency (CLK_FREQ) are

observed. As a result, for each table, we have ninety eight (98) different on-chip

network configurations and a total of three hundred and ninety two (392)

networks. As can be seen in the table data, increasing the FBD, FDW, or VCs

yields higher LUTs and affects the area and clock frequency of the FPGA

networks. Note in Tables 2-5 that the Fat-tree network configurations showed

better utilization of FPGA area (PLUT) and better clock frequency (CLK_FREQ)

across different combinations of the three parameters. From the conducted

experiment using the Xilinx ISE design tools it was discovered that the FDW and

FBD parameters have the largest effect on FPGA resources, followed by the VCs

parameter. This is due to the fact that, the parameters affect the FPGA routing

- 73 -

and logic resources. It is interesting to observe that the FBD and FDW parameters

affect the LUTs count in an indeterminate manner, due to the quantization effects

of distributed RAMs. This is also in line with the findings by Huan and DeHon

[81], Papamicheal and Hoe [82], Chung et. al [83] and Abba and Lee [92]. To

further analyze the results from the four tables and figures in this subsection, the

dissertation provides the following definition of network configuration.

Definition:

A network configuration is a set of 3-tuples {FDW, VC, FBD} meaning that,

each configuration is a function of the three basic parameters (FDW, VC, FBD).

When these configurations are synthesized using the Xilinx ISE tools, they yield

PLUT and CLK_FREQ in MHz.

Network_configuration (Parameter_1, Parameter_2, Parameter_3) =

{PLUT, CLK_FREQ} (15)

Where Network_configuration is the on-chip network name and grid (node size)

of the network, Parameter_1 is the Flit Data Width (FDW) in bits ranging from 8

to 64, Parameter_2 is the size of the Virtual Channel (VC) ranging from 2 to 6

units, and Parameter_3 is the Flit Buffer Depth (FBD) in bits ranging from 8 to

64. Therefore, equation (15) can be written as:

Network_configuration (FDW, VC, FBD) = {PLUT, CLK_FREQ} (16)

A similar definition was used by Abba and Lee [92]. The dissertation presents

an example from table 2. Applying definitions (15) and (16) above, we have the

following network configurations and resulting FPGA area (PLUT, %LUT) and

- 74 -

clock frequencies (CLK_FREQ in MHz) as follows:

Mesh144 (8, 6, 32) = {27%, 205 MHz}

Torus144 (8, 6, 32) = {29%, 219 MHz}

 Fat-tree144 (8, 4, 64) = {23%, 309 MHz}

2. Performance comparison of the synthesized FPGA network

clock frequency (CLK_FREQ) results

Table 2 and Figures 6 (a-b) show the experimental results of synthesizing

different network configurations using the Mesh, Torus and Fat Tree

architectures. In table 2, the FDW was fixed at 8 bits, and varied VC from 2 to 6

and FBD from 8 bits to 64 bits. Then each network configuration was synthesized

and obtained the synthesized PLUT, and CLK_FREQ (in MHz) across ninety-

eight different configurations. As can be seen in Figure 6 (a-b), the Fatttree144

network configuration showed higher clock frequencies (above 300MHz) for

different configuration of FDW, VC and FBD parameters. This is because the

maximum frequency exhibited by Fat-tree network configurations is directly

related to the FDW, FBD, VC parameters. Similarly, enabling the pipeline router

allocator increases the clock frequency in the large Fattree144 network. The

pipeline router allocator adds pipeline stages right after the allocation unit, this

can produce 1.5x to 2x clock frequency improvements. This depends on the

transistor switching and net delay or routing delay, which is minimal in Fat-tree

network configurations. We observed a slight degradation in clock frequency due

- 75 -

to the FBD parameter. With an FBD between 32 bits and 64 bits, the clock

frequency degrades slightly from 331 MHz to 310 MHz. Similarly, increasing the

number of VCs produces no performance degradation in Fat-tree network

configurations. For the Mesh and Torus network configurations, the effect of the

three parameters can be seen quite clearly, as the clock frequency degrades more

sharply than it does for Fat-tree network configurations (from 141 to 121 MHz in

Mesh121 and from 141 to 122 MHz in Torus121 network configurations). This is

due to the higher FBD value, which forces the use of more buffers and increases

the consumption of logical and routing resources along the critical path. A point to

note that the Fattree144 network configuration offered the best overall FPGA

clock frequency performance. In Fig. 6 (b) we see the expected improvement of

the clock frequency due the increase in network grid size to 144 nodes. Mesh144

showed an increase from 141 MHz to 218 MHz and Torus144 showed an increase

from 141 MHz to 244 MHz. Here, the FBD parameter becomes the dominant

factor influencing clock frequency. We also observed that setting FBD to 8 bits

produced a higher clock frequency in Torus144 than in other architectures. The

Fattree144 network offered better overall performance than the Mesh144 and

Torus144. The summary of the major findings are as follows:

· In Mesh configurations with FDW and FBD of size 8 bits, increasing the

VCs does not produce any performance gain in FPGA area and clock

frequency utilization.

- 76 -

· A VC of the size 2 and FBD of size 64 bits produced the same area and

clock frequency as a VC of the size 4 and FBD of size 64 bits.

· The FBD parameter significantly increases the FPGA area and degrades

clock frequency performance.

· In both Mesh and Torus configurations, an FDW of size 8 bits, a VC of

size 2 to 4, and an FBD of size 8 bits produced the best network

configuration in terms of FPGA area and clock frequency.

· In a Fattree56 network configuration with FDW and FBD of the same size,

increasing the VCs has no performance impact on the FPGA area and clock

frequency.

· The Fattree144 network configuration with FDW of 8 bits, VC of 2 to 6,

and FBD of 8 bits produced the best network configuration in terms of

FPGA area and clock frequency.

- 77 -

(Table 2) Synthesis results of 96 different on-chip Interconnect network

configurations with (FDW of 8 bits, VCs from 2 to 6, and FBD of 8 bits to 64 bits)

on Virtex-7 FPGA device.

Flit Data Width (FDW)

8bits

Number of Virtual Channels (VCs)

2VCs 4VCs 6VCs

Flit Buffer Depth (FBD)

8 16 32 64 8 16 32 64 8 16 32 64

10X10 MESH

(MESH100) NoC

PLUT (%LUTs)

12 14 18 24 12 14 18 24 12 15 18 26

CLK_FREQ

(MHZ)

285 267 253 243 285 269 253 243 285 265 251 236

11X11 MESH

(MESH121) NoC

PLUT (%LUTs)

14 19 25 42 15 20 26 42 15 19 26 43

CLK_FREQ

(MHZ)

141 132 128 121 140 131 129 122 140 134 129 121

12X12 MESH

(MEASH144)

NoC

PLUT (%LUTs)

18 20 26 36 18 21 26 37 19 22 27 37

CLK_FREQ

(MHZ)

218 217 216 223 228 227 226 211 217 210 205 223

10X10 TORUS

(TORUS100) NoC

PLUT (%LUTs)

13 16 20 27 14 16 20 28 14 17 21 27

CLK_FREQ

(MHZ)

259 263 276 248 258 262 276 248 258 261 273 239

11X11 TORUS

(TORUS121) NoC

PLUT (%LUTs)

16 21 27 44 16 22 28 46 16 19 28 48

CLK_FREQ

(MHZ)

141 138 128 120 140 137 129 110 140 136 129 123

12X12 TORUS

(TORUS144) NoC

PLUT (%LUTs)

20 24 27 40 21 24 28 40 21 25 29 41

CLK_FREQ

(MHZ)

244 228 217 225 244 228 233 211 243 231 219 224

FATTREE56 NoC PLUT (%LUTs)

3 4 5 8 3 4 5 9 3 4 5 9

CLK_FREQ

(MHZ)

367 329 312 309 355 329 312 310 355 329 312 310

FATTREE144

NoC

PLUT (%LUTs)

10 12 15 23 10 12 15 23 10 13 15 23

CLK_FREQ

(MHZ)

331 324 312 310 331 319 312 309 331 325 312 310

- 78 -

(a) For Mesh121, Torus121, and Fattree144

(b) For Mesh144, Torus144, and Fattree144

(Figure 6) Shows the FPGA synthesized clock frequency performance with 8-bit

FDW.

Table 3 and Figure 7 (a-b) show the experimental results of synthesizing

ninety eight different network configurations using Mesh, Torus, and Fat-tree

networks. Here the size of the FDW parameter was fixed at 16 bits and varied VC

from 2 to 6 and FBD from 8 bits to 64 bits. We measured the resulting FPGA area

(PLUT, %LUT) and clock frequency (CLK_FREQ) across different network

- 79 -

configurations using Xilinx ISE design tools.

In Fig. 7 (a) we expected an increase in clock frequency performance with the

FDW parameter scaled to 16 bits. But, we observed that there is no any

significant performance gain due to the FDW parameter. Again, the Fattree144

network configuration showed better performance than Torus121 and Mesh121,

due to the effects of the FBD and VC parameters. We also observed that

Torus121 and Mesh121 showed significant degradation in clock frequency.

Increasing VC does increase clock frequency, but at the expense of a slight

increase in area utilization. In fig 7 (b), we scaled the networks to grid size of

144 nodes. Again, Fattree144 outperformed Mesh144 and Torus144. While there

is a slight improvement in both Mesh144 and Torus144 network when increasing

FDW to 16 bits, Fattree144 again outperformance all others. From the conducted

experiment we conclude that, due to changes in FDW, VC and FBD parameters,

the Fattree144 architecture offered the best FPGA network synthesis in terms of

area and clock frequency. The key findings are as follows:

· For Mesh and Torus networks with FDW and FBD of 16 bits, increasing

the VCs from 4 to 6 does not produce any performance gain in FPGA area

and clock frequency.

· A VC of size 2 to 6, FDW of 16 bits, and FBD of 8 bits produced the same

FPGA area and clock frequency.

· The FDW and FBD parameters have the greatest impact on FPGA area and

clock frequency for a given network size.

· Fattree56 and Fattree144 with FDW of 16 bits, VC from 2 to 6, and FBD

of 8 bits produced the best overall FPGA area and clock frequency.

- 80 -

(Table 3) Synthesis results for 96 different on-chip interconnect network

configurations with (FDW of 16 bits, VCs from 2 to 6, and FBD of 8 bits to 64

bits) on Virtex-7 FPGA device.

Flit Data Width (FDW)

16bits

Number of Virtual Channels (VCs)

2VCs 4VCs 6VCs

Flit Buffer Depth (FBD)

8 16 32 64 8 16 32 64 8 16 32 64

10X10 MESH

(MESH100)

NoC

PLUT (%LUTs)

14 15 18 28 15 18 21 28 15 17 21 28

CLK_FREQ

(MHZ)

289 258 244 235 328 287 264 235 328 285 253 235

11X11 MESH

(MESH121)

NoC

PLUT (%LUTs)

17 23 28 45 17 24 28 45 18 25 29 45

CLK_FREQ

(MHZ)

141 138 130 121 141 130 129 122 140 133 129 122

12X12 MESH

(MEASH144)

NoC

PLUT (%LUTs)

22 25 29 40 22 25 29 40 22 25 29 40

CLK_FREQ

(MHZ)

215 214 215 211 224 220 213 211 228 220 216 210

10X10

TORUS

(TORUS100)

NoC

PLUT (%LUTs)

16 18 23 29 16 18 24 29 17 19 23 29

CLK_FREQ

(MHZ)

260 261 259 239 260 261 259 239 263 262 276 239

11X11

TORUS

(TORUS121)

NoC

PLUT (%LUTs)

19 23 30 47 19 25 31 47 19 26 31 47

CLK_FREQ

(MHZ)

141 137 129 123 141 130 129 123 141 134 129 122

12X12

TORUS

(TORUS144)

NoC

PLUT (%LUTs)

24 26 31 44 24 27 31 44 24 27 31 44

CLK_FREQ

(MHZ)

243 231 218 211 241 230 220 211 247 231 223 211

FATTREE56

NoC

PLUT (%LUTs)

4 4 5 9 4 4 5 9 4 5 6 9

CLK_FREQ

(MHZ)

357 329 312 309 357 329 312 310 357 329 312 310

FATTREE14

4 NoC

PLUT (%LUTs)

11 13 16 25 11 14 16 25 11 13 16 25

CLK_FREQ

(MHZ)

331 324 312 309 330 320 312 310 331 319 312 310

- 81 -

(a) For Mesh121, Torus121 and Fattree144

(b) For Mesh144, Torus144 and Fattree144

(Figure 7) Shows FPGA synthesized clock frequency performance with 16-bit

FDW.

In table 4 and figure 8 (a-b) we increased the value of the FDW parameter

to 32-bit and varied the values of VC from 2 to 6 and FBD from 8 to 64-bit.

From Figure (a-b) due to FDW scaled to 32 bits, we expected an increase in the

clock frequency performance. As observed, the Fattree144 network configurations

- 82 -

with 8-bit FBD and 2 to 6 VCs showed an increase in clock frequency to 340

MHz. This increase is due to the effect of FDW parameter scaled to 32-bit.

Similar observation can be seen in the Table 4 for both Mesh100 and Torus100

network configurations with 2 to 6 VCs and 8-bit FBD, showed an increase in

clock frequency of 320 MHz and 302 MHz respectively. This is also due to the

effect of the FDW parameter scaled to 32-bit and FBD of size 8-bit respectively.

The Fattree144 network configuration offered best FPGA synthesized clock

frequency as compared to Mesh144 and Torus144 network configurations. Finally,

from conducted experiment due to the effect of FDW parameter and FBD the

Mesh and Torus network configurations showed a degradation in clock frequency

(CLK_FREQ) performance. However, the Fattree network configurations showed

a better performance and efficient utilization of FPGA resources. The key findings

are:

· The Mesh, Torus and Fat-tree networks with 32-bit FDW, 2 to 6 VC and

8-bit FBD offer the best utilization of the FPGA area and clock frequency.

· Fattree144 network configuration with 32-bit FDW, 2 VCs and 8-bit FBD

showed the highest synthesized FPGA clock frequency.

- 83 -

(Table 4) Synthesis results of 96 different on-chip Interconnect network

configurations with (FDW of 32 bits, VCs from 2 to 6, and FBD of 8 bits to 64

bits) on the Virtex-7 FPGA device.

Flit Data Width (FDW)

32bits

Number of Virtual Channels (VCs)

2VCs 4VCs 6VCs

Flit Buffer Depth (FBD)

8 16 32 64 8 16 32 64 8 16 32 64

10X10 MESH

(MESH100)

NoC

PLUT

(%LUTs)

18 20 25 32 18 21 25 32 18 21 24 32

CLK_FREQ

(MHZ)

320 201 267 236 320 202 267 236 320 301 245 236

11X11 MESH

(MESH121)

NoC

PLUT

(%LUTs)

21 26 33 48 21 27 33 48 21 27 33 48

CLK_FREQ

(MHZ)

141 137 131 121 141 139 131 121 141 132 131 121

12X12 MESH

(MEASH144)

NoC

PLUT

(%LUTs)

27 30 33 45 27 29 32 45 28 31 35 46

CLK_FREQ

(MHZ)

254 221 201 199 254 220 204 199 255 243 204 195

10X10 TORUS

(TORUS100)

NoC

PLUT

(%LUTs)

20 24 28 34 20 24 29 35 20 24 28 35

CLK_FREQ

(MHZ)

302 287 276 263 302 285 276 239 302 286 245 239

11X11 TORUS

(TORUS121)

NoC

PLUT

(%LUTs)

23 27 35 53 23 27 35 54 24 29 31 56

CLK_FREQ

(MHZ)

141 133 132 124 141 130 132 124 141 139 132 141

12X12 TORUS

(TORUS144)

NoC

PLUT

(%LUTs)

29 33 36 49 29 34 49 54 28 35 44 66

CLK_FREQ

(MHZ)

263 231 221 211 263 220 211 197 263 198 132 124

FATTREE56

NoC

PLUT

(%LUTs)

5 6 5 11 5 6 7 11 5 6 7 11

CLK_FREQ

(MHZ)

342 333 342 306 342 333 301 306 342 333 306 306

FATTREE144

NoC

PLUT

(%LUTs)

14 16 19 29 14 16 19 29 14 17 19 29

CLK_FREQ

(MHZ)

340 331 289 306 340 311 289 306 340 319 289 306

- 84 -

(a) For Mesh121, Torus121 and Fattree144

(b) For Mesh144, Torus144 and Fattree144

(Figure 8) Shows the FPGA synthesized clock frequency performance with 32-bit

FDW.

In table 5 and figure 9 (a-b) we fixed the size of the FDW parameter for 64-

bit and varied the VCs from 2 to 6 and FBD from 8 to 64-bit. An interesting

observation here is in figure 9 (a) shown in the Torus121 network configuration

with 64-bit FDW, 4 VCs and 32 to 64-bit FBD. An increase in clock frequency to

- 85 -

275 MHz with 32-bit FBD and 252 MHz with 64-bit FBD respectively. However,

in Figure 9 (b) we observed that the Torus144 network configuration showed an

interesting result with an increase in clock frequency from 263 MHz to 300 MHz.

This is due to the effects of FDW of size 64-bit, VC of the size 4 and FBD of

sizes 8 to 16-bit respectively. However, we observed that, the clock frequency

degraded significantly with 2 VCs. This clearly shows the effect of fewer number

of VCs in large scaled Torus144 network configuration. In conclusion, from the

conducted experiment an interesting observation is that, the trend in an FPGA

area and clock frequency performance is the same for all the three network

architectures. Meaning that, an FDW of size 64-bit, VC of size 2 to 6 and FBD of

size 8 to 16-bit produces the best FPGA clock frequency in large scaled NoC

architectures. The major findings are:

· A VC of the size 2 and FBD of size 64-bit produced the same area and

clock frequency with a VC of size 4 to 6 and FBD of size 64-bit. FDW

of size 64 bits, VCs of size 2 to 4 and FBD of size 8 to 16 produced

efficient FPGA area and clock frequency for a given network size in the

three architectures.

- 86 -

(Table 5) Synthesis results of 96 different on-chip Interconnect network

configurations with (FDW of 64 bits, VCs from 2 to 6, and FBD of 8 bits to 64

bits) on the Virtex-7 FPGA device.

Flit Data Width (FDW)

64bits

Number of Virtual Channels

(VCs)

2VCs 4VCs 6VCs

Flit Buffer Depth (FBD)

8 16 32 64 8 16 32 64 8 16 32 64

10X10 MESH

(MESH100)

NoC

PLUT

(%LUTs)

26 28 31 38 26 29 34 43 26 29 33 42

CLK_FREQ

(MHZ)

323 293 221 215 323 298 267 247 323 294 253 236

11X11 MESH

(MESH121)

NoC

PLUT

(%LUTs)

30 36 42 59 30 37 43 60 30 38 43 51

CLK_FREQ

(MHZ)

140 138 130 123 140 137 130 123 140 136 130 123

12X12 MESH

(MEASH144

) NoC

PLUT

(%LUTs)

39 41 44 58 40 41 45 59 40 42 45 59

CLK_FREQ

(MHZ)

255 221 200 211 255 219 204 198 255 218 204 198

10X10

TORUS

(TORUS100)

NoC

PLUT

(%LUTs)

29 34 38 48 29 34 40 48 30 32 35 45

CLK_FREQ

(MHZ)

302 285 250 252 302 286 275 252 302 295 245 239

11X11

TORUS

(TORUS121)

NoC

PLUT

(%LUTs)

33 38 45 65 34 39 49 58 34 39 46 66

CLK_FREQ

(MHZ)

140 137 130 123 140 137 275 252 140 138 131 123

12X12

TORUS

(TORUS144)

NoC

PLUT

(%LUTs)

41 46 55 59 40 44 47 63 40 48 56 80

CLK_FREQ

(MHZ)

140 138 131 121 300 263 222 210 260 197 131 123

FATTREE56

NoC

PLUT

(%LUTs)

7 8 9 14 7 8 9 14 7 8 9 14

CLK_FREQ

(MHZ)

342 333 306 306 342 333 306 306 342 333 306 360

FATTREE14

4 NoC

PLUT

(%LUTs)

19 21 25 37 20 22 25 37 20 23 25 37

CLK_FREQ

(MHZ)

340 322 289 306 340 331 289 306 340 311 289 306

- 87 -

(a) For Mesh121, Torus121 and Fattree144

(b) For Mesh144, Torus144 and Fattree144

 (Figure 9) Shows FPGA synthesized clock frequency performance with 64-bit

FDW.

3. FPGA network cost performance evaluation

The dissertation considers the FPGA silicon area (PLUT) as a metric for the

evaluation of the network cost [1], [82], [147]. Considering tables 2-5. Figures

10-13 show the percentage of FPGA area (PLUT) utilization across different

network configurations. From Figures 10-13, we observed that, the FPGA area

- 88 -

usage increases with the increase in the VC, FBD and FDW parameters.

Correspondingly, the FDW and FBD parameters considerably increase the

percentage of FPGA area (PLUT). As observed, the Fat-tree network

configuration outperform all other networks in terms of efficient FPGA area

utilization. This is mainly due to the fact that in fat-tree network resources

increases in stages closer to the root node and routing resources are shared,

fewer levels of logic are needed to implement the network. Additionally, the FDW

parameter offers higher performance by allowing packets to make more progress

under heavy loads. Furthermore, enabling the virtual link parameter in Fattree144

require a small increase in hardware. This significantly reduces the buffering and

logic requirements.

Figure 10 (a-b) shows the network cost in terms of percentage of LUT

counts for Mesh, Torus and Fat-tree networks. Here we fixed the size of the

FDW parameter for 8-bit and varied the values of VC from 2 to 6 and FBD from 8

to 64-bit. As observed, the Fat-tree144 network configuration outperforms

Torus144 and Mesh144 in terms of efficient FPGA area (PLUT) utilization. The

flit buffer depth (FBD) parameter is the dominant factor for increasing the

percentage of LUTs consumption in both Torus144 and Mesh144 network

configurations. In figure 10 (b), the Torus144 network used too much of the

FPGA resources as compared to Mesh144 this is due the path diversity of the

Torus network more logics and routing resources are needed to provide efficient

- 89 -

flow of packets from source to the destination and the effect of the FBD

parameter of size 8 to 64 bits.

Fig. 11 (a-b) shows the percentage of LUT utilization of the three network

architectures. Here, we fixed the size of the FDW parameter for 16-bit and

varied the values of VC from 2 to 6 and FBD from 8 to 64-bit. As observed, the

Fat-tree144 network is the best in terms of network cost it uses fewer

percentage of LUT counts across different network configurations as compared to

the Mesh144 and Torus144 network configurations. The FBD parameter becomes

the major factor in increasing the FPGA area consumption. However, both

Torus144 and Mesh144 networks with the VC of the size 4 and FBD of sizes 8 to

16-bit are showing good FPGA area utilization.

Fig. 12 (a-b) shows the network cost comparison for Mesh, Torus and Fat-

tree networks. In the conducted experiment, we fixed the size of the FDW

parameter for 32-bit and varied the values of VC from 2 to 6 and FBD from 8 to

64-bit. As observed, the Fat-tree144 outperforms both the Mesh144 and

Torus144 network configurations. However, the FDW and VC parameters are

showing significant impact in both Torus144 and Mesh144 networks. This is

illustrated in figure 12 (b), a VC of size 2 to 6 and FBD of sizes 8 to 16-bit

produced efficient utilization of the FPGA area in both Mesh and Torus networks.

This shows a significant reduction of the FPGA area cost.

- 90 -

Fig. 13 (a-b) shows the network cost performance comparison between the

three architectures. We fixed the size of the FDW parameter for 64-bit and

varied the values of the VC from 2 to 6 and FBD from 8 to 64-bit. As observed,

the Fat-tree144 network outperforms the Torus144 and Mesh144 networks. This

comes with no surprise because in Fat-tree network communication can be scaled

freely from the number of processors; as a result, considerable hardware

resources can be saved, fewer levels of logic are needed for the implementation

[73]. Additionally, the pipeline router core parameter adds pipeline stages right

after the router allocation unit. This can offer 1.5 to 2x clock frequency

improvement. The pipeline router allocator is also useful in increasing frequency

in networks containing many VCs as in Mesh144 and Torus144 networks. We

conclude that, the Fat-tree144 network outperforms the Mesh144 and Torus144

networks in terms of the FPGA network cost. These findings also suggest that,

large scaled Fat-tree networks reduce the FPGA hardware cost and are compliant

with the current Xilinx FPGA devices.

(a) For Mesh121, Torus121, and Fat-tree144 networks

- 91 -

(b) For Mesh144, Torus144, and Fat-tree144 networks

(Figure 10) Illustration of the FPGA Network Cost Performance with 8-bit FDW

(a) For Mesh121, Torus121, and Fat-tree144 networks

(b) For Mesh144, Torus144, and Fat-tree144 networks

(Figure 11) Illustration of the FPGA Network Cost Performance with 16-bit FDW

- 92 -

(a) For Mesh121, Torus121, and Fat-tree144 networks

(b) For Mesh144, Torus144, and Fat-tree144 networks

(Figure 12) Illustration of the FPGA Network Cost Performance with 32-bit FDW

(a) For Mesh121, Torus121, and Fat-tree144 networks

- 93 -

(b)For Mesh144, Torus144, and Fat-tree144 networks

(Figure 13) Illustration of the FPGA Network Cost Performance with 64-bit FDW

4. Performance analysis of the critical path delay

Herein, the dissertation presents the experimental results of critical path delay

analysis. An essential metric for NoC performance evaluation using FPGA is the

speed measured by the critical path delay [78-80], [147]. The total critical path

delay is defined as the total delay due to the logic and the routing delays. In the

conducted experiment using the Xilinx ISE design tools we carried out timing

analysis using the Xilinx timing analyzer to compare the critical path delay of the

three interconnect architectures. From the findings over 80% of the total critical

path delays are from routing and the remaining less than 20% are from logic. The

results of the comparison are shown in Tables 6-7 and Figures. 14-15. The

Tables 6-7 show the critical path delay across network configurations. Observing

the tables, it's clear that increasing the FDW, FBD and VC parameters slightly

increase the critical path delay. The critical path delays in Fat-tree network

- 94 -

configurations produced the best (minimum) critical path delays this is due to the

fact that, there is a decrease in the number of logic elements since logic elements

are shared with Fat-tree networks. Accordingly, there will be fewer logic levels

to implement the network. From table 6 we fixed the size of the FDW parameter

for 32-bit and varied the values of VC from 2 to 6 and FBD from 8 to 64-bit and

observed the critical path delay across 72 network configurations. As shown in

Table 6, the Fat-tree144 network with grid size of 144 nodes outperforms the

Mesh144 and Torus144 networks by producing the minimal critical path delays

across different network configurations. Another interesting observation is with

the Mesh144 and Torus144 networks produced minimal critical path delays as

compared to Mesh121 and Torus121 networks. This is mainly attributed to the

on-chip cores (die) structure looks more like a perfect square grid that matches

very closely with the actual on-chip core structure as compared to the Mesh121

and Torus121 networks. This agrees with the findings by Lee and Shannon [80]

and Genko et. al [95].

In table 7, we fixed the size of the FDW parameter for 64-bit and varied the

values of VC from 2 to 6 units and FBD from 8 to 64 bits across 72 network

configurations. As observed increasing the FDW to 64-bit has no significant

impact on the critical path delay. As can be seen, the Fat-tree network produced

the minimum critical path delays across different network configurations. An

interesting observation is in Torus121 (64, 4, 32-64) and Torus (64, 4, 32-64)

- 95 -

network configurations produced the minimum critical path delay. This shows that,

at FDW of size 64-bit, VC of the size 4 and FBD of sizes 32 to 64-bit produced

the minimum critical path delay in the larger scaled Torus network.

(Table 6) The critical path delay of 78 different NoC configurations with (FDW of

32 bits, VCs from 2 to 6, and FBD of 8 bits to 64 bits) on the Virtex-7 FPGA

device.

CRITICAL PATH DELAY

Flit Data Width (FDW) 32bits

Number of Virtual Channels

(VCs)

2VCs 4VCs 6VCs

Flit Buffer Depth (FBD)

8 16 32 64 8 16 32 64 8 16 32 64

11X11 MESH

(MESH121)

NoC

Delay

(ns)

7.117 7.231 7.650 8.243 7.117 7.211 7.651 8.238 7.117 7.213 7.656 8.243

12X12 MESH

(MEASH144)

NoC

Delay

(ns)

3.932 3.991 4.980 5.033 3.932 3.994 4.907 5.033 3.920 3.997 4.907 5.117

11X11 TORUS

(TORUS121)

NoC

Delay

(ns)

7.088 7.241 7.582 8.084 7.088 7.242 7.582 8.085 7.093 6.994 7.587 7.088

12X12 TORUS

(TORUS144)

NoC

Delay

(ns)

3.808

4.012 4.524 4.748 3.808 4.013 4.749 4.749 3.808 4.213 7.594 8.090

FATTREE56

NoC

Delay

(ns)

2.922 2.999 3.267 3.267 2.922 2.999 3.320 3.267 2.922 2.999 3.272 3.267

FATTREE144

NoC

Delay

(ns)

2.938 3.124 3.457 3.267 2.938 3.132 3.457 3.267 2.938 3.132 3.457 3.267

(Table 7) The critical path delay of 78 different NoC configurations with (FDW of

64 bits, VCs from 2 to 6, and FBD of 8 bits to 64 bits) on Virtex-7 FPGA device.

CRITICAL PATH DELAY

Flit Data Width (FDW)

64bits

Number of Virtual Channels

(VCs)

2VCs 4VCs 6VCs

Flit Buffer Depth (FBD) 8 16 32 64 8 16 32 64 8 16 32 64

11X11 MESH

(MESH121)

NoC

Delay

(ns)

7.146 7.213 7.690 8.133 7.144 7.312 7.695 8.134 7.150 7.391 7.701 8.132

12X12 MESH

(MEASH144)

NoC

Delay

(ns)

3.925 4.211 4.736 4.994 3.925 4.217 4.908 5.045 3.925 4.317 4.908 5.045

11X11 TORUS

(TORUS121)

NoC

Delay

(ns)

7.123 7.289 7.690 8.114 7.127 7.287 3.640 3.966 7.132 7.299 7.633 8.124

12X12 TORUS

(TORUS144)

NoC

Delay

(ns)

7.137 6.993 7.626 5.133 7.137 6.245 4.502 4.760 3.851 6.453 7.638 8.124

FATTREE56

NoC

Delay

(ns)

2.922 2.991 3.277 3.260 2.922 2.997 3.272 3.267 2.922 2.998 3.272 3.267

FATTREE144

NoC

Delay

(ns)

2.938 3.012 3.457 3.267 2.938 3.021 3.457 3.267 2.938 3.022 3.457 3.267

- 96 -

Figure 14 (a-b) shows the critical path delay for different network

configuration of Mesh, Torus and Fat-tree networks. We observed that, the use

of large FBD and FDW produces good performance results, but with higher critical

path delays. From Figure 14 (a) the Mesh121 and Torus121 networks showed

very poor performance in terms of critical path delays. This is due to the fact

that, more logic is used on the critical path and the logic grows exponentially with

the increase in the FDW, VC and FBD parameters. However, the Fat-tree144

network configuration produced the minimum critical path delay of 2.938

nanoseconds. In Figure 14 (b), we scaled the three architectures to grid size of

144 nodes and compare the performances. As observed, the Mesh144 and

Torus144 networks showed an interesting result by reducing the critical path

delay this reduction is very significant as it enhances the network performance.

This is attributed to the increase in FBD and FDW parameters.

In Figure 15 (a-b), we increased the size of the FDW parameter to 64-bit

and observe the impact of the critical path delay across different network

configurations. As shown in figure 15 (a) both Mesh and Torus networks

performed very poorly and produced higher critical path delays. This is due to the

effect of FDW parameter scaled to 64-bit. The higher the critical path delay

significantly degrades the clock frequency performance. Another interesting

observation is in Torus121 network configuration with 64-bit FDW, 4 VC and 32

- 97 -

to 64 bits FBD produced the minimal critical path delay of 3.64 nanoseconds as

compared to 7.695 nanoseconds of Mesh121 network. Another interesting

observation is in figure 15 (b) the Mesh144 network showed significant reduction

in the critical path delay as compared to Torus144. This is due to the effect of

FDW and FBD parameters and the mesh size (grid) structure. As we mentioned

earlier, the mesh size (grid) structure of the interconnection affects the area, and

critical path delay this agrees with the findings of Abdelfattah and Betz [1], Lee

and Shannon [80], Coll et. al [73] and Genko et. al [95]. Finally from the

conducted experiment, it is clear that the Fat-tree network proved to be efficient

in terms of critical path delay due to the influence of FDW, FBD and VC

parameters. Hence the architecture is suitable for large and complex NoCs.

(a) For Mesh121, Torus121 and Fattree144 networks

- 98 -

(b) For Mesh144, Torus144 and Fattree144 networks

(Figure 14) Illustration of the critical path delay with 32-bit FDW

(a) For Mesh121, Torus121 and Fattree144 networks

(b) For Mesh144, Torus144 and Fattree144 networks

(Figure 15) Illustration of the critical path delay with 64-bit FDW.

- 99 -

C. Networks-on-Chip Simulation Results

1. Simulation environment

The dissertation introduces the cycle-accurate simulation methodology used to

evaluate the performance of the three interconnection architectures used in this

study, namely, the Mesh, Torus and Fat-tree networks. The Network

performance results are collected through a detailed and flexible cycle-accurate

simulation system [77]. In the simulation system, each simulation has three

phases, namely, warmup phase, measurement phase and drain phase. The length

of the warmup and measurement phases is a multiple of the sample period defined

by the sample_period parameter in the network configuration file. After the

warmup period have passed the simulator reset all the simulation statistics and

measurement phase begins and statistical data begin to be reported after each

sample period. Once the measurement periods have passed, all the measurement

packets drain from the network before final latency and throughput results are

reported [77]. The dissertation used the following parameter configurations.

1. A packet size of ten flits (10 flits / Packet, packet_size = 10) for all

network configurations.

2. We set the virtual channel buffer size (depth) for sixteen flits

(vc_buffer_size = 16 flits).

3. We set the Injection rate from 0.1 to 1.0 in step of 0.05 (i.e. 0.1, 0.15,

0.2, 0.25,…, 1.0) flits/cycle/node. (Packet Injection Interval rate of

- 100 -

0.05 flits/cycle/node).

4. The Routing functions: Dimension order routing (dor) for Mesh and

Torus networks and Nearest Common Ancestor (nca) for Fattree

network.

5. The Traffic Patterns used: Nearest Neighbor, Uniform, Tornado and

Random Permutation.

6. Number of virtual channels per physical channels used: (2 to 6 varied).

7. Injection Rate is flits/cycle (injection_rate_uses_flits = 1).

8. Injection Process Bernoulli (injection_process = Bernoulli).

2. Synthetic workload and traffic pattern

The network throughput and latency are greatly affected by the traffic

pattern. The workload model for NoC is basically defined by the three parameters,

namely, traffic pattern, packet injection rate, and packet length. The traffic

pattern indicates the destination for the next packet at each network node. The

most commonly used traffic pattern is the uniform traffic. In this traffic pattern,

the probability of node k sending a message to node t is the same for all k and t, k

≠ t. In synthetic workloads, the injection rate is usually the same for all the

nodes. In most cases, each node is chosen to generate packets according to an

exponential distribution [4], [69]. Table 8 shows the four traffic patterns and

their description as used in this dissertation. Two benign traffic (Nearest

Neighbor and Uniform) and two adversarial (Tornado and Random Permutation)

traffic patterns. The Nearest Neighbor and Uniform traffic patterns are termed as

benign traffic pattern, meaning that they naturally load balance the network and

hence give good throughput with simple routing function. The Tornado and

- 101 -

Random Permutation traffic patterns are adversarial patterns, they are hard

traffics and cause load imbalance in the network. To describe the traffic patterns

as used in this dissertation, we let Tj, Lj denotes the jth bit of the source,

destination address and Tn, Ln denotes the nth radix-Q digit of the source,

destination address [4], [69].

(Table 8) Traffic Patterns used in this dissertation.

 Traffic Pattern Explanation

1. Uniform Source nodes send an equal amount of traffics to each

destination.

2. Nearest Neighbor Ln = Tn + 1 mode Q

3. Tornado Ln = Tn +

 - 1 mod Q

4. Random Permutation In this traffic pattern, a fixed permutation pattern is

chosen uniformly at random from the set of all

permutations. The perm-seed parameter is used to

generate this permutation. Therefore, randomly chosen the

values for perm-seed parameter gives a random sampling

of permutations. On the other hand, a fixed value of the

perm - seed parameter allows the same permutation to be

used several times [77].

3. Performance evaluation metrics

One of the must basic performance measures of any interconnection network

is its latency versus offered load [1-2], [78-80]. The performance evaluation

and comparison of the three architectures was performed with respect to the

- 102 -

following performance metrics:

1. Latency: This is defined as the time in clock cycles that passes between

the emergence of a header flit injected into the network at the source node

and the emergence of a tail flit arrival at the destination node [4]. If source

and destination overheads are considered the latency can be further defined

as: let k be a packet the overall packet latency Lk is defined as Lk = Source

node overhead + Transport latency + Destination node overhead. Similarly,

let assume α be the total number of packets reaching their destinations, the

average packet latency is given as [79], [91].

 	 =	∑

			 ℎ 		 = 1	, … , (17)

2. Throughput: This is defined as the total number of flits received at the

destination node in a clock cycle. Throughput can be further defined as [4],

[79].

 Throughput = {(Total Packets Received) x (Packet Size)} / {(Connected

IP Cores) x (Simulation Time)} (18)

Where total packet received is the number of packets successfully transmitted and

arrived at the destination node. Packet size is the number of flits in the packet.

The connected IP cores are the number of IP cores engaged in the communication.

The simulation time is the total time for the simulation in clock cycles.

4. Comparison of the On-chip network latency and throughput

The dissertation compares the latency and throughput of the three network

architectures described in Figure 1 (a-c) on the benign and adversarial traffic

patterns. From the simulation, we observed that, the trends in network

- 103 -

performance under the four traffic patterns with 121 and 144 network grid sizes

are the same. Therefore, the network performance results for grid size of 100

nodes is provided.

Figure 16 (a-c) shows the network performance (load-delay curves) of

Mesh100, Torus100 and Fattree100 network configurations under Nearest

Neighbor traffic pattern and a varying number of virtual channels (VCs). As

observed increasing the number of the VCs increases the network performance.

The average packet latency depends on the number of virtual channels and the

injection loads. In fig 16 (a) the Fattree100 network is the first to saturate at

about 35% of the traffic loads. This is due to the effect of VC parameter more

VCs are needed to reduce the packet contention in the network. Similarly, when

the number of connected cores increases significantly the Fattree100 network

needs many logical resources for routing purposes. Additionally, the tree-based

routing also contributed to the poor performance when one branch is blocked the

entire tree is blocked, increasing contention considerably. However, the Mesh100

network configuration saturate at 70% of the traffic loads followed by the

Torus100 network configuration with 95% of the traffic loads. This is due to the

fact that the Nearest Neighbor traffic pattern suit well with both Torus and Mesh

networks with fewer numbers of VCs. In figure 16 (b) we observed that the

Fattree100 network showed an improvement in the saturation throughput with an

increase of 10% (i.e., from 35% to 45%). This is due to the effect of increasing

- 104 -

the size of the VC parameter. Furthermore, both Mesh100 and Torus100 network

configurations saturated at 95% and 90% respectively. Showing a significant

decrease in packet latency across all loads. In Figure 16 (c) the Fattree100

network configuration showed an increase in saturation throughput by saturating

at 50% which shows an increase of 5%. This is due to the effect of the VC

parameter and the nearest common ancestor routing. However, it is interesting to

observe that both Mesh100 and Torus100 networks offered better performance by

saturating at 95% and 90% respectively. This is attributed to the size of the VC

parameter and dimension order routing in both Mesh100 and Torus100 networks.

The dimension order routing exhibits lower latency than nearest common ancestor

routing because path tends to be shorter, generating less traffic. Hence the

network will not saturate quickly. Finally, from the conducted simulation under

Nearest Neighbor traffic pattern the Mesh100 with 4 VCs outperforms Torus100

and Fattree100 network configurations and hence is the best network.

(a) With 2 VCs

- 105 -

 (b) With 4VCs

(c) With 6VCs

(Figure 16) Shows the network performance under nearest neighbor traffic pattern

for Mesh100, Torus100 and Fattree100 network configurations.

(a) With 2 VCs

- 106 -

 (b) With 4VCs

(b) With 6VCs

(Figure 17) Shows the network performance under uniform traffic pattern for

Mesh100, Torus100 and Fattree100 network configurations.

Figure 17 (a-c) shows the network performance under the Uniform traffic

pattern for the three architectures. From figure 17 (a), we observed that the

Torus100 network configuration is the first to saturate at 20% of the traffic loads

followed by Mesh100 at 25% respectively. This is attributed to the least number

of VCs; more VCs are needed for efficient routing of packets in both Mesh100 and

- 107 -

Torus100 network configurations and the traffic pattern used. The Fattree100

network configuration showed a fairly good performance by saturating at 40% of

the traffic loads. This is attributed to the traffic pattern and the nearest common

ancestor routing. In figure 17 (b) we observed that, there is an increase in the

saturation throughput by all networks. The Mesh100 showed an increase of 5%,

the Torus100 of 10% and Fattree100 of 15%. This reduction in latency and

increase in the throughput is due to the effect of the number of VCs from two to

four. Furthermore, in Figure 17 (c) we observed that for Mesh100 there is no

decrease in the latency or the increase in the saturation throughput. This shows

that, increasing the number of VCs to six has no any performance gain in Mesh100

network configuration. However, in Torus100 there is a decrease in latency and

increase in the saturation throughput by 10% across different traffic injection

loads. This is due to the number of VCs and the path diversity of Torus100

network. For Fattree100 the increase in the number of VCs to six has no any

performance gain. From the conducted simulation, we conclude that, an Fattree100

under Uniform traffic pattern outperforms Mesh100 and Torus100 networks and

hence is the best.

- 108 -

(a) With 2 VCs

(b) With 4VCs

(c) With 6VCs

(Figure 18) Shows the network performance under tornado traffic pattern for

Mesh100, Torus100 and Fattree100 network configurations.

- 109 -

(a) With 2 VCs

(b) With 4VCs

(c) With 6VCs

(Figure 19) Shows the network performance under random permutation traffic

pattern for Mesh100, Torus100 and Fattree100 network configurations.

- 110 -

Figure 18 (a-c) shows the network performance under Tornado traffic

pattern with varying number of VCs for large network grid size of 100 nodes for

the three architectures. As observed, the performance of the three networks

under Tornado traffic pattern is very poor, particularly in Mesh100 and Torus100

network configurations. Tornado traffic pattern does not favor Mesh-like

architecture, even with six VCs. However, Fattree100 network showed a fairly

good performance as compared to the Mesh100 and Torus100 with 2 to 6 VCs.

With 2 VCs the Fattree100 saturate at 40% of traffic loads. However, with 4 VCs

there is an increase in saturation throughput by 15% (i.e., saturation at 55%)

additionally, with 6 VCs the Fattree100 network saturate at 55% of the traffic

load. In conclusion, from the conducted simulation the Fattree100 network

configuration under Tornado traffic pattern with 4 VCs offers the best network

performance.

Figure 19 (a-c) shows the network performance under Random Permutation

traffic pattern with varying number of VCs from 2 to 6. We found that the

performance trend is similar to Figure 18 (a-c) under Tornado traffic pattern.

There is also a significant increase in the network latency in both Mesh100 and

Torus100 networks. Additionally, we observed that increasing the number of

virtual channels does not make any performance impact in the two networks. This

is mainly attributed to the Random permutation traffic pattern; the pattern does

not favor Mesh and Torus networks. On the other hand, the Fattree100 network

configuration showed a fairly good performance with 4 to 6 VCs saturating at 60%

- 111 -

of traffic loads. In conclusion, from the conducted simulation, we found that the

Fattree100 under Random permutation traffic pattern with 4 to 6 VCs offered the

best network performance.

5. Packet latency versus accepted network traffic

The dissertation presents the results of variation of packet latency versus the

accepted network traffics for different configuration of Mesh100, Torus100 and

Fattree100 networks.

Figure 20 (a-c) shows the average packet latency versus accepted traffic for

the three architectures under Nearest Neighbor traffic pattern. As observed from

the Figure 20 (a), the Mesh100 with 2 VCs outperforms Torus100 and

Fattree100 networks with lower latencies and higher number of accepted packets.

This is attributed to the nearest neighbor traffic pattern. Traffics are balanced in

Mesh100 network with 2 VCs because each source node sends an equal traffic

amount to each destination. This minimizes the packet contention and hence more

packets are transmitted to the desired destinations. In figure 20 (b) we observed

that there is an increase in the accepted network traffics and reduction in packet

latency in both Torus100 and Fattree100 network configurations. The Fattree100

showed an increase in accepting network traffic from 0.5395 to 0.6377 an

increase of 0.0982 (i.e., approx 10%). However, the Torus100 network

configuration showed a significant increase in the accepted network traffic from

0.7816 to 0.93187 an increase of 0.15027 (approx. 15%). This is mainly

attributed to the increase in the number of VCs from 2 to 4. The number of VCs

helps to reduce the packet contention in the network. Therefore, more packets can

- 112 -

be transmitted to the required destinations. From the conducted simulation the

Mesh100 with 2 to 4 VCs offered the lowest latency and highest amount of

accepted network traffic.

Figure 21 (a-c) shows the average packet latency versus accepted traffic

under Uniform distribution of traffics with 2 to 6 VCs. As expected, the

Fattree100 network configuration with 2 to 6 VCs outperforms the Mesh100 and

Torus100 networks. This comes with no surprise as uniform distribution of traffic

works fairly well with tree-based routing. The poor performance exhibited by

both Mesh100 and Torus100 network configurations is due to the uniform

distribution of traffic from source to destinations and the dimension order routing.

Congestions are too much propagated in the networks this resulted in packet

contention and poor acceptance rate. However, in Figure 21 (c), the Torus100

network configurations with 6 VCs showed an improvement in packet acceptance

rate from 0.35 to 0.45 (i.e., an increase of 10%). Therefore, addition of few

virtual channels reduces contention and increases channel utilization. Conclusively,

the Fattree100 network configuration offers the best network performance with

higher number of accepted traffic and lower packet latencies across different

injection loads.

Figure 22 (a-c) shows the average packet latency versus accepted traffic

under Tornado traffic pattern. The Tornado traffic pattern is a hard traffic pattern

because the traffic cause load imbalance in the network. The Mesh-like

structures (i.e. Mesh and Torus) perform very poorly under Tornado traffic

pattern irrespective of the number of virtual channels. This is attributed to the

- 113 -

dimension order routing (dor) in both Mesh100 and Torus100 networks. We

observed that the dimension order routing performed poorly on the Tornado traffic

pattern because (dor) route all of the traffic in the short direction, leaving the

channels in the other direction of the network idle.

Figure 23 (a-c) shows the variation of average packet latency versus

accepted traffic under Random Permutation traffic pattern with varying number of

VCs from 2 to 6. In Random Permutation of traffics a random permutation of

traffics is chosen from the set of all permutations. Due to this distribution of

traffics the Mesh100 and Torus100 network configurations suffered tremendously

under Random Permutation traffic pattern. However, the Fattre100 with 2 to 6

VCs offer the best network performance with lower packet latencies and higher

number of accepted traffic. This is attributed to the nearest common ancestor

routing (nca) and lower hop counts in the network. This leads to reduced packet

contention times, thus reducing the packet latency and increasing the number of

accepted traffic. In conclusion, from the conducted simulation, we observed that,

the Fattree100 network configuration produced better network performance under

both benign and adversarial traffic patterns. This makes the Fattree network to be

better in terms of lower network latency and high amount of accepted network

traffic. This suggests that, the Fattree network can be employed in the complex

NoC design and in parallel and real-time applications like supercomputing. These

findings agree with the findings by Coll et. al [73], Leiserson [148] and Wang et al.

[149].

- 114 -

(a) With 2VCs

 (b) With 4VCs

 (c) With 6VCs

(Figure 20) Shows packet latency versus accepted traffics under nearest neighbor

traffic pattern for Mesh100, Torus100 and Fattree100 network configurations.

- 115 -

(a) With 2VCs

(b) With 4VCs

 (c) With 6VCs

(Figure 21) Shows packet latency versus accepted traffics under uniform traffic

pattern for Mesh100, Torus100 and Fattree100 network configurations.

- 116 -

(a) With 2VCs

(b) With 4VCs

(c) With 6VCs

(Figure 22) Shows packet latency versus accepted traffics under tornado traffic

pattern for Mesh100, Torus100 and Fattree100 network configurations.

- 117 -

(a) With 2VCs

(b) With 4VCs

 (c) With 6VCs

(Figure 23) Shows packet latency versus accepted traffics under random

permutation traffic pattern for Mesh100, Torus100 and Fattree100 network

configurations.

- 118 -

D. Chapter Summary

This chapter describes a detailed parametric evaluation technique and used it

to compare the performance of Mesh, Torus, and Fat-tree NoC architectures

using FPGA. It demonstrated that the Virtual Channels (VCs), Flit Buffer Depth

(FBD), and Flit Data Width (FDW) parameters all contributed to higher LUTs and

influenced the area (PLUT) and clock frequency (CLK_FREQ) of the FPGA

network, with FDW and FBD having the greatest impact on FPGA resources. We

found that these three parameters significantly influenced reassembly buffering

and routing and logic requirements at the NoC endpoints. To demonstrate the

flexibility and design space coverage of three target NoC architectures, the

chapter reported their results synthesizing of 392 different FPGA network

configurations. It was shown that by strategically tuning the router and

interconnect parameters, Fat-tree networks offered the best utilization of FPGA

resources in terms of silicon area, clock frequency, critical path delay, network

cost, overall performance under saturation throughput, and lower latencies under

both benign and adversarial traffic patterns. In contrast, we consistently found

that the Mesh and Torus networks consumed too much FPGA resources and

produced poor network performance under adversarial traffic patterns. Through

these findings, also demonstrated that the evaluation technique can substantially

improve performance under a large variety of experimental conditions, confirm its

suitability for real system development. The proposed methodology forms an

important foundation for engineers to make informed early decisions about which

interconnects and router parameters to use in large and complex NoCs for FPGA.

- 119 -

IV. An Autonomous Self-aware and Adaptive Fault

Tolerant Rounting Technique (ASAART)

A. Autonomous System

This chapter was written based on the published research paper [174]. This

subsection gives a brief overview of autonomous systems and how it used in the

dissertation. An autonomous system is one which identifies its operating

environment and senses the operating parameters, transforms its behavior in that

environment, and adapts to the situational changes of the environment [10-24].

Autonomic systems provide a means to address the system’s complexities by

employing technology to manage and control complex and dynamic systems. Such

systems work with independent and predefined conditions, policies, rules, etc.

without human involvement. They can configure, optimize, manage, and control

their actions based on predetermined conditions, rules, and acquired knowledge of

the operating environment for a given period. An autonomous self-aware system

can be employed in wireless sensor network to solve routing of sensor data

without human intervention. In autonomic computing, self-managing capabilities in

the system are achieved by employing suitable actions according to situational

changes that arise in a dynamic environment. The main goal of autonomic systems

is to control the loop that sources and gathers detailed information from the

- 120 -

environment, and then take appropriate actions. According to Kephart and Chess

[10], there are four characteristics of an autonomous system, as follows:

Self-Configuration: In wireless sensor networks, self-configuration is the

ability of sensor nodes to adapt dynamically to environmental and situational

changes based on the predefined stated policies and rules that govern the

operating environment. This entails the deployment of new sensors, removal of

faulty components, or unpredicted situational changes that may arise in a dynamic

environment. The use of dynamic adaptation provides continuous strength in

sensing and enhances sensor node productivity, which gives rise to the scalability

and flexibility of sensor networks.

Self-Healing: This is one of the characteristic features of autonomous systems

that provide the means for autonomic route discovery, fault detection, and

recovery in wireless sensor networks. Such feature is the ability to discover,

diagnose, and react to unpredicted situations that may arise in a dynamic

environment. Self-healing sensor network components and routing techniques can

detect network malfunction and initiate a route repair technique without affecting

the entire sensor network. The route repair technique makes the network resilient

against errors and faults.

Self-Optimization: This attribute provides autonomic monitoring and control to

facilitate fair and optimal use of available resources. Self-optimizing sensor

components have the ability of controlling themselves to achieve the goals and

- 121 -

policies stated in a given dynamic environment. Such control measures are the

reallocation and rescheduling of available resources caused by, arising situations

in the dynamic environment in order to enhance overall network utilization and

real-time transmission of sensory information [10].

Self-protection: This characteristic of autonomic systems provides sensor

networks with the capability of anticipating, detecting, identifying, and providing

protection mechanisms against threats and other variant attacks. Self-protecting

sensor components can detect malicious and suspicious behavior within the

network, and take reactive measures to counterattack actions in order to make the

network less vulnerable to threats. In conclusion, when sensor network

components possess these four characteristics, the network can configure, heal,

optimize, and protect its operation, and enhance routing performance [10-15].

1. Methodology to autonomous self-aware and adaptation for

routing in wireless sensor networks

Herein, the dissertation describes a methodology to autonomous self-aware

and adaptation for routing sensor data. Autonomous self-aware and adaptive

systems are a proven solution for overcoming the complexity imposed by sensor

network routing algorithms [5-50],[168] and so are self-healing systems [10-

28], [28,55,97]. Self-aware and adaptive systems are better methods for

enhancing and improving the potential for understanding environmental situations

and complex dynamic environments. In order to have a better understanding of the

overall systems’ capability and awareness to acquire and process information, five

- 122 -

levels of awareness need to be considered. Such levels describe the extent and

worthiness to which a system can adapt, and the extent that the respective

adaptation effects have on the system [11-16]. In this dissertation, we consider

the five levels of self-awareness given in [13], which are:

Event Awareness: This is the main level of self-awareness. This level focuses

on the self-description of sensor network entities and how the events associated

with these entities relate to other entities in the network system. It involves

using basic information processing for sharing among network entities in the

entire network. For dynamic adaptation, the self-aware routing technique must

not establish a local routing decision only, but consider both local and global state

information, and a defined boundary between self-awareness and adaptation. This

boundary has to be considered at run-time based on the routing function and

tuned parameters [17-24].

Situation Awareness: At this level of awareness, several techniques and

principles are joined to form a consistent reasoning both at the local and global

level situational awareness. At this level, the routing function is advanced to

specify a property between the sensor’s network entities that are nodes and links.

Several methods and techniques can be employed to ensure reliable and efficient

understanding of the situational system. For example, fuzzy logic and probabilistic

models can be used at this level [37-55].

- 123 -

Adaptability Awareness: This level of awareness provides support for network

entities to detect the adaptability of other network components and provide their

own adaptation interface. By doing so, the sensor nodes can select the best

neighbors to meet the self-adaptation goal, i.e., find the best routing path. At this

level of awareness, different methods and techniques can be employed to ensure

that the routing algorithm possesses the capability of adapting to situational

changes [22].

Goal Awareness: This level of awareness defines the goals or the objective

function to be achieved by the routing algorithm. This involves combining several

different actions, goals, adaptations, and conflicting goals for the efficient routing

of packets in the network, and for resource utilization. The routing function needs

to specify an objective function that can be minimized or maximized at runtime.

Goal awareness entails runtime goal checking to determine dynamically those

goals that can be satisfied for a given constraint resource and threshold limit

[10,22].

Future Awareness: This level of awareness is concerned with a thorough

knowledge of the entire sensor network state. These include network cost, energy

consumption, overhead, reliability, etc. This information helps reduce the number

of actions to be taken in the future. Similarly, monitoring the network state can

lead to the underlying data for future resource volume and utilization. Therefore,

at this level, adaptive identification of the network state information is the major

- 124 -

goal associated with this level [13-16], [22]. By way of integrating these

awareness levels into SHR, the problem associated with the routing of sensor data

in wireless sensor networks can be solved.

2. Modular approach to fault propagation in wireless sensor

networks

In order to integrate autonomous self-aware and adaptive mechanisms into

fault tolerant routing for sensor networks, it is essential to explain the basic

difference between faults, errors, and failure [14-16]. In sensor networks, a fault

is any type of sensor node defect that leads to error, for instance, a loose sensor

node connection in the network. An error is an undefined state of the node

condition such that the condition or state leads to a node failure, i.e., the state of

the system when transmitting and retransmitting sensor data. In a sensor network,

sensor node failure implies the manifestation of error. This occurs when a sensor

node cannot perform its functions and violates the network design specification,

which happens when sensor nodes cannot transmit their data within a specified

time interval. To integrate self-awareness functionalities into sensor networks in

order to provide resiliency against faulty conditions, fault detection and recovery

measures are required. In fault detection, some design techniques need to be

incorporated into the routing algorithm in order to detect that a specific

functionality of the sensor nodes is or will be faulty. On the other hand, after a

fault is detected, the routing algorithm should be able to prevent or recover from

- 125 -

it. This ensures smooth and steady packet routing from sources to destinations

[17-50]. In order to illustrate how a fault is propagated in different sections of

the sensor network system, we propose a modular architecture in contrast to the

layered architecture presented in [16]. As illustrated in Figure 1, a fault in each

module cannot be propagated to other modules in the system. For instance, when

the node battery power is down, this causes only the node to be down without

affecting other modules. In layered approach, the failed node affects the operation

of other nodes. If this node is in the critical path of the network, the packets of

other nodes that depend on the critical path will not reach their destination until

the path is recovered or restored. In addition, if the application module

components, i.e., data, and users suffer a faulty software bug or hardware failure

for the sensor node, the overall system is considered to be faulty as well. With

the modular approach to fault propagation in sensor networks, fault occurrences

are limited within their module without affecting other module functionalities.

- 126 -

(Figure 24) Shows modular approach to fault propagation in wireless sensor network.

B. Proposed Methodology to Autonomous Self-Aware and

Adaptative Fault Tolerant Routing Technique (ASAART)

In this subsection, the dissertation demonstrates the proposed approach using

autonomous self-awareness and adaptive routing techniques, namely ASAART.

The dissertation considers low duty-cycle wireless sensor networks [18-23],

[37]. In this type of network, the sensor nodes remain sleeping most of the time

and wake up asynchronously in the case of event transmission. Therefore, the

concept of probabilities that forwards a decision based on the delay distribution of

the destination nodes can be employed [5-151]. In doing so, only packets are

transmitted in order to achieve shorter delays and reduce packet redundancy. The

- 127 -

probabilistic approach signifies that when a sensor node receives a network

packet, the packet is forwarded with given probability δ. Such probability δ is

computed by the network state information obtained from individual neighboring

nodes. The routing decision is computed using the improved formula given in

Equations (19) –(25). The SHR [28,97] and SSR [44,55,96] protocols use more

redundant transmission and retransmission of packets. The proposed approach

attempts to reduce such redundant packets. SHR and SSR make use of prioritized

back-off delay for forwarding packets, and only the receivers of the forwarding

packet reach the destination. The proposed approach focuses on the reduction of

these control packet overheads and efficient data delivery ratio. Rather than using

local information to route a given packet to the desired destinations, the proposed

approach combines both the local and global state information in order to avoid

faults and collisions in the network. The most important issues to address are: (1)

at the initial phase of network construction, how to avoid the problem of packet

flooding because of broadcast and (2), when the network is scaled to a large

network, the broadcast packet will overflow the network, thus causing too much

delay and packet collisions that consume much energy. In order to address these

issues, the autonomous self-awareness and an adaptive scheme proposed in this

dissertation will ensure reliable and efficient transmission and retransmission of

network packets. For the self-awareness scheme, the sensor node that transmits

the packets contains information pertaining to its neighbors in the control packet.

- 128 -

The node is self-aware and adaptive if it knows all the local and global

information on the packet. Then, the receiver node knows whether its neighbors

have been covered based on the global information obtained in the neighbor’s

control packet list information. In this case, the sensor node will compute the auto

self-awareness back-off delay, according to Equations (19) –(25) in order to

obtain the entire network state information. The sensor node with the auto self-

awareness back-off information now has a higher priority to forward the network

packet. In this case, the sensor node that uses the global information of its

neighbors has a very low back-off delay. The self-awareness and adaptive

features of the node’s neighbor network state information minimizes the network

end-to-end delay and enhances the entire network routing performance. Here, we

define global, local, and auto-self-awareness back-off delays as given in

Equations (19) –(25). Ideally, this combines both the local and global network

state information to have full autonomic self-awareness of the entire network

state information, and reduces the time to converge to minimal routing path for

efficient packet routing throughout the entire network [28], [45-55], [96-97].

Herein, we define the parameters used in Equations (19) –(25).

is the number of hop counts from the current node to the

destination; 	 is the expected number of hops contained in the

destination reference packet header information; is a parameter used

to stretch the random function in order to avoid network packet collision; Rand

- 129 -

(seed) is a random function generator that produces random floating point

numbers within the interval [0,1] based on the value of the seed; and	 _ is

the size of the slot or the transmission window width. The global awareness

transmission back-off delay is computed for each node using Equations (19) and

(20):

If	 	> 	

 Global-Awareness-Back-offDelay =

 ∗ 	 (− ∗ (0,1) (19)

 Else	 	≤ 	

Global-Awareness-Back-offDelay=	

 	 	 	
∗ (0,1) (20)

The local awareness transmission back-off delay is computed for each node using

Equations (21) and (22), depending on whether the hop counts from the

destination parameter is greater, less than, or equal to the sender’s node number

of expected hop counts:

If	 	> 	

Local-Awareness-Back-offDelay =

 ∗ 	(− + (0,1)) (21)

Else	 	≤ 	

- 130 -

Local-Awareness-Back-offDelay = Global-Awareness-Back-offDelay (22)

The autonomous self-awareness technique combines both the local and global

back-off delay transmission strategies in order to find the entire network state

information for efficient transmission and retransmissions of packets. Equation

(23) combines two randomized functions to allow both the near and far nodes

minimize the back-off delay. Based on this, the sender node has a greater

probability of transmitting the packet:

If	 	> 	

AutoSelf-Awareness-Back-offDelay =

 ∗ 	 (− ∗ (0,1) + 	 (0,1)) (23)

Else	 	≤ 	

AutoSelf-Awareness-Back-offDelay= Global-Awareness-Back-offDelay (24)

From Equation (23), it is clear that the auto self-awareness back-off delay

assigns a delay greater than HopcountDest to nodes with a hop count greater than

NumHopCountexpected parameters. Therefore, the smaller the value of the

HopcountDest parameter, the smaller is the AutoSelf-Awareness-Back-offDelay

parameter and the node has the highest probability of transmitting the packet. The

slotted autonomous self-aware back-off slotted formula is expressed in Equation

(10) as [28,44,55,],[96-97]:

- 131 -

AutoSelf-Awareness-Back-offDelay_Slotted =

 _
 ∗ _ (25)

Where the parameters − − − are given in

Equations (23) (24) and (25), and _ is the size of the slot window used.

Equation (25) provides the autonomous self-aware and adaptive back-off delay

that combines both the continuous and slotted time interval. This approach lowers

the back-off delay, and the sensor nodes have the greatest probability of

transmitting the packets. In addition, the approach provides the current node with

both local and global network state information in order to reduce end-to-end

delay for efficient and reliable packet transmission.

1. Autonomous self-aware and adaptive route repair in ASAART

protocol

The dissertation employs the greedy algorithm [37,152] to implement the

autonomous self-awareness and adaptive route repair technique. By implementing

the concept of the self-awareness principle defined in this dissertation, the

sensor nodes become self-aware and adaptive for both local and global network

state information. During route maintenance, the source node initiates a new route

repair packet (RRP). The route repair packet RRP consists of the source node

identification (Sourceid) number, packet identification number (packetid), route

metric (RouteMetric), back-off delay (Back-offDelay), and route metric sequence

number of sources to destination (RouteMetricSeqn). In this case, when a sensor

- 132 -

node k receives an RRP packet, it processes the packet according to the algorithm

given in Figure 25.

(Figure 25) Shows the proposed autonomous self-aware and adaptive route

repair technique in (ASAART).

There are two sets of nodes, one that consists of the node’s neighbors within

its transmission range (Local-Node-Neighborinfo), and another that is outside the

transmission range that leads to the minimal routing path (Global-Node-

Neighborinfo). At the initial stage of network creation, sensor node k updates its

global state information Global-Node-Neighborinfo (k) using the source node’s

- 133 -

local neighborhood information (Local-Node-Neighborinfo) to update its global

node information. This approach helps to prevent and avoid both transient and

permanent faults and failure in the network. A detail of the route repair technique

in ASAART is illustrated in Figure 25.

2. Reliable and secure route formation in ASAART

In the proposed ASAART routing protocol, the route discovery packets are

transmitted by the source node through the packet broadcast mechanism [36-51].

In this case, there is a need to control the continuous flooding of the route

discovery packets, particularly in a very dense network. In the proposed scheme,

shown in Figure 25, ASAART uses the sender node local information that is

contained in the control packet. Upon receiving the packets from the sender node,

it uses the local neighbor information to update its global network state

information contained in the control packet header information. The node then

computes the auto self-awareness back-off delay based on the expected number

of hops to the destination, as given by Equations (19) –(25). During the

computation of the auto-self-awareness back-off delay, the sender node listens

to the channel and prevents the transmission of the data packets. This happens

when the sender node overhears that one of its neighboring nodes with the

expected hop count to the destination has already transmitted the data packets.

However, if the sender node does not overhear its neighbor’s transmission and its

back-off timer fires, the sender node will now update its expected hop count in

the data packets and then re-transmit the data packets to the destination. The

sender node with the auto self-awareness back-off information will have the

- 134 -

highest priority to forward the packets to the next intermediate or destination

node. To reduce the problem of redundant transmission, after the destination node

receives a route discovery packet, it sends a route discovery acknowledgement to

the source node. ASAART uses an efficient flooding control scheme that

minimizes the redundant transmission of network packets. In this case, the

intermediate and destination nodes have the complete network state information

for a reliable route formation based on the discovery packet’s auto self-

awareness back-off information received from the source node. This scheme will

minimize the redundant transmission of packets and ensure reliable end-to-end

data delivery. The concept of secure route formation is beyond the scope of this

dissertation.

C. Performance Evaluations

In this subsection, the dissertation provides routing performance results that

compare the ASAART, SHR and SSR protocols. Because the proposed routing

technique (ASAART) integrates the autonomous self-awareness and adaptive

feature of routing path discovery and route repair into SHR, the dissertation uses

the Sensor Network Simulator and Emulator (SENSE) [40] for performance

evaluation. We consider both local and global network state information to

compute the routing decision using the modified self-aware formula and backup

strategies and efficient and reliable route repair technique as given in this

dissertation.

We performed five sets of simulations under a large and scalable sensor

- 135 -

network with different simulated scenarios. In the first to third scenarios, we

evaluate the network density test under a large and scalable sensor network. We

consider a sensor network with 100 to 1000 nodes in step of 100 nodes. We vary

the number of source nodes from 10 to 20 and 40 nodes in increasing network

traffics. We evaluate protocol performance under increasing network density to

observe the extent to which the proposed protocol is fault tolerant and resilient

against errors with different network configurations. In the fourth and fifth

scenarios, we evaluate the performance of the three protocols under transient and

permanent node failure rates. In the conducted simulation, we consider a 2000 ×

2000 m2 terrain densely populated with 100 to 1000 nodes in step of 100 nodes,

all which have a nominal transmission range of 250 m. We employed the free

space propagation model in order to simulate the wireless medium [41]. We used

the Constant-Bit-Rate (CBR) model to simulate the bi-directional traffic

between the sources and destinations. The simulation at each scenario was

performed at least five times with a different number of seeds to ensure accurate

and reliable measurements and avoid errors. The 95% confidence intervals are

shown in the figures.

1. Simulation environment

The purpose of the simulation is to analyze the performance of the proposed

autonomous self-aware and adaptive fault tolerant routing technique (ASAART)

compared with SHR and SSR protocols. This allows us to study WSN behavior in

- 136 -

the event of faults associated with the sensor nodes and the network, and to

determine the extent to which the proposed scheme is fault tolerant. SENSE is

used for the simulation [40,46].

(Figure 26) Shows SENSE simulator internal structure of sensor node.

2. Simulation parameters

The following parameter values in Table 9 are used for the simulation. The

values of these parameters are fixed and varied for different scenarios in order to

provide efficient and reliable self-aware and adaptive fault tolerant routing

techniques, and for better evaluation of the results.

- 137 -

(Table 9) Simulation Parameters

Parameter(s) Value

Network Size Terrain (m2) 2000 × 2000

Number of Sensor Nodes 100–1000 varied

600 nodes fixed

Number of Source Nodes 10, 20, 40 varied

Data Packet size (byte) 1000

Active Percentage 100%, 20% fixed

10%–60% varied

Active Cycle 100%, 20% fixed

10%–60% varied

Transmission Time (s) 0.002

Transmission Power (Tx) (Watt) 0.0290

Channel Model Radio

Broadcast data packet CBR

Slot Width (s) 0.0001

Simulation Time (s) 200

Scale Factor (s) 0.001

Traffic Direction Bi-directional

Route Repair SHR, ASAART (True) and SSR (False)

3. Performance evaluation metrics

Herein, the dissertation provides a brief explanation of the performance

evaluation metrics used. The dissertation evaluates the three routing protocols in

terms of the sensor network density test and transient and permanent node failure

rate tests. In order to have consistent and reliable routing performance evaluation,

the five evaluation metrics listed below are used. Such metrics are widely accepted

by the research community and are used for wireless sensor network performance

evaluations [5-68]:

- 138 -

1. Average End-to-End Data Packet Delivery (Success Rate): This is the

fraction or percentage of success among a number of attempts to transmit

a packet.

2. Average Packet End-to-End Delay: This refers to the time required for a

packet to be transmitted across a network from source to destination.

3. Energy Consumption: Defined as the ratio between the number of packets

transmitted to the amount of energy consumed, where the amount of

energy consumed is the difference between the initial energy before

simulation to the energy used after the simulation. The unit is expressed in

bits/joule.

4. Average Number of Transmitted MAC Packets: Total number of packets

received at the MAC layer.

5. Packet Drop Rate/Error Rate: The Packet Error Rate (PER) is the number

of incorrectly received data packets divided by the total number of

received packets. A packet is declared incorrect if at least one bit is

erroneous.

D. Sensor Network Simulation Results

In this sub-section, the dissertation provides the results of the simulation

conducted based on five different simulated scenarios. These comprise of three

different simulated scenarios for sensor network density test, as well as transient

and permanent node failure rate tests. Details of the simulated scenarios are

provided in the subsequent subsections.

- 139 -

1. Sensor network density test (First scenario)

In this scenario, we set the number of source communicating nodes to ten,

varied the network density from 100 to 1000 nodes in step of 100 nodes, and

observed the routing performance. As observed from Figure 27 (a–e), the success

rate drops to less than 100% between 100 to 1000 nodes by SSR and SHR

protocols. However, ASAART maintain a 100% success rate between 500 to 1000

nodes compared with SSR and SHR protocols. This is attributed to the fewest

number of communicating source nodes. There are fewer packets that reach the

destination. However, the ASAART protocol slightly outperforms both SHR and

SSR in terms of successful number of delivered network packets.

In Figure 27 (b), ASAART end-to-end network delays show a slight

reduction compared with SSR and SHR protocols, which means better reduction in

the end-to-end delay. In Figure 27 (c, d) we can observe that ASAART protocol

shows better energy consumption and a total number of reduced MAC layer

packet's delivery compared with the SSR and SHR protocols. This is attributed to

its enhanced route repair mechanism that tries to control flooding at the MAC

layer. In Figure 27 (e) we can observe that ASAART packet error rate (PER) is

lower at higher network densities compared with the SSR and SHR protocols.

Showing a zero percent of error in packet delivery between the network of sizes 500

to 1000 nodes.

- 140 -

(a) Average packet delivery rate

(b) End-to-end network delay

(c) Energy consumption

- 141 -

(d) Transmitted MAC layer packets

(e) Packets error rate

(Figure 27) Shows sensor network density test (first simulated scenario) with

source node = 10

2. Sensor network density test (Second scenario)

In this scenario, we fixed the number of source communicating nodes to 20 and

varied the network size from 100 to 1000 nodes in step of 100 nodes. As can be

observed from Figure 28 (a–e), the ASAART protocol provides the highest packet

- 142 -

delivery rate or success rate compared with the SHR and SSR protocols. When the

number of sensor nodes reaches 800 nodes, the success rate becomes stable with

100% packet delivery shown by ASAART protocol. However, at 400 node

network size, SSR outperforms SHR protocol. This is because of its continuous

back-off delay scheme that allows more flooding of network packets. However, at

higher network density, both SSR and SHR protocols are competing, achieving a

stable success rate with over 95% delivered network packets.

We can observe that the end-to-end delay reduces significantly when the

source nodes are set to 20 compared with the third simulated scenario with source

equal to 40 nodes. We can also observe that between 100 to 400 nodes, the end-

to-end delay is higher in all three routing protocols, with a maximum of 1.4 s

exhibited by the SSR protocol. However, at a higher network density, i.e., from 400

to 1000 nodes, the end-to-end delay reduces significantly with the ASAART

protocol, showing better reduction in end-to-end delay.

From Figure 28 (c), we can observe that the energy consumption is minimal

compared with the SSR and SHR protocols at different network densities. This is

because there is a reduced number of delivered MAC layer packets that reduce

network congestions and save energy consumption. In addition, in Figure 28 (e), we

can observe that PER for the three routing protocols at higher network density

becomes stable particularly, between 600 to 1000 network sizes. Any further

increase in network density has no impact on performance.

- 143 -

(a) Average packet delivery rate

(b) End-to-end network delay

(c) Energy consumption

- 144 -

(d) Transmitted MAC layer packets

(e) Packets error rate

(Figure 28) Shows sensor network density test (second simulated scenario) with

source node = 20

3. Sensor network density test (Third scenario)

In the third scenario, we evaluated the impact of increasing the network

density from 100 to 1000 in step of 100 nodes with 40 nodes designated as the

source communicating nodes. The results of the simulation are illustrated in

- 145 -

Figure 29 (a–e). As can be observed in the figures, increasing the network traffics

and density causes too much traffic oscillations in both SSR and SHR, and

decreases the success rate in the network, particularly between 100 to 300 node

network sizes. However, at higher network density, the success rate of the

delivered packets becomes stable, with SHR showing slightly higher packet

success rate compared with SSR. The proposed ASAART protocol maintains

higher packet success rates at different network densities. In addition, the time

required to converge to minimal routing path is minimal, which makes the end-

to-end delay lower than for SHR and SSR. At the higher network density, SHR

spends too much time on topology maintenance, which causes its performance to

reduce drastically compared with the ASAART technique. Despite the higher

packet success rate and lower end-to-end delay exhibited by ASAART, it also

uses minimum energy and reduced MAC layer packet delivery compared with SHR

and SSR protocols. In Figure 29 (e), we can observe that PER for ASAART

protocol is lower with a network of size between 200 to 1000 nodes compared

with the SSR and SHR protocols. The SHR protocol competes against SSR by

showing a slightly higher packet delivery ratio at higher network densities

particularly between 400 to 1000 nodes. It is interesting to observe that when the

network is scaled from 400 to 1000 nodes, PER becomes stable for the ASAART

routing protocol. In conclusion, the ASAART protocol proves to be resilient

against errors, and energy consumption and offers better routing performance

- 146 -

compared with the SHR and SSR protocols in a scalable and high traffic sensor

network.

(a) Average packet delivery rate

(b) End-to-end delay

(c) Energy consumption

- 147 -

(d) Transmitted MAC layer packets

(e) Packet error rate

(Figure 29) Shows sensor network density test (third simulated scenario) with

source node = 40

4. Transient node failure test

In this scenario, we consider a sensor network of size equal to 600 nodes. In

order to simulate the transient node failure rate, we fixed the permanent node

failure rate to 20% and varied the transient node failure rate from 10% to 60% in

step of 10% in order to obtain routing protocol performance at different

percentages of the transient node failure rate. We performed three sets of

experiments with a different number of seeds, and varied the number of source

- 148 -

communicating nodes in each scenario. The simulation results and 95% confidence

intervals are shown in Figures 30–33.

(a) Average packet delivery rate

(b) End-to-end network delay

(c) Energy consumption

- 149 -

(d) Transmitted MAC layer packets

(Figure 30) Shows transient node failure rate test (fourth simulated scenario) with

source node = 10

From Figure 30 (a–d), we can observe that the three routing protocols perform

very well with a higher percentage of the packet delivery ratio. The three

protocols achieve above 90% success rate because of less traffic congestion in the

network. The ASAART performance drops to nearly 94% at 20% of the transient

node failure rate. However, it slightly outperforms the SHR protocol when the

transient node failure rate is between 30% and 60%, and the SSR protocol is

between 50% and 60%. We observe that the ASAART protocol end-to-end delay

is slightly higher than the SSR and SHR protocols. Nonetheless, this is negotiated

by having the least number of MAC layer transmissions and energy consumption.

ASAART attempts to minimize the retransmission of packets caused by flooding

at the MAC layer, which makes it an energy efficient protocol.

Figure 31 (a–d) shows the performance of the three protocols with 20 nodes as

- 150 -

the source communicating node under different transient node failure rates. We

can observe that there is high routing performance in terms of the success rate

exhibited by ASAART. The ASAART protocol achieves a success rate above 90%

when the transient node failure rate is between 20% and 40%. However, when the

failure rate is between 50% and 60%, the success rate drops to 87%. This is at the

expense of slightly higher end-to-end delay compared with the SHR and SSR

protocols.

(a) Average packet delivery rate

(b) End-to-end network delay

- 151 -

(c) Energy consumption

(d) Transmitted MAC layer packets

(Figure 31)Shows transient node failure rate test (fourth simulated scenario) with

source node = 20

We can also observe that the SSR protocol success rate slightly outperforms

the SHR protocol. This is because of its prioritized continuous back-off delay

strategy. However, SSR shows slightly higher MAC layer packet transmission

because of flooding compared with the SHR and ASAART protocols. It is

interesting to observe that the SSR protocol shows a better reduction in the end-

- 152 -

to-end delay compared with the ASAART and SHR protocols. From Figure 32 (a–

d), we can observe that the ASAART protocol outperforms both the SHR and SSR

protocols at a transient node failure rate from 10% to 50%, respectively. The

SHR protocol success rate drops to 69% when the transient node failure rate is

40%. However, at 50%, it increases to 70%. The SSR protocol end-to-end

packet delivery drops to 67% at 50% of the transient node failure rate.

Surprisingly, however, it outperforms both the ASAART and SHR protocols when

the transient node failure rate is 60%.

From Figure 32 (b), we can observe that ASAART end-to-end delay

outperforms both the SHR and SSR protocols at a different percentage of the

transient node failure rate. However, the SSR protocol outperforms ASAART at a

transient node failure rate between 50% and 60%. The SHR protocol has the

highest delay because of its route repairing mechanism. Too much time is spent

repairing and retransmitting network packets. From Figure 32 (c–d), we can

observe that ASAART uses slightly lower energy consumption and a reduced

number of total MAC layer delivered packets compared with the SHR and SSR

protocols. This reduces the network packet collision and contention, and saves

energy. In conclusion, the ASAART technique demonstrates better fault tolerant

capability in the presence of the transient node failure rate compared with the

SHR and SSR protocols, particularly when there is too much traffic congestion in

the network.

- 153 -

(a) Average packet delivery rate

(b) End-to-end network delay

(c) Energy consumption

- 154 -

(d) Transmitted MAC layer packets

(Figure 32) Shows transient node failure rate test (fourth simulated scenario) with

source node = 40

5. Permanent node failure test

In order to simulate the permanent node failure rate test, we set each sensor

node to fail for a fixed instance of time. The start of each sensor node failure rate

was chosen randomly at the start of the simulation using the uniform distribution

of the failure rate start time against the time of failure occurrences [28,44,55],

[96-97]. In this scenario, we consider a sensor network of size equal to 600

nodes. We set the transient link failure rate at 20%, and the source

communicating nodes to be 10, 20, and 40 in order to ensure the protocol’s

performance under high and low network traffics. We varied the permanent failure

rate from 10% to 60% in step of 10% in order to obtain the routing performances

at different percentages of the permanent node failure rate. We conducted three

different sets of simulations with a different number of seeds, and varied the

number of source communicating nodes in each simulated scenario. The results of

- 155 -

the permanent node failure rate with 95% confidence intervals are illustrated in

Figures 33–35, which show the results of the permanent node failure rate

performance evaluation of ASAART compared with the SHR and SSR protocols.

(a) Average packet delivery rate

(b) End-to-end network delay

(c) Energy consumption

- 156 -

(d) Transmitted MAC layer packets

(Figure 33) Shows permanent node failure rate test (fifth simulated scenario) with

source node = 10

Figure 33 (a–d) shows the three routing protocols under permanent node failure

rates with source communicating nodes of size equal to ten. Here, we can observe

that because of less traffic congestion in the network, the three protocols compete

very closely in terms of the end-to-end packet delivery ratio. All three protocols

attain 90% to 95% efficient packet delivery with a permanent node failure rate

between 40% and 60%. The ASAART protocol shows slightly higher end-to-end

delay and low packet delivery rate compared with the SHR and SSR protocols.

However, this is compensated by having a lower MAC layer packet transmission

and low energy consumption. ASAART achieves lower MAC layer transmission

because of its flooding control technique that attempts to reduce the

retransmission of redundant network packets.

From Figure 34 (a–d), we can observe an increase in the packet end-to-end

- 157 -

delivery rate exhibited by the three routing protocols when the source

communication nodes equal 20 compared with the source node being equal to 40

nodes. The three routing protocols achieve a success rate above 80% when the

permanent node failure rate is between 40% and 60%. This is attributed to less

network traffic, which helps reduce the packets’ contention and collision on the

network. ASAART shows a higher end-to-end delay compared with the SHR and

SSR protocols; this is because of its strategy of combined local and global network

state information. However, ASAART exhibits better MAC layer packet

transmission and energy efficiency compared with the SSR and SHR protocols.

(a) Average packet delivery rate

(b) End-to-end network delay

- 158 -

(c) Energy consumption

(d) Transmitted MAC layer packets

(Figure 34) Shows permanent node failure rate test (fourth simulated scenario)

with source node = 20

In Figure 35, we can observe that the ASAART technique slightly outperforms

both the SSR and SHR protocols. In Figure 35 (b), the SHR and SSR protocols

exhibit higher end-to-end delay compared with the ASAART protocol. The

ASAART protocol shows slightly lower end-to-end delay that remains almost

stable when the permanent node failure rate is between 10% and 60%. ASAART

uses slightly lower energy consumption compared with SSR and SHR, particularly

at higher permanent node failure rates. This is because of its efficient route repair

- 159 -

technique that ensures reliable end-to-end packet delivery. However, we can

observe that ASAART uses the least number of delivered MAC layer packets at

different percentages of the permanent node failure rate because of its efficient

flooding control technique and faster routing decision that quickly converges to the

minimum routing paths. In conclusion, ASAART protocol proves to be energy

efficient and offer a high resiliency against faults and errors in the presence of

permanent node failure rate and in highly congested and scalable network

compared with SSR and SHR protocols.

(a) Average packet delivery rate

(b) End-to-end network delay

- 160 -

(c) Energy consumption

(d) Transmitted MAC layer packets

(Figure 35) Shows permanent node failure rate test (fifth simulated scenario) with

source node = 40

E. Chapter Summary

This chapter describes the proposed ASAART routing technique for wireless

sensor networks to address the limitations of the SSR and SHR protocols. This is

accomplished by integrating autonomous self-awareness and adaptive features

- 161 -

into the SHR protocol to make it more resilient to faults and errors and energy

efficiency for efficient and reliable routing of sensor data in wireless sensor

networks. The dissertation achieved this by combining both continuous and

prioritized slotted back-off delay, and multiple randomize function techniques to

obtain local and global network state information for faster routing path formation

and speedy convergence to the minimum routing path. The chapter proposed a

route repair technique for reliable transmission of sensor data in the presence of

permanent and transient node failure rates, and efficient adaptation to

simultaneous network topology changes. The chapter describes an extensive

simulation under five different scenarios. The simulation results showed that the

ASAART technique performed better in terms of high resiliency to errors and

failure and better routing performance and energy consumption compared with the

SSR and SHR protocols in the presence of transient and permanent node failure

rates and in a highly congested, faulty, and scalable sensor network. The proposed

approach is energy efficient because it consumes less energy compared to the

SSR and SHR protocols.

- 162 -

V. FPGA-Based Design of an Intelligent On-Chip

Sensor Network Monitoring and Control using

Dynamically Reconfigurable Autonomous Sensor

Agents

A. The IEEE 1451 Standard for Smart Sensor Interface

This chapter was written based on the published paper [175]. In this

subsection, the dissertation describes the IEEE 1451 standard. The IEEE 1451

standard provides fast, efficient, and reliable means of converting transducer

components into an intelligent sensor interface for efficient communication and

transmission of sensor data to various NIs. A transducer is an electronic device

that converts electrical signals from one form of energy to another. Therefore, a

sensor is a special type of transducer that produces analog or digital electrical

signals that represent the sensed physical, biological, or other environmental

parameters. On the other hand, an actuator is a transducer that uses an electrical

signal as an input and performs the required physical functionality [65-68]. An

intelligent or smart sensor is a combination of both analog and digital transducer

components, a central processing unit, and a network communication interface

such as controller area network (CAN), inter-integrated circuit (I2C), local

interconnect network (LIN), universal asynchronous receiver and transmitter

(UART), etc. It is also composed of hardware or software and conditioning

- 163 -

circuits for sensor diagnostics and calibration, in addition to the communication

mechanism and interface. Figure 36 shows the IEEE 1451 standard for a smart

transducer interface (TI). The architecture, comprises four subsystems:

transducers consisting of sensors and actuators, signal conditioning circuit, data-

conversion subsystems, and application processor and network communication

[65-68].

(Figure 36) Illustration of the IEEE 1451 standard for smart TI [65].

1. On-chip sensor network monitoring and control system

The on-chip sensor network environment is a very complex and dynamic

system. Monitoring of the on-chip sensor network as a dynamic system demands

communication of the sensed data to a controller and the basic information

regarding the controller input parameters to the actuators. Therefore, the

structure, topology, switching, and arbitration of the on-chip sensor network

solely depend on the monitoring, control, and communication mechanism or

protocol used by the system. Hence, two major challenges need to be addressed:

- 164 -

provision of efficient and reliable communication mechanism used by the network

and provision of central and distributed control system that ensures real-time

sensing, monitoring, and efficient processing of the on-chip sensory information.

Therefore, an autonomous monitoring and control system for on-chip sensor

network must consider the communication protocol and the constraints in relation

to the clock time, network topology, switching, and arbitration [153-155].

On-chip sensor network monitoring and control can be regarded as a closed-

loop system, which means that controllers are provided to connect to a feedback

system, and sensors and actuators are installed to determine the overall function

of the whole system. The on-chip sensor network must consider and address the

following fundamental issues in a controlled loop system [107-112], [153-156].

· Suitability of the on-chip sensor network communication topology for a

particular application.

· Address the constraints imposed by the communication mechanism, such

as packet loss, network latency, delay, routing, and switching, among other

constraints.

· Determine the monitoring and control goals that must be observed to

facilitate proper coordination of each component in the whole network

monitoring and control system.

To address these issues, we must have an efficient and reliable monitoring and

control infrastructure that will provide all the needed design methodology and

framework to achieve the stated goals and objectives.

Figure 37 shows an intelligent monitoring and control system for on-chip

- 165 -

sensor network using autonomous sensor agents. It shows the data transfer among

different nodes in the system, i.e., from the sensors to the controller and from the

controller to the actuators. The on-chip sensor signal () is different from the

on-chip network controller input signal
 (), and the monitored controller

output () is different from the actuator input 	 (). This information implies

that signals
 () and

 () are the original network signals () and (),

respectively, which are transmitted through the communication links for the

sensors, actuators, and controllers. Signals R and Kref are disturbances or noise

that must be controlled both in the input and output to obtain the desired results.

Figure 37 shows single-headed arrow lines representing continuous time signals,

whereas the dashed arrow lines represent the data transmission links at a given

transmission time, e.g., , for h = 0, 1, 2,... During the transmission of the

sensor data, the process produces a time delay that must be controlled and

monitored. Similarly, time is another issue that needs to be considered, e.g., at

what time interval is the communication needed and required. The transmission of

the sensor data is constrained to a few number of bit rates, which implies that the

values of signals (τ) and () transmitted over the on-chip sensor network

are constrained to a fixed bit length. Therefore, the monitoring and control system

should ensure reliable and efficient communication at different time instances

[153-155]. On the basis of these limitations, an FPGA-based design and

implementation of an intelligent on-chip sensor network monitoring and control is

- 166 -

essential. Hence, the proposed design methodology in this dissertation provides a

better solution for on-chip sensor network monitoring and control using

autonomous sensor agents.

(Figure 37) Shows on-chip sensor network monitoring and control system using

autonomous sensor agents

B. Proposed Design Methodology

In this subsection, the dissertation presents the design methodology of the

proposed on-chip sensor network monitoring and control system with dynamic

reconfigurable capabilities [113-169]. The proposed design detects runtime

ambient parameters and communicates the sensed data to the monitoring and

control hardware unit. Figure 38 shows the architectural design of the proposed

monitoring and control system using autonomous sensor agents that reside in the

NI to sense and report various parameter values to the hardware controller for

onward analysis and processing. The architecture is a mesh network that is well

- 167 -

suited for on-chip sensor die structure [102-103], [164,166]. It consists of 12

nodes (gateway) and IP cores. The NI provides a means of communication among

the sensors and actuators, network nodes, and hardware monitor controllers. At

each NI, three intelligent sensors are installed, namely, voltage, thermal, and

temperature sensors. These sensors continuously sense and transmit the sensed

data to the hardware controller that then processes the data and provides the

necessary actions to keep the system in a smooth and healthy condition [56-64],

[104-110]. The sensors communicate the sensed data via a standard protocol.

This protocol is shown in Figure 39.

Figure 38 shows that the intelligent monitoring and control system is composed

of smart sensors and actuators that represent the autonomous agents,

subcontrollers, main control unit, system monitor module, high-speed transceiver,

and CAN controller. The monitoring and control system performs both central and

distributed monitoring. Each sensor can communicate with its own cluster

members and can perform data aggregation and forwarding to the main monitoring

and control unit. Therefore, a distributed monitoring and control system is well

established between the autonomous sensor agents and the main controller unit.

Figure 39 shows the real-time triggered protocol [64,116,165]. This protocol

is deadlock and contention-free. The sensor nodes in each cluster are provided

with real-time slots in which they receive sensed data from other nodes to

communicate with the cluster head (subcontroller) or to transmit its own sensed

- 168 -

data to the subcontroller. Communication between the sensors is synchronized in

real-time to avoid delay and loss of sensor data. The subcontroller triggers a

real-time message to all its cluster members to query if sensed data are available

for transmission. The members will respond to the cluster if they have data to

transmit, and a real-time frame will be allocated and synchronized for each

member to avoid communication delays and loss of sensor information. The

explanation of the variables used in the proposed protocol shown in Figure 39 is

presented below.

SYN: defines the real-time synchronization period between the cluster head

(subcontroller) and cluster members.

INST: defines the real-time interval between the transmission and reception of

the sensor data.

BDCA: determines the real-time in which data are transmitted by the cluster

head to the cluster members.

τ1 ,..., τn: define the real-time slot during which the cluster members listen to

instructions from the cluster head.

FREE: defined as a real-time slot in which the cluster head (subcontroller)

receives data from the cluster members; the cluster head uses the FREE slot time

to communicate with the on-chip monitor controller hardware on the status of the

network.

β1,…, βN: define the real-time interval in which the cluster members transmit

data to the cluster head.

- 169 -

(Figure 38) Shows the proposed on-chip sensor network monitoring and control

system using autonomous sensor agents on 4 × 3 mesh architecture

(Figure 39) Shows the proposed real-time-triggered on-chip sensor network

communication protocol

- 170 -

1. On-chip sensor network monitoring and controller interface

design

Figure 40 shows the logic design of the main on-chip sensor network

monitoring and controller unit. The design consists of several components that

form the controller unit and interface to the different sensor networks. The main

monitoring and controller design include the following: three bang-bang (on/off)

controllers, a time-domain system analyzer implemented as the main monitoring

unit, an 8:1 multiplexer (MUX) interface, an ADC, smart sensors, actuators, a

high-speed CAN transceiver, autonomous voltage sources, a CAN engine

controller, clock sources, and voltage-monitoring circuits.

The reference voltage source supplies the required voltage to power the

controllers and all the associated components of the monitoring and control

system. The source is configured to generate different output sources such as a

step and a periodic pulse. The initial pulse parameter and the amplitude values are

set to 0.0 and 0.5V, respectively. The 8:1 MUX interface provides the input from

the output of the different sensors to the main controller system. It also acts as a

conditioning circuit. Different sensor signals are conditioned (aggregated) to form

a single strong analog signal, which is then amplified or buffered, as shown in the

logic design. The use of a buffer is beneficial for interfacing with the sensors. It

buffers the voltage to be fed into the ADC input. The output of the MUX is then

fed into the ADC, which converts the analog signal into a digital form.

- 171 -

Two clock sources are connected to the ADC to provide a clocking mechanism

for data conversion and transmission. The clock sources of the ADC are

configured with the following settings: on-time = 10.0 µs, off-time = 10.0 µs,

initial time = 0 µs, and delay = 0.0 µs). Similarly, the clock source connected to

the start pin of the ADC is configured with the following settings: on-time = 50

µs, off-time = 20 µs, initial time = 1 µs, and delay = 10 µs. These parameter

values can be tuned to control both the input and output of the ADC. The output of

the ADC is fed into an AMIS-3660 high-speed CAN transceiver, which serves as

an interface between the ADC and the CAN engine. The eoc pin of the ADC is

connected to the s pin of the CAN transceiver. The 8-bit digital output of the

ADC is connected to the receiver (Rxd) input of the CAN controller. The Vcc

input is connected to the Vcc source, and the ground pin is connected to the earth

(ground). The transmitter (Tx) pin of the CAN transceiver is connected to the Tx

pin of the CAN engine. The receiver (Rx) pin of the transceiver is connected to

the Rx pin of the CAN engine, which provides a means of transmission and re-

transmission of sensor data and direct monitoring and control of sensor

information [108], [157-158], [167].

The CAN engine, together with the transceiver, provides a communication

interface to the entire system and serves as an NCAP, as defined by the IEEE

1451 smart TI standard [65-68]. The voltage-monitoring module block

measures the voltages from the sensor input to the control unit. We set a limit for

- 172 -

the upper and lower voltages. If the voltage falls below a certain level (0–5 V), it

is reported to the control system, and appropriate actions are taken. Smart voltage

transducers are attached to the controller input and output pins to monitor the

variation in the input and output voltages from the sensors and actuators to

observe and control the transmitted information.

 The time-domain system analyzer is the main monitoring interface that

provides voltage analysis of the converted signals from the sensor NI. The voltage

can be swept within a given frequency range while performing both transient and

time-domain analysis of the monitored control system. The controller compares

the converted digital input signals from the CAN transceiver and the output signal

from the CAN engine. It then calculates the phase and gain responses of the

voltage frequencies during the sweeping process. This information is fed into the

simulator, and waveform plots of the signals are displayed in the waveform

window of the simulator for further analysis. Figure 40 shows two actuators

attached to the system analyzer input and output ports to measure the actual

transmitted sensor signals. This process will ensure that exact sensory

information is transmitted and received at both input and output of the monitored

and control system.

The bang-bang (on/off) controllers were used to control and monitor the

sensor information between the sensor interface and the main hardware controller

unit. We set the positive_threshold voltage to 5.0 V and the constant_output_value

- 173 -

to 1.0 V in order to control the output voltages from the sensors, actuators, and

main control unit [157-161]. The pseudocode for the bang-bang controller is

shown in Figure 41.

(Figure 40) Shows on-chip sensor network monitoring and controller hardware

interface design

(Figure 41) Illustration of the pseudocode for the bang-bang (on/off) controller

module operation

- 174 -

2. On-chip temperature sensor NI design

Figure 42 shows the on-chip temperature sensor NI design. The design

consists of several components: an autonomous temperature source, four smart

transducers (temperature sensors), four smart TIs to the temperature sensors,

four operational amplifiers, a 4-1 MUX, an ADC, and two clock sources.

The temperature source is the main source of thermal energy for the sensors

and the TI, which generates a temperature difference across its input ports in a

form of a pulse or a pulse train. Furthermore, the positive polarity of the source

defines the temperature differential between the highest () and lowest

() values of the port of the temperature source [66-68],[157-161]. The

temperature differential is expressed by the following equation:

 = 		 	 − 	() (26)

where is the temperature difference and 	 is the

temperature in degree Celsius at the port () . 	() is the

temperature at the port (). The two parameters of the temperature source

are set at the following conditions: initial = 0.0 V and pulse = 5.0 V. This

condition provides a continuous temperature source for the four smart

temperature sensors and the TI. The control sensor senses the temperature

signals from the source and converts them into a variable signal. The temperature

model is expressed by the following equation:

- 175 -

 = ∗ (− 	() (27)

where the two pins () and () are terminal pins. The difference

in the two temperature values defines the input signal. Parameter R is the gain,

which can take any arbitrary values. Here, we set the default value of R to be one.

The output parameter has no specific signal value. Therefore, we need a TI to

convert the output signal into an electrical signal. To achieve this, we interface

the output of the temperature sensor with the transducer (control to voltage

interface) to convert the temperature into electrical signals. The TI is based on

the characteristics expressed by the following equation:

 Input
= ∗	(() − 	()) (27)

where the difference 	() − 	() is the differential voltage from the sensor

output and R is the gain that is set to one. The TI output is converted into a

voltage and amplified using an operational amplifier. The converted output voltage

from the TI (Input
) is used as an input to the operational amplifier

because the operational amplifier is suitable for interfacing the sensor data and

buffering the input voltage for maximum gain. The amplified voltages from the

four operational amplifiers are used as input to the 4-1 MUX, which serves as a

conditioning circuit for the sensor interface. The four inputs are multiplexed to

form a single output that is fed into the ADC for conversion into digital signals.

The 4-1 MUX has four data inputs, namely, do to d3, and two address input pins

a1 and a0, as shown in Figure 42. The 4-1 MUX functions as follows: one of the

- 176 -

four inputs is chosen to drive the output state y. The selection is based on which

among the four possible input combinations are available [56-65],[157-161].

The output of the 4-1 MUX (y) is used as an input to the ADC. The ADC

converts the analog sensor data into a digital form. However, the output (y) from

the 4-1 MUX can be sent to the main controller representing one cluster of the

four sensor data. In this case, the conversion from analog to digital is performed

by the ADC on the main monitor controller unit. To ensure timely and accurate

data conversion by the sensors, two clock sources are connected to the start and

clock pins of the ADC. The clk1 source is configured with the following parameter

configurations: on-time = 10.0 µs, off-time = 10.0 µs, initial time = 0.0 µs, and

delay = 0.0 µs. The start clock source is configured with the following settings:

on-time = 50 µs, off-time = 20 µs, initial time = 1 µs, delay = 1.0 µs.

(Figure 42) Shows on-chip temperature sensor NI design

- 177 -

3. On-chip voltage sensor NI design

Figure 43 shows the design of a voltage sensor NI. The design consists of

autonomous voltage source, smart voltage sensors, four TIs, four operational

amplifiers, one MUX, an ADC, and two clock sources. The autonomous voltage source

is used as the main source for power supply to the voltage sensors and TIs. The two

parameters of the voltage source are configured to supply continuous voltage to all the

components in the system. The values of the parameters are as follows: initial = 0.0

V and amplitude = 5.0 V. The characteristic equations for the voltage sensors

(voltage to control interface) and the TI (control to voltage) are similar to equations

(26)–(28). The output of the TI is fed to the operational amplifiers, which is then

amplified and sent to the do to d3 input pins of the 4-1 MUX [66-68],[157-161].

(Figure 43) Shows on-chip voltage sensor NI design

4. On-chip thermal sensor NI design

Figure 44 shows the smart thermal sensor NI of the main controller unit. The

interface consists of several components similar to the two interfaces for the

- 178 -

temperature and voltage sensors described in the previous subsections. A thermal

power source is used to power-on the four sensors and the TI. The two

parameters for the thermal power source are configured with the following

settings: amplitude = 5.0 V and frequency = 25 Hz. The source generates a

sinusoidal heat at its input ports. The thermal sensors (thermal to power control)

sense and transmit the sensor data to the smart TI. The characteristic equation

for the thermal sensor model is expressed as

	
= 	 ∗ ((ℎ −	 ℎ)	 (29)

where 	 ℎ 	and 	 ℎ are the thermal pins with the temperature, as

well as the thermal power flux, is expressed in degree Celsius. The input signal to

the sensor is expressed by the function 	 	(ℎ −	 ℎ) .

Parameter K is the gain constant. We set K = 1 during the simulation. The sensor

output is then sent to the input port of the TI (control to voltage), which converts

the sensed data into electrical voltage and then amplifies them using the

operational amplifiers and used as input by the 4-1 MUX [157-161], [167].

(Figure 44) Shows on-chip thermal sensor NI design

- 179 -

C. On-Chip Sensor Network Simulation Results

1. Simulation procedure

In this subsection, the dissertation explains the detailed simulation procedure

carried out to verify the proposed design. The design and implementation of the

register transfer level (RTL) modules, models, and schematics of the proposed

intelligent network monitoring and control system presented in this chapter were

performed using the Synopsys integrated design environment and tools [157-

158]. We verified the functionality of the proposed design specification in the

time domain using transient analysis to determine the variation in the sensor NI

voltage signals and that in the monitoring and control unit over time. The

simulation was run by setting the following parameter configurations:

Simulation time (end time) = 10,000 ms (10 s)

Time step = 10 ns

Start time = default = 0 s

Threshold voltage = 0–5 V

ADC clock signal setting: on-time =10 µs, off-time = 10 µs, initial = 0 µs, delay

= 0 µs), ADC start signal setting (on-time = 50 µs, off-time = 20 µs, initial = 1

µs, delay = 1 µs).

 The simulation time (end time) defines the time in which the simulator

finishes the transient analysis. Meanwhile, the time step is the period in which the

simulator finds an initial solution point during the simulation to project the next

solution point in the simulation process. In addition to the end time of the

- 180 -

simulation process, the simulator also outputs the execution time. Four RTL

gate-level netlist files for the entire design are provided with a simulator during

the compilation and simulation process. Three netlist files are provided: one for

each NI and the other one for the monitoring and control unit. The simulation

results in waveforms are shown in Figures 45 and 46.

2. Discussion of simulation results

Herein, the dissertation provides the simulation results in waveforms using the

Synopsys integrated design environment and tools [157]. Figures 45 and 46 show

the transient analysis results in the time domain of the variation in sensor

voltages over time for the different parts of the monitoring and control unit.

Figure 45 (a) –(c) shows the transient time-domain analysis for the three on-

chip sensor NI designs. Figure 45 (a) shows the simulation results of the voltage

sensor NI and the voltage signal variation at different time instances. We

observed that the sensor signals are alternating with an amplitude of 0–5V

corresponding to the reference voltage of 5V. The four sensor signals are

combined (multiplexed and amplified) to form an aggregated signal. As expected,

the aggregated sensor signals are measured to be 5.0 V, which shows a high

accuracy in the measurement of the combined sensor signals with a very

negligible error in the sensor measurement.

Figures 45 (b) show the variation in the sensor voltage at different time

instances for the thermal sensor NI. As observed, no difference exists between

- 181 -

the reference temperature source (voltage) and the measured voltage of the four

aggregated sensors. As expected, the reference voltage and the measured sensor

voltages are the same (i.e., 5.0 V), which shows accurate precision in the sensor

measurement of the NI and the efficiency of the intelligent thermal sensor

network design.

Figures 46 (a) and (b) show the simulation results for the variation in the

sensor signals (voltage) over time for the main monitoring and control unit. Figure

46 (a) shows the measured analog signals at different time instances of the

various components of the monitor controller unit compared with the input sensor

measured signals from the sensor NIs. The figure shows that the bang-bang_1

output signal oscillates between 0 and 5 V (maximum), which indicates the same

measured input sensor signals of 5 V.

The transceiver_txd signal remains stable and is measured to be 5 V at

different time interval. This indicates a continuous conversion of signals and a

high accuracy in the sensor signal conversion from analog to digital by the ADC.

The output signals for both the high-speed transceiver and the CAN controller

engine are controlled and regulated by the bang-bang_2 and bang-bang_3

controllers. We can observe that the controlled voltage measurement of the bang-

bang_2 controller is 5 V measured at different time intervals. The bang-bang_3

controller voltage connected to the system monitor unit to control the monitor

input and output is also measured to be 5 V, which shows that the input sensor

- 182 -

signal from the NI is well monitored and performs control without losing sensor

precision and accuracy.

Figure 46 (b) shows the digital signal output of the converted sensor signals by

the monitoring and control unit. The different digital bits of the converted sensor

analog signals are output through the digital bits (0–7) of the ADC output. The

transceiver signal was observed to be stable and high at different time instances.

In conclusion, the simulation results verified the functionality of the various

design components of the sensor NIs and the monitoring and control unit. The

actual application of this proposed approach is implemented using FPGA as a case

study. The details of the case study and FPGA implementation are presented in

the experimental results subsection.

(a) For voltage sensors

- 183 -

(b) For thermal sensors

(c) For temperature sensors

(Figure 45) Illustration of the simulation waveforms for transient analysis of the

variation in the reference voltage and the measured voltages over time

(a) For analog signals

- 184 -

(a) For digital signals

(Figure 46) Ilustration of the simulation waveforms of the transient analysisthe

voltagesvariation in the voltage source and measured voltages over time.

D. FPGA On-Chip Sensor Network Experimental Procedure

and Case Study

1. Experimental setup

In this subsection, the dissertation explains the experimental procedure used to

design, implement, and verify the proposed on-chip sensor network monitoring

and control system using an FPGA. To validate the approach through a real-life

scenario, we implemented a case study for on-chip sensor network monitoring

and control using FPGA. We used the Xilinx Vivado 2013.3 integrated design

environment and the Zynq 7000 XC7z020 CLG484-1 AP SoC FPGA device for

synthesis, placement, routing, and implementation of the proposed system. Figure

47 shows the on-chip sensor network monitoring and control unit implemented

- 185 -

using Xilinx ADC (XADC) and SYSMON IP cores [160-161]. The XADC and

SYSMON IP cores provide an interface for designing on-chip sensors and user-

defined external sensors to the main monitoring and control unit. The system

provides capabilities for self-awareness and adaptation to dynamically tune the

different parameter values at runtime to measure ambient parameters such as

temperature, voltage, and thermal energy variations. It is based on a highly

precise analog measurement system consisting of a 12-bit ADC and other circuit

elements. Several input and output pins are provided to achieve high performance

and accurate measurements from the on-chip sensors and the remote sensors

connected to the system interface [113-122], [159-163].

Figure 48 shows the RTL netlist schematic after synthesis, placement, and

routing of the implemented monitoring and control system on Zynq 7000 XC7z020

CLG484-1 FPGA board using the Xilinx Vivado 13.3 integrated design

environment.

The architecture shown in Figure 47 consists of the Xilinx XADC and SYSMON

IP interface that are present in all Xilinx 7 series FPGA devices, including the

Zync 7000 families [160-161]. The central processing unit is based on ARM

cortex-A9 processing system and is used to monitor and control the on-chip

sensor variation in the measured temperature, voltage, and power supply.

Similarly, the remote sensors connected to the main unit can also be monitored

and controlled. Furthermore, the system will set an alarm when over temperature,

- 186 -

over voltage, and under voltage, etc. occur. This feature will ensure smooth

running and proper functioning of the whole system.

(Figure 47) Shows the block design of on-chip sensor network monitoring and

control system using XADC and SYSMON IP cores

2. Case study

In this subsection, the dissertation provides the detailed explanation of the

proposed case study using the Zynq-7000 FPGA board [160-164]. This case

study uses a central processing unit (ARM cortex-A9 core) to monitor and

control the variation in temperature and voltage of the on-chip sensor and remote

sensors connected to the FPGA fabric. The Xilinx Zynq-7000 is a flexible and

efficient architecture based on all programmable system-on-chip architecture.

The device consists of a dual-core ARM Cortex-A9 MP Core processing system

and enhanced Xilinx programmable logic in one integrated FPGA fabric. In the

proposed design, the processing system is the main monitoring unit that provides

- 187 -

basic functionalities with the Cortex-A9 MP Core central processing unit. The

XADC acts as the control unit, which works together with the processing system.

The other components installed in the processing system include the on-chip

memory, on-chip sensors, input and output devices, auxiliary memory, and

interface to the remote-sensing devices.

(a) RTL schematics

(b) Routing resources of the Zynq 7000 AP SoC FPGA device

(Figure 48) Illustration of the on-chip sensor network monitoring and control

system.

- 188 -

The monitoring and control system provides a communication using different

interfaces such as I2C, DRP, and JTAG. The control system uses another form of

communication interface, which is the industrial input and output (IIO)

framework-based Linux driver [161-163]. This driver works as a device driver

for an application that uses a control system and the AXI and DRP communication

interfaces. An interesting functionality of this driver is its ability to configure the

control system to be used in different functionalities, e.g., receiving data from the

control system and providing information for different parameter states and

configurations in the user space provided in the intended application. In this case

study, we demonstrate how the IIO-based Linux driver is used for on-chip

sensor network monitoring and control application. We show how the control

system can be used to provide a hardware design in the programming logic, which

creates a dedicated communication between the control and monitoring system

using the DRP and AXI port communication interfaces. To make the application

more user friendly, a web server-based design is provided for the user to interact

with the monitoring and control system [60-107], [160-164]. The results of the

dynamic monitoring and control system are displayed on a webpage for the users

to see and change the configuration parameters to observe the variations in the

measured on-chip temperature and voltage parameters, as shown in Figures 49

and 50. The architecture of the hardware monitoring and control system as well as

the connectivity between the control system in the programming logic and the

- 189 -

processing system is shown in Figs. 49 and 50.

The web server or user application in this case study employs the IIO

framework device driver, as mentioned earlier. This is a standard means of

providing support for ADCs. It provides two basic functionalities: file system

interface for communication with various devices (sensors) connected to the

system and the character driver interface to receive event information from the

subsystems to the user application space in the monitoring and control system

[160-164]. The basic sections of the on-chip sensor network monitoring and

control user application are briefly explained as follows:

i) On-chip sensor network monitoring and control: this subsystem

provides a means of communication with the IIO system Linux device

driver for functionalities like retrieving data from sensors, hardware

configuration, synchronous/asynchronous event handling, and control

mechanism.

ii) Web server subsystem: this subsystem of the monitoring and control

unit addresses the connection request from remote web users. The

users can acquire sensor data and other information through the web

server interface. Sensory information and event notification and updates

are provided to the server through the monitoring and control unit.

iii) Web interface subsystem: this subsystem provides the basic connection

and interface for the web server and the monitoring and control system.

The interface provides the functionality to set the threshold values of

the different alarms and communicates these values to and from the

web server interface for efficient monitoring and control.

- 190 -

iv) Web client subsystem: this subsystem provides functionality to users to

tune the different parameter values of the temperature and voltage

thresholds. The web client operates in a web browser and provides

communication with the web server using a communication port. A

graphical user interface is provided to obtain the sensed data from the

sensors and the possibility of tuning the threshold values. Figure 50

shows the implemented monitoring and control user application and web

interfaces.

(a)

(Figure 49) Shows on-chip sensor network monitoring and control system

(hardware interface)

- 191 -

(a) User-application interface design

(b) Webpage user interface

(Figure 50) Shows on-chip sensor network monitoring and control system.

- 192 -

3. FPGA logic resource utilization

In this subsection, the dissertation provides the FPGA logic resource utilization

for post synthesis and implementation (i.e., placement and routing) on the Xilinx

Zynq evaluation kit ZC702 XC7Z020 CLG484-1 Zynq-7000 AP SoC FPGA

device. Tables 11–14 list the resource usage at different design implementation

stages. Tables 11 and 12 list the FPGA implementation results of the logic

components for the on-chip sensor network monitoring and control system. We

observe that the implemented design uses very small amounts of FPGA logic

resources, i.e., 2823 out of 482901, which is equivalent to 0.5851%, compared

with the results presented by the authors in [56,57], [60,61] and [110,122]. This

result indicates low-cost utilization of the logic resources when implemented in a

medium-sized seven-series FPGA device. This result validates our stated

objective of achieving a low-cost intelligent monitoring and control system. After

the design synthesis, we optimize the design using the Xilinx Vivado tool to

efficiently route the design into the target architecture. In Table 12, we can

observe that because of the optimization done to route the design, a slight

reduction in the amount of logic consumption occurs. Table 13 lists the low-level

primitives used by the implemented design and their utilization numbers. Table 14

lists the power distribution and utilization of the various on-chip sensor

components after placement and routing. This distribution consisted of both

dynamic and static power consumptions. We can see from the table that all on-

- 193 -

chip sensor components show very low power consumption. We achieved 0.118 W

of static power and 0.01W of dynamic power consumption. A total of 0.129 W,

which represents a 2.26% of both dynamic and static power consumption, for all

on-chip sensor components as compared with the results presented in [57,60].

This result also agrees with our stated objective of achieving low power

consumption.

(Table 10) FPGA post synthesis (device placement) resource utilization

implemented on Xilinx Zynq evaluation kit ZC702, XC7Z020 CLG484-1 FPGA

device.

Resource type Used Available Percentage utilization

Slice LUTs 641 53200 1.20%

LUTs as logic 571 53200 1.07%

LUTs as memory 70 17400 0.40%

LUT as shift register 70 - -

Slice registers 770 106400 0.72%

Registers as flip-flops 770 106400 0.72%

Registers as latch 0 106400 0.0%

F7 Muxes 8 26600 0.03%

F8 Muxes 0 13300 0.00%

XADC 1 1 100%

TOTAL 2901 482901 0.601%

- 194 -

(Table 11) FPGA post implementation (device routing) resource utilization

implemented on Xilinx Zynq evaluation kit ZC702, XC7Z020 CLG484-1. FPGA

device.

Resource type Used Available Percentage utilization (%)

Slice LUTs 607 53200 1.14

LUTs as logic 545 53200 1.02

LUTs as memory 62 17400 0.35

LUT as shift register 62 - -

Slice registers 769 106400 0.72

Registers as flip-flops 769 106400 0.72

Registers as latch 0 106400 0.00

F7 Muxes 8 26600 0.03

F8 Muxes 0 13300 0.00

XADC 1 1 100%

TOTAL 2823 482901 0.585%

(Table 12) FPGA low-level primitive resource utilization implemented on Xilinx

Zynq Evaluation kit ZC702, XC7Z020 CLG484-1 FPGA device.

Name

FDRE

UT3

LUT6

LUT5

BIBUF

FDSE

LUT4

LUT2

SRLC32E

SRL16E

CARRY4

MUXF7

LUT1

XADC

PS7

BUFG

Used

677

216

206

131

130

92

77

65

47

23

18

8

8

1

1

1

- 195 -

(Table 13) FPGA on-chip sensor component post placement and routing power

resource utilization implemented on Xilinx Zync evaluation kit ZC702, XC7Z020

CLG484-1 FPGA device.

Resource type Used Available Power (W) Percentage utilization (%)

Clocks 1 - 0.001 -

Slice logic 1757 - 0.001 -

LUTs as logic 545 53200 0.001 1.02

Register 769 106400 0.001 0.72

CARRY4 18 13300 0.001 0.14

F7/F8 Muxes 8 53200 0.001 0.02

LUT as Shift Register 62 17400 0.001 0.36

Others 189 - 0.001 -

Signals 1225 - 0.001 -

XADC 1 1 0.001 -

PS7 1 1 0.001 -

Static Power - - 0.118 -

 TOTAL 0.129 watt 2.26%

4. FPGA logic resource utilization comparison with previous works

Table 5 shows the FPGA utilization results comparison with previous works

[56,57], [60,61] and [110,122]. The comparison with the state-of-the-art seems

to be difficult due to the fact that there are a lot of differences in terms of the FPGA

implementation architectures, sensors and sensor networks and some of the proposed

approaches did not provide FPGA power utilization result. Furthermore, the type of

logic resources provided by the previous approaches are different from one

implementation to another. However, the utilization results shown in Table 14 helps to

acknowledge the efficiency and flexibility of the proposed approach compared with the

state-of-the-art.

- 196 -

(Table 14) FPGA logic resource utilization comparison with previous works.

FPGA RESOURCE UTILIZATION COMPARISON TABLE

Chengqun et al. [56]

Logic Control Method
Flip Flops (%) 4-Input

LUTs (%)
Slices (%) Block RAM (%) Power Utilization Implementation Architecture

19% 35% 41% 25% Not provided XILINX SPARTAN-3 FPGA
DEVICE (3XC3S400).

Lookup Table Method
12% 29% 31% 37% Not provided XILINX SPARTAN-3 FPGA

DEVICE (3XC3S400).
Perera et al. [57]

Slice Registers
(%)

4-Input
LUTs (%)

Occupied Slices (%) Bonded IOBs (%) Static power =
460.9 mW

Dynamic power =
491.4 mW

XILINX SPARTAN-3E
FPGA DEVICE
(XC3S250E). 50% 52% 97% 8%

Echanobe et al. [60]

FFs (%) LUTs (%) BRAM (%) DSPs (%) Static power =
3.071 mW

Dynamic power =
0.649 mW

XILINX VIRTEX-5 FPGA
DEVICE (XCVSX50T). 41% 52% 50% 83%

Carlos et al. [61]

LUT + LATCH
Pairs (#)

Loop
Count (#)

Actual Delay (ns) LUT + D-FF Pairs
(#)

Not provided XILINX SPARTAN-3E
FPGA DEVICE
(XC3S100E). 80 1024 180,000 110

Kornaros et al. [110]

Configuration Slices (#) RAMB16s (#) Frequency (MHz) Not provided

XILINX VIRTEX-4 FPGA
DEVICE. CAM Plugin (16 x

192) Control
Monitor

1364 18 211

Manager (Depth
32, Trace, 16 bits

3872 1 216

Monitor (32 bit)
with FSL Interface

432 3 418

Eduardo et al. [111]

Implemented prototype uses 2065 LEs a total of 7 % logic utilization. Not provided CYCLON II ALTERA FPGA

DEVICE (EP2C35).
Gomez-Ouna et al. [112]

Delay stages (#) Loop
counter

(#)

Measured
Delay (ns)

Total Area
Slices (#)

Delay Area (%) Not provided XILINX SPARTAN-3E
FPGA DEVICE
(XC3S100E).

10 2,560 124.170 34 29%
20 1,280 117,500 43 47%
30 853 116,340 50 60%
4 4,096 92,370 14 29% Not provided XILINX VIRTEX-5 FPGA

DEVICE (LX50T).
Proposed Approach

Slice LUTs (%) LUT as
Logic (%)

LUT as
Memory (%)

Slice
Registers

(%)

Registers as
Flip Flops

(%)

F7
Muxes

(%)

Static power = 0.118
W (118 mW).

Dynamic power =
0.011 W (11 mW)

XILINX ZYNQ
FPGA-7 DEVICE
ZC702 (XC7Z020

CLG484-1).
1.14% 1.02% 0.35% 0.72% 0.72% 0.03%

Total logic utilization (implemented design) = 0.585%

%: Percentage of logic resource utilization.

#: Number of logic resources.

Not provided: The authors did not provide the power utilization result.

- 197 -

E. FPGA On-Chip Sensor Network Experimental Results and

Discussion

In this subsection, the dissertation provides the results of the experiments to

monitor and control the FPGA on-chip sensor readings. The essential metric for

evaluating the FPGA on-chip sensor readings is its accuracy, i.e., how accurate

does the FPGA report the sensed on-chip voltage and temperature readings.

Although the FPGA on-chip sensors are specified in terms of accuracy based on

the manufacturer datasheet, the real significance is the on-chip sensor error. For

instance, the temperature sensor specification for accuracy is ± 4% full scale (FS)

within the range -40oC to +100oC, which means that the on-chip sensor error

will not exceed ±4% of its FS within its calibrated range. Therefore, the

evaluation of the FPGA on-chip sensor accuracy represents the process of

determining its maximum error [160,161,167].

We conducted several experiments using five different sensors, namely,

Sensors #1–#5. Sensor #4 is a temperature sensor that measured the FPGA on-

chip die temperature in degree Celsius and operates within a set threshold limit.

The remaining four sensors are power sensors, which measure the on-chip

voltage variations in millivolts within a monitored and control threshold value.

Tables 15–29 list the FPGA-measured on-chip sensor readings. Each table

represents the four experiments conducted, taking 10 readings in each experiment

for a total of 40 measured readings from the FPGA on-chip sensors. The readings

- 198 -

were averaged to remove the gross and systematic errors from the observed

readings. The FS percentage error or accuracy was calculated for each

observation and averaged across the 40 readings. We varied the dynamic

reconfiguration refresh time to query the FPGA on-chip sensor readings from the

webpage at 100, 500, and 1000 ms to determine the effect of the reconfiguration

time with respect to the sensor accuracy. The details of the experimental results

are presented in the next subsection.

F. Effect of Dynamic Reconfiguration Refresh Time on an

FPGA-measured On-chip Sensor Reading Accuracy

Tables 15–19 list the FPGA-measured on-chip sensor readings with the dynamic

reconfiguration refresh time set at 1000 ms. The range of operation and the ideal

output of each sensor are specified and listed in the tables. The averaged FS

percentage errors of the five sensors are as follows: Sensor #1 = – 0.7%FS, Sensor

#2 = –0.1%FS, Sensor #3 = 0.8%FS, Sensor #4 = 0.1%FS, and Sensor #5 =

0.4%FS. This result indicates that the accuracy of the measured sensor values is

influenced by the reconfiguration refresh time, which shows an accuracy range

between – 0.7%FS and +0.8%FS.

- 199 -

(Table 15) FPGA-measured on-chip Sensor #1 reading with dynamic

reconfiguration refresh time of 1000 ms

(Table 16) FPGA-measured on-chip Sensor #2 reading with dynamic

reconfiguration refresh time of 1000 ms

- 200 -

(Table 17) FPGA-measured on-chip Sensor #3 reading with dynamic

reconfiguration refresh time of 1000 ms

(Table 18) FPGA-measured on-chip Sensor #4 reading with dynamic

reconfiguration refresh time of 1000 ms

- 201 -

(Table 19) FPGA-measured on-chip Sensor #5 reading with dynamic

reconfiguration refresh time of 1000 ms

Tables 20 to 24 list the FPGA-measured on-chip sensor readings with the dynamic

reconfiguration refresh time set at 500 ms. Here, the averaged FS percentage errors

for the five sensors are as follows: Sensor #1 = –0.6%FS, Sensor #2 = –0.6%FS,

Sensor #3 = +0.2%FS, Sensor #4 = +1.1%FS, and Sensor #5 = 0.3%FS. The

averaged FS accuracy lies between –0.6%FS and +1.1%FS, which illustrates a better

accuracy compared with reconfiguration refresh time of 100 ms.

- 202 -

(Table 20) FPGA-measured on-chip Sensor #1 reading with dynamic

reconfiguration refresh time of 500 ms

(Table 21) FPGA-measured on-chip Sensor #2 reading with dynamic

reconfiguration refresh time of 500 ms

- 203 -

(Table 22) FPGA-measured on-chip Sensor #3 reading with dynamic

reconfiguration refresh time of 500 ms

(Table 23) FPGA-measured on-chip Sensor #4 reading with dynamic

reconfiguration refresh time of 500 ms

- 204 -

(Table 24) FPGA-measured on-chip Sensor #5 reading with dynamic

reconfiguration refresh time of 500 ms

Tables 25–29 show the FPGA-measured and controlled on-chip sensors

readings with the dynamic reconfiguration refresh time set at 100 ms. The

averaged percentage accuracy of Sensor #1 FS is –0.6%FS, Sensor #2 = –

0.3%FS, Sensor #3 = –0.024%FS, Sensor #4 = 1.3%FS, and Sensor #5 =

0.4%FS. From Tables 25–29, we can observe that the FS percentage accuracy lies

from -0.6%FS to + 1.3%FS. This result shows a low accuracy at FS as compared

with the dynamic reconfiguration refresh times of 500 and 1000 ms. Table 30

shows the comparison results of the sensor reading accuracy versus the dynamic

reconfiguration refresh time. We can observe that the FS percentage error with

dynamic refresh time of 100 ms is between –0.6%FS and + 1.3% FS, that of 500

ms is between –0.6%FS and +1.1%FS, and that of 1000 ms is between – 0.7%FS

- 205 -

and + 0.8FS. This result shows that the lower FS percentage error range is

almost the same (i.e., –0.6%FS and –0.7%FS) for all sensors irrespective of the

dynamic refresh time. However, at higher FS percentage error rate, a significant

difference in accuracy exists with different dynamic refresh time, i.e., +0.8%FS,

+1.1%FS and +1.3%FS. Therefore, the dynamic reconfiguration refresh time of

1000 ms produces highly accurate FPGA-measured on-chip sensor readings.

In conclusion, the dynamic reconfiguration refresh time affects the accuracy of

the FPGA-measured on-chip sensor readings. We determined that the dynamic

reconfiguration refresh time of 1000 ms provides highly accurate FPGA-

measured and controlled on-chip sensor readings across the five different on-

chip sensors.

- 206 -

(Table 25) FPGA-measured on-chip Sensor #1 reading with dynamic

reconfiguration refresh time of 100 ms

(Table 26) FPGA-measured on-chip Sensor #2 reading with dynamic

reconfiguration refresh time of 100 ms

- 207 -

(Table 27) FPGA-measured on-chip Sensor #3 reading with dynamic

reconfiguration refresh time of 100 ms

(Table 28) FPGA-measured on-chip Sensor #4 reading with dynamic

reconfiguration refresh time of 100 ms

- 208 -

(Table 29) FPGA-measured on-chip Sensor #5 reading with dynamic

reconfiguration refresh time of 100 ms

(Table 30) Comparison results of the sensor reading accuracy versus dynamic

reconfiguration refresh time.

- 209 -

G. Chapter Summary

In summary, the chapter describes the proposed low-level micro-architectural

design infrastructure for real-time monitoring and control of on-chip sensor

network-based systems using FPGA. The chapter discusses the development, design

and implementation issues for efficient and reliable high-speed circuit technique of

the on-chip sensor network runtime parameter monitoring and control, which use

autonomous sensors that reside at the NI, to be dynamically configured and to

communicate the runtime ambient parameters to the network monitor controller

hardware. A detailed low-level design methodology and procedure and a user

application for efficient and reliable on-chip sensor network monitoring and control

using FPGAs was provided. In addition, a webpage interface for the user to

dynamically reconfigure the FPGA to conduct on-chip sensor readings and adjust the

sensor ranges and reconfiguration refresh time was presented. The chapter showed

that the proposed approach uses low FPGA logic resources and low power

consumption, validating its suitability in real-system development. Furthermore, it

demonstrated that by collecting the dynamic and real-time monitoring parameters in

terms of temperature and voltage variations, the system can adapt and improve the

utilization of FPGA logic resources and energy consumption. Experimental results

from the FPGA-measured on-chip sensor readings showed high precision and

accuracy in the measured voltage and temperature. We found that a dynamic refresh

time of 1000 ms produces the best FPGA-measured and controlled on-chip

monitored sensor readings as compared with the 100 and 500 ms refresh time.

- 210 -

VI. Conclusions and Future Work

This dissertation proposed a new paradigm for enhancing system design,

reliability and performance of FPGA-Based networks-on-chip in embedded

hardware systems. A new paradigm, namely, autonomously self-aware and

adaptively reconfigurable system for FPGA-Based network-on-chip was

proposed. Autonomous self-aware and adaptive reconfigurable system for

network-on-chip (NoC) is a promising paradigm aiming at providing an

infrastructural framework for the exploration, performance evaluation, correctness

and reliability issues of network-on-chips fabrics in the Field Programmable

Gate Arrays (FPGAs). The dissertation considers a design and implementation of

architectures that enable for self-adaptation, dynamic reconfiguration, autonomic

formation and self-awareness of network-on-chip architectures. The

dissertation also considers the design of fault tolerant routing scheme and

algorithms for both on-chip interconnect and sensor networks that provide a low

level mechanism for ensuring runtime autonomous self-aware fault-tolerant

routing in the presence of faulty network components. Furthermore, the

dissertation considers system level adaptation by runtime monitoring of

environmental parameters and employing evolutionary optimization methods to

intelligently adapt and optimize system performance in terms of throughput,

latency, clock frequency, silicon area and energy consumption.

- 211 -

In order to achieve the first objective of the dissertation, a detailed

parametric evaluation technique was proposed and used it to compare the

performance of Mesh, Torus, and Fat-tree NoC architectures using FPGA. It

demonstrated that the VCs, FBD, and FDW parameters all contributed to higher

LUTs and influenced the area (PLUT) and clock frequency (CLK_FREQ) of the

FPGA network, with FDW and FBD having the greatest impact on FPGA

resources. The dissertation also found that these three parameters significantly

influenced reassembly buffering and routing and logic requirements at the NoC

endpoints. To demonstrate the flexibility and design space coverage of the three

target NoC architectures, the dissertation reported their results synthesizing of

392 different FPGA network configurations. It showed that by strategically tuning

the router and interconnect parameters, Fat-tree networks offered the best

utilization of FPGA resources in terms of silicon area, clock frequency, critical

path delay, network cost, overall performance under saturation throughput, and

lower latencies under both benign and adversarial traffic patterns. In contrast, the

dissertation consistently found that the Mesh and Torus networks consumed too

much FPGA resources and produced poor network performance under adversarial

traffic patterns. Through these findings, the dissertation also demonstrated that

the evaluation technique can substantially improve performance under a large

variety of experimental conditions, confirm its suitability for real system

development. Thus, the presented methodology forms an important foundation for

- 212 -

engineers and designers to make informed early decisions about which

interconnects and router parameters to use in large and complex NoCs for FPGA.

As a proof of concept for the autonomous self-aware and adaptive

reconfigurable system paradigm, the dissertation proposed ASAART for wireless

sensor networks to address the limitations of the SSR and SHR protocols. We

integrated autonomous self-awareness and adaptive paradigm into the SHR

protocol to make it more resilient to faults and errors and energy efficiency for

efficient and reliable routing of sensor data in wireless sensor networks. This is

achieved by combining both continuous and prioritized slotted back-off delay, and

multiple randomize function techniques to obtain local and global network state

information for faster routing path formation and speedy convergence to the

minimum routing path. The dissertation proposed a route repair technique for

reliable transmission of sensor data in the presence of permanent and transient

node failure rates, and efficient adaptation to simultaneous network topology

changes. The dissertation presented an extensive simulation under five different

scenarios. The simulation results showed that the ASAART technique performed

better in terms of high resiliency to errors and failure and better routing

performance and energy consumption compared with the SSR and SHR protocols

in the presence of transient and permanent node failure rates and in a highly

congested, faulty, and scalable sensor network. The proposed approach is energy

efficient because it consumes less energy compared to the SSR and SHR protocols

- 213 -

confirms its suitability in sensor networks and other remote sensing applications.

As a proof of concept for the proposed paradigm, the dissertation further

proposed the design of efficient and high-speed circuit for real-time monitoring and

control of on-chip sensor network using FPGA. It developed the autonomous sensor

agents implemented in the FPGA-based NI to be dynamically configured and to

communicate the dynamic ambient parameter changes to the monitoring and control

hardware unit. The ultimate goal is to design a low-cost, low-power, and high-

accuracy real-time monitoring mechanism using autonomous sensor agents as well as

a dynamic reconfiguration control of on-chip sensor network environment using

FPGAs. The dissertation presented a detailed design procedure and a case study to

demonstrate the applicability of the proposed paradigm. It showed that the proposed

approach uses low FPGA logic resources and low power consumption, validating its

suitability in real-system development. Furthermore, it's shown that by collecting the

dynamic and real-time monitoring parameters in terms of temperature and voltage

variations, the system can adapt and improve the utilization of FPGA logic resources

and energy consumption. Experimental results from the FPGA-measured on-chip

sensor readings showed high precision and accuracy in the measured voltage and

temperature. Through the experiment, it was found that a dynamic refresh time of

1000 ms produces the best FPGA-measured and controlled on-chip monitored sensor

readings as compared with the 100 and 500 ms refresh time. The proposed design

techniques, framework, and protocol will assist network engineers and system

designers with a flexible and efficient real-time monitoring and control scheme for

large and complex FPGA-based on-chip sensor networks and other related remote-

sensing applications.

- 214 -

Future work

The dissertation has achieved its stated objectives in the field of embedded hardware

systems. However, as the technology trend is fast moving towards embedded internet

of things devices and software defined networking and big data paradigms, the future

application of the proposed paradigm will be targeted towards the embedded internet

of things (IoT) devices. It has been forecasted that around 50 billion devices will be

connected by 2020. This means that the data generated by these devices can be

autonomously uploaded into the cloud. This will enable us to keep track and analyze

our key information and performance measurements such as heart rate, electric bills,

the distance covered by cars, etc. The requirements of an embedded IoT device

seems to be similar to the microprocessor systems. You have one or more sensors

that are read by an MCU, the data may then be processed locally prior to sending it

off to another application or trigger another event to occur. However, there are

decisions to be made regarding the communication protocol, energy consumption and

security consequences of the connected devices as well. To address these issues, the

future direction will focus on a security functions to be performed by future IoT

embedded devices, strategies to reduce energy consumed in executing complex data

(Big Data), creation of a trusted execution environment on a single ultra-low power

processor, protecting an embedded processor platform from malicious attacks and IP

theft, managing the complexities in on-chip interconnect networks (Software Defined

Networking) among others [169], [170], [171] and [172].

- 215 -

Bibliography

[1] M. S. Abdelfattah and V. Betz, “Design Tradeoffs for Hard and Soft FPGA-based

Networks on-Chip”, in an 11th International conference on Field programmable

technology (FPT11), pp. 95-103, 2012.

[2] R. Ho, K. Mai, and M. Horowitz, “Managing Wire Scaling: A Circuit Perspective”, in

Proceedings of the IEEE 2003 International Interconnect Technology Conference, pp.

177–179, 2003.

[3] W. J. Dally and B. Towles, “Route Packets, not Wires: On-chip Interconnection

Networks”, in DAC ’01, Proceedings of the 38th conference on Design automation,

ACM Press New York, NY, USA, pp. 684–689, 2001.

[4] J. Duato, S. Yalamanchili, and L. Ni, “Interconnection Networks: an Engineering

Approach”, Morgan Kaufmann Publishers, pp. 62-98, 2003.

[5] Santambrogio, M.D., Hoffmann, H., Eastep, J., Agarwal, A., “Enabling Technologies for

Self-Aware Adaptive Systems”, in Proceedings of the NASA/ESA Conference on

Adaptive Hardware and Systems, Anaheim, California, 15–18 June, pp. 149–156, 2010.

[6] S. Cheng, D. Garlan, B. Schmerl, P. Steenkiste, “Software Architecture-based

Adaptation for GRID Computing”, in Proceedings of the 11th International Symposium

on High-Performance Distributed Computing (HPDC), Edinburg, UK, 24–26 July, pp.

389–398, 2002.

[7] P. Dini, et al. “Internet GRID, Self-Adaptability and Beyond: Are we Ready”, in

Proceedings of the 15th International Workshop on Database Expert Systems and

Applications, Zaragoza, Spain, 30 August–3 September, pp. 782–788, 2004.

[8] G. Rengugadevi, M. G. Sumithra, “Hierarchical Routing Protocols for Wireless Sensor

Network–A Survey”, International Journal of Smart Sensors and Ad Hoc Networks,

Volume 2, pp. 71–75, 2012.

- 216 -

[9] A. Braman, G. R. Umapathi, “A Comparative Study on Advances in LEACH Routing

Protocol for Wireless Sensor Networks: A survey”, International Journal of Advanced

Research in Computer Communication and Engineering, Volume 3, pp. 5683–5690,

2014.

[10] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing”, Computer

Journal, Volume 36, pp. 41–50, 2003.

[11] HP Labs. “HP Open View Self-healing Services: Overview and Technical

Introduction”, in User’s Guide, Software Version: 2.60, Hewlett Packard Development

Company, California, USA, pp. 1–20, 2007.

[12] D. Breitgand, M. Goldstein, E. Henis, O. Shehory, Y. Weinsberg, “Panacea towards a

self-healing development framework”, in Proceedings of the 10th IFIP/IEEE

International Symposium on Integrated Network Management, Munich, Germany, 21-

25 May, pp. 169–178, 2007.

[13] S. Dustdar, C. Dorn, F. Li, L. Baresi, G. Cabri, C. Pautasso, F. Zambonelli, “A

Roadmap towards Sustainable Self-aware Service Systems”, in Proceedings of the

2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing

Systems, Cape Town, South Africa, 1–8 May, pp. 10–19, 2010.

[14] A. Birolini, “Quality and Reliability of Technical Systems: Theory, Practice and

Management”, Springer-Verlag, Berlin, Germany, pp. 13–502, 1997.

[15] A. S. Tanenbaum, M. van Steen, “Distributed Systems: Principles and Paradigms”,

2nd ed., Pearson Education Inc. Prentice Hall, Upper Saddle River, NJ, USA, pp. 321–

373, 2007.

[16] L. M. S. Souza, H. Vogt, M. Beigl, “A Survey on Fault Tolerance in Wireless Sensor

Network”, Internal Report, Faculty of Computer Science, Department of Informatics,

University of Karlsruhe, Germany, January 2007.

[17] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F. Massacci, P. Nixon, F.

Saffre, N. Schmidt, F. Zambonelli, “A survey of autonomic communications”, ACM

Transactions on Autonomous and Adaptive Systems, Volume 1, 223–259, 2006.

- 217 -

[18] E. Gelenbe, R. Lent, “Power-aware ad hoc cognitive packet networks” Ad Hoc

Network Journal, Volume 2, 205–216, 2004.

[19] K. Han, J. Luo, Y. Liu, A. V. Vasilakos, “Algorithm design for data communications

in duty-cycled wireless sensor networks: A survey”, IEEE Communication Magazine,

Volume 51, pp. 107–113, 2013.

[20] E. Gelenbe, R. Lent, A. Nunez, “Self-aware networks and QoS”, Proceedings of the

IEEE Journal, 16 August, Volume 92, Issue, pp. 1478–1489, 2004.

[21] Y. Zeng, K. Xiang, D. Li, A. V. Vasilakos, “Directional routing and scheduling for

green vehicular delay tolerant networks”,Wireless Network Journal, Volume 19, 161–

173, 2013.

[22] E. Gelenbe, “Steps toward Self-aware Networks”, Communication of the ACM,

Volume 52, pp. 66–75, 2009.

[23] L. Li, “Reliable Multicast with Pipelined Network Coding Using Opportunistic

Feeding and Routing”, IEEE Transactions on Parallel and Distributed Systems, Volume

25, 3264–3273, 2014.

[24] E. Gelenbe, M. Gellman, R. Lent, P. Liu, P. Su, “Autonomous Smart Routing for

Network QoS”, in Proceedings of the First International Conference on Autonomous

Computing, New York, NY, USA, 17–19 May, pp. 232–239, 2004.

[25] J. Staddon, D. Balfanz, G. Durfee, “Efficient Tracing of Failed Nodes in Sensor

Networks”, in Proceedings of the 1st ACM International Workshop on Wireless Sensor

Networks and Applications, Atlanta, GA, USA, 28 September, pp. 122–130, 2002.

[26] J. Tateson, C. Roadknight, A. Gonzalez, T. Khan, S. Fitz, I. Henning, N. Boyd, C.

Vincent, “Real World Issues in Deploying a Wireless Sensor Network for

Oceanography”, in Proceedings of the Real-World Wireless Sensor Networks,

Stockholm, Sweden, pp. 307–322, 2005.

[27] R. Szewczyk, J. Polastre, “Mainwaring, A.M.; Culler, D.E. Lessons from a Sensor

Network Expedition”, in EWSN, LNCS 2920, Springer-Verlag: Berlin, Germany, pp.

307–322, 2004.

- 218 -

[28] K. Wasilewski, J. W. Branch, M. Lisee, B. K. Szymanski, “Self-Healing Routing: A

Study in Efficiency and Resiliency of Data Delivery in Wireless Sensor Networks”, in

Proceedings of SPIE 6562, Unattended Ground, Sea, and Air Sensor Technologies and

Applications IX, 656218 Orlando, Florida, USA, May 11, 2007, doi:

10.1117/12.723515.

[29] W. Alec, T. Tong, D. Culler, “Taming the Underlying Challenges of Reliable Multi-

Hop Routing in Sensor Networks”, in Proceedings of the 1st International Conference

on Embedded Networked Sensor Systems, Los Angeles, CA, USA, 5–7 November, pp.

14–27, 2003.

[30] D. P. Robert, “Gradient Routing in Adhoc Networks”, Massachusetts Institute of

Technology Publication, XPOOR2419524, Cambridge, MA, USA, 2000. Available

online:http://www.media.mit.edu/pia/Research/ESP/texts/poorieeepaper.pdf (accessed

on: 03 June, 2015).

[31] F. Ye, G. Zhang, S. Lu, L. Zhang, “Gradient Broadcast: A Robust Data Delivery

Protocol for Large Scale Sensor Network”, ACM Wireless Network Journal, Volume11,

285–298, 2005.

[32] M. Hellsenbttel, T. Braun, T. Bernoulli, M. Waelchli, “BLR: Beaconless Routing

Algorithm for Mobile Adhoc Networks”, Journal of Computer Communication and Applied

Service Wireless Network, Volume 27, 1076–1086, 2004.

[33] M. Zori R. R. Rao, “Geographic Random Forwarding (GeRaf) for Adhoc and Sensor

Networks Multihop Performance”, IEEE Transactions on Mobile Computing, Volume 2,

pp. 349–365, 2003.

[34] B. Blum, T. He, S. Son, J. A. Stankovic, “IGF: A Robust State-free Communication

Protocol for Sensor Networks”, University of Virginia, Department of Computer

Science Technical Report, Virginia, USA, Retrieved from

http://libra.virginia.edu/catalog/libraoa:1152. (Accessed on: 5 June 2015).

- 219 -

[35] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance

Vector Routing (DSDV) for Mobile Computers”, in Proceedings of the ACM

SIGCOMM’94, London, UK, 31 August–2 September, pp. 234–244, 1994.

[36] T. Bourndenas, D. Wood, P. Zerfos, F. Bergamschi, M. Sloman, “Self-Adaptive

Routing in Multi-hop Sensor Networks”, in Proceedings of the 2011 7th International

Conference on Network and Service Management (CNSM), Paris, France, 24–28

October, pp. 1–9, 2011.

[37] F. Hu and Q. Hao, “Intelligent Sensor Networks: The Integration of Sensor

Networks, Signal Processing and Machine Learning”, CRC Press, Taylor and Francis

Group, Boca, Raton, FL, USA, pp. 411–589, 2013.

[38] B. Krishnamachari and S. Iyengar, “Distributed Bayesian Algorithms for Fault-

Tolerant Event Region Detection in Wireless Sensor Networks”, IEEE Transactions on

Computers, pp. 53, 241–250, 2004.

[39] D. S. Park, “Fault Tolerance and Energy Consumption Scheme of a Wireless Sensor

Network”, International Journal of Distributed Sensor Network, pp. 1–7, 2013.

[40] G. Chen, J. W. Branch, M. Pflug, L. Zhu, B. K. Szymanski, “SENSE: A Wireless

Sensor Network Simulator”, in Advances in Pervasive Computing and Networking 2005;

Lisee, M., Chen, G.,Yener, B., Szymanski, B.K., Eds.; Springer: New York, NY, USA,

pp. 249–267, 2006.

[41] T. S. Rappaport, “Wireless Communications Principles and Practice, 2nd Ed.;

Prentice Hall, Upper Saddle River, NJ, USA, Dorling Kindersley, London, UK, pp. 1–

709, 2009.

[42] C. Del-Valle-Soto, C. Mex-Perera, R. Monroy, J. A. Nulazo-Flores, “On Routing

Protocol Influence on the Resilience of Wireless Sensor Networks to Jamming

Attacks”, Sensors Journal, Volume15, pp. 7619–7649, 2015.

[43] C. Del-Valle-Soto, C. Mex-Perera, O. Olmedo, A. Orozco-Lugo, G. Galván-

Tejada, M. Lara, “On the MAC/Network/Energy Performance Evaluation of Wireless

- 220 -

Sensor Networks: Contrasting MPH, AODV, DSR and ZTR Routing Protocols”, Sensors

Journal, Volume14, 22811–22847, 2014.

[44] G. C. Gilbert, J. W. Branch and B. K. Szymanski, “A Self-Selection Technique for

Flooding and Routing in Wireless Ad-Hoc Networks”, Journal of Network and System

Management Volume 14, 359–380, 2006.

[45] T. A. Babbitt, C. Morrell, B. K. Szymanski, “Self-Selecting Reliable Paths for

Wireless Sensor Network Routing. Computer Communication Journal, Volume 31, pp.

3799–3809, 2008.

[46] G. Chen, B. K. Szymanski, “Component Oriented Simulation Architecture towards

Interoperability and Interchangeability”. In Proceedings of the Winter Simulation

Conference, Arlington, VA, USA, 9–12 December, pp. 495–501, 2001.

[47] P. B. F. Duarte, Z. M. Fadlullah, A. V. Vasilakos, N. Kato, “On the Partially

Overlapped Channel Assignment on Wireless Mesh Network Backbone: A Game

Theoretic Approach”, IEEE Journal on Selected Areas of Communications, Volume 30,

pp. 119–127, 2012.

[48] L. Liu, Y. Song, H. Zhang, H. Ma, “Physarum Optimization: A Biology-inspired

Algorithm for the Steiner Tree Problem in Networks”, IEEE Transactions on

Computers, Volume, 64, pp. 819–832, 2015.

[49] Y. Yao, Q. Cao, A. V. Vasilakos, “EDAL: An Energy-Efficient, Delay-Aware, and

Lifetime-Balancing Data Collection Protocol for Wireless Sensor Networks”, IEEE/ACM

Transactions on Networking, Volume 23, pp. 182–190, 2015.

[50] E. Gelenbe, “A Diffusion Model for Packet Travel Time in a Random Multihop

Medium. ACM Transactions on Sensor Network. Volume 3, pp. 1–19, 2007.

[51] X. Liu, J. Luo, A. V. Vasilakos, “Compressed Data Aggregation for Energy Efficient

Wireless Sensor Networks”, in Proceedings of the 2011 8th Annual IEEE

Communication Society Conference on Sensor, Mesh and Ad Hoc Communications and

Networks (SECON), Salt Lake City, UT, USA, 27–30 June, pp. 46–54, 2011.

- 221 -

[52] A. Attar, H. Tang, A. V. Vasilakos, F. R. Yu, “A Survey of Security Challenges in

Cognitive Radio Networks: Solutions and Future Research Directions”, Proceedings of

the IEEE Journal, Volume 100, pp. 3172–3186, 2012.

[53] E. Gelenbe, G. Sakellari, M. D’Arienzo, “Admission of QoS-aware Users in a Smart

Network”, ACM Transactions on Autonomous and Adaptive Systems, Volume 3, pp. 1–

28, 2008.

[54] A. Hind, and A. Agarwal, “A Multipath Routing Approach for Secure and Reliable

Data Delivery in Wireless Sensor Networks”. International Journal of Distributed

Sensor Network, Volume 2013, pp. 1–10, 2013.

[55] E. Gelenbe and P. Liu, “Cognitive and Self-Selective Routing for Sensor Networks”,

Computer Management Science Journal, Volume 8, pp. 237–258, 2011.

[56] C. Chengqun, R. Yongfeng, L. Xin, Z. Yongqiu, and F. Wei, “An Efficiency

Multiplexing Scheme and Improved Sampling Method for Multichannel Data

Acquisition System”, International Journal of Distributed Sensor Networks, Volume

2015, Article ID 626307, 9 pages, 2015.

[57] M. D. R. Perera, R. G. N. Meegama, and M. K. Jayananda, “FPGA Based Single Chip

Solution with the 1-Wire Protocol for the Design of Smart Sensor Nodes”, Journal of

Sensors, Volume 2014, Article ID 125874, 11 pages, 2014.

[58] G. S. C. Nídia, G. G. Daniel, C. D. Flávia, J. V. N. Augusto, P. Luci, and N. de S.

José, “Autonomic Context-Aware Wireless Sensor Networks”, Journal of Sensors,

Volume 2015, Article ID 621326, 14 pages, 2015.

[59] M. T. P. Jesús, C. D. Flávia, F. P. Paulo, G. Nadia, F. Lidia, and L. David,

“Autonomic Wireless Sensor Networks: A Systematic Literature Review”, Journal of

Sensors, Volume 2014, Article ID 782789, 13 pages, 2014.

[60] J. Echanobe, I. Jelcampo, K. Basterretzea, M. V. Martinez, F. Doctor, “An FPGA-

based Multiprocessor-architecture for Intelligent Environment”, Microprocessors and

Microsystems Journal, Volume 38, Issue 7, pp. 730-740, 2014.

- 222 -

[61] G. O. Carlos, I. Pablo, L. V. Marisa, “A Self-timed Multipurpose Delay Sensor for

Field Programmable Gate Arrays (FPGA)”, Sensors Journal Volume 14, pp. 129-143,

2014.

[62] M. Virgilio, M. Alessio M. Barbara, F. Gabriele, D. Paolo, “A universal Intelligent

System-on-chip based Sensor Interface”, Sensors Journal Volume 10 pp. 7716-7747,

2010.

[63] J. Franco, E. Boemo, E. Castilloo, L. Parrilla, “Ring Oscillator as Thermal Sensors in

FPGAs: Experiments in Low Voltage”, in Proceedings of Programmable Logic

Conference (SPL), Ipojula, Brizal, March, pp. 133-147, 2010.

[64] R. K. Umanath, “Designing Next Generation Low Power Autonomous Sensor Nodes

using Systems-on-chip based Solutions”, Cypress Semiconductor, Published in EE

Times Design, pp. 2-7, 2011.

[65] Y. S. Eugene, L. Kang, “Understanding IEEE 1451 Networked Smart Transducer

Interface Standard”, IEEE Instrumentation and Measurement Magazine pp. 11-17,

2008.

[66] W. Elmenreich, S. Pizek, “Smart Tranducers Principles Commmunications and

Configurations”, available: ttp://www.vmars.tuwien.ac.at/~wilfried/papers/2003/rr-

10-2003.pdf.

[67] Smart Transducer Interface Specification Available:

http://www.omg.org/docs/formal/03-01-01.pdf.

[68] Standard for a Smart Transducer Interface for Sensors and Actuators, Common

Functions, Communication Protocols and Transducer Electronic Data Sheet (TEDs)

Formats, IEEE STD 1451.0-2007, IEEE Instrumentation and Measurement Society,

TC-9, the Institute of Electrical and Electronics Engineers, inc., New York, NY, 2007.

[69] W. J. Dally and B. Towles, “Principles and Practices of Interconnection Networks”,

Morgan Kauffman, 2004.

[70] M. K. Papamichael and J. C. Hoe, CONNECT: CONfigurable NetworkCreationTool.

Available: "http://users.ece.cmu.edu/~mpapamic/connect/ (2013).

- 223 -

[71] H. S. Wang, L. S. Peh, and S. Malik, “Power-driven Design of Router

Microarchitecture in On-chip Networks”, International Symposium on

Microarchitecture, pp. 105-116, 2003.

[72] M. E. Kreutz, C. M. Marcon, L. Carro, F. Wagner, A. A. Susin, “Design Space

Exploration Comparing Homogeneous and Heterogeneous Network-on-Chip

Architectures”, in Proceedings of SBCCI, 2015.

[73] S. Coll, F. J. Mora, J. Duato, F. Petrini, "Efficient and Scalable Hardware-Based

Multicast in Fat-tree Networks", IEEE Transactions on Parallel and Distributed

Systems, Volume 20, Issue 9, pp. 1285 – 1298, 2009.

[74] T. M. Pinkson and J. Duato, “Appendix E Final Draft Interconnection Networks”,

2006.

[75] J. Kim, C. Nicopoulos, and D. Park, “A Gracefully Degrading and Energy-Efficient

Modular Router Architecture for On-Chip Networks”, SIGARCH Computer

Architecture News, Volume 34, Issue 2, pp. 4-15, 2006.

[76] D. Becker et al., “Open Source Network-on-a-chip Router”,

Available:https://nocs.stanford.edu/cgibin/trac.cgi/wiki/Resources/Router,StanfordConc

urrentVLSIArchitectureGroup, 2012.

[77] N. Jiang et al. “A detailed and Flexible Cycle-accurate Network-on-chip

Simulator”, IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS), 86-96, 2013.

[78] X. Ju and L. Yang, “Performance analysis and comparison of 2x4 network on chip

topology”, Microprocessors and Microsystems Journal, Volume 36, pp. 505 – 509,

2012.

[79] S. Kundu, J. Sounya and S. Chattopadhyay, “Design and evaluation of Mesh-of-

Tree based Network-on-Chip using Virtual Channel router”, Microprocessors and

Microsystems journal, Volume 36, pp. 471-488, 2012.

[80] J. Lee and L. Shannon, “The Effect of Node Size, Heterogeneity, and Network Size

on FPGA based NoCs”, in an International Conference on Field-Programmable

Technology (FPT), pp. 479-482, 2009.

- 224 -

[81] Y. Huan and A. DeHon, “FPGA Optimized Packet-Switched NoC using Split and

Merge Primitives”, in an 11th International Conference on Field Programmable

Technology (FPT11), pp. 47-52, 2012.

[82] M. K. Papamichael and J. C. Hoe, “CONNECT: Re-examining Conventional Wisdom

of Designing NoCs in the Context of FPGAs”, in FPGA 12 ACM, pp. 37–46, 2012.

[83] E. S. Chung, M. K. Papamichael, E. Nurvitadhi, J. C. Hoe, and K. Mai, “ProtoFlex:

Towards Scalable, Full System Multiprocessor Simulations Using FPGAs”, ACM

Transactions on Reconfigurable Technology and Systems, Volume 2, Issue 15, 2009.

[84] G. Schelle and D. Grunwald, “Exploring FPGA Network-on-Chip Implementations

across Various Applications and Network Loads”, in International Conference on Field

Programmable Logic and Applications (FPL), pp. 41- 46, 2008.

[85] J. Lee and L. Shannon, “Predicting the Performance of Application-Specific NoCs

Implemented on FPGAs”, in Nineteenth ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA), pp. 23-32, 2011.

[86] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wilson, M. Wrighton,

and A. DeHon, “Packet Switched vs. Time-multiplexed FPGA Overlay Networks”, in

FCCM, IEEE, pp. 205–213, 2006.

[87] M. K. Papamichael, J. C. Hoe, and O. Mutlu, “FIST: A Fast, Lightweight, FPGA-

Friendly Packet Latency Estimator for NoC Modeling in Full-System Simulations”, in

Fifth IEEE/ACM International Symposium on Networks on Chip (NoCs), 2011.

[88] M. Moadeli, A. Shahrabi, W. Vanderbauwhede, and P. Maji, “An Analytical

Performance Model for the Spidergon NoC with Virtual Channels”, Journal of Systems

Architecture, Volume 56, Issue 1, pp. 16-26, 2010.

[89] P. Del Valle, D. Atienza, I. Magan, J. Flores, E. Perez, J. Mendias, L. Benini, and G.

Micheli, “A Complete Multiprocessor System-on-Chip FPGA-Based Emulation

Framework”, in IFIP International Conference on Very Large Scale Integration, pp.

140-145, 2006.

- 225 -

[90] G. Schelle and D. Grunwald, “Onchip Interconnect Exploration for Multicore

Processors Utilizing FPGAs”, in 2nd Workshop on Architecture Research using FPGA

Platforms (WARFP), 2006.

[91] P. P. Pande, C. G. Grecu, M. Jones, A. Ivanor, R. Saleh, “Performance Evaluation

and Design Trade-offs for Network-on-chip Interconnect Architectures”, IEEE

Transaction on Computers Volume 54, Issue 8, pp. 1025-1040, 2005.

[92] S. Abba and J. Lee, “Examining the Performance Impact of NoC Parameters for

Scalable and Adaptive FPGA-Based Network-on-Chips”, IEEE Fifth International

Conference on Computational Intelligence, Modelling and Simulation (CIMSim), IEEE

Computer Society, pp. 364-372, 2013.

[93] L. P. Tedesco, A. V. Mello, D. Garibotti, N. L. V. Calazans, F. G. Moraes, “Traffic

Generation and Performance Evaluation for Mesh-based NoCs”, Proceedings of the

18th Symposium on Integrated Circuits and Systems Design – SBCCI, pp. 184- 189,

2005.

[94] P. T. Wolkotte, K. F. Hölzenspies, J. M. Smit, “Fast, Accurate and Detailed NoC

Simulations”, in Proceedings of the International Symposium on Networks-on-Chip,

pp. 323-333, 2007.

[95] N. Genko, D. Atienza, G. De Micheli, J. M. Mendias, R. Hermida, F. Catthoor, “A

Complete Network-On-Chip Emulation Framework”, in Proceedings, of Design,

Automation and Test in Europe, pp. 246-251, 2005.

[96] G. C. Gilbert, J. W. Branch B. K. Szymanski, “Self-Selective Routing for Wireless

Adhoc Networks”, in Proceedings of the IEEE International Conference on Wireless

and Mobile Computing, Networking and Communication, Montreal, Canada, 22–24

August, pp. 57–64, 2005.

[97] J. W. Branch, m. Lisee, B. K. Szymanski, “SHR: Self-Healing Routing for Wireless

Adhoc Sensor Networks”, in Proceedings of the International Symposium on

Performance Evaluation of Computer and Telecommunication Systems, SPECTS’07,

San Diego, CA, USA, 16–18 July, pp. 5–14, 2007.

- 226 -

[98] D. Johnson, D. Maltz, J. Broch, “DSR: The Dynamic Source Routing Protocol for

Multihop Wireless Adhoc Networks”, In Ad Hoc Networking; Perkins, C.E., Ed.,

Addison-Wesley, Boston, MA, USA, pp. 139–172, 2001.

[99] I. D. Chokers, M. B. R. Elizabeth, “AODV: Routing Protocol Implementation Design”,

in Proceedings of the 24th International Conference of Distributed Computing Systems

and Workshops. W7–EC (ICDCSW’04), Tokyo, Japan, 23–26 March, pp. 698–703, 2004.

[100] W. R. Heinzelman, J. Kulik, H. Balakrishnan, “Adaptive Protocols for Information

Dissemination in Wireless Sensor Networks”, in Proceedings of the ACM MobiCom,

Seattle, WA, USA, 15–20 August, pp. 174–185, 1999.

[101] J. H. Huijsing, F. R. Riedijk and G. Van der Horn, “Development in Integrated Smart

Sensors”, Sensors and Actuators A-Physical, Volume 43, pp. 276-288, 1994.

[102] K. Georgios and P. Dionisions, “A Survey and Taxonomy of On-chip, Monitoring of

Multi-core Systems-on-chip”, ACM Transactions on Design Automation of

Electronic Systems, Volume 18, Issue 2, 2013.

[103] J. G. Gabriel, A. J. Carlos, P. Jorge, A. Aiman, M. P. Lucas, T. Fernando, T., “A

Survey on FPGA-based Sensor Systems: Towards Intelligent and Reconfigurable

Low-power Sensors for Computer Vision, Control and Signal Processing”, Sensors

Journal, Volume 14, pp. 6247-6278, 2014.

[104] N. V. Kirianaki, S. Y. Yurish, N. O. Shpak, V. P. Deynega, “Data Acquisition and

Signal Processing for Smart Sensors”, John Willey and Sons: Hoboken, NJ, USA pp.

320-350, 2002.

[105] J. Xi, C. Yang, A. Mason, P. Zhong, “Adaptive Multisensor Interface System-on-

Chip”, in Proceedings of the 5th IEEE Conference on Sensors, Deegu, Korea, pp. 50-53,

2006.

[106] S. Y. Yurish, “Digital Sensors Design based on Universal Frequency Sensors

Interfacing IC”, Sensors and Actuators, A-Physical, Volume 132, pp. 265-270, 2006.

[107] G. Song, A. Song and W. Huang, “Distributed Measurement System Based on

Networked Smart Sensors with Standardized Interfaces”, Sensors and Actuators A-

Physical, Volume 120, pp. 147-153, 2005.

- 227 -

[108] Smart Sensors Interface for IEEE 1451. Available online http://www.jlm-

innovation.de/products/ieee1451.

[109] K. M. Zick and J. P. Hayes, “Online Sensing for Healthier FPGA Systems”, in

Proceedings of the 18th Annual ACM/SIDA International Symposium on Field

Programmable Gate Arrays, ACM, New York, NY, USA, pp. 239-248, 2010.

[110] G. Kornaros and D. Pnevmatikatos, “Real time Monitoring of Multicore SoCs

through Specialized Hardware Agent on NoC Network Interfaces”, in Proceedings of

the 26
th IEEE International Parallel and Distributed Processing Symposium, Workshops

and PhD Forum, pp. 249-255, 2002.

[111] L. Fiorin, G. Palermo, C. Silvano, “MPSoCs Runtime Monitoring through Networks-

on-chip”, in Proceedings of the Design Automation and Test in Europe Conference,

Leuven, Belgium, pp. 558-561, 2009.

[112] J. T. Aquirre, V. Baena-Lecuyer, J. Mora, J. Carrasco, A. Torralba, L. Franquelo,

“Microprocessors and FPGA Interfaces for Insisting Co-debugging in Field

Programmable Hybrid Systems”, Microprocessors and Microsystems Journal, Volume

29, 75-85, 2005.

[113] W.Y. Alexander, L. Pasi, R. Pekka, N. Ethiopia, I. Jouni, T. Hannu, “Hierarchical

Agent Architecture for Scalable NoC Design with Online Monitoring Sensors”, in

Proceedings of MICRO 41.

[114] C. Ciordas, T. Basten, A. Radulescu, K. Goossens, J. Meerbergen, “An Event-

Based Network-on-Chip, Monitoring Service”, in Proceedings of the 9th IEEE

International High-level Design Validation and Test Workshop, pp. 149-154, 2004.

[115] Y. Wang, X. Jiang, H. Shengxi, L. Weichen, Y. Huazhong, “A Case Study of On-chip

Sensor Network in Microprocessor System-on-Chip”, CASES 09, Grenoble, France,

ACM, pp. 11-16, 2009.

[116] S. Andrew, “PSoC-Based Low-cost, Intelligent Network: Physical and Data Link

Layer”, Cypress Semiconductor, Application Note AN2346, Revision A, pp. 1-16,

2006.

- 228 -

[117] V. Petrescu, M. Pelgrom, H. Veendrick, P. Pavithran, J. Wieling, “Monitors for a

Signal Integrity Measurement System”, in Proceedings of the 32nd European Solid-

State Circuits Conference, pp. 122-125, 2006.

[118] R. McGowen, C. Poirier, C. Bostak, J. Ignowski, Millican, M.; Parks, W.; S.

Naffziger, “Power and Temperature Control on a 90nm Itanium Family Processor”,

Solid-State Circuits, IEEE Journal, Volume 41, pp. 229-237, 2006.

[119] K. Sohn, N. Cho, H. Kim, K. Kim, H. S. Mo, Y. B. Suh, H. G. Byun, H. J. Yoo, “An

Autonomous SRAM with On-Chip Sensors in an 80nm Double Stacked Cell

Technology”, VLSI Circuits Symposium on Digest of Technical Papers, pp. 232-235,

2005.

[120] C. Chan, Y. Chang, H. Ho, H. chiueh, “A Thermal-aware Power Management Soft

IP for Platform-based SoC Design”, in proceedings of International Symposium on

Systems-on-chip, pp. 181-184, 2004.

[121] M. Eduardo, R. Manuel, P. Fernando, H. David, G. Enrique, “An FPGA Embedded

Web Server for Remote Monitoring and Control of Smart Sensors Networks”, Sensors

Journal, Volume 14, pp. 416-430, 2014.

[122] C. Gomez-Ouna, M. A. Sanchez, P. Ituero, M. Lopez-Vallejo, “A Monitoring

Infrastructure for FPGA Self-Awareness and Dynamic Adaptation”, in Proceedings of

the 9th IEEE International Conference on Electronics, Circuits and Systems (ICECS),

Sevilla, Spain, pp. 10-13, 2012.

[123] R. E. Neapolitan, "Probabilistic Methods for Bioinformatics: with an introduction to

Bayesian Network," Morgan Kaufman publishers, Elsevier, 2009.

[124] M. A. Al Faruque et al., “AdNoC: Runtime Adaptive Network-on-Chip

Architecture” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

Volume 20, Number 2, pp. 257 – 269, 2012.

[125] D. Zoni, S. Corbetta and W. Fonaciari “Thermal / Performance Trade-off in

Network-on-Chip Architectures”, IEEE Internation Symposium on SoC, 2012.

[126] J. R. Venkateswara and P. R. Sudhakara, "Design and Implementation of Efficient

On-Chip Crosstalk Avoidance CODECs using Fibonacci Numeral System", IEEE

- 229 -

Computer Society Fourth International Conference on Computational Intelligence,

Modelling and Simulation, CIMSim, pp. 352-356, 2012.

[127] P. Gratz et al., “On-chip interconnection networks of the TRIPS chip,” IEEE Micro

Journal, Volume 27, Number 5, pp. 41–50, 2007.

[128] D. Wentzlaffet al., “On-chip Interconnection Architecture of the Tile Processor,”

IEEE Micro Journal, Volume 27, Number 5, pp. 15–31, 2007.

[129] R. Marculescu et al., “Outstanding Research Problems in NoC Design: System,

Microarchitecture, and Circuit Perspectives,” IEEE Transactions on Computer Aided

Design of Integrated Circuits and Systems, Volume 28, Number 1, pp. 3–21, 2009.

[130] F. Angiolini et al., “Networks on chips: From research to products,” in Proceedings

of DAC 2010, pp. 300–305, 2010.

[131] K. Goossens et al., “The Aethereal network on chip after ten years: Goals,

Evolution, Lessons, and Future,” in Proceedings of DAC, pp. 306–311, 2010.

[132] J. Howard et al., “A 48-core IA-32 Message-passing Processor with DVFS in 45

nm CMOS,” in Proceedings of ISSCC, pp. 108–109, 2010.

[133] L. P. Carloni et al., “Networks-on-chip in Emerging Interconnect Paradigms:

Advantages and Challenges,” in Proceedings of NOCS 09, pp. 93–102, 2009.

[134] W. J. Dally et al., “Route packets, not wires: On-chip Interconnection networks,” in

Proceedings of Design Automation Conference, pp. 684- 689, 2001.

[135] U. Y. Ogras et al., “Key Research Problems in NoC Design: A holistic Perspective,”

in Proceedings of CODES+ISSS, pp. 69–74, 2005.

[136] W. Karl et al., “SCI monitoring hardware and software: Supporting Performance

Evaluation and Debugging,” in Proceedings of SCI, pp. 417–432, 1999.

[137] C. Nicopoulos et al., “ViChaR: A Dynamic Virtual Channel Regulator for Network-

on-chip Routers,” in Proceedings MICRO, pp. 333–34, 2006.

[138] V. Nollet et al., “Operating-system Controlled Network on chip,” in Proceedings of

DAC 2004, pp. 256–259, 2004.

- 230 -

[139] Xilinx, Inc., VirtexT and XTFPGAs Datasheet [Online].

Available:http://www.xilinx.com/support/documentation/user_guides/u

g470_7Series_Config.pdf 2013.

[140] V. Betz and J. Rose, "FPGA Routing Architecture: Segmentation and Buffering to

Optimize Speed and Density", ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, Monterey, CA, USA. 1999.

[141] V. Betz and J. Rose, "Directional Bias and Nonuniformity in FPGA Global Routing

Architecture", International Conference on Computer-Aided Design, San Jose, CA,

USA, 1996.

[142] D. Lewis et al. "The Stratix
TM Routing and Logic Architecture", ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, Montery, CA, USA,

2003.

[143] C. Schafer, M. Stojilovic and L. Saranovac, “Analysis of Impact of FPGA Routing

Architecture Parameters on Area and Delay” in an IEEE 19th Telecommunications

Forum, TELFOR 2011, Serbia Belgrade, November 22-24, pp. 924-927, 2011.

[144] ModelSim SE (6.5c) Mentor Graphics Corporation. Available at:

http:www.mentor.com.

[145] Bluespec, Inc., Bluespec System Verilog, Available:

http://www.bluespec.com/products/bsc.htm.

[146] Xilinx, Inc., Virtex-7T and XTFPGAs Datasheet [Online]. Available: http://

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/xst_v6s6.pdf

(2013).

[147] E. Ahmed and J. Rose, “The Effect of LUT and Cluster size on Deep-submicron

FPGA Performance and Density”, IEEE Transaction on Very Large Scale Integration

(VLSI) Systems, Volume 12, Issue 3, 288-298, 2004.

[148] C. E. Leiserson, "Fat-Tress: Universal Network for Hardware-Efficient

Supercomputing ", IEEE Transaction on Computers, C-34, Issue 10, pp. 892-901,

1985.

- 231 -

[149] D. Wang, N. Jerger, and J. Steffman, “DART: A programmable Architecture for NoC

Simulation of FPGAs”, In Fifth IEEE/ACM International Symposium on Networks on

Chip (NoCs), pp. 145-152, 2011.

[150] C. Intanagonwiwat, R. Govinda, D. Estrin, “Directed Diffusion: A Scalable and

Robust Communication Paradigm for Sensor Networks”. In Proceedings of the 6th

Annual International Conference on Mobile Computing and Networking, Boston, MA,

USA, 6–11 August, pp. 56–67, 2000.

[151] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, “A survey on sensor

networks”, in IEEE Communication Magazine, IEEE Communication Society, 7

November, Volume 40, Issue 8, pp. 102–114, 2002.

[152] Greedy Algorithm. Available online:

http://www.encyclopediaofmath.org/index.php?title=Greedy_algorithm&oldid=34629

(accessed on: 6 June, 2015).

[153] J. Lunze, L. Grune, “Control Theory of Digitally Networked Dynamic Systems”,

Springer International Publishing, Switzerland, 2014.

[154] K. J. Phillip, “Feedback Control of Computer Systems (Introducing Control Theory

to Enterprise Programmers)”, O’REILLY Media, Inc. Publisher, California USA, 2014.

[155] L. H. Joseph, D. Yixin, P. Sujay, M. T. Dawn, “Feedback Control of Computing

Systems”, A John Wiley and Sons Publication, 2004.

[156] R. Dafal, J. P. Diquet, “Self-adaptive Network Interface (Sani): Local Component

of a NoC Configuration Manager”, in Proceedings of International Conference on

Reconfigurable Computing and FPGAs, ReConFig 09, 296-301, 2009.

[157] Synopsys Inc., SaberRD Integrated Design Environment (IDE), Student Edition,

available at: http://www.synopsys.com/cgi-bin/saberrd/reg1.cgi, 2015.

[158] Synopsys Inc. “SaberRD User Guide”, Version V-2004.06-SP1, Document Order

Number: 00000-000 VA, Version W-2004.09, 2004.

[159] Xilinx Inc., Xilinx Vivado 2013.3 Integrated Design Environment (IDE), Available

at: http://www.xilinx.com/support/download.html, 2015.

- 232 -

[160] Xilinx Inc., SYSMON User Guide, UG58 (v1. 2), Available at:

http://www.xilinx.com/support/download.html, 2015.

[161] Xilinx Inc., XADC User Guide, UG480 Available at:

http://www.xilinx.com/support/download.html (2015).

[162] J. S. Mrinal, S. P. Radhey, “System Monitoring using Zynq-700 AP SoC Processing

System with the XADC AXI Interface”, Xilinx inc. Application Note: Zynq-7000 All

Programmable SoC, XAPP1182, V1.0, 2013.

[163] J. Pallav, A. Srinivasa, J. S. Mrinal, “Using the Zynq-7000 Processing System (PS)

to Xilinx Analog to Digital Converter (XADC) Dedicated Interface to Implement

System Monitoring and External Channel Measurements”, Xilinx Inc. Application Note:

Kintex-7 Family and Zynq-7000 AP SoC, XAPP1172 V1. 01 2014.

[164] S. Hauck and A. DeHon, “Reconfigurable Computing the Theory and Practice of

FPGA-Based Computation”, Morgan Kaufmann Publishers, Elsevier Inc. 2008.

[165] K. Hermann, B. Gunther, “The Time-Triggered Architecture”, Proceedings of the

IEEE Journal, Volume 90, Issue 1, pp. 112-126, 2003.

[166] M. Platzner, J. Teich, N. Wehn,”Dynamically Reconfigurable Systems Architectures,

Design Methods and Applications”, Springer Publishers, Dordrecth Heidelberg, 2010.

[167] F. D. Patric, “Measurement and Data Analysis for Engineering and Sciences”,

Second Edition, Taylor and Francis Publisher, Indiana, USA, pp. 58-134, 2010.

[168] L. Guang, “Hierarchical Agent-Based Adaptation for Self-Aware Embedded

Computing Systems”, PhD Thesis, Department of Information Technology, University

ofTurku,Finland.Availableat:www.doria.fi/bitstream/handle/10024/86210/thesis_Liang_

_Guang.pdf?sequence=1. 2012.

[169] K. Karimi et al. “White Paper: Integrating the Internet of Things: Necessary

Building Blocks for Broad Market Adoption ”, Atmel Corporation, Revatmel-0776-

corporation-IOT-Whipepaper-us-102014, San Jose, CA 95110 USA, pp. 1-18,

2014.

- 233 -

[170] J. A. Stankovic, “Research Directions for Internet of Things”, IEEE Journal of

Internet of Things, IEEE Communications Society, Volume 1, Issue 1, pp. 3-9, 18

March 2014.

[171] B. A. A. Nunes et al. “A Survey of Software-Defined Networking: Past, Present

and Future of Programmable Networks ”, IEEE Communication Surveys and Tutorials,

IEEE Communications Society, Volume 16, Issue 3, pp. 1617-1634, 13 February,

2014.

[172] J. Changqing, L. Yu, Q. Wenming, U. Awada, L. Keqiu, “Big Data Processing in

Cloud Computing Environments”, in 12
th International Symposium om Pervasive

Systems, Algorithms and Networks (ISPAN), IEEE, pp. 17-23, 13-15 December

2012.

[173] S. Abba and L. Jeong-A, “A Parametric-based Performance Evaluation and design

Trade-offs for Interconnect Architectures using FPGAs for Network-on-Chips”

Microprocessor and Microsystems, Embedded Hardware Design: EUROMICRO Journal,

Vol. 38, pp. 375-398, 2014.

[174] S. Abba and L. Jeong-A, “An Autonomous Self-Aware and Adaptive Fault-

Tolerant Routing Technique for Wireless Sensor Networks”, Sensors Journal, Vol. 15,

Issue 8, pp. 20316-20354, 2015.

[175] S. Abba, and L. Jeong-A, “FPGA-Based Design of an Intelligent On-chip Sensor

Network Monitoring and Control using Dynamically Reconfigurable Autonomous

Sensor Agents”. Int. Journal of Distributed Sensor Networks (Accepted 28, Dec. 2015.

In press). Available at: www.hindawi.com/journal.ijdn/aip/201609/.

- 234 -

Acknowledgement

The journey begins when I received an email message from my PhD supervisor

Prof. Jeong-A Lee from Korea. She informed me that I was selected as a

recipient of the Korean Government Scholarship Award (KGSP 2010). Being a

PhD student is a challenging and complex task to be achieved. It involves learning,

experience, hard working, humility, honesty, patience and perseverance. First of

all, I would like to thank the God Almighty for making my dream becomes true and

sparing my life to achieved a Doctoral Degree. Glory be to Him. I would like to

thank my supervisor for giving me the opportunity to work and serve under her

supervision. It was a great time and life long experience. Special thanks are owed

to the dissertation committee members. Professor Beom-Joon Cho, the

committee chair for his support and elderly advice. Prof. Pankoo Kim, Prof.

Sangman Moh, Prof. and Prof. Cheol Hong Kim of Chonnam National University,

Korea, for their insightful and constructive comments and advice on my research

work. Thank you all for your time, understanding and making this work in better

shape.

Special thanks are owed to the Korean Government through the National

Institute for International Education and Development (NIIED) for providing the

financial support for my PhD study. These include the monthly living allowance,

tuition fees, research allowance, health insurance, transportation, etc. Thank you

very much for the kindness and generosity. Also, I would like to express my

sincere gratitude to the Chosun University for giving me the opportunity to study

and providing the financial support for my research work.

I would like to thank the management of Abubakar Tafawa Balewa University

(Federal University of Technology) Bauchi, Nigeria, for granting the approval and

permission to study abroad to obtain a PhD degree in Computer Engineering from

- 235 -

Chosun University, Gwangju, South Korea.

Special thanks are owed to the Heidelberg Laureate Forum Foundation (HLFF)

Germany for the inspired selection and invitation as a Young Researcher to attend

the 2014 Heidelberg Laureate Forum in Germany. An international gathering of

the Laureates of computer science and mathematics and selected young

researchers from all over the world to meet in a conducive and intellectual

atmosphere for a period of one week to inspire the young researchers. Thank you

very much for all the supports, including; travel grant, hotel accommodation,

meals, transportation, insurance, etc. to mention but a few. I would like to thank

all the participating laureates, the distinguished scientist, the German

governments, and to all the supporters and contributors of the HLFF 2014.

Sincere thanks are owed to Professors Leslie Lamport and Manuel Blum the

Turing Award Laureates for their inspired advice during our discussion at the 2nd

Heidelberg Laureate Forum 2014 in Germany. Sincere thanks are owed to the

Professors Vicki L. Hanson, vice president of the association for computing

machinery (ACM) and John Richards of IBM research for their inspired advice

on-board cruise at the 2014 Heidelberg Laureate Forum. Thank you for

organizing this wonderful intellectual gathering.

Special thanks are owed to the Schloos Dagstuhl Liebnitz Centre for

Informatics Germany, for the selection and invitation as a Young Researcher to

attend the Dagstuhl GI Seminar “Control Theory meets Software Engineering” in

September 2014. Sincere thanks are owed to the Seminar organizers, Associate

Professors Antonio Filieri of Stuttgart university Germany and Martina Maggio of

Lund university Sweeden. I was inspired, motivated and learnt a lot from the

seminar. Thank you very much for the kindness and generosity.

Special thanks are owed to the organizers of the IEEE Communications Society

Summer School university of Trento, Italy for the selection and invitation to

attend the summer school. Sincere thanks are owed to Prof. Fabrizio Granelli the

- 236 -

chair and organizer of the summer school university of Trento. Thank you very

much for your kind assistance. I would like to extend my sincere thanks and

gratitude to the potential speakers during the summer school. Prof. Lajos Hanzo

(University of Southhampton, U.K.) for his lecture on “Cooperative

communications”, Prof. Giuseppe Bianchi (University of Rome Tor Vergata, Italy)

for his lecture on “From dumb to smarter switches in software defined networks:

an overview of data plane evolution”, Prof. Andrea Goldsmith (Stanford University,

U.S.A.) for her lecture on “The next wave of wireless communications” and Prof.

Nelson L.S. da Fonseca (State University of Campinas, SP, Brazil) for his lecture

on “Networking for big data”. Thank you all, for your time and the inspired

lectures.

Finally, I would like to express my sincere gratitudes and thanks to my parent

for their support and understanding throughout my study. My mother Maryam

Abubakar for nurturing and bringing me up. My late father Abba Abdullahi for his

support and encouragement. It was a very hard situation when I received the sad

message about his death while I was writing this dissertation. My father, may

your gentle soul rest in perfect peace and Jannatul Firdaussi (the highest

paradise) be the final abode Ameen. I would like to dedicate this work to my late

father. Sincere thanks to my uncle Alhaji Mustapha Abdullahi for his support

through my educational career. Thank you all.

- 237 -

List of Publications

1. Abba, S. and Jeong-A, Lee. “A Parametric-based Performance Evaluation and

design Trade-offs for Interconnect Architectures using FPGAs for Network-

on-Chips” Microprocessor and Microsystems, Embedded Hardware Design:

EUROMICRO (SCI / SCI-E) Journal, Vol. 38, pp. 375-398, 2014. Available:

doi http://dx.doi.org/10.1016/j.micpro.2014.04.011.

2. Abba, S. and Jeong-A, Lee. “An Autonomous Self-Aware and Adaptive

Fault-Tolerant Routing Technique for Wireless Sensor Networks”, Sensors

(SCI-E) Journal, Vol. 15, Issue 8, pp. 20316-20354, 2015. Available: doi:

10.3390/s150820316.

3. Abba, S. and Jeong-A, Lee, “FPGA-Based Design of an Intelligent On-chip

Sensor Network Monitoring and Control using Dynamically Reconfigurable

Autonomous Sensor Agents”. Int. Journal of Distributed Sensor Networks.

(SCI-E) Journal (Accepted 28, Dec. 2015. In press). Available at:

www.hindawi.com/journal.ijdn/aip/201609/.).

4. Abba, S. and Jeong-A, Lee “Self-aware and Adaptive Fault Tolerant Routing

Protocol for Networks-on-Chip Architectures using Particle Swarm

Optimization” Microprocessor and Microsystems, Embedded Hardware Design:

EUROMICRO (SCI / SCI-E) Journal (To be Re-submitted).

5. Abba, S. and Jeong-A, Lee. “Run-time Firmware-based Approach for a

Minimization of Dynamic Partial Reconfiguration Overhead for Self-Adaptive

Reconfigurable Systems, ” IEEE Transactions (SCI/SCI-E) Journal (To be

Re-submitted).

6. Abba, S. and Jeong-A, Lee., “GSASRA: Globally Self-Adaptive and Scalable

Routing Algorithm for Network-on-Chips Architecture using Particle Swarm

Optimization”, IEEE International Conference on Artificial Intelligence,

Modeling and Simulation (AIMS2013), IEEE, Computer Society, pp. 393-399,

3-5 Dec. 2013. Available: doi 10.1109/AIMS.2013.72.

7. Abba, S. and Jeong-A, Lee, “Examining the Performance Impact of NoC

Parameters for Scalable and Adaptive FPGA-Based Network-on-Chips” in

the 5th IEEE International Conference on Computational Intelligence Modeling

and Simulation”, IEEE Computer Society, pp. 384-372, 24-25 Dec. 2013.

Available: doi 10.1109/CIMSim.2013.65.

	I. INTRODUCTION
	A. OVERVIEW
	B. MOTIVATION
	C. DISSERTATION OBJECTIVES
	D. CONTRIBUTIONS
	E. DISSERTATION OUTLINE

	II. BACKGROUND AND RELATED WORKS
	A. THE TARGET NOC ARCHITECTURES
	B. NOC ROUTER MICRO-ARCHITECTURE
	C. FPGA-BASED NOC AND ROUTER PARAMETERS
	D. RELATED WORKS
	E. CHAPTER SUMMARY

	III. A PARAMETRIC-BASED PERFORMANCE EVALUATION AND DESIGN TRADE-OFFS FOR THE INTERCONNECT ARCHITECTURES USING FPGAS FOR NETWORK-ON-CHIPS
	A. FPGA-BASED NETWORK PERFORMANCE AND SELF-ADAPTIVE MODELS
	B. FPGA EXPERIMENTAL RESULTS
	C. NETWORKS-ON-CHIP SIMULATION RESULTS
	D. CHAPTER SUMMARY

	IV. AN AUTONOMOUS SELF-AWARE AND ADAPTIVE FAULT TOLERANT ROUNTING TECHNIQUE (ASAART)
	A. AUTONOMOUS SYSTEM
	B. PROPOSED METHODOLOGY TO AUTONOMOUS SELF-AWARE AND ADAPTATIVE FAULT TOLERANT ROUTING TECHNIQUE (ASAART)
	C. PERFORMANCE EVALUATIONS
	D. SENSOR NETWORK SIMULATION RESULTS
	E. CHAPTER SUMMARY

	V. FPGA-BASED DESIGN OF AN INTELLIGENT ON-CHIP SENSOR NETWORK MONITORING AND CONTROL USING DYNAMICALLY RECONFIGURABLE AUTONOMOUS SENSOR AGENTS
	A. THE IEEE 1451 STANDARD FOR SMART SENSOR INTERFACE
	B. PROPOSED DESIGN METHODOLOGY
	C. ON-CHIP SENSOR NETWORK SIMULATION RESULTS
	D. FPGA ON-CHIP SENSOR NETWORK EXPERIMENTAL PROCEDURE AND CASE STUDY
	E. FPGA ON-CHIP SENSOR NETWORK EXPERIMENTAL RESULTS AND DISCUSSION
	F. EFFECT OF DYNAMIC RECONFIGURATION REFRESH TIME ON AN FPGA-MEASURED ON-CHIP SENSOR READING ACCURACY
	G. CHAPTER SUMMARY

	VI. CONCLUSIONS AND FUTURE WORK
	BIBLIOGRAPHY
	ACKNOWLEDGEMENT
	LIST OF PUBLICATIONS

<startpage>6
I. INTRODUCTION 23
 A. OVERVIEW 23
 B. MOTIVATION 28
 C. DISSERTATION OBJECTIVES 31
 D. CONTRIBUTIONS 32
 E. DISSERTATION OUTLINE 35
II. BACKGROUND AND RELATED WORKS 39
 A. THE TARGET NOC ARCHITECTURES 39
 B. NOC ROUTER MICRO-ARCHITECTURE 43
 C. FPGA-BASED NOC AND ROUTER PARAMETERS 47
 D. RELATED WORKS 51
 E. CHAPTER SUMMARY 65
III. A PARAMETRIC-BASED PERFORMANCE EVALUATION AND DESIGN TRADE-OFFS FOR THE INTERCONNECT ARCHITECTURES USING FPGAS FOR NETWORK-ON-CHIPS 66
 A. FPGA-BASED NETWORK PERFORMANCE AND SELF-ADAPTIVE MODELS 66
 B. FPGA EXPERIMENTAL RESULTS 71
 C. NETWORKS-ON-CHIP SIMULATION RESULTS 99
 D. CHAPTER SUMMARY 118
IV. AN AUTONOMOUS SELF-AWARE AND ADAPTIVE FAULT TOLERANT ROUNTING TECHNIQUE (ASAART) 119
 A. AUTONOMOUS SYSTEM 119
 B. PROPOSED METHODOLOGY TO AUTONOMOUS SELF-AWARE AND ADAPTATIVE FAULT TOLERANT ROUTING TECHNIQUE (ASAART) 126
 C. PERFORMANCE EVALUATIONS 134
 D. SENSOR NETWORK SIMULATION RESULTS 138
 E. CHAPTER SUMMARY 160
V. FPGA-BASED DESIGN OF AN INTELLIGENT ON-CHIP SENSOR NETWORK MONITORING AND CONTROL USING DYNAMICALLY RECONFIGURABLE AUTONOMOUS SENSOR AGENTS 162
 A. THE IEEE 1451 STANDARD FOR SMART SENSOR INTERFACE 162
 B. PROPOSED DESIGN METHODOLOGY 166
 C. ON-CHIP SENSOR NETWORK SIMULATION RESULTS 179
 D. FPGA ON-CHIP SENSOR NETWORK EXPERIMENTAL PROCEDURE AND CASE STUDY 184
 E. FPGA ON-CHIP SENSOR NETWORK EXPERIMENTAL RESULTS AND DISCUSSION 197
 F. EFFECT OF DYNAMIC RECONFIGURATION REFRESH TIME ON AN FPGA-MEASURED ON-CHIP SENSOR READING ACCURACY 198
 G. CHAPTER SUMMARY 209
VI. CONCLUSIONS AND FUTURE WORK 210
BIBLIOGRAPHY 215
ACKNOWLEDGEMENT 234
LIST OF PUBLICATIONS 237
</body>

