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미분기하학의 기본적인 문제 중의 하나는 미분다양체상의 

있는 곡률 함수(curvature function)를 연구하는 것이다.  

종종 해석적인 방법을 택해 연구방법으로 다양체 위에서

의 편미분방정식을 유도하여 해의 존재성을 보인다.

 본 논문에서는 다양체 N이 n (≥3) 차원 콤팩트 리만

(compact Riemannian) 다양체일 때, 휜곱다양체(warped 

product manifold)     ∞×     위에서 미래방향의 

시 간 류  측 지 적  완 비 로 렌 쯔  거 리  (fu tu re  tim e lik e  g e od e s ic a lly  

complete Lorentzian metrics)의 존재성을 보이고자 한

다.



 따라서, 본 논문에서는 다양체 위에서 비선형 편미분방정

식을 유도하고, 속 다양체(fiber manifold)가 상수 스칼라 

곡률(constant scalar curvature)을 갖고 어떤 함수 R(t,x) 

가 t만의 함수일 때, 상해(upper solution) 와 하해(lower 

solution)의 방법을 이용하여 방정식

                 




″  





 ····················(*)

을 만족하는 양의 해(positive solution)의 존재성을 밝힌

다.

좀 더 구체적인 연구내용은 다음과 같다.

제 2장에서 휜곱다양체(warped product manifold)에 관한 

기본적인 개념과 몇 가지 결과를 설명하였다.

제 3장에서 휜곱다양체(warped product manifold)상에서 

n (≥3)차원 콤팩트 리만(compact Riemannian)다양체 N

이 class (A) 혹은 (B)인 경우 식 (*)의 양의 해(positive 

soiution)의 존재성을 보였다.

제 4장에서 휜곱다양체(warped product manifold) 상에서 

n (≥3)차원 콤팩트 리만(compact Riemannian)다양체 N

이 class (C) 인 경우일 때, 식 (*)을 만족하는 양의 해

(positive solution)의 존재성을 연구하였다.





I. INTRODUCTION

One of the basic problems in the differential geometry is
studying the set of curvature functions which a given manifold
possesses.

The well-known problem in differential geometry is whether
there exists a warping function of warped metric with some pre-
scribed scalar curvature function. One of the main methods of
studying differential geometry is by the existence and the nonex-
istence of a Lorentzian warped metric with a prescribed scalar
curvature function on some Lorentzian warped product mani-
fold. In order to study these kinds of problems, we need some
analytic methods in differential geometry.

For Riemannian manifolds, warped products have been useful
in producing examples of spectral behavior, examples of man-
ifolds of negative curvature (cf. [B.K], [B.O], [D.D], [D.D.V],
[D.G], [Eb], [Ej], [G.L], [K.K.P], [L.M], [M.M]), and also in
studying L2−cohomology (cf. [Z]).

For Lorentzian manifolds, warped products have been used
widely in studying the space-times (cf. [Al], [B.E.P], [E.J.K],
[G], [J], [J.L], [J.K.L.S 1, 2, 3], [P]). Since warped product have
been proven important in global Riemannian geometry, it is thus
not surprising that the equivalent Lorentzian concept is also
quite useful.

Perhaps even more interestingly on physical grounds than
purely Riemannian constructions employing warped products,
many of known exact solutions of the Einstein field equations
of General Relativity are warped product metrics of the form
B ×f F , where (B, gB) is a Lorentzian manifold and (F, gF ) is
a Riemannian manifold. The most notable class of examples is
the Robertson-Walker space-times of cosmology theory as well
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as the Schwarzschild space-time. So, in Lorentzian geometry,
the warped product is also widely used for studying space-times
with various applications (cf. [Al], [D.D.V], [D.V.V], [G], [M],
etc.).

A space-time (M, g) is said to be geodesically complete if
all geodesics of (M, g) are complete. Also, (M, g) is said to be
nonspacelike (resp. null, timelike) geodesically complete if all
nonspacelike (resp. null, timelike) geodesics are complete.

In recent work, we have considered the problem of scalar cur-
vature functions on semi-Riemannian warped product manifolds
and obtained partial results about the existence and nonexis-
tence of semi-Riemannian warped metric with some prescribed
scalar curvature function (cf. [J], [J.K.L.S 1, 2, 3], [J.L]).

In [J.L], when N is a compact Riemannian manifold, we dis-
cuss the method of using warped products to construct timelike
or null future complete Lorentzian metrics on M = [a, b) ×f N

with specific scalar curvatures, where a and b are positive con-
stants.

In this paper, using upper solution and lower solution meth-
ods, we consider the solution of some partial differential equa-
tions on a warped product manifold. That is, we express the
scalar curvature of a warped product manifold M = B ×f F in
terms of its warping function f and the scalar curvatures of B
and F .

In a recent study [L 1, 2], M.C. Leung have studied the prob-
lem of scalar curvature functions on Riemannian warped prod-
uct manifolds and obtained partial results about the existence
and nonexistence of Riemannian warped metric with some pre-
scribed scalar curvature function. In this paper, we study the ex-
istence and nonexistence of Lorentzian warped metric with pre-
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scribed scalar curvature functions on some Lorentzian warped
product manifolds.

By the results of Kazdan and Warner ([K.W 1, 2, 3]), if N is
a compact Riemannian n−manifold without boundary, n ≥ 3,
then N belongs to one of the following three catagories:

(A) A smooth function on N is the scalar curvature of some
Riemannian metric on N if and only if the function is negative
somewhere.

(B) A Smooth function on N is the scalar curvature of some
Riemannian metric on N if and only if the function is either
identically zero or strictly negative somewhere.

(C) Any smooth function on N is the scalar curvature of some
Riemannian metric on N .

This completely answers the question of which smooth func-
tions are scalar curvatures of Riemannian metrics on a compact
manifold N .

In [K.W 1, 2, 3], Kazdan and Warner also showed that there
exists some obstruction of a Riemannian metric with positive
scalar curvature (or zero scalar curvature) on a compact mani-
fold.

For noncompact Riemannian manifolds, many important works
have been done on the question of how to determine which
smooth functions are scalar curvatures of complete Riemannian
metrics on an open manifold. Results of Gromov and Law-
son ([G.L]) show that some open manifolds cannot carry com-
plete Riemannian metrics of positive scalar curvature, for ex-
ample, weakly enlargeable manifolds. Furthermore, they show
that some open manifolds cannot even admit complete Rieman-
nian metrics with scalar curvatures uniformly positive outside
a compact set and with Ricci curvatures bounded ( [L.M], p.
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322).
On the other hand, it is well known that each open manifold

of dimension bigger than 2 admits a complete Riemannian met-
ric of constant negative scalar curvature ([B.K]). It follows from
the resutls of Aviles and McOwen ([A.M]) that any bounded
negative function on an open manifold of dimension bigger than
2 is the scalar curvature of a complete Riemannian metric.

In [B.K] and [L 1, 2], authors considered the scalar curvature
of some Riemannian warped product and its conformal deforma-
tion of warped product metric. And also in [E.J.K], the authors
considered the existence of a nonconstant warping function on
a Lorentzian warped product manifold such that the resulting
warped product metric produces the constant scalar curvature
when the fiber manifold has the constant scalar curvature.

Ironically, even though there exists some obstruction of posi-
tive or zero scalar curvature on a Riemannian manifold, results
of [E.J.K], say, Theorem 3.1, Theorem 3.5 and Theorem 3.7 of
[E.J.K] show that there exists no obstruction of positive scalar
curvature on a Lorentzian warped product manifold, but there
may exist some obstruction of negative or zero scalar curvature.

In [J], the author considered the existence of a warping func-
tion on a Lorentzian warped product manifoldM = [a,∞)×fN .
Similarly in [J.K], authors also considered the existence of a
warping function on a Lorentzian warped product manifoldM =
(−∞,∞)×f N .

In this paper, when N is a compact Riemannian manifold,
we discuss the method of using warped products to construct
timelike or null future completeness of Lorentzian metrics on
M = [a,∞) ×f N with specific scalar curvatures, where a is
a positive constant. It is shown that if the fiber manifold N
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belongs to class (A), (B) or (C), then M admits a Lorentzian
metric with some prescribed scalar curvature outside a compact
set.

This thesis is constituted as follows:
In Chapter II, we introduce the basic concepts and some re-

sults about warped product manifolds.
In Chapter III, when N is a compact Riemannian manifold,

we discuss the method of using warped products to construct
timelike or null future complete Lorentzian metrics on M =
[a,∞) ×f N with specific scalar curvatures. It is shown that if
the fiber manifold N belongs to class (A) or (B), thenM admits
a Lorentzian metric with negative scalar curvature approaching
zero near the end outside a compact set.

In Chapter IV, it is shown that if the fiber manifoldN ofM =
[a,∞)×f N belongs to class (C), then M admits a Riemannian
metric of positive scalar curvature.
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II. PRELIMINARIES ON A WARPED PRODUCT
MANIFOLD

First of all, in order to derive a partial differential equation,
we need some definitions of connections, curvatures and some
results about warped product manifolds.

Definition 2.1 A Lorentzian manifold (M, g) is a connected
smooth manifold of dimension ≥ 2 with a countable basis to-
gether with a smooth Lorentzian metric g of signature (−,+,
+, · · · ,+). The Lorentzian manifold (M, g) is said to be a space-
time if ,in addition, (M, g) may also be given a time orientation
([O]).

Definition 2.2 A tangent vector v ∈ TpM is classified as time-
like, nonspacelike, null or spacelike if g(v, v) is negative, nonpos-
itive, zero, or positive, respectively:

(1) g(v, v) < 0, (timelike)
(2) g(v, v) ≤ 0, (nonspacelike or causal)
(3) g(v, v) = 0, (null or lightlike)
(4) g(v, v) > 0, (spacelike)

The set of all null vectors in Tp(M) is called the nullcone at
p ∈M and null vectors are also said to be lightlike.

Definition 2.3A vector fieldX onM is timelike if g(X(p), X(p)) <
0 at all points of p ∈ M . A Lorentzian manifold with a given
timelike vector field X is said to be time-oriented by X. A
space-time is a time-oriented Lorentzian manifold.

Not all Lorentzian manifolds may be time oriented, but a
Lorentzian manifold which is not time orientable always admits
a two-fold covering which is time orientable.
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Definition 2.4 Let X(M) denote the set of all smooth vector
fields defined on M, and let F(M) denote the ring of all smooth
real-valued functions on M. A connection ∇ on a smooth man-
ifold M is a function

∇ : X(M)× X(M) −→ X(M)

such that
(D1) ∇VW is F−linear in V,
(D2) ∇VW is R−linear in W,
(D3) ∇V (fW ) = (V f)W + f∇VW for f ∈ F(M).
(D4) [V,W ] = ∇VW −∇WV, and
(D5) X⟨V,W ⟩ = ⟨∇XV,W ⟩+ ⟨V,∇XW ⟩

for all X, V,W ∈ X(M).
If ∇ satisfies axioms (D1) ∼ (D3), then ∇VW is called the

covariant derivative of W with respect to V for the connection
∇. If, in addition, ∇ satisfies axioms (D4) ∼ (D5), then ∇ is
called the Levi-Civita connection of M, which is characterized
by the Koszul formula ([O]).

A geodesic c : (a, b) → M is a smooth curve of M such that
the tangent vector c′ moves by parallel translation along c. In
other words, c is a geodesic if

∇c′c
′ = 0. (geodesic equation)

A pregeodesic is a smooth curve c which may be reparametr
ized to be a geodesic. Any parameter for which c is a geodesic is
called an affine parameter. If s and t are two affine parameters
for the same pregeodesic, then s = at + b for some constants
a, b ∈ R. A pregeodesic is said to be complete if for some affine
parameterizion (hence for all affine parameterizations) the do-
main of the parametrization is all of R.
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The equation∇c′c
′ = 0 may be expressed as a system of linear

differential equations. To this end, we let (U, (x1, x2, · · · , xn))
be local coordinates onM and let { ∂

∂x1 ,
∂

∂x2 , · · · , ∂
∂xn} denote the

natural basis with respect to these coordinates.
The connection coefficients Γk

ij of ∇ with respect to (x1, · · · , xn)
are defined by

∇ ∂
∂xi
(
∂

∂xj
) =

n∑
k=1

Γk
ij

∂

∂xk
. (connection coefficients)

Using these coefficients we may write the equation as the system

d2xk

dt2
+

n∑
i,j=1

Γk
ij

dxi

dt

dxj

dt
= 0. (geodesic equations)

Definition 2.5 The curvature tensor of the connection ∇ is
a linear transformation valued tensor R in Hom(X(M),X(M))
defined by:

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].

Thus, for Z ∈ X(M),

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

It is well-known that R(X,Y )Z at p depends only upon the
values of X,Y, and Z at p ([O]). If ω ∈ T ∗

pM is a cotangent
vector at p and x, y, z ∈ TpM are tangent vectors at P, then one
defines

R(ω, x, y, z) = (ω,R(X, Y )Z) = ω(R(X,Y )Z)

8



for X, Y , and Z smooth vector fields extending x, y, and z, re-
spectively.

The curvature tensor R is a (1, 3) tensor field which is given
in local coordinates by

R =
n∑

i,j,k,m=1

Ri
jkm

∂

∂xi
⊗ dxj ⊗ dxk ⊗ dxm

where the curvature components Ri
jkm are given by

Ri
jkm =

∂Γi
mj

∂xk
−
∂Γi

kj

∂xm
+

n∑
a=1

(Γa
mjΓ

i
ka − Γa

kjΓ
i
ma).

Notice that R(X,Y )Z = −R(Y,X)Z, R(ω,X, Y, Z) =
−R(ω, Y,X, Z), and Ri

jkm = −Ri
jmk. Furthermore, if X =∑

X i ∂
∂xi , Y =

∑
Y i ∂

∂xi , Z =
∑
Z i ∂

∂xi , and ω =
∑
ωidx

i, then

R(X,Y )Z =
n∑

i,j,k,m=1

Ri
jkmZ

jXkY m ∂

∂xi

and

R(ω,X, Y, Z) =
n∑

i,j,k,m=1

Ri
jkmωiZ

jXkY m.

Consequently, one has R(dxi,
∂

∂xk
,
∂

∂xm
,
∂

∂xj
) = Ri

jkm.

Definition 2.6 From the curvature tensor R, one nonzero tensor
(or its negative) is obtained by contraction. It is called the

Ricci tensor. Its components are Rij =
n∑

k=1

Rk
ikj. The Ricci
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tensor is symmetric and its contraction S =
n∑

i,j=1

Rijg
ij is called

the scalar curvature ([Au],[B.E], [B.E.E]).

Definition 2.7 Let ϕ : M −→ N be a smooth mapping. If
A ∈ F0

s(N) with s ≥ 1, that is, an (0, s) tensor over Tϕ(p)(N), let

(ϕ∗A)(v1, v2, · · · , vs) = A(dϕ(v1), · · · , dϕ(vs))

for all vi ∈ Tp(M), p ∈ M. Then ϕ∗(A) is called the pullback of
A by ϕ ([O]).

At each point p in M, ϕ∗(A) gives an R-multilinear function
from Tp(M)s to R, that is, an (0, s) tensor over Tp(M). In the
special case if a (0, 0) tensor f ∈ F(N) is given, the pullback to
M is defined to be ϕ∗(f) = f ◦ ϕ ∈ F(M). Note that ϕ∗(df) =
d(ϕ∗f).

Remark 2.8 We are ready at last to define the Lorentzian
distance function

d = d(g) :M ×M −→ [0,∞]

of an arbitrary space-time. If c : [0, 1] −→ M is a piecewise
smooth nonspacelike curve differentiable except at 0 = t1 <

t2 < · · · < tk = 1, then the length L(c) = Lg(c) of c is given by
the formula

L(c) =
k−1∑
i=1

∫ ti+1

ti

√
−g(c′(t), c′(t))dt.

If there is a smooth future directed timelike curves from p

to q, then there are timelike curves from p to q (very close to
piecewise null curves) of arbitrarily small length.
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Proposition 2.9 A spacelike or timelike pregeodesic α : [0, b) →
M is complete (to the right) if and only if it has infinite length.
Proof. See p.154 in [O]. �

This is clear since the unit speed reparametrization of α is a
geodesic defined on the interval [0, L(α)). In this way it is easy
to check that the Poincaré half-plane H2 is complete.

Example 2.10. A typical semicircular pregeodesic inH2 α(s) =
(sin s, cos s), 0 ≤ s < π

2 , has < α
′
, α

′
>= sec2 s, hence

L(α) =

∫ π
2

0

sec s ds = ∞.

For null geodesics there is no such simple criterion, but null
geodesics are often easier to compute.

Definition 2.11 Suppose Ω is a smooth, bounded domain in
Rn, and let g : Ω × R → R be a Carathéodory function. Let
u0 ∈ H1,2

0 (Ω) be given. Consider the equation

△ u = g(x, u) in Ω,

u = u0 on ∂Ω.

u ∈ H1,2(Ω) is a (weak) sub-solution if u ≤ u0 on ∂Ω and∫
Ω

∇u∇φdx+
∫
Ω

g(x, u)φdx ≤ 0 for all φ ∈ C∞
0 (Ω), φ ≥ 0.

Similarly u ∈ H1,2(Ω) is a (weak) super-solution if in the above
the reverse inequalities hold.

We briefly recall some results on warped product manifolds.
Complete details may be found in [B.E], or [O]. On a semi-
Riemannian product manifold B×F, let π and σ be the projec-
tions of B × F onto B and F, respectively, and let f > 0 be a
smooth function on B.
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Definition 2.12 The warped product manifold M = B×f F is
the product manifold M = B × F furnished with metric tensor

g = π∗(gB) + (f ◦ π)2σ∗(gF )
where gB and gF are metric tensors of B and F, respectively. In
other words, if v is tangent to M at (p, q), then

g(v, v) = gB(dπ(v), dπ(v)) + f 2(p)gF (dσ(v), dσ(v)).

Here B is called the base of M and F the fiber([O]).

We denote the metric g by ⟨ , ⟩. In view of Remark 2.13 (1)
and Lemma 2.14, we may also denote the metric gB by ⟨ , ⟩.
The metric gF will be denoted by ( , ).

Remark 2.13 Some well known elementary properties of the
warped product manifold M = B ×f F are as follows:

(1) For each q ∈ F, the map π|σ−1(q)=B×q is an isometry onto B.
(2) For each p ∈ B, the map σ|π−1(p)=p×F is a positive homothetic
map onto F with homothetic factor 1

f(p) .

(3) For each (p, q) ∈M, the horizontal leaf B×q and the vertical
fiber p× F are orthogonal at (p, q).
(4) The horizontal leaf σ−1(q) = B × q is a totally geodesic
submanifold of M and the vertical fiber π−1(p) = p × F is a
totally umbilic submanifold of M.
(5) If ϕ is an isometry of F, then 1×ϕ is an isometry of M, and
if ψ is an isometry of B such that f = f ◦ ψ, then ψ × 1 is an
isometry of M.

Recall that vectors tangent to leaves are called horizontal and
vector tangent to fibers are called vertical. From now on, we will
often use a natural identification

T(p,q)(B ×f F ) ∼= T(p,q)(B × F ) ∼= TpB × TqF.
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The decomposition of vectors into horizontal and vertical
parts plays a role in our proofs. If X is a vector field on
B, we define X at (p, q) by setting X(p, q) = (Xp, 0q). Then
X is π−related to X and σ−related to the zero vector field
on F. Similarly, if Y is a vector field on F, Y is defined by
Y (p, q) = (0p, Yq).

Lemma 2.14 If h is a smooth function on B, then the gradient
of the lift h ◦ π of h to M is the lift to M of gradient of h on B.

Proof. We must show that grad(h◦π) is horizontal and π-related
to grad h on B.

If v is a vertical tangent vector toM, then < grad(h◦π), v >=
v(h ◦ π) = dπ(v)h = 0, since dπ(v) = 0.
Thus grad(h ◦ π) is horizontal. If x is horizontal,

< dπ(grad(h ◦ π)), dπ(x) >=< grad(h ◦ π), x >
= x(h ◦ π) = dπ(x)h =< gradh, dπ(x) > .

Hence at each point, dπ(grad(h ◦ π)) = gradh. �

In view of Lemma 2.14, we simplify the notations by writing
h for h◦π and grad(h) for grad(h◦π). For a covariant tensor A on
B, its lift A toM is just its pullback π∗(A) under the projection
π : M → B. That is, if A is a (1, s)−tensor, and if v1, · · · , vs ∈
T(p,q)M, then A(v1, · · · , vs) = A(dπ(v1), · · · , dπ(vs)) ∈ Tp(B).
Hence if vk is vertical, then A = 0 on B. For example, if f is a
smooth function on B, the lift to M of the Hessian of f is also
denoted by Hf . This agrees with the Hessian of the lift f ◦ π
generally only on horizontal vectors. For detailed computations,
see Lemma 5.1 in [B.E.P].
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Now we recall the formula for the Ricci curvature tensor Ric
if the warped product manifold M = B×f F. We write RicB for
the pullback by π of the Ricci curvature of B and similarly for
RicF .

Lemma 2.15 On a warped product manifoldM = B×f F with
n =dimF > 1, let X,Y be horizontal and V,W vertical.
Then

(1) Ric(X,Y ) = RicB(X, Y )− n
fH

f(X,Y )

(2) Ric(X,V ) = 0

(3) Ric(V,W ) = RicF (V,W )− ⟨V,W ⟩f#,

where f# = ∆f
f + (n − 1) ⟨grad(f),grad(f)⟩f2 , and ∆f = trace(Hf) is

the Laplacian on B.

Proof. See Corollary 7.43 in [O]. �

On the given warped product manifold M = B×f F, we also
write SB for the pullback by π of the scalar curvature SB of B
and similarly for SF . From now on, we denote grad(f) by ∇f.

Corollary 2.16 If S is the scalar curvature of M = B ×f F

with n =dim F > 1, then

(2.1) S = SB +
SF

f 2
− 2n

∆f

f
− n(n− 1)

⟨∇f,∇f⟩
f 2

where ∆ is the Laplacian on B.

Proof. For each (p, q) ∈M = B×fF, let {ei} be an orthonormal
basis for TpB. Then by the natural isomorphism {ei = (ei, 0)} is
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an orthonormal set in T(p,q)M. We can choose {dj} on TqF such
that {ei, dj} forms an orthonormal basis for T(p,q)M. Then

1 = ⟨dj, dj⟩ = f(p)2(dj, dj) = (f(p)dj, f(p)dj)

which implies that {f(p)dj} forms an orthonormal basis for TqF.
By Lemma 2.15 (1) and (3), for each i and j

Ric(ei, ei) = RicB(ei, ei)−
∑
i

n

f
Hf(ei, ei),

and

Ric(dj, dj) = RicF (dj, dj)− f 2(dj, dj)(
∆f

f
+ (n− 1)

⟨∇f,∇f⟩
f 2

).

Hence, for εi = g(ei, ei), i = 1, ...,m and εj = g(dj, dj), j =
m+ 1, ...,m+ n

S(p, q) =
∑
α

εαRαα

=
∑
i

εiRic(ei, ei) +
∑
j

εjRic(dj, dj)

= SB(p, q) +
SF

f 2
− 2n

∆f

f
− n(n− 1)

⟨∇f,∇f⟩
f 2

,

which is a nonlinear partial differential equation on B × q for
each q ∈ F. �
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III. FIBER MANIFOLDS IN CLASS (A) OR (B)

Let (N, g) be a Riemannian manifold of dimension n and
let f : [a,∞) → R+ be a smooth function, where a is a posi-
tive number. The Lorentzian warped product of N and [a,∞)
with warping function f is defined to be the product manifold
([a,∞)×f N, g

′) with

(3.1) g′ = −dt2 + f 2(t)g

Let R(g) be the scalar curvature of (N, g). Then the scalar
curvature R(t, x) of g′ is given by the equation

(3.2) R(t, x) =
1

f 2(t)
{R(g)(x)+2nf(t)f ′′(t)+n(n−1)|f ′(t)|2}

for t ∈ [a,∞) and x ∈ N. (For details, cf. [D.D] or [E.J.K])
If we denote

u(t) = f
n+1
2 (t), t > a,

then equation (3.2) can be changed into

(3.3)
4n

n+ 1
u′′(t)−R(t, x)u(t) +R(g)(x)u(t)1−

4
n+1 = 0.

In this paper, we assume that the fiber manifold N is a
nonempty, connected and compact Riemannian n-manifold with-
out boundary. Then, by Theorem 3.1, Theorem 3.5 and Theo-
rem 3.7 in [E.J.K], we have the following proposition.

Proposition 3.1. If the scalar curvature of the fiber manifold
N is a constant, then there exists a nonconstant warping func-
tion f(t) on [a,∞) such that the resulting Lorentzian warped
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product metric on [a,∞)×fN produces positive constant scalar
curvature.

Proposition 3.1 implies that in Lorentzian warped product
there is no obstruction of the existence of metric with positive
scalar curvature. However, the results of [K.W.1] show that
there may exist some obstruction about the Lorentzian warped
product metric with negative or zero scalar curvature even when
the fiber manifold has constant scalar curvature.

Remark 3.2. Theorem 5.5 in [P] implies that all timelike
geodesics are future (resp. past ) complete on (−∞,+∞)×v(t)N

if and only if
∫ +∞
t0

(
v

1+v

) 1
2 dt = +∞ (resp.

∫ t0
−∞

(
v

1+v

) 1
2 dt =

+∞) for some t0 and Remark 2.58 in [B.E] implies that all
null geodesics are future (resp. past) complete if and only if∫ +∞
t0

v
1
2dt = +∞ (resp.

∫ t0
−∞ v

1
2dt = +∞) for some t0 (cf. Theo-

rem 4.1 and Remark 4.2 in [B.E.P]. In this reference, the warped
product metric is g′ = −dt2 + v(t)g).

If N admits a Riemannian metric of negative or zero scalar
curvature, then we let u(t) = tα in equation (3.3), where α ∈
(0, 1) is a constant, and we have

R(t, x) ≤ − 4n

n+ 1
α(1− α)

1

t2
< 0, t > a.

Therefore, from the above fact, Remark 3.2 implies the fol-
lowing:

Theorem 3.3. For n ≥ 3, let M = [a,∞) ×f N be the
Lorentzian warped product (n + 1)-manifold with N compact
n-manifold. Suppose that N is in class (A) or (B). Then on
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M there is a future geodesically complete Lorentzian metric of
negative scalar curvature outside a compact set.

We note that the term α(1− α) achieves its maximum when
α = 1

2 . And when u = t
1
2 and N admits a Riemannian metric of

zero scalar curvature, we have

R = − 4n

n+ 1
· 1
4
· 1
t2
, t > a.

If R(t, x) is the function of only t-variable, then we have the
following proposition.

Proposition 3.4. If R(g) = 0, then there is no positive solution
to equation (3.3) with

R(t) ≤ − 4n

n+ 1
· c
4
· 1
t2

for t ≥ t0,

where c > 1 and t0 > a are constants.

Proof. See Proposition 2.4 in [J]. �

In particular, if R(g) = 0, then using Lorentzian warped
product it is impossible to obtain a Lorentzian metric of uni-
formly negative scalar curvature outside a compact subset. The
best we can do is when u(t) = t

1
2 , or f(t) = t

1
n+1 , where the

scalar curvature is negative but goes to zero at infinity.

Proposition 3.5. Suppose that R(g) = 0 and R(t, x) = R(t) ∈
C∞([a,∞)). Assume that for t > t0, there exist an (weak) up-
per solution u+(t) and a (weak)lower solution u−(t) such that
0 < u−(t) ≤ u+(t). Then there exists a (weak) solution u(t) of
equation (3.3) such that for t > t0, 0 < u−(t) ≤ u(t) ≤ u+(t).
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Proof. See Theorem 2.5 in [J]. �

Theorem 3.6. Suppose that R(g) = 0. Assume that R(t, x) =
R(t) ∈ C∞([a,∞)) is a function such that

− 4n

n+ 1

c

4

1

t2
< R(t) ≤ 4n

n+ 1
bts for t > t0,

where t0 > a, b > 0, 0 < c < 1 and s(> 0) are constants. Then
equation (3.3) has a positive solution on [a,∞).

Proof. Since R(g) = 0, put u+(t) = t
1
2 . Then u′′+(t) =

−1
4 t

1
2−2.

Hence

4n

n+ 1
u′′+(t)−R(t)u+(t) =

4n

n+ 1

−1

4
t
1
2−2 −R(t)t

1
2

=
4n

n+ 1
t
1
2 [
−1

4
t−2 − n+ 1

4n
R(t)]

≤ 4n

n+ 1

1

4
t
1
2−2[−1 + c] ≤ 0

Therefore u+(t) is our (weak) upper solution. And put u−(t) =
e−tα, where α > s+2

2 is a positive constant. Then u′′−(t) =
e−tα[α2t2α−2 − α(α− 1)tα−2]. Hence

4n

n+ 1
u′′−(t)−R(t)u−(t)

=
4n

n+ 1
e−tα[α2t2α−2 − α(α− 1)tα−2]−R(t)e−tα

≥ 4n

n+ 1
e−tα[α2t2α−2 − α(α− 1)tα−2 − bts] ≥ 0

for large t and α such that α > s+2
2 . Thus, for large t, u−(t) is a

(weak) lower solution and 0 < u−(t) < u+(t). So, by Proposition
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3.5, equation (3.3) has a (weak) positive solution u(t) such that
0 < u−(t) ≤ u(t) ≤ u+(t) for large t. �

Corollary 3.7. Suppose that R(g) = 0. Assume that R(t, x) =
R(t) ∈ C∞([a,∞)) is a function such that

− 4n

n+ 1

c

4

1

t2
< R(t) ≤ 4n

n+ 1
b
1

t2
for t > t0,

where t0 > a, 0 < c < 1 and 0 < b < (n+1)(n+3)
4 are constants.

Then equation (3.3) has a positive solution on [a,∞) and on
M the resulting Lorentzian warped product metric is a future
geodesically complete metric.

Proof. We take the same (weak) upper solution u+(t) = t
1
2 as

in Theorem 3.6. Since R(g) = 0 and R(t) ≤ 4n
n+1b

1
t2 , we take the

lower solution u−(t) = t−β where the constant β(0 < β < n+1
2 )

will be determined later. Then u′′−(t) = β(β + 1)t−β−2. Hence

4n

n+ 1
u′′−(t)−R(t)u−(t) ≥ 4n

n+ 1
β(β + 1)t−β−2 − 4n

n+ 1
b
1

t2
t−β

=
4n

n+ 1
t−β−2[β(β + 1)− b] ≥ 0

if β is sufficiently close to n+1
2 . Thus u−(t) is a (weak) lower

solution and 0 < u−(t) < u+(t) for large t. Hence Proposition
3.5 implies that equation (3.3) has a (weak) positive solution
u(t) such that 0 < u−(t) < u(t) < u+(t) for large t. And since
β is sufficiently close to n+1

2 , − 2β
n+1 + 1 > 0. Therefore
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∫ +∞

t0

(
f(t)2

1 + f(t)2

)1
2

dt =

∫ +∞

t0

u(t)
2

n+1√
1 + u(t)

4
n+1

dt

≥
∫ +∞

t0

u−(t)
2

n+1√
1 + u−(t)

4
n+1

dt

=

∫ +∞

t0

t−
2β
n+1√

1 + t−
4β
n+1

dt

≥ 1√
2

∫ +∞

t0

t−
2β
n+1dt = +∞

and

∫ +∞

t0

f(t)dt =

∫ +∞

t0

u(t)
2

n+1dt

≥
∫ +∞

t0

u−(t)
2

n+1dt =

∫ +∞

t0

t−
2β
n+1dt = +∞,

which, by Remark 3.2, implies that the resulting warped product
metric is a future geodesically complete one. �

Theorem 3.8. Suppose that R(g) = 0. Assume that R(t, x) =
R(t) ∈ C∞([a,∞)) is a function such that

4n

n+ 1
bt−2 < R(t) ≤ 4n

n+ 1
dts,

where b, d, and s are positive constants. If b > (n+1)(n+3)
4 , then

equation (3.3) has a positive solution on [a,∞) and onM the re-
sulting Lorentzian warped product metric is not a future geodesi-
cally complete metric.
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Proof. Put u−(t) = e−tα, where α > s+2
2 is a positive constants.

Then u′′−(t) = e−tα[α2t2α−2 − α(α− 1)tα−2]. Hence

4n

n+ 1
u′′−(t)−R(t)u−(t)

=
4n

n+ 1
e−tα[α2t2α−2 − α(α− 1)tα−2]−R(t)e−tα

=
4n

n+ 1
e−tα[α2t2α−2 − α(α− 1)tα−2 − dts] ≥ 0

for large t and α such that α > s+2
2 . thus for large t , u−(t) is a

(weak) lower solution.
Since R(g) = 0 and R(t) ≥ 4n

n+1b
1
t2 , we take the upper solution

u+(t) = t−δ where the constant δ(δ > n+1
2 ) will be determined

later. Then u′′+(t) = δ(δ + 1)t−δ−2. Hence

4n

n+ 1
u′′+(t)−R(t)u+(t) ≤ 4n

n+ 1
δ(δ + 1)t−δ−2 − 4n

n+ 1
b
1

t2
t−δ

=
4n

n+ 1
t−δ−2[δ(δ + 1)− b] ≤ 0

if δ is sufficiently close to n+1
2 . Thus u+(t) is a (weak)upper

solution and 0 < u−(t) < u+(t) for large t. Hence Proposition
3.5 implies that equation (3.3) has a (weak) positive solution
u(t) such that 0 < u−(t) < u(t) < u+(t) for large t. And since δ
is sufficiently close to n+1

2 , − 2δ
n+1 + 1 < 0. Therefore
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∫ +∞

t0

(
f(t)2

1 + f(t)2

) 1
2

dt =

∫ +∞

t0

u(t)
2

n+1√
1 + u(t)

4
n+1

dt

≤
∫ +∞

t0

u+(t)
2

n+1dt

=

∫ +∞

t0

t−
2δ

n+1dt < +∞

and

∫ +∞

t0

f(t)dt =

∫ +∞

t0

u(t)
2

n+1dt

≤
∫ +∞

t0

u+(t)
2

n+1dt =

∫ +∞

t0

t−
2δ

n+1dt < +∞,

which, by Remark 3.2, implies that the resulting warped product
metric is not a future geodesically complete one. �

Remark 3.9. In case that R(g) = 0, and we see that the

function R(t) = 4n
n+1 ·

(n+1)(n+3)
4 · 1

t2 is a fiducial point whether
the resulting warped product metric is geodesically complete or
not. Note that u(t) = t−

n+1
2 is a solution of equation (3.3) when

R(t) = 4n
n+1 ·

(n+1)(n+3)
4 · 1t2 . In case that u(t) = t−

n+1
2 we know that

the resulting warped product metric is a geodesically complete
one.
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IV. FIBER MANIFOLDS IN CLASS (C)

In this section, we assume that the fiber manifold N of M =
[a,∞)×f N belongs to class (C), where a is a positive number.
In this case, N admits a Riemannian metric of positive scalar
curvature. If we let u(t) = tα, where α ∈ (0, 1) is a constant,
then we have

R(t, x) > − 4n

n+ 1
α(1− α)

1

t2
≥ − 4n

n+ 1

1

4

1

t2
, t > a.

By the similar proof like as proposition 3.4, we have the follow-
ing:

Proposition 4.1. If R(g) is positive and R(t, x) is the function
of only t-variable, then there is no positive solution to equation
(3.3) with

R(t) ≤ − 4n

n+ 1

c

4

1

t2
for t ≥ t0,

where c > 1 and t0 > a are constants.

Proof. See Theorem 3.1 in [J]. �

Proposition 4.1 implies that if R(g) is positive, then using
Lorentzian warped product it is impossible to obtain a Lorentzian
metric of uniformly negative scalar curvature outside a compact
subset.

If N belongs to (C), then any smooth function on N is the
scalar curvature of some Riemannian metric. So we can take a
Riemannian metic g on N with scalar curvature R(g) = 4n

n+1k,
where k is a positive constant. Then equation (3.3) becomes
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(4.1)
4n

n+ 1
u′′(t) +

4n

n+ 1
ku(t)1−

4
n+1 −R(t, x)u(t) = 0.

Proposition 4.2. Suppose that R(g) = 4n
n+1k and R(t, x) =

R(t) ∈ C∞([a,∞)). Assume that for t > t0, there exist an
(weak) upper solution u+(t) and a (weak) lower solution u−(t)
such that 0 < u−(t) ≤ u+(t). Then there exists a (weak) solution
u(t) of equation (4.1) such that for t > t0, 0 < u−(t) ≤ u(t) ≤
u+(t).

Proof. See Theorem 3.2 in [J]. �

If R(t, x) is the function of only t-variable, then we have the
following theorem about the existence of some warped product
metric.

Theorem 4.3. Assume that R(t, x) = R(t) ∈ C∞([a,∞)) is a
positive function such that

4n

n+ 1
bts ≥ R(t) ≥ 4n

n+ 1

C

tα
for t ≥ t0,

where t0 > a, α < 2,and C, s, b are positive constants. Then
equation (4.1) has a positive solution on [a,∞).

Proof. We let u+(t) = tm , where m is some positive number. If
we take m large enough so that m 4

n+1 > 2, then we have
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4n

n+ 1
u′′+(t) +

4n

n+ 1
ku+(t)

1− 4
n+1 −R(t)u+(t)

≤ 4n

n+ 1
u′′+(t) +

4n

n+ 1
ku+(t)

1− 4
n+1 − 4n

n+ 1

C

tα
u+(t)

=
4n

n+ 1
tm[

m(m− 1)

t2
+

k

tm
4

n+1

− C

tα
]

≤ 0, t ≥ t0 for some large t0,

which is possible for large fixed m since α < 2. Hence u+(t)
is an (weak) upper solution. And we take the (weak) lower
solution u−(t) = t−β where β > 0 will be determined later.
Then u′′−(t) = β(β + 1)t−β−2. Hence

4n

n+ 1
u′′−(t) +

4n

n+ 1
ku−(t)

1− 4
n+1 −R(t)u−(t)

≥ 4n

n+ 1
β(β + 1)t−β−2 +

4n

n+ 1
k(t−β)1−

4
n+1 − 4n

n+ 1
btst−β

=
4n

n+ 1
t−β[β(β + 1)t−2 + kt

4
n+1β − bts] ≥ 0

for large t and large β such that 4
n+1β > s. And it is also clear

that u−(t) is a (weak) lower solution and 0 < u−(t) < u+(t). By
Proposition 4.2, we can obtain a positive solution. �

Remark 4.4. In case that R(g) = 4n
n+1k and − 4n

n+1
1
4
1
t2 < R(t) <

4n
n+1

d
t2 , where k, d are positive constants, we do not know the

existence of solutions of equation (4.1)

Corollary 4.5. Assume that R(t, x) = R(t) ∈ C∞([a,∞)) is a
positive function such that
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4n

n+ 1
bts ≥ R(t) ≥ 4n

n+ 1

C

tα
for t ≥ t0,

where t0 > a, α < 2, and C, s, b are positive constants. If
0 < s < 2, then equation (4.1) has a positive solution on [a,∞)
and on M the resulting Lorentzian warped product metric is a
future geodesically complete metric of positive scalar curvature
outside a compact set.

Proof. We take the same (weak) upper solution u+(t) = tm,
where m is some positive number, as in the proof of Theorem
4.3. And , as in the proof of Theorem 4.3, we also take the (weak)
lower solution u−(t) = t−β where β > 0 will be determined later.
Then u′′−(t) = β(β + 1)t−β−2. Since 0 < s < 2, if β is very close
to n+1

2 , then 2 > 4
n+1β > s. Hence

4n

n+ 1
u′′−(t) +

4n

n+ 1
ku−(t)

1− 4
n+1 −R(t)u−(t)

≥ 4n

n+ 1
β(β + 1)t−β−2 +

4n

n+ 1
k(t−β)1−

4
n+1 − 4n

n+ 1
btst−β

=
4n

n+ 1
t−β[β(β + 1)t−2 + kt

4
n+1β − bts] ≥ 0

for large t. And it is also clear that u−(t) is a (weak) lower
solution and 0 < u−(t) < u+(t). Proposition 4.2 implies that
we can obtain a positive solution of equation (4.1). And since
− 2β

n+1 + 1 > 0, we get
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∫ +∞

t0

(
f(t)2

1 + f(t)2

)1
2

dt =

∫ +∞

t0

u(t)
2

n+1√
1 + u(t)

4
n+1

dt

≥
∫ +∞

t0

(t−β)
2

n+1√
1 + (t−β)

4
n+1

dt

≥ 1√
2

∫ +∞

t0

t−
2β
n+1dt = +∞

and

∫ +∞

t0

f(t)dt =

∫ +∞

t0

u(t)
2

n+1dt ≥
∫ +∞

t0

t
−2β
n+1dt = +∞,

which, by Remark 3.2, implies that the resulting warped product
metric is a future geodesically complete one. �

Remark 4.6. In case that R(g) = 4n
n+1k and 4n

n+1dt
2 ≤ R(t)

where k, d are positive constants, we do not know whether or not
our resulting Lorentizian warped metric is a future geodesically
complete one.
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