
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


February 2016

Phd Dissertation

A Comparative Analysis of Image 
Denoising Techniques for Efficient 

Interpolation in Noisy Color 
Channel 

Graduate School of Chosun University

Department of Information and Communications 

Engineering

Ramesh Kumar Lama

[UCI]I804:24011-200000265163



A Comparative Analysis of Image 
Denoising Techniques for Efficient 

Interpolation in Noisy Color 
Channel 

February 25 2016

Graduate School of Chosun University

Department of Information and Communications 

Engineering

Ramesh Kumar Lama



A Comparative Analysis of Image 
Denoising Techniques for Efficient 

Interpolation in Noisy Color 
Channel 

Advisor: Prof. Goo-Rak Kwon

This thesis is submitted to Chosun University in partial 
fulfillment of the requirements for a PhD Dissertation

October 2015

Graduate School of Chosun University

Department of Information and Communications 

Engineering

Ramesh Kumar Lama



 

 

 

 



i
i

“”Thesis ˙final”” — 2016/1/19 — 15:37 — page i — #6 i
i

i
i

i
i

Contents

1 INTRODUCTION 1
1.1 Contributions of Dissertation . . . . . . . . . . . . . . . . . . . 2

1.2 Organization of Dissertation . . . . . . . . . . . . . . . . . . . 3

2 IMAGE ACQUISITION 5
2.1 Introduction to CFA Images . . . . . . . . . . . . . . . . . . . 5

2.2 Raw Images Noise Model . . . . . . . . . . . . . . . . . . . . . 7

2.3 CFA Sensor Noise . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 SYSTEM TO REDUCE CFA NOISE 12
3.1 Noise on CFA Sensor . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Literature review on CFA image denoising . . . . . . . . . . . . 13

3.3 Principal Component Models . . . . . . . . . . . . . . . . . . . 16

3.3.1 Singular Value Decomposition (SVD) . . . . . . . . . . 18

3.3.2 Mathematical definition of Singular Value Decomposition 18

3.3.3 Relationship between Principal Component Analysis and

Singular Value Decomposition . . . . . . . . . . . . . . 19

3.4 System to Reduce CFA Noise . . . . . . . . . . . . . . . . . . . 19

3.4.1 Patch based Denoising in Principal Component Analysis

Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 20

i

Acronyms   ix

List of Figures  iv

Abstract  x

Abstract Korean                                                                                                xii

List of Tables viii



i
i

“”Thesis ˙final”” — 2016/1/19 — 15:37 — page ii — #7 i
i

i
i

i
i

4 PERFORMANCE EVALUATION 26
4.1 CFA Image Denoising . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Color Interpolation and Color Filter Array Image Denoising 28

4.2 Subsection Summaries . . . . . . . . . . . . . . . . . . . . . . 34

5 IMAGE INTERPOLATION 35
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Literature review on image interpolation techniques . . . . . . . 36

5.3 Isotropic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 Nearest Neighbor . . . . . . . . . . . . . . . . . . . . . 36

5.3.2 Bilinear . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.3 Bi-cubic . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Edge-Directed Interpolation(EDI) . . . . . . . . . . . . . . . . 39

5.4.1 Modified Edge Directed Interpolation (MEDI) . . . . . 42

5.5 Transform Based Interpolation . . . . . . . . . . . . . . . . . . 42

6 WAVELET TRANSFORM 43
6.1 Wavelet Definition . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Wavelet Characteristics . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Wavelet Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.4 Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . . . 45

6.4.1 Discrete Wavelet Transform (DWT) . . . . . . . . . . . 46

6.5 2D Wavelet Transform . . . . . . . . . . . . . . . . . . . . . . 48

6.6 Wavelet Transform based Interpolation . . . . . . . . . . . . . . 50

6.6.1 General Approach . . . . . . . . . . . . . . . . . . . . 50

6.7 Lifting based Wavelet Transform . . . . . . . . . . . . . . . . . 52

6.7.1 Adaptive Directional Lifting . . . . . . . . . . . . . . . 55

6.7.2 ADL based Interpolation . . . . . . . . . . . . . . . . . 56

6.7.3 Discrete Cosine Transform . . . . . . . . . . . . . . . . 57

6.7.4 One Dimensional DCT . . . . . . . . . . . . . . . . . . 57

6.8 Discrete Cosine Transform based Image Resizing . . . . . . . . 58

6.9 Interpolation Using the Combination of DWT and DCT . . . . . 60

ii



i
i

“”Thesis ˙final”” — 2016/1/19 — 15:37 — page iii — #8 i
i

i
i

i
i

6.10 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 64

6.11 Subsection Summaries . . . . . . . . . . . . . . . . . . . . . . 72

7 COMPLEX WAVELET TRANSFORM BASED INTERPOLATION 73
7.1 Complex Wavelets . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 The Dual-Tree Complex Wavelet Transform . . . . . . . . . . . 73

7.3 Statistical Modelling of Complex Wavelet Transform . . . . . . 77

7.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 81

7.5 Subsection Summaries . . . . . . . . . . . . . . . . . . . . . . 91

8 CONCLUSIONS 92

iii



i
i

“”Thesis ˙final”” — 2016/1/25 — 20:49 — page iv — #9 i
i

i
i

i
i

List of Figures

1.1 High resolution video wall display system. . . . . . . . . . . . . 2

2.1 Filter mask for Bayer pattern data. . . . . . . . . . . . . . . . . 6

2.2 Single-sensor imaging concept: (a) a CFA image; (b) demosaicked

full-color version of (b). . . . . . . . . . . . . . . . . . . . . . 6

2.3 Poison distribution for different value of λ. . . . . . . . . . . . . 8

2.4 Additive noise distribution. . . . . . . . . . . . . . . . . . . . . 9

3.1 Dimensionality reduction using PCA. . . . . . . . . . . . . . . 17

3.2 Image patch clustering based on textural pattern. . . . . . . . . 21

4.1 Test images. (a) Auto-bike (b) House (c) Fence . . . . . . . . . 26

4.2 Denoising of CFA images”Fence”(a) Original image (b) noisy

image (σr=10, σg=10, σb=10,) (c) denoised image using method

NLM [22] (d) DTWT [15] (e) NLM -PCA [23] (f) Spatially

Adataptive PCA [24] (g) the proposed PCA-based CFA denoising

method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Denoised Color image of CFA images after demosaicing ”Fence

”(a) Original image (b) noisy image ( σr=10, σg=10, σb=10,)

(c) denoised image using method NLM [22] (d) DTWT [15] (e)

NLM -PCA [23] (f) Spatially Adataptive PCA [24] (g) the pro-

posed PCA-based CFA denoising method. . . . . . . . . . . . . 30

4.4 Denoised Color Image of CFA images after demosaicing ”House”(a)

Original image (b) noisy image ( σr=10, σg=10, σb=10,) (c) de-

noised image using method NLM [22] (d) DTWT [15] (e) NLM

-PCA [23] (f) Spatially Adataptive PCA [24] (g) the proposed

PCA-based CFA denoising method. . . . . . . . . . . . . . . . 31

iv



i
i

“”Thesis ˙final”” — 2016/1/25 — 20:49 — page v — #10 i
i

i
i

i
i

4.5 Denoised color image of CFA images after demosaicing ”Auto

bike”(a) Original image (b) noisy image ( σr=10, σg=10, σb=10,)

(c) denoised image using method NLM [22] (d) DTWT [15] (e)

NLM -PCA [23] (f) Spatially Adataptive PCA [24] (g) the pro-

posed PCA-based CFA denoising method. . . . . . . . . . . . . 32

4.6 Graphical comparison in terms of PSNR reconstructed and noisy

Fence image obtained for different values of noise variance(a)

Red color (b) Green color (c) Blue color (d) Without demosaick-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 Nearest neighbor interpolation kernel.(a) Time domain (b) Fre-

quency domain . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Bilinear interpolation kernel.(a) Time domain (b) frequency domain 38

5.3 First step of NEDI . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Second step of NEDI . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Wavelet basis . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Wavelet filter bank structure in 1D. . . . . . . . . . . . . . . . . 47

6.3 Wavelet filter bank structure in 2D. . . . . . . . . . . . . . . . . 49

6.4 Wavelet decomposition of Lena image. . . . . . . . . . . . . . . 50

6.5 Wavelet based interpolation . . . . . . . . . . . . . . . . . . . . 51

6.6 Polyphase decomposition types.(a) Type-I (b) Type-II . . . . . . 52

6.7 Lifting based wavelet transform . . . . . . . . . . . . . . . . . 53

6.8 Adaptive directional lifting . . . . . . . . . . . . . . . . . . . . 56

6.9 DCT based interpolation . . . . . . . . . . . . . . . . . . . . . 59

6.10 Implementation of DWT and DCT . . . . . . . . . . . . . . . . 62

6.11 Block diagram of hybrid DWT and DCT based interpolation . . 63

6.12 Experimental results: (a) Original image Lena, (b) Interpolated

image using the NEDI method, (c) Bilinear method, (d) ADL-

based method, and (e) proposed method. . . . . . . . . . . . . 65

v



i
i

“”Thesis ˙final”” — 2016/1/25 — 20:49 — page vi — #11 i
i

i
i

i
i

6.13 Experimental results: (a) Original image, (b) Interpolated im-

age using the NEDI method, (c) Bilinear method, (d) ADL-based

method, and (e) proposed method. . . . . . . . . . . . . . . . . 66

6.14 Experimental results: (a) Original image (b) Interpolated image

using the NEDI method, (c) Bilinear method, (d) ADL-based

method, and (e) proposed method. . . . . . . . . . . . . . . . . 67

6.15 Experimental results: (a) Original image, (b) Interpolated im-

age using the NEDI method, (c) Bilinear method, (d) ADL-based

method, and (e) proposed method. . . . . . . . . . . . . . . . . 68

6.16 Performance evaluation in Red color channel on: (a) Noiseless

image, (b) Denoised image using CDM. . . . . . . . . . . . . . 69

6.17 Performance evaluation in Green color channel on: (a) Noiseless

image, (b) Denoised image using CDM. . . . . . . . . . . . . . 70

6.18 Performance evaluation in Blue color channel on: (a) Noiseless

image (b) Denoised image using CDM. . . . . . . . . . . . . . 71

7.1 Dual-tree complex wavelet transform . . . . . . . . . . . . . . . 75

7.2 Dual-tree complex wavelet transform basis function . . . . . . . 76

7.3 An edge contour (a) in the plane reconstructed using wavelet co-

efficients at one scale j from (b) the real DWT and (c) the CWT. 76

7.4 Two state Gaussian model. . . . . . . . . . . . . . . . . . . . . 78

7.5 Wavelet transform . . . . . . . . . . . . . . . . . . . . . . . . 79

7.6 Two state Gaussian model. . . . . . . . . . . . . . . . . . . . . 80

7.7 Log-likelihood vs number of iterations (a) Real HH coefficients

(b) Imaginary HH coefficients . . . . . . . . . . . . . . . . . . 83

7.8 Experimental results: (a) Original image Lena, (b) Interpolated

image using the NEDI method, (c) Bilinear method, (d) ADL-

based method, and (e) proposed method. . . . . . . . . . . . . 84

7.9 Experimental results: (a) Original image, (b) Interpolated im-

age using the NEDI method, (c) Bilinear method, (d) ADL-based

method, and (e) proposed method. . . . . . . . . . . . . . . . . 85

vi



i
i

“”Thesis ˙final”” — 2016/1/25 — 20:49 — page vii — #12 i
i

i
i

i
i

7.10 Experimental results: (a) Original image (b) Interpolated image

using the NEDI method, (c) Bilinear method, (d) ADL-based

method, and (e) proposed method. . . . . . . . . . . . . . . . . 86

7.11 Experimental results: (a) Original image, (b) Interpolated im-

age using the NEDI method, (c) Bilinear method, (d) ADL-based

method, and (e) proposed method. . . . . . . . . . . . . . . . . 87

7.12 Performance evaluation in Red color channel on: (a) Noiseless

image, (b) Denoised image using CDM. . . . . . . . . . . . . . 88

7.13 Performance evaluation in Green color channel on: (a) Noiseless

image, (b) Denoised image using CDM. . . . . . . . . . . . . . 89

7.14 Performance evaluation in Blue color channel on: (a) Noiseless

image, (b) Denoised image using CDM. . . . . . . . . . . . . . 90

vii



i
i

“”Thesis ˙final”” — 2016/1/25 — 20:49 — page viii — #13 i
i

i
i

i
i

List of Tables

4.1 Comparative results. . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Comparative results for Fence. . . . . . . . . . . . . . . . . . . 28

4.3 Comparative Results for House. . . . . . . . . . . . . . . . . . 28

4.4 Comparative Results for Autobike. . . . . . . . . . . . . . . . . 30

6.1 Comparative Results . . . . . . . . . . . . . . . . . . . . . . . 64

7.1 Comparative Results. . . . . . . . . . . . . . . . . . . . . . . . 82

’

viii



i
i

“”Thesis ˙final”” — 2016/1/19 — 15:37 — page xii — #17 i
i

i
i

i
i

CFA Color Filter Array
CCD Charged Couple Device
RGB Red Green Blue
CMOS Complementary Metal Oxide Semiconductor
MOSFET Metal Oxide Semiconductor Field Effect Transistor
PCA Principal Component Analysis
CDM Color Demosaicking
SVD Singular Value Decomposition
HD High Definition
HMM Hidden Markov Model
DTCWT Dual Tree Complex Wavelet Transform
LL Low Low
LH Low High
HL High Low
HH High High
MDC Multiple Description Coding
HDTV High Definition Television
POCS Projection onto Convex Sets
HMT Hidden Markov Tree
DWT Discrete Wavelet Transform
CWT Complex Wavelet Transform
GMM Gaussian Mixture Model
EM Expectation Maximization
DCT Discrete Cosine Transform
ADWT Adaptive Directional Wavelet Transform
ADL Adaptive Directional Lifting
NEDI New Edge Directed Interpolation
FFT Fast Fourier Transform
MSE Mean Square Error
PSNR Peak Signal to Noise Ratio

Acronyms

ix



- x -

A Comparative Analysis of Image Denoising Techniques for 
Efficient Interpolation in Noisy Color Channel

Ramesh Kumar Lama

Advisor: Prof. Goo-Rak Kwon, Ph.D

Department of Information Communication Engineering, 
Graduate School of Chosun University

Most of the existing image interpolation schemes assume that the low 
resolution image is noise free. This assumption is invalid in practice 
because image is corrupted by noise during the image acquisition process. 
This thesis presents a implementation of denoising and interpolation 
sequentially. For each noisy sample, we propose an efficient noise 
reduction technique designed to work with Color Filtering Array (CFA) 
data acquired by CCD/CMOS image sensors. CFA　 image neighborhood 
vectors are first projected on the principal component analysis (PCA) 
bases. The PCA bases are obtained by eigenvalue decomposition. The 
denoising is performed by the shrinkage of coefficients of patches which 
we obtain from principal components. The effectiveness of the shrinkage 
depends on the selection of threshold and transform to sparsely represent 
the true image data, thus separating it from the noise. The proposed 
method estimates the optimized threshold value based on the local 
statistical characteristics of the patch. Final color image is generated by 
color demosaicking (CDM). Once the CDM is accomplished, the low 
resolution image is interpolated to fit on the high resolution display 

Abstract
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devices. In this dissertation we implement various wavelet based 
interpolation schemes which are adaptive directional wavelet transform, 
hybrid implementation of discrete wavelet transform and discrete cosine 
transform (DCT) and dual-tree complex wavelet transform (DT-CWT) and 
hidden Markov model (HMM). The adaptive directional wavelet transform 
is the lifting implementation of wavelet transform. This method is able to 
transform an image along multiple directions as well as conventional 
horizontal and vertical orientations. In the proposed method the 
high-frequency sub band images are obtained by adaptive wavelet 
transforms (ADWT). We interpolate high-frequency sub band images and 
the input low resolution image, and finally the high resolution image is 
generated by combining the interpolated subimages in the inverse ADWT 
process. In hybrid implementation of wavelet transform and DCT, the high 
frequency wavelet coefficients are interpolated using the zero pad method 
in DCT domain. The upscaled image is generated using inverse DWT of 
interpolated coefficients and original image. Finally in DT-CWT based 
method, we use DT-CWT is to decompose the low-resolution image into 
different subbands. The proposed method estimates the higher band 
coefficients by learning the correlation between the coefficients across the 
scale. In this paper, the relationship between the wavelet coefficients across 
the scale is described by HMM, and each wavelet coefficient is modelled 
by a Gaussian mixture having multiple means and variances. Experimental 
results demonstrate that the proposed methods are competitive with 
state-of-the-art methods despite its simplicity. The proposed method is also 
suitable for implementation in low power mobile devices with imaging 
capabilities such as camera phones.
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초  록

노이즈 색상 채널에서 효율적인 보간법을 위한 영상 
디노이징 기술의 비교 분석

라마 라메쉬 쿠마
지도교수: 권구락 교수, Ph.D
정보통신공학과, 대학원, 조선 대학교

기존의 대부분의 영상 보간 방식은 노이즈가 없는 것으로 가정한다. 
노이즈가 영상 복호화 과정에서 사라지기 때문에 이러한 가정은 실제
로 유효하다. 이 논문은 영상의 순차적인 잡음 제거와 보간 구현 방
법에 대해 설명한다. 또한, 잡음 샘플(noisy sample)을 위해, CCD / 
CMOS 영상 센서에서 얻어진 컬러 필터링 어레이(CFA)에 적용할 수 
있는 효율적인 잡음 감소 기법을 제안한다. 화상 이웃 벡터는 PCA 
베이스 상에 투사된다. PCA 베이스는 고유 분해에 의해 얻을 수 있
다. 잡음 제거는 영상의 주 성분으로부터 여러번 패치된 된 계수의 
수축에 의해 수행된다. 수축 효과는 임계치의 선택과 노이즈로부터 
원본 영상을 분리하려는 변환 과정에 의존한다.

 제안하는 방법은 패치의 통계적인 특성들에 기초하여 최적화 된 임
계 값을 추정한다. 한번 CDM이 수행되고 나면, 저해상도 영상은 듀
얼-트리 콤플렉스 웨이블릿 변환과 (DT-CWT) 히든 마르코프 모델 
(HMM)을 기초하여 고해상도의 표시 장치에 적합하도록 보간된다. 제
안한 방법의 DT-CWT는 상이한 서브밴드의 저해상도 화상을 분해하
는데에도 사용된다. 웨이블릿 도메인 보간에서 주어진 영상은 고해상
도 영상의 웨이블릿 계수의 저주파 LL 서브밴드로 간주된다. 제안한 
방법을 통해 전체 스케일 계수간 상관 관계를 학습하여 보다 큰 크
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기를 가진 밴드 계수들을 추정한다. 이 과정에서 스케일 사이간 웨이
블릿 계수의 관계는 HMM에 의해 기술되고, 각각의 웨이블릿 계수들
은 여러 수단 및 분산을 갖는 가우시안 혼합에 의해 모델링된다. 

실험 결과를 통해 제안한 알고리즘은 기존의 다른 방법들에 비해 선
명한 이미지를 얻을 수 있음을 증명한다. 그리고 기존 방법보다 단순
하면서 보다 향상된 성능을 보여준다. 
또한 제안한 방법은 카메라 폰 등의 촬상 기능을 가진 저전력 모바
일 장치에서 구현하기에 적합하다.
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Chapter 1
Introduction
Image interpolation is a process that is often used for image enlargement from its

down-sampled version [34] or simply resizing the image from one pixel grid grid

to another. Interpolation has been widely used in many image processing appli-

cations such as facial reconstruction, multiple description coding (MDC), super

resolution and digital high-definition television (HDTV) [35]- [37]. The rapid

advancements in hardware and display devices have made it possible to process

high-resolution digital color images as shown in Figure 1.1. In order to utilize the

display power of these state of-the-art viewing devices efficiently, input signals

from a lower-resolution source must be upscaled to higher resolutions through

interpolation. Most of the existing image interpolation schemes assume that the

image is noiseless. However, this assumption is invalid in practice because image

is corrupted by the noise during the image acquisition process specifically when

the color channels are noisy.

Image denoising and interpolation are important tool in image processing.

Since most of digital cameras are composed of a 2D grid of widely dissimilar

imaging sensors, these methods are inherent to digital image acquisition. Thus,

the noise must be removed prior to interpolation of image. The multichannel

nature of color images demands efficient signal processing algorithms that take

into account the existing inter-channel correlations when performing image size

expansion and noise reduction. In [6], an algorithm of joint denoising and inter-

polation was proposed by using the directional interpolation technique. In [7],

Zhang et al proposed joint denoising and demosaicking scheme using a direc-

tional filtering and wavelet transform. The whole algorithm is comprises two

steps. The first step estimates the filter coefficients to denoise the noisy low res-

olution pixels. in the second stage,Similarly the weights calculated in first stage

for denoising are employed directly for image interpolation and thus increasing

the resolution of image simultaneously. The joint denoising and interpolation
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Figure 1.1: High resolution video wall display system.

method, can generate less artifacts. However the well designed denoise first and

interpolation can also generate better results. In [25] Zhang et al proposed prin-

cipal component analysis (PCA) based spatially-adaptive denoising algorithm.

This method processes directly the CFA data using a variable sized window to

analyze the local image statistics. The spatial and spectral correlations existed in

the CFA image are exploited. Thus this method is capable of preserving the color

edges and details while suppressing the noise.

1.1 Contributions of Dissertation

This thesis presents a new and efficient scheme for interpolating the noisy color

image and noiseless color image. The overall system comprises two stages. In

the first stage, denoising is performed while in the second stage the denoised and

complete noiseless images are interpolated. In most of the real time scenario,

image is corrupted by noise during the acquisition process. Thus the we pro-

pose effective denoising method to reduce the sensor noise in color filter array

(CFA) in this dissertation. The mathematical tool of principle component anal-

ysis (PCA) [26], [54], is employed to analyze the local structure of each CFA

blocks, which contains color components from different channels. We compute

the co-variance matrix of each block. The noisy CFA image data is transformed
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into another space by using PCA. In new space the signal energy is better clus-

tered thus making easier to remove the noise more effectively. Since there can

be a varying structures in each local window, to improve the estimation accuracy

of PCA transformation matrix we divide the large sized patches into number of

smaller blocks based on structural similarity. In the second stage, we interpolate

the denoised image based on different wavelet transform techniques. We em-

ploy lifting based adaptive directional wavelet transform and the dual-tree com-

plex wavelet transform (DT-CWT) to decompose the low-resolution image into

different subbands. In wavelet domain interpolation, the given low resolution

(LR)image and high frequency subband images are interpolated. Low resolution

image is used instead of low frequency subband image. For adaptive directional

wavelet transform (ADWT), we follow the general approach of interpolating the

low resolution high frequency subbands images to generate high resolution sub-

band images. In hybrid approach, the high resolution high frequency subband

images are estimated using discrete cosine transform(DCT) based zero padding.

Finally, for DT-CWT we generate the high resolution wavelet coefficient by learn-

ing the correlation between the coefficients across the scale. In this dissertation,

the relationship between the wavelet coefficients across the scale is described

by HMM, and each wavelet coefficient is modeled by a Gaussian mixture hav-

ing multiple means and variances. Moreover, the each algorithms can be imple-

mented together or they can be implemented separately as per requirement.

1.2 Organization of Dissertation

The remainder of this thesis is organized in modular chapters. Chapter 2 presents

overview of the image acquisition using color filter array and describes the degra-

dation of image by noise. System to reduce the noise is presented in Chapter 3.

Chapter 4 demonstrates the reduction of noise reduction present in the CFA image

by the proposed algorithm through simulation result. Interpolation of image in

noisy channel is introduced in chapter 5 followed by review of wavelet transform

on chapter 6 and dual tree complex wavelet transform based image interpolation

3
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in chapter 7. Thesis is concluded in the last chapter with wrapping text for the

summary of this research in chapter 8.
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Chapter 2
Image acquisition
The modern digital camera captures the image by using a variety of sensor archi-

tectures based on charge-coupled device (CCD) and Complementary metal oxide

semiconductor (CMOS) integrated circuit (IC) technologies [1]. This IC technol-

ogy comes with either single sensor or separate color sensors for each color [2].

Since the single sensor architecture requires less number of image sensor cells

this architecture is cheaper than multiple sensor architecture. The single sensor

architecture places a color filter array (CFA), on top of the conventional single

CCD/CMOS sensor to capture all three primary Red, Green and Blue (RGB) col-

ors simultaneously [3]- [5]. Each sensor cell consists of spectrally selective filter,

thus storing a single color measurement. Therefore, the CFA image constitutes a

mosaic like grayscale image with only one color element available in each pixel

location. In such scenario, a digital processing solution called the demosaicing

is use to estimate the two missing colors from the adjacent pixels [7]- [9]. The

image formation process through demosaicing may contain noisy artifacts in low

cost devices such as mobiles phones and PDAs mainly due to low light condi-

tions.

2.1 Introduction to CFA Images

To produce a color image, each pixel location requires at least three color sam-

ples. The conventional approach is to project the image onto three separate sen-

sors using beam splitters along the optical path [4]. With this approach, three

full-channel color images are obtained using a color filter in front of each sensor.

However, the sensors have to be aligned precisely and moreover; this is a costly

approach as it requires three CCD sensors [5]. The cost effective solution is to

put a CFA in front of the sensor to capture one color component of a pixel and

then interpolate the missing two color components [6]. A color reconstruction
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Figure 2.1: Filter mask for Bayer pattern data.

algorithm interpolates the missing information at each location and reconstructs

the full RGB image [9]. Since the human eye is more sensitive to gren color, the

green color component is twice the number of red and blue pixels. Thus the green

color has higher weight while computing the luminance. We can implement post

processing techniques [2] or increase the resolution [3]), or take multiple shot

acquisitions to optimize the final perceived quality of images [4], [5]. All these

operations are performed taking into account that the raw image is acquired in

Bayer pattern [6].

Figure 2.2: Single-sensor imaging concept: (a) a CFA image; (b) demosaicked

full-color version of (b).

6



i
i

“”Thesis ˙final”” — 2016/1/25 — 21:35 — page 7 — #24 i
i

i
i

i
i

2.2 Raw Images Noise Model

Noise is a stochastic phenomenon that can neither be compensated nor elimi-

nated. Numerous sources cause the generation of noise in CCD and CMOS sen-

sors. Primarily, they can be classified into four types. (1) The photon noise also

known as Poisson noise caused by a random nature of photons incident on photo-

site [62]; (2) the Photon Response non uniformity occurs due to small sensitivity

differences between photosites; (3) the dark current noise which is occurred due

to thermally generation of minority carriers in the sensor wells; and (4) the read-

out noise; resulting from thermal noise caused by MOSFET amplifiers. However

in general, noise in raw images has basically two main sources:

1. Np: caused by the discrete nature of light itself (Poisson distributed).

2. NG: caused by the electric and thermal noise of image (Gaussian dis-

tributed)

The Np term is related to the number of photons impinging on the image

which is not constant over time but follows a Poisson distribution. Poisson noise,

also called the photon noise is a signal-dependent noise. This type of noise is

caused by the uncertainty associated with the measurement of light. In real imag-

ing systems, the number of photons incident on the image sensor defines the light

energy time impinging on the image sensor [62]. The fundamental statistical

nature of photon production is random in nature. This random nature of indi-

vidual photon leads to photon noise [63]. Thus the individual photon detection

resembles the independent events that follow a temporal distribution. As a result,

photon counting is a classic Poisson process, the probability distribution of Np

photons in an observation window of length t second is expressed as

p(Np = k) =
(λt)k e−λt

k!
(2.1)

where λ is the rate or the intensity parameter measured in photons per second. It is

critical to understand that even if there were no other noise sources in the imaging
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Figure 2.3: Poison distribution for different value of λ.

chain, the statistical fluctuations associated with photon counting over a finite

time interval t would still lead to a finite signal-to-noise ratio(SNR). Because the

incident photon count follows a Poisson distribution, it has the property that its

variance is equal to its expectation, E[N ] = V ar[N ] = λt. This shows that

photon noise is signal dependent, and that its standard deviation grows with the

square root of the signal. In practice, photon noise is often modelled using a

Gaussian distribution whose variance depends on the expected photon count. We

usually model the other noise source as thermal noise, read-out noise, amplifier

noise, and quantization noise as overlapped gausssians. A signal dependent noise

is generated by the overlap of all type of noises. The standard deviation of such

noise can be estimated

σi =
√
a.i+ b (2.2)

where: a, bεR+ is signal intensity. To this end, we observe that the amount of

light incident on image sensor characterizes the noise on the scene being captured.

i.e. in order to obtain an acceptable image we must amplify the signal in low

illumination condition. At sensor level, the signal amplification is obtained as

a result of analog gains that boost the detected intensities. However, the noise

level also boosts together with signal. One cannot amplify image signal without

boosting noise levels. Which results to the amplification of signal and noise at

higher analog gain applied at sensor level. In readout process a voltage value is

read for each pixel. This voltage is read indicates the potential difference from a

8
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Figure 2.4: Additive noise distribution.

reference level. The absence of light and read noise typically follow a Gaussian

distribution across all the pixels in the sensor. The readout noise typically follows

a gaussian distribution across all the pixels in the sensor. Thus this readout noise

can be expressed as an average value. Figure 2.4 shows the characteristics of a

single data digitizer with a single Gaussian noise distribution. In CFA data the

presence of noise not only deteriorates the visual quality of the captured image,

but also the demosaicking artifacts are generated, regardless of the demosaicking

technique.

9
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2.3 CFA Sensor Noise

The Bayer pattern is widely used for analysis of noise in CFA images [1]. Thus

we consider this pattern for noise reduction and the algorithm can be easily ex-

tended to other CFAs. The Bayer pattern is composed of interlaced red, green and

blue samples, with the green channel having double sampling frequency com-

pared to the red and blue channels. In order to produce full- color image from the

CFA sensor readings the interpolation of two missing color components at each

pixel location in the CFA image is employed known as known as color demo-

saicking (CDM). Most CDM algorithms assumes that the CFA data is noise free.

However, this assumption is invalid in real time practice. Digital color imaging

devices, ranging from the low cost and/or resource constrained ones (e.g.,wireless

camera phones) to the high-end ones (e.g.,digital cinema cameras) produce im-

ages with modest to severe noise especially in low light condition. The main

source of noise on the color channel is the image sensor itself. The digital camera

sensor comprises a incredibly small photocells, especially with high-resolution

compact camera sensors. Most compact camera sensors are of the 1/2.3 inch

type, but commonly have over 10 million individual photocells crammed into an

area of less than 30 square millimeters.Since the light sensing cells are so tiny,

they may not be able to collect sufficient number of photons in low light condi-

tions. Thus the random statistical fluctuation in photon density may occur, which

results to effect on level of the electric signal produced by photo cell. Thus the

physically larger sensors generates better image quality than by smaller ones es-

pecially when the light is low. With the introduction of noise in raw images,

the quality of photograph is downgraded. Denoising of such image can be per-

formed by modelling the sensor noise either a signal dependent or independent

of signal. Foi et al. [27] modelled the sensor noise as signal-dependent. Pois-

son or multiplicative model can be used to model the noise in such scenario.

Similarly, Hirakawa [29] proposed the raw sensor output as additive noise model

with combination of gaussian and sensor dependent parameters. However this

algorithm works with demand of high computational cost. The widely used and

10
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simple noise model is additive noise model which is signal independent. This

model has been widely used because of it’s simplicity in literatures [19]; [24];.

The signal-dependent noise characteristic can be compensated by estimating the

noise variance adaptively in each local area [33]. In [24], Zhang et al. proposed

additive noise model, to denoise the CFA image. In this method different types

of color filters in the CFA are considered. The noise signals in the red, green and

blue locations of the CFA image are assumed channel-dependent and expressed

as

ŷr = sr + nr, ŷg = sg + ng, ŷb = sb + nb (2.3)

where nr, ng, and nb are the noise signals in the red, green and blue locations

of the CFA image. The terms sr, sr, and sb are the desired sample values to be

recovered from their noisy versions ŷr, ŷg, and ŷb.

As in [24], we model the channel dependent noise in the the proposed CFA

image denoising algorithm. Since a given type of sensors behaves differently in

different wavelengths, the noise statistics are assumed to vary in different chan-

nels.

11
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Chapter 3
System to Reduce CFA Noise
In this chapter, we describe a system to reduce noise in CFA image based on

PCA. The proposed algorithm attempts to reduce the noise artifact by selecting

the appropriate threshold value of based on noise statistics.

3.1 Noise on CFA Sensor

In image denoising problem, we assume the observed data vector Yi as an unob-

served deterministic vector Si, corrupted by the noise Ni. As in previous litera-

ture [24], we assume the noise as an Additive White Gaussian Noise (AWGN).

Thus, we express the observed noisy image Yi as,

Yi = Si +Ni (3.1)

where i = 1, 2, ...M gives the number of pixels. The goal of the proposed de-

noising algorithm is to estimate of from CFA under the assumption that noise N

is independent of S. Noise in CFA image can be reduced in several ways. A con-

ventional solution to perform denosing operation after CDM on the demosaicked

full color image. However, the noise caused color artifacts can be very hard to

remove in the subsequent denoising process if the noise is discarded in the de-

mosaicking step. The CDM process will complicate the noise characteristics by

blending the noise across channels. Some joint demosaicking-denoising schemes

have been reported [27], [30]. Both demosaicking and denoising operation share

a common feature in terms of sample estimation. Both estimates the new sam-

ple from their neighboring pixels. Hirakawa and Parks [27] proposed the joint

denoising method. They designed a filter which adaptively computed a filter co-

efficient by using the TLS technique under some constraints of the CFA pattern.

Another method proposed by Zhang et al. [30] estimates the color difference

12
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signal from the noisy CFA image at the first stage. Next, the green channel is re-

constructed. A specific wavelet denoising algorithm is employed in this method.

Finally, the red/blue channel is reconstructed. Both schemes perform better than

many demosaicking first and denoising later methods. Denoising before demo-

saicking is another widely used strategy to remove noise from CFA data. This

technique is capable of reduction of noise caused by noise-caused color artifacts.

At the same time denoising and demosaicking algorithms can be independently

designed. However, the red, green and blue interlaced CFA pattern. Because

of this specific pattern many existing effective monochromatic image denoising

methods may not perform effectively. One simple solution is to partition, for ex-

ample, the big Bayer pattern CFA image into one red, one blue and two greens

sub-images and then denoise them separately as gray level images. This solu-

tion, however, does not exploit the spectral correlation within red, green and blue

channels.

3.2 Literature review on CFA image denoising

The straight forward method to remove noise is to perform post-processing the

demosaicked images. Conventional algorithms developed for grayscale imag-

ing, for example [23], can be applied to each channel of the demosaicked color

image separately where as some color image filtering techniques [29] process

color pixels as vectors. Similarly, wavelet denoising attempts to remove the noise

present in the signal while preserving the signal characteristics, regardless of its

frequency content. Numerous wavelet based denoising methods have been pro-

posed to reduce the noise when noise is described by a Gaussian or Poisson pro-

cess. Donoho et al. [16] proposed a soft thresholding to obtain a minimax

mean-squared error estimate of wavelet coefficients. Wang [17] developed mov-

ing window based double Haar wavelet transform for local multi-scale analysis.

In this method the wavelet transform is embedded in a moving window. DWT

has been successfully used for image denoising. However, shortcomings such as

shift variance, aliasing and lack of directionality compelled to use more efficient
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transformation tools. Dual Tree Complex Wavelet Transform (DT-CWT) is intro-

duced to overcome these limitations [15]- [16]. Similarly, the Non-local means

(NL-means) is a popular technique for image denoising developed by Buades et

al. [22]. This algorithm defines the neighborhood of a pixel by based on the sim-

ilarity of whole neighborhood rather than a single pixel close to it. Its efficiency

and conceptual simplicity have made it very popular, but its main drawback is its

high computational complexity. The above mentioned filter techniques are suc-

cessfully implemented on greyscale images. However, the noisy sensor readings

are roots of many color artifacts in demosaicked images and those artifacts are

difficult to remove using denoising the demosaicked full color data. In general

the CFA readings corresponding to the different color components have different

noise statistics. The CDM process blends the noise contributions across chan-

nels, thus producing compound noise that is difficult to characterize. This makes

the design of denoising algorithms for single-sensor color imaging very difficult.

Recently, some schemes that perform demosaicking and denoising jointly have

been proposed [27] [33]. In [2], Trussell and Hartig presented a mathemati-

cal model for color demosaicking using minimum mean square error (MMSE)

estimator. The additive white noise is considered in the modeling. Ramanath

and Snyder [13] proposed a bilateral filter based demosaicking method. Since

bilateral filtering exploits the similarity in both spatial and intensity spaces, this

scheme can handle light noise corrupted in the CFA image. Hirakawa and Parks

[9] developed a joint demosaicking-denoising algorithm by using the total least

square (TLS) technique where both demosaicking and denoising are treated as an

estimation problem with the estimates being produced from the available neigh-

boring pixels. The filter used for joint demosaicking-denoising is determined

adaptively using the TLS technique under some constraints of the CFA pattern.

In , Hirakawa et al. proposed two wavelet based schemes that can perform CDM

simultaneously with denoising. The joint demosaicking-denoising scheme devel-

oped by Zhang et al. first performs demosaicking-denoising on the green channel.

The restored green channel is then used to estimate the noise statistics in order to

restore the red and blue channels. In implementing the algorithm, Zhang et al. es-
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timated the red-green and blue-green color difference images rather than directly

recovering the missing color samples by using a linear model of the color differ-

ence signals. Inspired by the directional linear minimum mean square-error esti-

mation (DLMMSE) based CDM scheme in [9], Paliy et al. [31], [32] proposed

an effective nonlinear and spatially adaptive filter by using local polynomial ap-

proximation to remove the demosaicking noise generated in the CDM process and

then adapted this scheme to noisy CFA inputs for joint demosaicking-denoising.

The third way to remove noise from CFA data is to implement denoising before

demosaicking. However, due to the underlying mosaic structure of CFAs, many

existing effective monochromatic image denoising methods can not be applied

to the CFA data directly. To overcome the problem, the CFA image can be di-

vided into several sub-images using the approach known from the CFA image

compression literature, e.g., [30]. Since each of the sub-images constitutes a

gray-scale image, it can be enhanced using denoising algorithms from gray-scale

imaging. The desired CFA image is obtained by restoring it from the enhanced

sub-images. Nonetheless, such a scheme does not exploit the interchannel cor-

relation which is essential to reduce various color shifts and artifacts in the final

image [12] [13]. Since the volume of CFA images is three times less than that of

the demosaicked images, there is a demand to develop new denoising algorithms

which can fully exploit the interchannel correlations and operate directly on CFA

images, thus achieving higher processing rates. Similarly, Zhang et el, [24] pro-

posed a scheme for denoising CFA images. The technique of PCA is employed to

analyze the local structure of each CFA variable block, which contains color com-

ponents from different channels. By adaptively computing the covariance matrix

of each variable block, the PCA could transform the noisy signal into another

space, in which the signal energy is better clustered and the noise is removed.

Since there can be different and varying structures in each local training window,

to improve the estimation accuracy of PCA transformation matrix we select the

similar blocks to the underlying one and use them only, instead of all blocks, for

PCA training. Such a training sample selection procedure can better preserve the

image local structures. This method to reduce noise in CFA is more accurate and
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allows the adaptation of the fine structure in the image. However the algorithm

goes through the sliding window operation of patches together with PCA. These

operations lead to huge computational complexity. Therefore, this method may

be inappropriate for low-speed devices.

3.3 Principal Component Models

Principal component analysis (PCA) [26] is a mathematical procedure that trans-

forms a number of correlated variables into a number of uncorrelated variables

called principal components (PCs). It is the purpose of PCA to derive new vari-

ables (in decreasing order of importance) that are linear combinations of the orig-

inal variables. The first few components will account for most of the variance

in the original data, and these can be used to reduce the dimensionality of the

data. The rule is that the first principal component accounts for as much of the

variability in the data set as possible, and each succeeding component accounts,

in turn, for as much of the remaining variability as possible. Consider a data set

[y1, y2, .....ym]
T component variable. We denote the variable as

y11 y21 ....... yn1

y12 y22 ....... yn2

. . ....... .

y1m y2m ...... ynm


The sample matrix of y, where j = 1, 2, ...n are discrete samples of variable yi,

i = 1, 2, ..m. The ith row of matrix y denoted as Y = [y1, y2....ym] is called the

sample vector of xi. The centralized sample vector µ is estimated by subtracting

the mean value µ from sample vector y i,e,

yi = yi − µi (3.2)

where µ = 1
N

∑N
n=1 yn The centered covariance matrix of the dataset is cal-

culated from yi as

C =
1

N
yyT (3.3)
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Figure 3.1: Dimensionality reduction using PCA.

As the covariance matrix is symmetrical, it can be further decomposed using

singular value decomposition (SVD). The decomposition results in a product of

three matrixes U , λ and UT .

C = UλUT (3.4)

Ui = U1, U2, ....Um is the orthogonal matrix of eigenvector, λ = λ1, λ2.....λm

is the diagonal matrix of eigenvalues arranged in λ1 ≥ λ2.... ≥ λm. Principal

components are the coordinates in the Eigenvector basis. the amount of variance

in the direction of U equals the size of an Eigenvalue corresponding to an Eigen-

vector Uof C. Furthermore, the directions of the first Eigenvectors corresponding

to the biggest Eigenvalues cover as much variance as possible by orthogonal di-

rections. By setting P = UT , the projection of data yn can be expressed as

x = Py (3.5)

There are several reasons to perform PCA One of the most important ones is to

produce a low-dimensional representation with minimum loss of information so

that the data may easily be understood and the structure in the data can also be

identified easily as shown in Figure 3.1. In PCA domain, several leading Principal

components capture the most of the scene signals in image patches, while the last

few components are composed mostly of noise.
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3.3.1 Singular Value Decomposition (SVD)

SVD [54], [55] is used to factorize a rectangular, real or complex matrix in linear

algebra.

3.3.2 Mathematical definition of Singular Value Decomposi-
tion

Let X denote a m × n data matrix of rank m, with m > n. We decompose X

using SVD i.e.

X = UλV T (3.6)

where, U is an m × n orthogonal matrix UTU = I , contains the eigenvectors of

the matrixXXT . The columns of U are called the left singular vectors [53] uk,λ,

is a m × n diagonal matrix containing the non-negative singular values [53] of

matrix X . V T is a row orthonormal matrix V V T , containing the eigen vectors of

the symmetric matrix XXT . The elements of λ are only nonzero on the diagonal

and are called the singular values. Thus

λ =


λ1,1 .. .. .. ..

.. λ1,2 .. .. ..
...

...
...

...
...

.. .. .. .. λm,n

 (3.7)

The ordering of the singular vectors is determined by high-to-low sorting of the

singular values, with the highest singular value in the upper left entry of matrix λ.

The SVD can be calculated by first calculating V T and λ by diagonalizing XTX:

XTX = V λ2V T (3.8)

In next step, U can be calculated as

U = XV λ−1 (3.9)
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where the (r + 1)th, .....nth columns of UT for which λkk = 0 are ignored in

the matrix multiplication of the equation U = XUTλ−1.

3.3.3 Relationship between Principal Component Analysis and
Singular Value Decomposition

There is a direct relation between PCA and SVD. We use SVD to perform PCA.

Once we decompose a matrix X using SVD and write the covariance matrix as

C =
1

n
XXT =

1

n
Uλ2UT (3.10)

where U is a n × m matrix. The SVD routine orders the singular values in

descending order. In the case of n < m, the first n columns in U corresponds

to the sorted eigenvalues of C. For m ≥ n, the first m corresponds to the sorted

non-zero eigenvalues of C. We can write transformed data as

Y = ÛTX = ÛTUλV (3.11)

where ÛTU is a simple n×mmatrix which is one on the diagonal matrix. Finally,

the transformed data can be written in terms of the SVD decomposition of X .

3.4 System to Reduce CFA Noise

We consider the widely used Bayer pattern image in this paper. RGB samples

are interlaced in Bayer pattern. The CDM interpolates the two missing color

components at each pixel location in the CFA image, which produces the color

image from a gray scale image. Most of the CDM are developed under the as-

sumption of a noise free CFA image. However, the realtime images generated

by low cost devices are contaminated with moderate or heavy noise, making the

digital photographs visually unpleasing. Zhang. [26], proposed a CDM with a

channel dependent noise model. It is accepted that the corrupted noise in CCD

and CMOS sensors is independent of the magnitude of the signal. In a signal
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independent model, the signal contaminated with the noise can be expressed in

terms of additive gaussian white noise model (AGWN) as

r̂ = r + nr

ĝ = g + ng

b̂ = b+ nb (3.12)

where, r̂, ĝ and b̂ are the red, green and blue locations of the CFA image. nr,

ng and nb represent the noise contamination on the noiseless samples r, g and b

respectively. Numerous methods can be implemented to remove the noise in CFA

images. These methods involve denoising after CDM, denoising prior to CDM

and denoising jointly with CDM. In the proposed method, we implement the pre-

CDM model. The main advantage of this model is, that the noise caused by color

artifacts can be reduced and demosaicking model can be designed independent of

the denoising method.

3.4.1 Patch based Denoising in Principal Component Analysis
Domain

To simplify the denoising algorithm, we employ a channel-dependent noise model

where the sensor noise is independent of the signal within each channel. PCA is

used as a mathematical tool to remove noise from yi. In CFA images, the red,

green and blue color samples are interlaced, which makes denoising difficult,

while existing monochromatic image denoising methods are applied. A simple

way to deal with this problem is to partition a big Bayer pattern CFA image into

red, blue and green sub-images and denoise them separately as gray scale images.

In Ref. [30], Zhang proposed a PCA based denoising for CFA images in which

a variable block, which consists of at least one red, one green and one blue color

sample, is defined. This method defines another block with more samples than

the variable block for training. Wherever any part of the training block matches

with the variable block, the pixels of that part are taken as the samples the vari-

able block. As this method is based on applying the sliding window approach
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to training block, the time complexity increases substantially with the increase

in the size of the image. A time efficient alternative to sliding window approach

is to consider the global samples with large block as training window. However

the local feature of the image patches cannot be extracted with this approach.

Thus, we propose a method that divides the large sized patches into number of

smaller blocks based on structural similarity. The basic idea is to divide the im-

age into four non overlapping blocks and arrange arrange all the image patches

into a quad tree as depicted in Figure 3.2. The root node contains all the image

patches. Performing the K-means clustering with k = 2 splits the image into two

clusters. These two clusters are further divided into four clusters by repeating

the same clustering procedure. Each cluster represents the image patch. Each of

these patches can be further split recursively via K-means clustering. This way

we can recursively build a quad tree. The division is stopped as soon as the block

size is less than the specified size or all the blocks are structurally similar. The

structural similarity of the blocks is measured by means of distance between the

clusters. K-means algorithm takes linear time to find a local optimum. Next,

Figure 3.2: Image patch clustering based on textural pattern.

We create an orthonormal basis by performing PCA on the entire collection of

patches extracted from the noisy CFA image. Let G be the row vector containing
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all the samples associated with green color in a patch. Similarly, R and B rep-

resent the row vector of red and blue color samples. The entire data set can be

written as,

Y =
[
RT GT

1 GT
2 BT

]
(3.13)

Let µr, µg1 , µg2 and µb represent the mean values of variables, the mean vectors

can be thus denoted as µ = [µr µg1 µg2 µb]. Thus the zero mean centralized

value of Y can be estimated as Y = Y − µ. With the additive Gaussian noise

model, the observed noisy signal can be expressed as

ŷ = y + n (3.14)

where n = [nr ng1 ng2 nb]
T . Since the noise exhibits the zero mean charac-

teristics, the mean vector of ŷ is the same as that of y. Thus, the mean µ for both

ŷ and y is calculated as E [ŷ]. Similarly, we estimate the zero mean centralized

vector of noisy signal ŷ = ŷ−µ and ŷ = y−µ+n. Similar to Y , we can express

the noise in terms of signal independent noise as N = [Nr Ng1 Ng2 Nb]
T .

Then the measured signal Ŷ is expressed as

Ŷ = Y +N. (3.15)

and the zero mean centralized dataset of ŷ

Ŷ = Y +N (3.16)

For each patch having a patch size ofM = m×m, the covariance Cp is estimated

as

Cp =
1

M

M∑
i=1

[
ŷi − µ

] [
ŷi − µ

]T
(3.17)

The SVD decomposition of the covariance matrix Cp gives the projection matrix

Pq. The frequently used approach of denoising with PCA assumes that the noise

is spread out uniformly in all directions. Hence, the projection of the patch onto

the first l′ < l axes results in noise reduction, as a low dimensional subspace

contains more information about the image.
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xk =
l′∑
i=1

Pi(ŷi − µ) (3.18)

The reconstruction ensures the maximization of the variances of among all the

subspaces of dimension. However, the axes that are assumed to hold the image

feature are not unable to represent the significant information of patches. As

a result, reconstruction of image is as compared to other alternative techniques.

Instead of considering as noise the axes carrying low variance, it appears better to

consider all axes as relevant for modeling the patches y = [y1, y2....ym]. For the

given set of patches of the sample value yi, few axes are relevant, but the relevant

axes may vary from one patch to another. Therefore, a reasonable strategy is to

process the coefficients according to their magnitude. This leads to the general

form of estimators.

xk =
l∑

i=1

θ
〈
Pi(ŷi − µ)

〉
(3.19)

where θ represents a shrinkage function. The classical methods include soft

thresholding and hard thresholding. In most of the cases soft thresholding is pre-

ferred over hard thresholding for several reasons. However the proposed method

employs the semisoft thresholding methods. This method yields more visually

pleasant results than other thresholding methods because the latter are discontin-

uous and yield abrupt artifacts in recovered images, especially when the noise is

abrupt. Semisoft thresholding method to the coefficients is expressed as,

x̂k =


0, |xk| ≤ T1

sgn (xk)
T2(|xk|−T1)
T2−T1 , T1 < |xk| ≤ T2

xk, |xk| > T2

(3.20)

where T1 and T2 represent the upper and lower bound threshold values and x̂k
represents the thresholded coefficients. We estimate T1 and T2 from the threshold

value T and tuning parameter δ as T1 = T − δ and T2 = T + δ. While the idea of

thresholding is simple and effective, determining the optimal threshold is not an
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easy task. The main concern in thresholding is the selection of appropriate thresh-

old. When the optimal threshold value in PCA domain, effective noise reduction

is achieved. By computing the covariance matrix Cy the optimal threshold value

can be estimated. However the available dataset yn is corrupted by noise such

that Cy cannot be computed directly. In such scenario a, we use the linear noise

model of equation Equation (3.12) to estimate the covariance. Assuming that N

training samples are available from all patches, the covariance matrix of these

samples can be estimated using a maximal likelihood.

Cy =
1

M

M∑
i=1

[
ŷi − µ

] [
ŷi − µ

]T
≈ 1

M
Ŷ Ŷ

T

=
1

M

(
Y Y

T
+ Y NT +NY

T
+NNT

)
(3.21)

The components Y NT and Y Y
T

can be replaced by zero as the signal Y and

noise N are independent of each other. Hence the above expression can be ex-

pressed as,

=
1

M

(
Y Y

T
+NNT

)
(3.22)

where Y Y and NNT are the covariance of Y and N respectively. Thus the co-

variance of the observed signal can be expressed as C

Cy = Cs + Cn (3.23)

Estimating Cs from Cy requires the knowledge of Cn. We use the noise vector

under the assumption that these noise elements are uncorrelated with each other.

Cn = diag 〈σr, σg, σb〉 (3.24)

where σr, σgandσb are standard deviations of the channel dependent noise nr,

ng and nb. With Equation (3.23) and (3.24) the covariance can be estimated as

Cs = Cy − Cn. Thus, the threshold value can be defined as,

T = TM.Cs (3.25)
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The thresholding is optimal in a minimax mean square error(MSE) sense over

a class of signals, and the noise in the PCA coefficients can be further reduced

by using the optimal minsquare error (MSE) processing. The thresholding filter

approximates the LMMSE filter for large coefficients and smaller coefficients

are replaced by zero. Thus error occurs at intermediate coefficients whose value

lies between T1 and T2. Thus we use the optimal LMMSE Wiener filter and the

coefficient of this filter is obtained as

wk =
Cs

Cs + Cn
(3.26)

The filtered coefficient can be estimated as

x̃k = wk.x̂k (3.27)

The filtered pixels of the image are obtained by inverse transform of PCA as

yk = P−1x̃k (3.28)

where P−1 is an inverse PCA function. Finally, reformatting the patches results

in the denoised CFA block. In the proposed method, two parameters,need to be

set: the size of the patch and the threshold parameter.
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Chapter 4
Performance Evaluation
In this section, we describe the tests performed to assess the quality of the pro-

posed algorithm. First we illustrate the comparison of output between the pro-

posed filter and other denoising schemes using the CFA images.

Next, we evaluate the denoising outputs in terms of demosaiced color image.

The given noisy CFA image is filtered and full color image is generated using

a color demosaicing method. We provide qualitative and quantitative evaluation

of the proposed method using benchmark images corrupted with different noise

levels. For the quantitative analysis, we use peak to signal noise ratio (PSNR)

defined by,

ObjectiveQuality.

SubjectiveQuality.

PSNR = 20log10
255√
(MSE)

(4.1)

Here, MSE is the averaged mean square error between the original image and

the filtered image. Although, PSNR is not directly correlated with the quality of

the human visual system however it is taken into account for the evaluation of

performance of algorithms.

(a) (b) (c)

Figure 4.1: Test images. (a) Auto-bike (b) House (c) Fence
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4.1 CFA Image Denoising

In this section, we describe the performance evaluation of the proposed method

with other noise reduction algorithms based on wavelet [15], NLM [22], PCA

based NLM [23] and spatially adaptive PCA [24] for comparison in terms of

CFA images. Performance was evaluated in terms of gray scale image, since we

view the CFA images as monochromatic images.

Table 4.1: Comparative results.
Image Noisy Image PSNR (dB) Denoising

Method

PSNR Results (dB)

NLM [22] 28.14

DTWT [15] 29.50

Fence 28.11 NLM-PCA [23] 31.05

SAPCA [24] 31.86

Proposed 32.97

NLM [22] 26.81

DTWT [15] 28.67

House 28.14 NLM-PCA [23] 29.695

SAPCA [24] 30.16

Proposed 31.13

NLM [22] 26.53

DTWT [15] 26.68

Auto bike 28.11 NLM-PCA [23] 29.47

SAPCA [24] 30.42

Proposed 31.28

We used a variety of test images of a resolution of 512 × 768 from Kodak

dataset, as depicted in Fig. 4.1(a), 4.1(b) and 4.1(c). These test images are widely

used in the literature for evaluating demosaicking algorithms. To generated the

mosaic CFA image, we used Bayer pattern to subsample the test images, fol-

lowing the standard practise. Since we assume that the image was corrupted by
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channel dependent noise, Gaussian white noise was added separately to the red,

blue and green channels of the mosaic images. The visual evaluation of the pro-

posed method in comparison with the other denoising schemes is presented in

Fig. 4.2.Fig. 4.2(a) shows the mosaic image without noisy, Fig. 4.2(b) shows

the noisy mosaic image. Fig. 4.2(c) to 4.2(f) show the filtered image using

SAPCA [24] NLM-PCA [23], NLM [22] and the proposed method. Similarly,

Table 4.1 shows the comparison of results in terms of PSNR values.

4.1.1 Color Interpolation and Color Filter Array Image De-
noising

In this section we describe the evaluation of the proposed CFA denoising scheme

in combination with demosaicking. In this approach, we partitioned a CFA image

into three sub-images (i.e., one red, one blue and one green channel sub-images)

and used them for denoising. Each sub-image is a true monochromatic image.

First, we perform the denoising on grayscale image then a color image is gen-

erated using CDM. Finally, the the performance was evaluated in terms of the

demosaicked color image.

Table 4.2: Comparative results for Fence.
Color NLM [22] DTWT [15] NLM-PCA [23] SAPCA [24] Proposed

Red 27.15 29.01 30.50 31.72 32.00

Green 29.86 30.14 31.24 32.52 32.90

Blue 25.96 29.47 30.84 32.40 32.32

Table 4.3: Comparative Results for House.
Color NLM [22] DTWT [15] NLM-PCA [23] SAPCA [24] Proposed

Red 25.49 27.75 28.67 29.29 29.43

Green 27.28 28.85 29.64 30.22 30.77

Blue 25.93 28.15 28.66 29.48 29.46
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Figure 4.2: Denoising of CFA images”Fence”(a) Original image (b) noisy im-

age (σr=10, σg=10, σb=10,) (c) denoised image using method NLM [22] (d)

DTWT [15] (e) NLM -PCA [23] (f) Spatially Adataptive PCA [24] (g) the pro-

posed PCA-based CFA denoising method.
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Table 4.4: Comparative Results for Autobike.
Color NLM [22] DTWT [15] NLM-PCA [23] SAPCA [24] Proposed

Red 25.63 26.55 28.79 30.06 30.17

Green 27.40 27.33 29.73 30.75 31.13

Blue 25.33 27.05 28.85 30.11 29.87

Figure 4.3: Denoised Color image of CFA images after demosaicing ”Fence ”(a)

Original image (b) noisy image ( σr=10, σg=10, σb=10,) (c) denoised image using

method NLM [22] (d) DTWT [15] (e) NLM -PCA [23] (f) Spatially Adataptive

PCA [24] (g) the proposed PCA-based CFA denoising method.
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Figure 4.4: Denoised Color Image of CFA images after demosaicing ”House”(a)

Original image (b) noisy image ( σr=10, σg=10, σb=10,) (c) denoised image using

method NLM [22] (d) DTWT [15] (e) NLM -PCA [23] (f) Spatially Adataptive

PCA [24] (g) the proposed PCA-based CFA denoising method.

31



i
i

“”Thesis ˙final”” — 2016/1/25 — 21:35 — page 32 — #49 i
i

i
i

i
i

Figure 4.5: Denoised color image of CFA images after demosaicing ”Auto

bike”(a) Original image (b) noisy image ( σr=10, σg=10, σb=10,) (c) denoised

image using method NLM [22] (d) DTWT [15] (e) NLM -PCA [23] (f) Spatially

Adataptive PCA [24] (g) the proposed PCA-based CFA denoising method.
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Figure 4.6: Graphical comparison in terms of PSNR reconstructed and noisy

Fence image obtained for different values of noise variance(a) Red color (b)

Green color (c) Blue color (d) Without demosaicking
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The proposed approach was compared with three other approaches. As in

the previous section, the example images in Figure 4.2(a), 4.2(b) and 4.2(c)

were used in the experiments. The noisy CFA images were input to the com-

petitive solutions to produce final restored images (i.e., demosaicked full-color

data with suppressed noise). Table 4.2- 4.4 lists the achieved PSNR values by

different schemes. A detailed examination of the results reveals that the proposed

method produces very good results and outperforms many prior methods. When

working with each one of the same demosaicking algorithm, the proposed PCA-

based CFA denoising method almost always gives better result than the spatially

adaptive PCA, non local means filter based and wavelet-based denoising schemes

with the corresponding demosaicking algorithm. Figures( 4.3- 4.5) prove that our

claim in terms of subjective quality evaluation and Table 4.1 and Tables 4.2- 4.4

demonstrate the superiority of the proposed method in terms of objective quality.

Similarly, Figure 4.6 shows the performance evaluation of proposed method of

Fence image with other methods. We performed experiments on different values

of noise variance ranging from 5 to 20. The proposed method generates better re-

sults on monochromatic image without demosaicking for all the noise variances.

However, for demosaicked image PSNR values in some color component is not

as good as spatially adaptive PCA [24].

4.2 Subsection Summaries

In this section, we described a method for the reduction of noise in CFA sensor

images. The proposed method analyzes the pixel statistics properly and applies

the filter appropriate for pixels of different classes. The experimental results show

that the performance of this algorithm for a wide variety of images is satisfactory.

Because of its non iterative and low complexity property, it can be applied for

denoising in low power devices such as mobile phones and PDAs with minimal

computational cost requirements. Moreover, with the application of an optimal

linear MMSE filter it provides good results in both interms of subjective and

objective quality metrics.

34



i
i

“”Thesis ˙final”” — 2016/1/25 — 21:35 — page 35 — #52 i
i

i
i

i
i

Chapter 5
Image Interpolation
This chapter introduces the description for the interpolation of a full high-definition

(HD) image based on the dual-tree complex wavelet transform (DT-CWT) and

hidden markov model (HMM). In the proposed method, the DT-CWT is used to

decompose the low-resolution image into different subbands. In wavelet domain

interpolation, given image is assumed as the low frequency LL subband of the

wavelet coefficients of a high-resolution image. The proposed method estimates

the higher band coefficients by learning the correlation between the coefficients

across the scale. In this paper, the relationship between the wavelet coefficients

across the scale is described by HMM, and each wavelet coefficient is modeled

by a Gaussian mixture having multiple means and variances. Experimental re-

sults show that the proposed algorithm yields images that are sharper compared

to several other methods that we have considered in this paper.

5.1 Introduction

Image interpolation has many applications in computer vision. It is the first of

the two basic resampling steps and transforms a discrete matrix into a continuous

image. Subsequent sampling of this intermediate result produces the resampled

discrete image. Resampling is required for discrete image manipulations, such

as geometric alignment and registration, to improve image quality on display de-

vices or in the field of lossy image compression wherein some pixels or some

frames are discarded during the encoding process and must be regenerated from

the remaining information for decoding. In this work, we propose a new tech-

nique that generates sharper super-resolved images.
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5.2 Literature review on image interpolation tech-

niques

Various techniques have been proposed in order to scale the image from low

resolution to high resolution and its reverse. Fundamentally, they can be classified

into three categories:

1. Isotropic interpolation

2. Edge-directed, and

3. Transform-based methods.

5.3 Isotropic

The isotropic interpolation method [34]- [37] considers the source image as

a sub-sampled discrete version of the original ”continuous” image. Nearest-

neighbor, bilinear, and bi-cubic interpolation are some of the examples of this

method.

5.3.1 Nearest Neighbor

In the nearest-neighbor method, the source image is scaled by sampling the near-

est pixels in the source image [34]. This is also known as zero-order and point

shift algorithm. It is a computationally efficient algorithm; however, the up-scaled

image quality is degraded owing to the aliasing effect. The nearest neighbor in-

terpolation algorithm kernel is expressed as

h(x) =


1, 0 ≤ |x| < 0.5

1, 0 ≤ |x|
(5.1)

Similarly, the frequency response of the nearest neighbor kernel can be de-

fined as
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(a) (b)

Figure 5.1: Nearest neighbor interpolation kernel.(a) Time domain (b) Frequency

domain

H(w) = sinc
(w
2

)
(5.2)

Convolving an image with a rectangular function h creates the same effect on

image as multiplying the spectrum of that image by the Fourier transform of the

sinc function. However, Sinc function works as a poor low-pass filter due to the

presence of prominent side lobes and infinite extent. Thus the magnification is

achieved by pixel replication.

5.3.2 Bilinear

The bilinear interpolation estimates the new value from the neighbors by weight-

ing their distance [35]. For separated bi-linear interpolation, the distance to the

opposite point of interpolation weights the values of both direct neighbors. The

linear approximation of the sinc function follows the triangular function. This

method passes a straight line through every two consecutive points of the input
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(a) (b)

Figure 5.2: Bilinear interpolation kernel.(a) Time domain (b) frequency domain

signal. Thus this is a first degree method. In the spatial domain, linear interpola-

tion can be obtained by convolving the sampled input with the following kernel.

h(x) =


1− |x|, 0 ≤ |x| < 0.5

0, elsewhere

(5.3)

The triangular function is equivalent to a modest low-pass filter in the fre-

quency domain. However, linear interpolation comes with some disadvantages,

attenuation occurs at the high-frequency components and the data beyond the cut-

off point are aliased into the low frequencies. The frequency response of the filter

is expressed as

H(w) = sinc2
(w
2

)
(5.4)
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5.3.3 Bi-cubic

Bicubic interpolation [35] is the cubic interpolation in two dimension. Bicu-

bic interpolation can be realized using Lagrange polynomial, cubic splines, etc.

Third degree cubic spline interpolation formula serve as a good approximation to

ideal sinc function. The interpolated image so obtained is smoother than Near-

est neighbor and bilinear interpolation. Bicubic interpolation takes a weighted

average of the 16 pixels to calculate gray value of pixels Cubic Interpolation ker-

nel is derived from interpolation formula for general cubic spline by imposing

constraints. The cubic interpolation kernel is

h(x) =


(a+ 2)|x|3 − (a+ 3)|x|2 + 1, 0 ≤ |x| < 1

a|x|3 − 5a|x|2 + a|x| − 4a, 0 ≤ |x| < 1

0, 2 ≤ |x|

(5.5)

Similarly, the response in frequency domain is expressed as

H(w) =
12

w

(
sinc2

(w
2

)
− sinc(w)

)
+ a

8

w2

(
3sinc2(w)− 2sinc(w)− sinc(2w)

)
(5.6)

The value of a, and the frequency content of the image determines the per-

formance of the interpolation kernel. Generally, the value of a are a = −1, a =

−0.75 and a = −0.5.

5.4 Edge-Directed Interpolation(EDI)

Edge directed interpolation [38]- [40] uses the statistical sampling to ensure the

quality while scaling an image. Instead of averaging pixels, as in bilinear inter-

polation, average of covariance of pixels is computed. Thus, the sharpness and

the continuity of the edge are preserved compared to conventional Bilinear and

Bicubic methods. Li [41] proposed new edge directed interpolation by using the

statistical and geometrical properties to estimate the unknown pixel of an image.

The algorithm in the literature [41] can be described as follows. Given the low
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Figure 5.3: First step of NEDI

resolution image Yi,j of size W × H . After the interpolation the corresponding

high resolution image size is aW × bH . Here a and b represents the scaling fac-

tor of width a and height b. Suppose we are going to scale the image by 2. We

assume a = 2 and b = 2. Now the value of Y2i,2j can be easily determined as

Y2i,2j = Xi,j for i = 0, 1, 2....W and j = 0, 1, 2....H as shown in Figure 5.3

and Figure 5.4. In order to obtain get the pixel values Y2i+1,2j+1, Y2i,2j+1, and

Y2i+1,2j , interpolation is performed. NEDI by estimates these pixels in two steps.

In the first step unknown pixel Y2i+1,2j+1 is estimated while in second step Y2i,2j+1

and Y2i+1,2j are estimated. Using the fourth-order linear interpolation unknown

pixel value is estimated from Y2i,2j , Y2i,2j+2, Y2i+2,2j and Y2i+2,2j+2. The optimal

MMSE linear interpolation coefficients are given by

Y2i+1,2j+1 =
1∑

k=0

1∑
l=0

α2k+lY2(i+k),2(j+l) (5.7)

A covariance of the pixel in a local block is required for the computation of the

prediction coefficient. The optimal MMSE linear interpolation coefficients are

given by
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Figure 5.4: Second step of NEDI

~α = R−1~r (5.8)

Here ~α = [α0, ....α3], R = [Rk,l]for(0 ≤ k, l ≤ 3) and r = [r0, ....r3]. Since

the computation of Rkl and rk requires the knowledge of Y2i+1,2j+1 which is ob-

tained only after the interpolation. In order to overcome this problem geometric

duality property is used. The covariance r̂0 is estimated from low resolution win-

dow and it is used as a substitute of r0. Similarly the covariance r̂k is used to

substitute r0. Now the unknown pixel is estimated using r̂k and R̂kl as indicated

in Figure 5.3 in the first step. Now in second step the remaining unknown pix-

els Y2i,2j+1 and Y2i+1,2j are estimated by same method with scaling of 21/2 and

a rotation factor of π/4 as shown in Figure 5.4. This algorithm works well for

preserving the sharpness and continuity of the edges. However, one of the lim-

itations of this approach is that it leads to the prediction error in interpolation

coefficient, resulting error in interpolated pixels in first step when the small sized

training window is taken. Since the estimation of unknown pixels is performed
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based on the result of first step, the error of first step is propagated to second

step. If large sized training window is taken, we consider larger neighborhood as

a result the local characteristics of image will be lost and the image edge details

of image will be unnecessarily blurred.

5.4.1 Modified Edge Directed Interpolation (MEDI)

One of the limitations of NEDI approach is that it leads to the prediction error in

interpolation coefficient, resulting error in interpolated pixels in first step when

the small sized training window is taken. Since the estimation of unknown pixels

is performed based on the result of first step, the error of first step is propagated to

second step. If large sized training window is taken, we consider larger neighbor-

hood as a result the local characteristics of image will be lost and the image edge

details of image will be unnecessarily blurred. A modified training window struc-

ture has been proposed in [42] in order to overcome this problem. The training

window in the second step of NEDI is modified to the form of sixth order lin-

ear interpolation with a 5×9 training window for the interpolation of and . Even

though an improved edge directed is proposed it still suffers from the covariance

mismatch problem as in NEDI. M. Li [42] suggested the Markov random field

(MRF) based model. Image is modeled with MRF model and edge estimation

is extended in other directions by increasing the neighboring pixels in the kernel.

This algorithm is able to preserve the sharpness of the edge in interpolated image.

5.5 Transform Based Interpolation

Transforms like Discrete Cosine Transform(DCT) and Discrete Wavelet Trans-

form(DWT) are efficient tool for compressing the signal energy into a few trans-

formed coefficients. As a result of multiplying these transformed coefficients, a

scaled image can be obtained. More detailed description is presented in chapter 6.
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Chapter 6
Wavelet Transform
In this section, we give a concise review of the real orthogonal wavelet transform

in order to set up notation and to illustrate its lack of shift-invariance.

6.1 Wavelet Definition

The term wavelet refers to small waves of varying frequency and limited duration.

This feature allows to describe the time frequency plane, with atoms of different

time supports as shown in Figure 6.1. Fourier transform on the other hand pro-

vide only the frequency information. temporal or time information is lost in the

transformation process.

6.2 Wavelet Characteristics

Wavelets are a mathematical tool, having specific properties that make them use-

ful to extract information from many kinds of data, including audio signals and

images. Mathematically, the wavelet ψ, is a function of zero average, having the

energy concentrated in time:

+∞∫
−∞

ψ(t)dt = 0 (6.1)

A family of wavelets is constructed from a functionψ(t), known as the Mother

Wavelet, which is confined in a finite interval. Daughter Wavelets, ψu,s(t) are then

formed by translation with a factor u and dilation with a scale parameter s:

ψu,s(t) =
1√
s
.ψ(

t− u
s

) (6.2)
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Figure 6.1: Wavelet basis

6.3 Wavelet Analysis

The wavelet analysis implies a multiplication and an integration. It is performed

by projecting the signal to be analyzed on the the wavelet function [59]. We

can use different scales and translations of the mother wavelet, depending on the

signal characteristics of the signal to be analyzed. It allows us to change freely

the size of the analysis function to make it suitable for the needed resolution, in

time or frequency domain.

〈f(t), ψu,s(t)〉 =
∫
f(t)ψu,s(t)dt (6.3)

For high resolution in time-domain analysis we want to capture all the sudden

changes that appear in the signal, and we do that by using a contracted version of

the mother wavelet. Conversely, for high-resolution in the frequency-domain we

will be using a dilated version of the same function.
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6.4 Wavelet Transform

The Wavelet Transform(WT) decomposes the signal over a set of dilated and

translated wavelets based on the multi resolution analysis. The WT processes

different frequencies in a different way. By using this technique, the time reso-

lution is increased when we analyze a high frequency portion of the signal, and

the frequency localization is increased when analyzing a low-frequency part of

the same signal. This type of analysis is suitable for signals that have both low-

frequency components with long time duration and high-frequency components

with short time duration, which is the case of most signals. If we consider a func-

tion f ∈ L2(R) and for analysis we use the mother wavelet ψ, with its scaled and

translated versions in equation 6.2, we can write the wavelet transform of f(t) at

time u and scale s as:

Wx(u, s) = 〈f, ψu,s〉 =
+∞∫
−∞

f(t)
1√
s
.ψ(

t− u
s

) (6.4)

For the continuous-time signal f(t), the scale factor must be a positive real

number, whereas the shift factor can be any real number. If the continuous

wavelet ψu,a meets the admissibility condition, we can use the computed wavelet

coefficients to reconstruct the original signal f(t). However, we seldom use the

above integration to compute the CWT because of the following reasons:

The majority of real-world signals that you encounter are available as discrete-

time samples. The analytical form of the signal f(t) usually is not accessible.

The closed-form solution of the integration does not exist except for very special

cases.

For these reasons, you usually select a set of discrete values for the scales and

shifts of the continuous wavelets and then compute the CWT numerically.
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6.4.1 Discrete Wavelet Transform (DWT)

The 1D discrete wavelet transform (DWT) decomposes a signal in terms of a

shifted and dilated mother wavelet and scaling function

f(t) =
∑
l∈Z

uj0,lφj0,l(t) +
∑
j≥j0

∑
l∈Z

wj,lψj,l(t) (6.5)

where, φj0,l(t) := 2j0/2φ(2j0/2t − l) and ψj,l(t) := 2j/2ψ(2j/2t − l). The

scaling coefficients and wavelet coefficients can be calculated using the standard

inner product :ψj,l(t) := 2j/2ψ(2j/2t− l) if φj0,l, ψj,l, j ≥ j0, l ∈ Z. The wavelet

transform is computed recursively using the filter bank structure shown in Figure

6.2. Given the scaling coefficients uj+1,l, l ∈ Z at scale j + 1, we compute the

scaling coefficients {uj,l, l ∈ Z} and wavelet coefficients {wj,l, l ∈ Z} at scale j

passing the {uj+1,l, l} through digital filters and and down sampling by a factor of

two. The impulse responses h0[n], h1[n] of H0 and H1 are related to the scaling

and wavelet basis functions in (6.1) by φ(t) =
√
2
∑

n h0[n]φ(2t−n)and ψ(t) =
√
2
∑

n h1[n]ψ(2t− n) . To reconstruct the signal from its wavelet (and scaling)

coefficients, we apply the filter bank structure shown in Figure 6.2(b), which

computes the scaling coefficients uj+1,l at scale j+1 by up-sampling uj,l andwj,l,

filter with G0 and G1 (whose impulse responses are just time reversed versions

of h0 and h1 in the orthogonal case), and adding the results. In discrete time, we

can interpret each sample of an N-point signal as a scaling coefficient at the nest

scale j = log2N , and apply the filter bank structure in Figure 6.2 recursively to

efficiently compute the wavelet transform with O(N) computational complexity

[57].

In 2D, the discrete wavelet transform decomposes an image x(s) in terms

of a set of shifted and dilated wavelet functions
{
ψ0◦ , ψ90◦ , ψ±45

◦} and scaling

function φ(s) :

x(s) =
∑
k∈Z2

uφj0,k(s) +
∑
b∈B

∑
j≥j0

∑
l∈Z

wbj,lψ
b
j,l(s) (6.6)
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(a) (b)

Figure 6.2: Wavelet filter bank structure in 1D.

with φj0,l(t) := 2j0/2φ(2j0/2t − l) and ψj,l(t) := 2j/2ψ(2j/2t − l) and b ∈
B := {0◦, 90◦,±45◦} denote the subbands of the wavelet decomposition. In this

paper, we will consider only separable 2D wavelet transforms, meaning we can

write ψ0◦(s) := ψ0◦(s1, s2) = φ(s1)ψ(s2), ψ90◦(s) = ψ(s1)φ(s2), ψ±45
◦
(s) =

ψ(s1)ψ(s2) where φ and ψ are 1D scaling and wavelet functions as in (6.1). A

separable 2D DWT can be computed efficiently in discrete time by applying the

associated 1D filter bank to each column of the image, and then applying the filter

bank to each row of the result. A 2D wavelet basis function ψbj,k analyzes a local

region of the image x. This region is a square centered on 2−jk + 2−(j+1), k =

(k1, k2) ∈ Z2 with width and hight proportion to 2−j .

We will call this region the locale of basis function ψbj,k. Salient feature of

the image in this locale affect the behavior of wbj,k. At the next finest scale j + 1,

the locale of wbj,k := wbj,(k1,k2) breaks into the four locales of wbj+1,(2k1,2k2+1)
,

wbj+1,(2k1+1,2k2)
, and wbj+1,(2k1+1,2k2+1)

. This allows each subband of the wavelet

transform to be naturally arranged in a quad tree with each parent wavelet at scale

j giving rise to four child coefficient at scale j + 1 occupying the same spatial

region. Roughly speaking, we can think of wavelets as local edge detectors in the

horizontal ( 0◦ subband), vertical 90◦ and diagonal (±45◦).
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6.5 2D Wavelet Transform

In 2D wavelet transform, the transformed coefficient becomes two variable func-

tions, denoted as φ(x, y) and ψ(x, y). Thus, the scaled and translated basis func-

tions are defined as

φj,m,n(x, y) = 2j/2φ(2jx−m, 2jy − n) (6.7)

ψj,m,n(x, y) = 2j/2ψ(2jx−m, 2jy − n), i = H, V,D (6.8)

where i identifies the tree different direction of directional wavelet functions,

ψH(x, y) ψV (x, y) and ψD(x, y). Conceptually, the scaling function is the low

frequency component of the previous scaling function in 2 dimensions. There-

fore, there is one 2D scaling function. However, the wavelet function is re-

lated to the order to apply the filters. If the wavelet function is separable, i.e.

f(x, y) = f1(x)f2(y). These functions can be easily rewritten as

φ(x, y) = φ(x)φ(y) (6.9)

ψH(x, y) = ψ(x)φ(y) (6.10)

ψV (x, y) = ψ(x)ψ(y) (6.11)

φD(x, y) = ψ(x)ψ(y) (6.12)

The wavelet transform of image f(x, y) of size M× N is then expressed as

Wφj0,m, n =
1√
MN

M−1∑
x=0

M−1∑
x=0

f(x, y)φj0,m,n(x, y) (6.13)

Wψj0,m, n =
1√
MN

M−1∑
x=0

M−1∑
x=0

f(x, y)ψij,m,n(x, y), i = H, V,D (6.14)

Similarly the f(x, y) can be reconstructed from given wavelet coefficientsWφ
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Figure 6.3: Wavelet filter bank structure in 2D.

and Wψ via the inverse discrete wavelet transform

f(x, y) =
1√
MN

∑
m

∑
n

Wφj0,m, n(x, y)φj0,m,n(x, y) +

1√
MN

∑
i=H,V,D

∞∑
j=jo

∑
m

∑
n

Wψ(j,m, n)ψ
i
j,m,n(x, y) (6.15)

This is the general form of 2D wavelet transform. If the scaling and wavelet

functions are separable, the summation can be decomposed into two stages. First

step is along the x-axis and then calculate along the y-axis. For each axis, we

can apply fast wavelet transform to accelerate the speed. A schematic diagram is

shown in Figure 6.4. The two dimensional signal (usually image) is divided into

four bands: LL(left-top),HL(right-top), LH(leftbottom) andHH(right-bottom).

The HL band indicated the variation along the x-axis while the LH band shows

the y-axis variation. Figure 7.5(a) and 7.5(b) show the decomposition of Lena

image. The power is more compact in the LL subband.
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Figure 6.4: Wavelet decomposition of Lena image.

6.6 Wavelet Transform based Interpolation

The fundamental assumption in wavelet based interpolation methods is, low res-

olution image is obtained as low pass subband of 2D wavelet transform from

high resolution image. The main goal is to exploit the regularity of edges across

resolution scales to estimate the high-frequency information of missing subbands

from the available LR image.

6.6.1 General Approach

This is a straight forward method to estimate the missing high frequency sub-

bands from available LR image. DWT separates the image into different sub

band images, namely, LL,LH,HL, and HH . In the wavelet domain, the low-

resolution image is equivalent to low-pass filtering of the high-resolution image.

In other words, low-frequency sub band images are the low resolution of the orig-

inal image. The high frequency subband images are interpolated using isotropic

interpolation methods such as bicubic or bilinear. Simultaneously, the input im-

age is also interpolated separately. Finally, the high-resolution output image is
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Figure 6.5: Wavelet based interpolation

generated by combining the interpolated high-frequency subband images and in-

terpolated input image by using inverse DWT (IDWT). The overall process of

general wavelet based interpolation is shown in Figure 6.5. By interpolating orig-

inal input image I by A/2, and interpolating HH , HL, and LH by A, and then

applying inverse IDWT, the output image will contain sharper edges than the

interpolated image obtained by interpolation of the image I directly. This is be-

cause the interpolation of isolated high-frequency components in HH , HL, and

LH will preserve more high-frequency components after the interpolation of the

respective subbands separately than interpolating I directly.
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(a)

(b)

Figure 6.6: Polyphase decomposition types.(a) Type-I (b) Type-II

6.7 Lifting based Wavelet Transform

As defined in previous section, the multi resolution analysis can be view as cas-

cade of several two channel filter banks. As shown in Figure H(z) and G(z) are

low pass and high pass filters respectively. DWT is implemented in convolution

based architecture with the direct structures of two channel filter banks. The con-

volution based architecture can be constructed by polyphase decomposition as

shown in Figure 6.6. where, H(z) = He(z
2) + z−1Ho(z

2) and G(z) = Ge(z
2) +

z−1Go(z
2) if type-I decomposition is used and H(z) = He(z

2) + zHo(z
2) and

G(z) = Ge(z
2)+zGo(z

2). The lifting based DWT methodology has been widely

as computational efficient method as it requires less multiplications and addi-

tions [60].Any DWT filter having perfect reconstruction can be implemented us-

ing a finite sequence lifting steps. A lifting based architecture is composed of

filters with one predict and one updated step. The output are generated in in-

terleaved fashion. The basic principal of lifting based scheme is to factorize the

polyphase matrix of wavelet filter into a sequence of alternating upper and lower

triangular matrices and diagonal matrix. The corresponding polyphase matrices

are defined as
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Figure 6.7: Lifting based wavelet transform

P (z) =

[
K 0

0 1
K

]
m∏
i=1

[
1 ŝi(z)

0 1

][
1 0

t̂i(z) 1

]
(6.16)

or

P (z) =

[
K 0

0 1
K

]
m∏
i=1

[
1 ŝi(z)

0 1

][
1 0

t̂i(z) 1

]
(6.17)

P̂ (z) =

[
Ĥe(z) Ĥo(z)

Ĝe(z) Ĝo(z)

]
(6.18)

and where K is a constant. The lifting scheme is shown in Figure 6.7. The

complete factorization consists of three steps:

1. Predict step: where the even samples are multiplied by the time domain

equivalent of and are added to the odd samples;

2. Update step: where updated odd samples are multiplied by the time domain

equivalent of and are added to the even samples;

3. Scaling step: where the even samples are multiplied by

The inverse DWT is obtained by traversing in the reverse direction, changing

the factor to K, factor to 1/K, and reversing the signs of coefficients in t̂(z) and

Ŝ(z).
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The polyphase matrix of the (5,3) filter with highpass coefficients (1/8, 2/8, 6/8, 2/8,−1/8)
and low pass filter is

P̂1(z)

[
−1

8
z + 6

8
− 1

8
z−1 2

8
− 2

8
z

−1
2
− 1

2
z−1 1

]
(6.19)

Similarly the polyphase matrix can be factorized as

P̂1(z)

[
1 0.25(1 + z)

0 1

][
1 0

−0.5(1 + z−1) 1

]
(6.20)

The implementation of lifting based wavelet transform, comprises the de-

composition of the given signal into high and low sub-bands using 1-D wavelet

transform direction in three steps. In the first step, the given signal is split into

two parts: the even polyphase samples fe(m,n) and the odd polyphase samples

fo(m,n) as shown in Figure 6.7 and expressed in time domain as

fe(m,n) = f(m, 2n)

fo(m,n) = f(m, 2n+ 1) (6.21)

In the prediction step, the odd polyphase samples located at integer positions

are predicted from the neighboring even polyphase samples. The resulting pre-

diction residuals, or high subband coefficients, are

y2i+1 = fo(m,n)− Pe(m,n) (6.22)

The predictor P (.) is a linear combination of neighboring even subset

Pe(m,n) =
∑
i

pifi[m+ i, n] (6.23)

pi represents the lifting coefficient for prediction step.

The third lifting step transforms the even subset fe(m,n) into a low-pass fil-

tered and sub-sampled version of f(m,n). This coarse approximation is obtained
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by updating with a linear combination of the prediction residual d(m,n). The

fe(m,n)is replaced with

c(m,n) = fe(m,n) + U(d)(m,n) (6.24)

where U(.) is a linear combination of neighboring d values

U(d)(m,n) =
∑
j

ujd[m+ j, n] (6.25)

If the signal is numbered from 0 and if even terms are considered to be the

lowpass values and the odd terms the highpass values, we can interpret the above

matrices in the time domain as

y2i+1 = −0.5(f2i + f2i+2) + f2i+1;

y2i = 0.25(y2i+1 + y2i+3) + f2i (6.26)

where 0 ≤ i < N/2

6.7.1 Adaptive Directional Lifting

Lifting based wavelet transform also allows each subband of the wavelet trans-

form to be naturally arranged in a quad tree with each parent wavelet at scale

giving rise to four child coefficient at scale occupying the same spatial region.

One of the draw backs of conventional lifting based wavelets is detection of edge

along the horizontal, vertical and diagonal directions only. The adaptive direction

lifting based however overcome these drawbacks by efficiently approximating the

image signals of edge textures in arbitrary directions. The adaptive directional

lifting(ADL) analyzes the local spatial correlation in all direction and then se-

lects the pixels along the direction in which prediction error is minimum. As

in conventional lifting, wavelet decomposition based on ADL also follows three

steps.

1. Splitting: The splitting process follows same procedure as in conventional

lifting based system defined in equation 6.21.
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Figure 6.8: Adaptive directional lifting

2. Prediction: The fundamental difference between conventional lifting and

ADL lies in the prediction. In contrast to the conventional lifting the high

frequency coefficient along an arbitrary direction θ is estimated as

h(m, 2n+ 1) = f(m, 2n+ 1)− P (m, 2n) (6.27)

where, P (m, 2n) = Pi(x(m− tanθ, 2n+ 1) + f(m+ tan θ, 2(n, l + 1)). Here,

Pi represents the lifting coefficient for prediction step. Similarly, in the update

process, low frequency coefficient along direction θ is estimated as

l(m, 2n) = f(m, 2n) + U(m, 2n+ 1) (6.28)

where U(m, 2n+ 1) is update coefficient and expressed as

U(m, 2n+ 1) = Ui(h(m− tanθ, (2n− 1)− 1) + h(m+ tan θ, 2(n− 1) + 1))(6.29)

6.7.2 ADL based Interpolation

ADL performs lifting-based prediction and concentrates energy in image into a

LL subband by using transformation along the direction of high pixel correlation.
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The high frequency subband images are interpolated using bicubic interpolation.

In parallel, instead of interpolating the LL subband the input image is interpo-

lated separately. Finally, the interpolated high-frequency subband images and

interpolated input image are combined by using inverse ADL (IADL) to achieve

the high-resolution output image. The proposed technique has been compared

with conventional and state-of-art image resolution enhancement.

6.7.3 Discrete Cosine Transform

Discrete Cosine Transform (DCT) attempts to decorrelate the signal data [61].

Like other transforms (DCT) expresses a finite sequence of data points in terms

of a sum of cosine functions oscillating at different frequencies. DCT has been

widely used by modern image and video coding standards, such as JPEG, MPEG,

H.263, H.264 and H.265.

6.7.4 One Dimensional DCT

For a 1-D sequence of data with length N is, the DCT is expressed as

C(u) = α(u)
N−1∑
i=0

f(i) cos

[
(2i+ 1)uπ

2N

]
, (6.30)

for u = 0, 1, 2, ......, N − 1. Similarly, the inverse transformation is expressed

as,

f(i) = α(u)
N−1∑
i=0

C(u) cos

[
(2i+ 1)uπ

2N

]
, (6.31)

defined as for i = 0, 1, 2, ...N − 1.

In both equations 6.30 and 6.31 α(u) is defined as
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α(u) =


1√
N
, for u = 0

√
2
N
, for u = 1, 2....N − 1.

(6.32)

Similarly, we can extend the 1-D DCT to 2-D and expressed as

C(u, v) = α(u)α(v)
N−1∑
i=0

N−1∑
i=0

f(i, j) cos

[
(2i+ 1)uπ

2N

]
× cos

[
(2j + 1)vπ

2N

]
(6.33)

for u, v = 0, 1, 2, .....N − 1 and α(u) and α(v) are defined in equantion 6.30.

The inverse transform is defined as

f(i, j) = α(u)α(v)
N−1∑
i=0

N−1∑
i=0

C(u, v) cos

[
(2i+ 1)uπ

2N

]
× cos

[
(2j + 1)vπ

2N

]
(6.34)

for i, j = 0, 1, 2, , N − 1. The 2-D basis functions can be generated by mul-

tiplying the horizontally oriented 1-D basis functions with vertically oriented set

of the same functions. Again, it can be noted that the basis functions exhibit a

progressive increase in frequency both in the vertical and horizontal direction.

The basis function at u = 0 and v = 0 results from multiplication of the DC

component. Hence, this function assumes a constant value and is referred to as

the DC coefficient.

6.8 Discrete Cosine Transform based Image Resiz-

ing

Image resizing in DCT domain is performed by either truncating the high fre-

quency DCT coefficients or by zero-padding. Downsized image is obtained by

truncation the coefficients and zero-padding is implemented to obtain upscaled

image. We determine the number of truncated coefficients and number of zeros
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Figure 6.9: DCT based interpolation

according to resizing ratio. For simplicity we describe the 1-D resizing method,

which can be applied to 2-D image in horizontal and vertical direction. In gen-

eral, resizing is performed on block unit, each block having n length. First the

n sample DCT is perfomed for each blocks. Zeropadding of l samples is per-

formed on n DCT coefficients. The resized image can be obtained through n+ l

length inverse DCT. The conceptual diagram of DCT based resizing is shown

in Figure 6.9 In DCT based image resizing, resizing, N consecutive 4-sample

blocks are converted to N(4 + l) sample blocks. Therefore, N -sample blocks

are grouped as shown on Figure. 6.9(a) bi(k)4, (i = 1, 2....N) denotes 4 sample

image pixels of the ith block of group of N blocks. The total sample number of

originalN blocks is 4×N . In order to perform the resizing, the proposed method

first performs DCT on each block. Bi(k)4, (i = 1, 2....N) denotes 4 sample DCT

coefficients in Figure. 6.9(b). Let

B =


C4 04 04 . . . 04

04 C4 04 . . . 04
...

...
... . . . ...

04 04 04 . . . C4




b14

b24
...

bM4

 =


B1

4

B2
4

...

BM
4

 (6.35)
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To perform resizing in DCT domain, we append l zeros to each block of

transformed coefficients which can be expressed as

B̂ =


B1

4+l

B2
4+l
...

BM
4+l

 (6.36)

where C4 is the 4 sample DCT coefficients and 04 is the 4 × 4 zero matrix.

Finally, the resized image can be obtained by inverse DCT of B̂.

B =


C4+l 04+l 04+l . . . 04+l

04+l C4+l 04+l . . . 04+l
...

...
... . . . ...

04+l 04+l 04+l . . . C4+l




B1

4+l

B2
4+l
...

BM
4+l

 (6.37)

6.9 Interpolation Using the Combination of DWT

and DCT

We integrate DWT and DCT transformations together in a hybrid architecture.

With this hybrid structure, we can exploit the local characteristics within each re-

gion of image and the redundancy due to the correlation between adjacent blocks

in image. For the finite sequence of data points, DCT of the differential signal

generates less high frequency components than that of the original signal. i,e, the

error on reconstructed signal is lower in differential based DCT. Thus, the video

coding techniques employs the different types of predictions in intra mode cod-

ings. The proposed method follows the follows the same procedure as in DCT

based interpolation to scale up low resolution image. In this paper, we obtain the

differential value of image signal prior to DCT operation. We employ wavelet

transform to obtain differential value. Since the wavelet transform decorelates

the spatial corelation of pixels, the hybrid architecture enables us to exploit the

local characteristics within image. The wavelet coefficients follow the Gaussian

distribution, with majority of coefficients centered around the zero as shown in

60



i
i

“”Thesis ˙final”” — 2016/1/25 — 21:35 — page 61 — #78 i
i

i
i

i
i

Figure, the energy compaction property of DCT will concentrate all these sig-

nals around the low frequency region. Thus the high frequency region of DCT

contains only the zero values.

The first step in the hybrid algorithm consists of wavelet decomposition of

image into band of energy. For each level, the input signal is filtered along the

rows, and the resulting signal is filtered along the columns. In this way, the 2-D

decomposition of an input signal results to four subband images LL, LH , HL

and HH . In second step, we interpolate the image by adding additional zeros in

high frequency region. Since, majority of coefficients are zeros in except in low

frequency region, occurrence of error is low in interpolated data. Thus the inter-

polated image is not affected by blurring and aliasing in high frequency region.

For the efficient implementation of DCT, the structure of hybrid wavelet DCT is

similar to classical fast fourier transform (FFT). The bit-reversal and odd-even

index separation process is replaced by lifting based DWT. Figure 6.10 shows

the block diagram of the last stage of the length-8 Wavelet-DCT. The data is sep-

arated into higher detail and lower detail parts via one scale wavelet transform

before going through the length-4 DCT blocks. After that, the results of the DCT

are combined using an equivalent butterfly operation.

Bk =

[
CN/2 0

0 CN/2

][
IN/2 0

0 (−1)mIN/2

]
WN (6.38)

where CN/2 is the N × N DCT matrix, BN is the N × N cross diagonal

butterfly matrix, IN is the N × N identity matrix and WN is the N × N lifting

coefficients which is given as.

[
Sz

Wz

]
=

[
k 0

0 1/K

]
m∏
i=1

[
1 siz

0 1

][
1 0

ti(z) 1

][
feven(z)

fodd(z)

]
(6.39)

where k is a normalization factor. si(z) and ti(z) are lifting coefficients and

value of these coefficients is related to filter bank structure. Generally we obtain

si(z) and ti(z) by using factorization from filterbank. To perform resizing in

DCT domain, we append l zeros to each block of transformed coefficients which
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Figure 6.10: Implementation of DWT and DCT

can be expressed as

B̂ =


B1

4+l

B2
4+l
...

BM
4+l

 (6.40)

where C4 is the 4 sample DCT coefficients and 04 is the 4 × 4 zero matrix.

Finally, the resized image can be obtained by inverse DCT of B̂.

B =


C4+l 04+l 04+l . . . 04+l

04+l C4+l 04+l . . . 04+l
...

...
... . . . ...

04+l 04+l 04+l . . . C4+l




B1

4+l

B2
4+l
...

BM
4+l

 (6.41)

Simultaneously, the low resolution input image is interpolated separately. Fi-

nally, the interpolated high-frequency subband images and interpolated input im-

age are combined by using inverse DWT to obtain the high-resolution output

image. The overall block diagram of hybrid based interpolation is shown in Fig-

ure 6.11.
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Figure 6.11: Block diagram of hybrid DWT and DCT based interpolation
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6.10 Performance Evaluation

In this section, we present experimental results of evaluating the performance

of the proposed algorithm using different test images. The performance is com-

pared with several standard methods, such as bilinear interpolation, edge directed

interpolation and in [39] and adaptive directional lifting based interpolation. We

compared the test result in three different test environment, noise free, noisy and

denoised images. For noise free environment, we have selected gray scale Lena

image of size 512 × 512 and high resolution color image of size 1920 × 1080.

Figure 6.12 shows the interpolation of Lena image using different interpolation

method. Figure 6.12(a) shows the original image. Figure 6.12(b) shows an inter-

polated image using new edge directed interpolation (NEDI) [39]. Figure 6.12(c)

shows a magnified image using the bilinear method. Figure 6.12(d) shows a mag-

nified image using the adaptive directional lifting (ADL) based method. Finally,

Figure 6.12(e) shows the image upscaled using the proposed method. Visually,

experiments from the three different filters yield very similar results and con-

clusions, but the PSNR tells quite a different story. In order to obtain PSNR

measurement, we take the 2N × 2N and down sample then HR image to obtain

N ×N image. PSNR values of reconstructed images are shown in Table 6.1.

Table 6.1: Comparative Results
Image Bilinear NEDI [22] ADL based Method [15] Proposed

Rocket 27.01 27.36 28.00 28.19

Flower 27.60 27.35 27.98 28.10

Lena 30.16 30.12 30.65 30.81

Boat 27.50 27.18 27.73 29.23

Although the PSNR is not a good indication of image quality, it is never-

theless frequently used, and the results are tabulated in Table 6.1 for the bilin-

ear interpolation, NEDI methods and ADL based method. Similarly, In Fig-

ure 6.13, we demonstrate the interpolation of high resolution color image using

different methods and their comparison with the proposed method. One can see
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(a)

(b) (c) (d) (e)

Figure 6.12: Experimental results: (a) Original image Lena, (b) Interpolated im-

age using the NEDI method, (c) Bilinear method, (d) ADL-based method, and

(e) proposed method.
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(a)

(b) (c) (d) (e)

Figure 6.13: Experimental results: (a) Original image, (b) Interpolated image

using the NEDI method, (c) Bilinear method, (d) ADL-based method, and (e)

proposed method.
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(a)

(b) (c)

(d) (e)

Figure 6.14: Experimental results: (a) Original image (b) Interpolated image

using the NEDI method, (c) Bilinear method, (d) ADL-based method, and (e)

proposed method.
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(a)

(b) (c)

(d) (e)

Figure 6.15: Experimental results: (a) Original image, (b) Interpolated image

using the NEDI method, (c) Bilinear method, (d) ADL-based method, and (e)

proposed method.
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(a)

(b)

Figure 6.16: Performance evaluation in Red color channel on: (a) Noiseless im-

age, (b) Denoised image using CDM.
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(a)

(b)

Figure 6.17: Performance evaluation in Green color channel on: (a) Noiseless

image, (b) Denoised image using CDM.
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(a)

(b)

Figure 6.18: Performance evaluation in Blue color channel on: (a) Noiseless

image (b) Denoised image using CDM.
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that the proposed algorithm resizes the high-frequency component better without

the ringing artifacts present in bilinear and other methods. We used a half-size

downsampled image using nearest neighbor method to interpolate to the origi-

nal size and compute the PSNR. For the noisy test environment, we performed

experiments of noisy and denoised images. For this experiment, we added gaus-

sian noise to the CFA image and performed denosing followed by CDM as de-

scribed in section IV. Interpolation is performed on noisy and denoised images

separately. Figures 6.14 shows interpolation of noisy image. Figure 6.14(a)

shows the original image. Figure 6.14(b) shows an interpolated image using

NEDI. Figure 6.14(c) shows a magnified image using the bilinear method. Fig-

ure 6.14(d) shows a upscaled image using the adaptive directional lifting (ADL)

based method. Finally, Figure 6.14(e) shows the image upscaled using the pro-

posed method. The corresponding PSNR values are shown in Figure 6.16(a),

6.17(a) and 6.18(a). Similarly, Figures 6.15 shows interpolation of denosied

image. Figure 6.15(a) shows the original image. Figure 6.14(b) shows an in-

terpolated image using NEDI. Figure 6.15(c) shows a magnified image using the

bilinear method. Figure 6.15(d) shows a upscaled image using the adaptive di-

rectional lifting (ADL) based method. Finally, Figure 7.11(e) shows the image

upscaled using the proposed method. The corresponding PSNR values are shown

in Figure 6.16(b), 6.17(b) and 6.18(b).

6.11 Subsection Summaries

In this Section, we discussed on image up-sampling algorithm based on the com-

bination of ADL and DCT. Since, the original image is used as LL subband and

zero padding is used for the interpolation of the high frequency subband in DCT

domain, the proposed method yields much better visual quality as well as objec-

tive quality compared to the current state of the art image resolution enhancement

for noiseless and noise corrupted image. Finally, owing to the hybrid directional

lifting and DCT concept of the proposed method, it can be efficiently used for the

interpolation of noisy and noiseless color images.
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Chapter 7
Complex Wavelet Transform Based
Interpolation
7.1 Complex Wavelets

Discrete wavelet transform (DWT) has emerged as an efficient multi resolution

analysis tool for images over the last decades. However, it comes with following

limitations. DWT fails to provide a compact representation of edges or contours.

The main reason for this inefficiency is the lack of shift-invariance and the spatial

isotropy of the construction of the standard 2-D WT. Filtering and subsampling

operations are applied equally along both the horizontal and vertical directions at

each scale. An edge is essentially a singularity moving around in space may be

represented on by three directions. However in DWT the corresponding filters,

obtained as direct products of the 1-D counterparts, are isotropic at all scales. In

this section, we will explored the additional features of complex wavelets [57], of

providing an approximately shift-invariant multi scale representation, strengthen

the two populations and persistence assumptions, which provides a more accurate

characterization of edge structure.

7.2 The Dual-Tree Complex Wavelet Transform

The DT-CWT is an enhancement to the traditional critically sampled DWT to

overcome the shortcomings with important additional properties: it is nearly shift

invariant and offers higher directional selectivity [57]. The DT-CWT provides

the explicit information about singularities in a broad range of orientations which

allows the characterization of images more efficiently [58].

The DT-CWT of a signal f(t) is implemented by using two critically sampled

DWTs in parallel on the same data, forN point signals, it has generated 2N DWT
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coefficients, the transform is doubly expansive. The decomposition of a signal

f(t) terms of a complex shifted and dilated mother wavelet can be expressed as,

f(t) =
∑
l∈Z

uj0,lφj0,l(t) +
∑
j≥j0

∑
l∈Z

cj,lψj,l(t) (7.1)

where, φj0,l and ψj,l are complex basis functions composed of real basis func-

tions and expressed as φj0,l = φrj0,l +
√
−1φij0,l and ψj,l = ψrj,l +

√
−1ψij,l. Since

φij0,l and ψij,l are real wavelets. A tight frame with 2× redundancy is formed

in 1D by
{
φrj0,l, φ

i
j0,l
, ψrj,l, ψ

i
j,l

}
. For the imaginary part, the real and imaginary

parts of the dual-tree CWT are computed using separate filter bank structures

with wavelets. The filters are designed in a specific way such that the sub-band

signals of the upper DWT can be interpreted as the real part of a complex wavelet

transform, and the sub-band signals of the lower DWT can be interpreted as the

imaginary part. When designed in this way, the DT-CWT is nearly shift invari-

ant, in contrast to the classic DWT. Similarly, in 2D the CWT decomposes an

image f(x, y) using dilations and translations of a complex scaling function and

six complex wavelet functions

f(x, y) =
∑
k∈Z2

uj0,kφj0,k(s) +
∑
b∈θ

∑
j≥j0

∑
k∈Z2

cbj,kψ
b
j,k(s) (7.2)

The six subbands of the 2D CWT are labeled θ = {±15◦,±45◦,±75◦} for the

oriented direction of the wavelet function as shown in Figure 7.3(b). For a separa-

ble 2D CWT based on 1D complex φ, ψ, we haveψ+15◦(s) = φ(s1)ψ(s2), ψ
+45◦(s) =

ψ(s1)ψ(s2), ψ
+75◦(s) = ψ(s1)φ(s2), ψ

−15◦(s) = φ(s1)ψ(s2), ψ
−45◦ = ψ(s1)ψ(s2)

and ψ−75◦(s) = ψ(s1)φ(s2) as shown in Figure 7.2, where ψ is the complex con-

jugate of ψ.

The 2D CWT expansion f(x, y)) using a tight frame with 4× 4 redundancy.

The 2-D DT-CWT implementation consists of two fundamental steps. Firstly,

an input image is decomposed up to a desired level by two critically sampled

separable 2-D DWT in parallel as two branches, branch a and branch b as shown

in Figure7.1(a) This decomposition leads to generation of six high pass subbands
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(a) Analysis.

(b) Synthesis

Figure 7.1: Dual-tree complex wavelet transform
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Figure 7.2: Dual-tree complex wavelet transform basis function

Figure 7.3: An edge contour (a) in the plane reconstructed using wavelet coeffi-

cients at one scale j from (b) the real DWT and (c) the CWT.
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HLa, LHa, HHa, LHb, HLb, HHb and two low pass as LLa and LLb subbands

at each level. In the next step, every two corresponding subbands having same

pass bands are linearly combined by using both the averaging and differentiation

operation.

(LHa + LHb)/
√
2, (LHa − LHb)/

√
2

(HLa +HLb)/
√
2, (HLa −HLb)/

√
2 (7.3)

(HHa +HHb)/
√
2, (HHa −HHb)/

√
2

7.3 Statistical Modelling of Complex Wavelet Trans-

form

The main idea of the wavelet domain interpolation is to exploit the properties

of wavelet coefficients for estimating the extreme points in the higher frequency

bands. First, the intra-scale characteristic of coefficients is studied. Within the

same scale, coefficients representing the smooth region in an image have small

magnitudes while large magnitudes represent singular regions. Each wavelet co-

efficient is modeled by a gaussian mixture model (GMM) that has multiple means

and variances.

The overall marginal probability distribution function (PDF) is given by a

two-state model with hidden states (Si = 1/2), where one Gaussian is used to

model the coefficients around zero for small region, while another is used for

the higher-magnitude coefficients which constitute the singularities. These two

states are illustrated in Figure 7.4. Similarly, the PDF plot of wavelet coefficients

of Lena image is shown in Figure 7.6. Each coefficient is assumed to fall into one

of these distributions, and HMT model is trained by the expectation maximization

(EM). Then, the overall density function is given by:

f(wi) = p(Si = m)f(wi/Si = m) (7.4)

where, p(Si = m) is obtained using the EM. Given the state Si, the conditional
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Figure 7.4: Two state Gaussian model.

probability f(wi/Si = m) of the coefficient value corresponding to the Gaussian

distribution is obtained as:

f(wi/Si = m) =
1√

2πσ2
i,m

exp

(
− w2

i

2σ2
i,m

)
(7.5)

Second, the unknown high-frequency coefficients are estimated by using the

inter-scale relationship, which is defined by the Markov stochastic model. This

model uses both the persistency and non-Gaussianity properties of the wavelet co-

efficients. For images, each parent wavelet coefficient in the HMT hierarchy has

four children as shown in Figure 7.5(a). Owing to persistence, the relative size of

the coefficients propagates across the scale. To describe these dependencies, the

two-state HMT model uses the state transition probabilities f(Si = m/Sp(i) = n)

between the hidden states Si of the children, given that of the parent Sp(i):

f(wi/Si = m) =
1√

2πσ2
i,m

exp

(
− w2

i

2σ2
i,m

)
(7.6)
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(a) Each wavelet coefficient analyzes a local re-

gion in the image.

(b) Wavelet transform of the Lena test image

wavelet coefficients with large magnitude are

white, while those with small magnitude are

black

Figure 7.5: Wavelet transform
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Figure 7.6: Two state Gaussian model.

where according to the persistence assumption, f(Si = 1|Sp(i) = 1)f(Si =

2|Sp(i) = 1), and

f(Si = 1/Sp(i) = 1) >> f(Si = 2/Sp(i) = 1) (7.7)

The probability that the large coefficient changes into the small coefficient con-

verges to 0.5 across scales [51]. Thus the state probability can be expressed as,

f(Si = 1/Sp(i) = 2) = 0f(Si = 1/Sp(i) = 1) = 1 (7.8)

Finally, state transition probabilities can be approximated by:

f(Si = 1/Sp(i) = 2) = 1/2f(Si = 2/Sp(i) = 2) = 1/2 (7.9)

Similarly, the variance of child coefficients is obtained based on [47]. In this

paper, the DWT wavelet coefficients are modeled using three independent HMT

models. In this way, we tie together all trees belonging to each of the three detail

subbands to decrease the computational complexity and prevent overfitting to the
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data. For the DT-CWT coefficients, the complex wavelet coefficient comprise

real and complex components w = (wr, wc) Thus, the conditional probability for

the complex coefficient f(wi/Si = m) is expressed as:[
ε1,1i,p(i) ε1,2i,p(i)

εi,p(i) ε2,2i,p(i)

]
=

[
1 0.5

0 0.5

]
(7.10)

Once the state of the child coefficient is confirmed, we generate correspond-

ing coefficient values based on different interpolation methods. The state value

of coefficients clearly indicates the pixel characteristics around the location i,e,

the state value Si = 1, indicates the coefficient belongs to low frequency region

while the high Si = 2 corresponds to high frequency regions. In the proposed

method unknown coefficients values belonging to the high frequency region are

generated using a linear interpolation instead of random values based on the vari-

ance. Coefficients along the direction yielding the lowest high frequency energy

among all the directions are selected for interpolation. While, in case of low fre-

quency region, pixel intensity of neighboring pixels are almost identical. Thus

we generate the child coefficients based from the variance same as its parents.

7.4 Performance Evaluation

Some experimental results of the proposed algorithm are presented in this sec-

tion. As in previous chapter, we performed experiments on 512×512 sized gray

scale Lena image and high resolution color image of size 1920×1080 in three dif-

ferent test environment, noise free, noisy and denoised images. Several standard

methods such as bilinear interpolation, edge directed interpolation and in [39]

and adaptive directional lifting based interpolation are used for the performance

evaluation. Figure 7.8 show the interpolation of Lena image using different inter-

polation method. Figure 7.8(a) shows the original image. Figure 7.8(b) shows

the interpolated image using new edge directed interpolation (NEDI) [39]. Fig-

ure 7.8(c) shows a magnified image using the bilinear method. Figure 7.8(d)

shows a magnified image using the ADL based method. Finally, Figure 7.8(e)
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shows the image upscaled using the proposed method. Visually, experiments

from the three different filters yield very similar results, but the PSNR tells quite

a different story. In order to obtain PSNR measurement, we take the 2N × 2N

and downsample it to obtain N × N image. PSNR values of reconstructed im-

ages are shown in Table 7.1. The reconstructed images generally attain most

of their quality in few iterations and practically do not change after 5 and 6 it-

erations of expectation maximization(EM), both in visual quality and in PSNR

measurements. The log likelihood of high frequency coefficients estimated dur-

ing expectation maximization remains constant after 5-6 iterations as shown in

Figure 7.7.

Table 7.1: Comparative Results.
Image Bilinear NEDI [22] ADL based Method [15] Proposed

Rocket 27.01 27.36 28.00 28.19

Flower 27.60 27.35 27.98 28.10

Lena 30.16 30.12 30.65 30.81

Boat 27.50 27.18 27.73 29.23

Since we obtain the variances and mean of coefficients using only few iter-

ations, the use of EM doesnt make the overall system more complex. Although

the PSNR is not a good indication of image quality, it is nevertheless frequently

used, and the results are tabulated in Table 7.1 for the bilinear interpolation, NEDI

methods and ADL method. The best numbers are highlighted in bold. Sim-

iliary, In Figure 7.9, we demonstrate the interpolation of high resolution color

image using different methods and their comparison with the proposed method.

One can see that the proposed algorithm resizes the high-frequency component

better without the ringing artifacts present in bilinear and other methods. We

used a half-size downsampled image using nearest neighbor method to interpo-

late to the original size and compute the PSNR. For the noisy test environment,

we performed experiments of noisy and denoised images. For this experiment,

we added gaussian noise to the CFA image and performed denosing followed

by CDM as described in section IV. Interpolation is performed on noisy and
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(a)

(b)

Figure 7.7: Log-likelihood vs number of iterations (a) Real HH coefficients (b)

Imaginary HH coefficients
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(a)

(b) (c) (d) (e)

Figure 7.8: Experimental results: (a) Original image Lena, (b) Interpolated image

using the NEDI method, (c) Bilinear method, (d) ADL-based method, and (e)

proposed method.
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(a)

(b) (c) (d) (e)

Figure 7.9: Experimental results: (a) Original image, (b) Interpolated image us-

ing the NEDI method, (c) Bilinear method, (d) ADL-based method, and (e) pro-

posed method.
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(a)

(b) (c)

(d) (e)

Figure 7.10: Experimental results: (a) Original image (b) Interpolated image

using the NEDI method, (c) Bilinear method, (d) ADL-based method, and (e)

proposed method.
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(a)

(b) (c)

(d) (e)

Figure 7.11: Experimental results: (a) Original image, (b) Interpolated image

using the NEDI method, (c) Bilinear method, (d) ADL-based method, and (e)

proposed method.
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(a)

(b)

Figure 7.12: Performance evaluation in Red color channel on: (a) Noiseless im-

age, (b) Denoised image using CDM.
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(a)

(b)

Figure 7.13: Performance evaluation in Green color channel on: (a) Noiseless

image, (b) Denoised image using CDM.

89



i
i

“”Thesis ˙final”” — 2016/1/25 — 21:35 — page 90 — #107 i
i

i
i

i
i

(a)

(b)

Figure 7.14: Performance evaluation in Blue color channel on: (a) Noiseless

image, (b) Denoised image using CDM.
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denoised images separately. Figures 7.10 shows interpolation of noisy image.

Figure 7.10(a) shows the original image. Figure 7.10(b) shows an interpolated

image using NEDI. Figure 7.10(c) shows a magnified image using the bilinear

method. Figure 7.10(d) shows a upscaled image using the adaptive directional

lifting (ADL) based method. Finally, Figure 7.10(e) shows the image upscaled

using the proposed method. The corresponding PSNR values are shown in Fig-

ure 7.12(a), 7.13(a) and 7.14(a). Similarly, Figures 7.11 shows interpolation of

denosied image. Figure 7.11(a) shows the original image. Figure 7.10(b) shows

an interpolated image using NEDI. Figure 7.11(c) shows a magnified image using

the bilinear method. Figure 7.11(d) shows a upscaled image using the adaptive

directional lifting (ADL) based method. Finally, Figure 7.11(e) shows the image

upscaled using the proposed method. The corresponding PSNR values are shown

in Figure 7.12(b), 7.13(b) and 7.14(b).

7.5 Subsection Summaries

In this section, we discussed on image interpolation method based on the DT-

CWT and HMM method. We used the DT-CWT is to decompose the low-

resolution image into different subbands. In wavelet domain interpolation, given

image was assumed as the low frequency LL subband of the wavelet coefficients

of a high-resolution image. The proposed method estimates the higher band co-

efficients by learning the correlation between the coefficients across the scale.

The relationship between the wavelet coefficients across the scale is described by

HMM, and each wavelet coefficient is modelled by a Gaussian mixture having

multiple means and variances. Experimental results demonstrated that the pro-

posed algorithm yields images that are sharper compared to several other methods

in noisy and noiseless scenario.
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Chapter 8
Conclusions
This thesis presented a new class of algorithm for the reduction of noise in CFA

sensor images. Since, the proposed algorithm works by properly analyzing the

pixel statistics and applying the filter appropriate for pixels of different class, It

is aimed to reduce the noise by preserving the original edge details. The exper-

imental results have shown that this algorithm has satisfactory performance on

a wide variety of images. Due to its non iterative and low complexity property,

it can be applied for denoising in low power devices such as mobile phones and

PDAs with minimal requirements of computational cost. Moreover, with the ap-

plication of optimal MMSE filter it has provided good results in both subjective

and objective quality metrics. At the same time, the proposed thesis presented

efficient up-sampling algorithm based on the wavelet transform based interpola-

tion. Through out this dissertation we proposed three types of wavelet transform

based interpolation methods namely, ADL based, hybrid DWT and DCT based

and DT-CWT with HMM method. The proposed up-sampling methods yields

much better visual quality in high resolution color images and better PSNR for

both the color and gray scale images compared to current state of the art in the

literature of high-resolution display systems. The better performance comes at

the expense of increase in complexity. However it is not a significantly high. We

believe, many modifications can be done on the proposed method that can further

improve its performance and reduce computational complexity. Finally, owing

to the combined DT-CWT and HMM concept of the proposed method, it can be

efficiently used for the interpolation of HD images.
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