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ABSTRACT

Quantitative Analysis of Three-dimensional
Morphology and Biophysical Cell Parameters of Live
Cells using Digital Holographic Imaging

Faliu Yi
Advisor : Prof. Inkyu Moon, Ph.D.
Department of Computer Engineering

Graduate School of Chosun University

For semitransparent or transparent biological cells, the intensity based
two—dimensional (2D) imaging system suffers from losses of a large amount
of quantitative detailed information about cell structure and content. 2D
imaging method also results in low-contrast image. On the contrary,
three-dimensional imaging (3D) technique such as digital holography comes to
the forefront as promising tools for 3D biological cells visualization, pattern
recognition and study of their dynamics as it can provide rich 3D information,
such as the surface morphological and optical thickness data of these
microscopic objects. Among a large number of developed 3D imaging
platforms, digital holographic microscopy (DHM) as a promising 3D imaging
system has widely viewed in life sciences, medical diagnoses, and medicine
due to its advantages in terms of easy configuration and fast imaging,
low-cost and non-destruction to microorganisms.

In this dissertation, The automated analysis of 3D cells that are obtained by

DHM is focused. Totally, two different kinds of transparent cells, which are

_vi_



red blood cells (RBCs) and cardiomyocytes, are three-dimensionally imaged
and quantitatively analyzed. Both RBCs and cardiomyocytes phase images are
numerically reconstructed from holograms recorded by DHM. RBCs has been
extensively studied in bio—medical fields due to its important functionality in
delivering oxygen from lungs to body tissues and transporting carbon dioxide
from the tissues to the lungs. The resulted characteristic properties of 3D
RBCs from DHM are beneficial to characterize cell storage lesions, recognize
unnormal RBCs, and evaluate drug testing. On the other hand, cardiomyocytes
or myocardial cells, which are the main contractile elements of the heart
muscle, generate human heart beating and control blood flow through the
blood vessels of the circulatory system. The automated analysis of 3D
cardiomyocytes are crucial to improve the predictability of compound toxicity
through safety profiling assays during the lengthy drug discovery process in
order that potentially toxic compounds are detected early in the process before
significant time and important financial investments are made. Experimental
results are presented that demonstrate the feasibility of the automated

analysis procedure for both 3D RBCs and cardiomyocytes.
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1. Introduction

For semitransparent or transparent biological targets, the intensity based
two-dimensional (2D) imaging system suffers from losses of a large amount of
quantitative detailed information about cell structure and content. 2D imaging
method also results in low-contrast image [1-4]. Even though some advanced
2D imaging systems, such as quantitative phase contrast and differential
interference contrast microscopes [3-6], have the feature to quantitatively
investigate the biological microorganisms to some extent, they cannot provide
optical thickness information about the imaging biological cells, which in turn
make the analysis of microscopic object limited. 2D imaging microscopic system
has fundamental limitations on quantifying information about 3D morphology,
dry mass production, and density of the biological cells. Moreover, it is difficult
to dynamically visualize the character of variations in morphology of
semitransparent or transparent microorganisms because they seen to be the
same under 2D imaging microscopic systems [7].

The three-dimensional (3D) holographic imaging system has been studied for
visualization, identification, and tracking of biological micro/nano- organisms
[8-20]. In the areas of biomedical imaging, defense, medical diagnosis, medical
therapeutics, and security, the 3-D holographic imaging system has a lot of
potential [8-26]. Consequently, 3D digital image processing, which can directly
affect future research on the microscopic objects under study, becomes more
and more important because it becomes easier and more convenient to obtain
the computational 3D image of the microorganisms with the development of the
3D optical holographic imaging system. Without limitations existed in 2D image
system, the holographic images reconstructed numerically from a hologram
obtained by 3D digital holography-based imaging systems can provide rich 3D
information, such as the surface morphological and optical thickness data of the

microorganism targets, which make it possible for the 3D measurement of



microscopic objects. Among varied number of 3D imaging techniques, digital
holographic microscopy (DHM) as one of the promising 3D imaging methods
has been widely researched for observation, metrology, and tracking of
biological micro/nano-organism as it is a low-cost and non-invasive, fast
imaging and easy configured approach [27-32]. Compared with classical optical
microscopy, DHM provides a major advantage in overcoming the classical depth
of field Iimitation. DHM 1is also a quantitative phase imaging technique which
directly and non-invasively provides the optical thickness of biological cells in
live and dynamic conditions which other 3D imaging techniques such as the
electron microscopy are destructive to the imaging cells. Since DHM is not
destructive for specimens, they can be investigated once more by any other
optical imaging systems.

In this dissertation, the automated analysis of 3D cells that are obtained by
DHM is focused. Totally, two different kinds of transparent cells, which are red
blood cells (RBCs) and cardiomyocytes, are three-dimensionally imaged and
quantitatively analyzed. Both RBCs and cardiomyocytes quantitative phase
images are numerically reconstructed from holograms recorded by DHM. As
essential ingredients of human being, the automated analysis of both 3D RBCs
and cardiomyocytes are helpful to the investigation of RBC-related and
cardiomyocyte-related diseases [7]. Moreover, the characteristic properties of
these 3D cells can be used to screen the compounds during drug testing.

RBCs are essential ingredients of bloodstream in human being. They cannot
only deliver oxygen to body tissues via the blood flowing through the
circulatory system in vertebrate organisms, but also absorb oxygen in the lungs
and release it when squeezing through the body’s capillaries [33-34]. Normally,
a relatively stable number of RBCs is maintained in the circulatory system and
it 1s necessary to stimulate RBCs production with medications for patients
suffering from anemia. Recent studies show that there are numerous
biochemical, structural, inflammatory, and physiologic changes in stored red

cells, referred to as red cell storage lesion, which to some extent impacts the
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clinical outcome in transfused patients [35]. Therefore, the analysis of some
quantitative cell parameters provided by DHM, including 3D morphology, mean
corpuscular volume, and hemoglobin content at different storage periods will be
helpful to characterize red cell storage lesions [36]. Moreover, it is estimated
that the composition of RBCs types in human blood would be different for
varied RBC-related diseases. The disordered change of 3D RBC in morphology
shape can affect other body tissues indirectly. As a result, it is extremely
important to have a classificaton algorithm that can categorize different types of
RBCs effectively and efficiently in order to overcome the shortage of the
traditional method that is time-consuming and labor-intensive [4]. In addition,
counting cell types in the blood is an important task for evaluating clinical
status. However, the RBCs extraction which refers to as RBCs segmentation
has to be conducted first in order to measure the characteristic properties of
each RBC. RBCs segmentation also benefit to the further RBCs analysis such
as RBC recognition and tracking. In this dissertation, three directions are done
in terms of automated 3D RBCs analysis after the RBCs phase images are
numerically reconstructed from holograms that are recorded with DHM system.
The fundamental and the most important one is the RBCs segmentation [37].
The results of RBCs segmentation can directly affect the following study of
RBCs. A good RBCs extraction method should at least results in low
over—-segmentation and under-segmentation. The second research direction about
3D RBCs is the quantitative analysis of RBCs stored in different periods. These
results would reveal the relationship between the RBC characteristic properties
and their aging. This analysis will also be beneficial to the understanding of
the features of RBCs with different storage periods and evaluation of any
modifications in the 3D cell morphology and hemoglobin content induced by the
length of storage time. The third research direction about 3D RBCs is the
automated counting of morphologically normal RBCs. This will be helpful to
measure the percentage of typical normal shapes of RBCs in a reconstructed

RBC phase image that consists of multiple RBCs for disease diagnosis and drug
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testing.

Cardiomyocytes or myocardial cells [38], which are the main contractile
elements of the heart muscle, generate human heart beating and control blood
flow through the blood vessels of the circulatory system. Like many other types
of biological cells, cardiomyocytes are mostly transparent.The optical imaging
systems used to capture cardiomyocytes images previously reproted include
fluorescence microscopy, atomic force microscopy, phase contrast and differential
interference contrast microscopy [39-42]. For fluorescence microscopy, biological
molecules can be fluorescently stained and the location of a protein can be
traced. However, the fluorescence is not permanent and easily fades. In addition,
fluorescence labeling can induce adverse effect on the measured molecule or
interfere with the parameter assessed. Similarly atomic force microscopy
provides a 3D surface profile of the samples. However, this technique is limited
by its scanning speed. On the contrary, DHM as described previously is a
label-free quantitative imaging technique, able to non-invasively capture the
entire complex field distribution including the amplitude and phase information
of cardiomyocytes. Consequently, much richer information on the cardiomyocyte
structure can be obtained by using DHM. During the lengthy drug discovery
process it is crucial to improve the predictability of compound toxicity through
safety profiling assays in order that potentially toxic compounds are detected
early in the process before significant time and important financial investments
are made. Between 1994 and 2006 from the new drugs approved by the US
Food and Drug Administration (FDA), 38 were later withdrawn from the
market because of safety concerns, the majority being cardiotoxic or
hepatotoxic. Safety assements are therefore performed in preclinical drug
development for revealing the possible drug side effects in particular those that
may affect the electrical conduction and beating of the heart [43-47]. Therefore,
researchers and pharmaceutical companies have to ensure that the effect to lead
candidate compounds on cardiac function strictly satisfy criteria. Consequently, it

1s critical to establish more informative in vitro cardiotoxicity screens and data
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analysis algorithms at the early phases of drug development for preventing late
stage failure [48-50]. In the present work, the dynamic phase profile of beating
cardiomyocytes, which are proportional to the optical path delay profile of the
cell, are reconstructed from holograms that are captured through DHM. The
beating activities of cardiomyocytes, and contraction and relaxation profiles are
derived from the reconstructed phase image. In addition, other characteristic
parameters used to categorize phenotypes such as rising time, falling time, peak
width, and frequency are analyzed. These parameters are valuable for the
analysis of drug candidates’ effects on cardiomyocytes. More precisely, the
dynamic beating profile of cardiomyocytes are obtained with two proposed
methods, either by monitoring the average or the variance information of
imaged cardiomyocytes. On the other hand, the contraction and relaxation
movement of cardiomyocytes are quantified by analysis the difference between
two successively acquired DHM phase images. The automated procedure for
multiple parameters recording on cardiomyocytes dynamics for application in
drug toxicity screens is proposed.

This dissertation is organized as follows. In section 2, the digital holographic
microscopy 1s described. In section 3, the automated analysis of RBCs phase
images obtained by DHM with experimental results is given. In section 4, the
automated analysis about multiple parameters of dynamic cardiomyocytes images
resulted from DHM 1is presented along with experimental results. Then, this

dissertation is concluded in section 5.



2. Digital holographic microscopy

Digital holographic microscopy (DHM) has been studied for application in the
field of cell biology, including automated cell counts, recognition, classification,
three—dimensional tracking, and discrimination between physiological and
pathophysiological states [27-32, 51-55]. Briefly, DHM is a label-free
interferometric microscopy technique which provides a quantitative measurement
of the optical path length. It is a two—step process where a hologram consisting
of an interference pattern is first recorded on a digital CCD camera and the
quantitative phase 1mages are reconstructed numerically using a specific
algorithm [56-57]. With current computer power, the reconstruction process can
be achieved on-the-fly at a speed of 100Hz. The quantitative phase images are
related to the optical path difference (OPD)expressed in terms of physical
properties as:

OPD(z,y) = d(z,y) < [n.(z,y) —n,], oY)

where d(x,y) is the cell thickness, n.(z,y) is the mean intracellular refractive
index integrated along the optical axis at the (x,y) position and n,,is the
refractive index of the surrounding culture medium. Simply, Equation 1 means
that the OPD signal i1s proportional to both the cell thickness and the
intracellular refractive index, a property linked to the protein and water content
of the cells [564-55]. DHM systems generally use a low intensity laser as a
light source for specimen illumination and a digital camera to record the
hologram. Here, the 684 nm laser source delivers roughly 200 pw/ecm? at the
specimen plane - that is some six orders of magnitude less than intensities
typically associated with confocal fluorescence microscopy. With that amount of
light, the exposure time is only 400 us. An extensive quality control of DHM
can be found in [55]. The schematic of the off-axis digital holographic
microscopy 1s shown in Figure 1.The experimental setup in Figure 1 is a

modified MachZehnder configuration with a laser diode source (A= 684 nm). The
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laser beam is divided into a reference wave and an object wave. The object
wave is diffracted by the biological samples, magnified by a 40x/0.75NA
microscope objective and interferes, in the off-axis geometry, with the reference
wave to produce the hologram recorded by the CCD camera. The reconstruction
and aberration compensation of the microorganism wavefront is obtained by

using the numerical algorithm described in [56-57].

Beam Splitter

—Reference Wave

@

Taser BeamExpander

Beam Splitter

Fig. 1 Schematic of the off-axis digital holographic microscopy.



3. Automated Analysis of Three-dimensional
Red Blood Cells

The holograms of RBCs are recorded on CCD camera with DHM technique.
Then, the RBCs phase images are numerically reconstructed from these RBC
holograms. In this section, the RBC phase images have to be firstly segmented
and then the segmented RBCs are used to do following analysis such as
quantitative analysis of RBCs stored in different periods and automated counting

of morphological normal RBCs.

3.1 Segmentation of Red Blood Cell Phase Images

Image segmentation is defined as partitioning an image into different regions
which have similar texture, intensity values, or color. Image segmentation as a
preprocessing step 1s imperative for the analysis of object in a higher level
such as image classification, recognition, and tracking [58]. Because of the
unnecessary background noise in the computational holographic RBC image, it is
also necessary to perform holographic image segmentation algorithm to extract
the RBC target which would be used for assessing hematological functions and
the presence of disease of RBC. A brief review of segmentation approach is

viewed and the segmentation results of RBCs phase images are presented.

3.1.1 Review of Image Segmentation Algorithms

Image segmentation algorithms are useful in the area of medical image
analysis, computer vision, object recognition, tracking, and motion analysis

[59-60]. Till now, a lot of image segmentation approaches have been proposed



but no one of them can satisfy with the segmentation requirement for all kinds
of images. Here, the image segmentation methods are classified into five
groups. They are region-based, edge-based, clustering—based, deformable
contour model-based, and graph-based segmentation schemes. The most typical

and used segmentation algorithms for each category are introduced.
3.1.1.1 Region—-based Segmentation

The conventional region-based segmentation methods consists of thresholding,
region growing, region splitting and merging.

Thresholding is the simplest and fast algorithm in image segmentation. The
grouping of each pixel point belonging to object or background is based on the
comparison between pixel intensity value and the given threshold. For instance,
f(x,y) is the pixel point value at location of (x,y) in image. It is classified as
object if f(x,y)>T while it is viewed as background if f(x,y)<T where T is the

threshold value. This process can be described as following equation:

(1 ifflzy)>T
g(x’y)_{o iffle,y) < T @)

where g(x,y) is the segmented image, f(x,y) is the intensity value at (x,y) in
the original image, and T is a given threshold. If more threshold values are
used, Equation (2) can be extended into multiple thresholding segmentation. For
threshold-based method, the choice of threshold is very important. The
threshold value can be manually selected or automatically acquired from the
analysis of histogram or intensity values of image, such as Otsu’s method that
can automatically find a threshold maximizing the variance of inter-regions [59].

For region growing segmentation method [59], some seeds representing
extracted targets should be selected in advance. Starting from these seed points,
neighboring pixel points can be recruited if they are similar with them (similar
means similar intensity value). Otherwise, the neighboring pixel is viewed as

new seed and used to recruit it’s around pixel points. Consequently, the region



connected to the seed points can be grown. The segmentation results of this
method are sensitive to the definition of similarity between seed points and
their neighboring ones. Also, this method will make the segmentation boundary
unsmooth.

For region splitting and merging [59], the original image is first subdivided
into some arbitrary, disjointed areas. Then, these small areas are merged or
splitted so as to satisfy with the prerequisite conditions. That is, the pixel
points belonging to the same region should have similar properties. The
traditional region splitting and merging method is described as following steps:

step 1: split the image into four disjoint parts.

step 2: merge any adjacent regions that reach the requirement to be one
region.

step 3! iteratively split the sub-region and merge neighboring regions until no
further merging or splitting is possible.

The region splitting and merging segmentation approach is sensitive to the
splitting and merging condition, and the segmented edge of target will be also

unsmooth as region growing segmentation algorithm.

3.1.1.2 Edge—based Segmentation

Edge detection method can find discontinuities in image with first or
second-order derivative and the discontinuities always correspond to object
edge. Edge detection methods include Sobel, Prewitt, Roberts, Laplacian of a
Gaussian, and Canny [59]. Since image usually includes many fault edges, direct
edge detection method cannot get good segmentation results. Usually,
segmentation method based on edge detection is combined with other methods
such as morphology operation [61]. Here, one of the most famous edge detection
methods-Canny edge detector and one segmentation method-watershed
transform algorithm which can be classified as edge-based segmentation

approach are introduced.
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Canny edge detection is known as optimal edge detector. This method can
reduce the error rate, localize the edge well and response only to single edge.
The process of Canny edge detection can be described as following steps:

step 1: smooth the original image with Gaussian filter so as to reduce noise
in the image.

step 2: obtain the edge strength with any one of the gradient operators such
as Sobel, Roberts, and Rprewitt.

step 3. suppress non-maxima pixels. It is implemented by checking whether
the point gradient is greater than its two neighbors along the gradient direction.
If so, it means this point may be the edge point and thus the corresponding
value is kept. Otherwise, the value is set to be zero.

step 4: using two thresholds (7; < 7,) to threshold the previous result. The
bigger threshold value can reserve apparent edges while the smaller one can
keep the week edges.

step 5 connect edge segments in thresholded image obtained with threshold
value of 7, with edge segments that result from segmented image by using
threshold value of 7). When the edge segments result from threshold value 7}
can link the edge segments obtained from threshold value 7,, then these edge
segments from 7 are used to form the final edge by combining with the edge
segments from threshold value of 7;.

Watershed transform segmentation is from the flooding simulation [59]. The
gray scale image is regarded as topological surface and the regional minimal
values are taken as valleys while regional maximal values are viewed as peaks.
When water emits from the valleys, dams are built so as to prevent water in
valleys from merging together. That is, the watershed transform can find peak
value between two neighboring valleys. The flooding simulation of watershed
transform algorithm 1is illustrated in Figure 2 with one dimension. Usually,
watershed transform is applied to gradient image since the edge having high

gradient corresponds to the peaks. The implementation of watershed transform
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can be found in [62]. Since there are many regional minimum and maximum
values in original image, it is easy to produce over-segmentation problem when
the watershed transform is applied to image directly. In order to solve this
problem, marker-controlled watershed transform algorithm is proposed. In this
algorithm, the regional minimum values only happen at the locations that are
marked. These makers consist of internal and external makers. Internal makers
usually denote the extracted targets while the external markers represent the

connected background.

® peaks
s valleys

water

Fig. 2 Ilustration of watershed transform algorithm

3.1.1.3 Clustering—based Segmentation

Clustering—based segmentation algorithms assume that the same object would
have similar intensity values. Supervised and unsupervised clustering methods
[63] which include hierarchical -clustering, partitional clustering, k-means
clustering, and fuzzy clustering methods can be used for image segmentation.
Here, the k-means clustering and mean shift segmentation method which is
also regarded as partitional clustering approach are briefly introduced.

For k-means clustering method, the number of cluster has to be defined

before applying it to image. K-means method tries to minimize a within—cluster
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sum of squares. Namely, attempt to minimize the following term [64]:

where k is the cluster number, S; is the set of the ith cluster and p; is the
mean value of the ith cluster, DQ(;z:j, u;) is the distance between a pixel point
value and the mean value p; of the ith cluster. The procedure for minimizing
formula 3 is described as following procedures:

step 1: define the number of cluster k.

step 2: randomly choose k points from the observations/pixel points as centroid
points.

step 3: group each point to one of the k clusters by comparing the similarity
between the point and the k centroid points. The comparing point is classified
into the group with the most similarity. This step will be conducted to all of
the observation points.

step 4: update the centroid points with the previous result and then do step 3.
The last two steps will be repeated until the centroid points are converged.

When the k-means clustering method is applied to image segmentation, the
number of object should be known and the values of pixel point within each
object should be similar.

Mean shift [65-67] is a kind of gradient ascent segmentation method. Firstly,
the image data should be transformed into probability density by using Kkernel
density estimation [66-67].The density obtained by kernel estimation is much
smoother than that from histogram. Then, mean shift algorithm is applied to
each point on the density where the mean shift vector will point to the
gradient. Consequently, each point will converge to the closest mode where the
mode 1s considered as a cluster center. Thus, the points that share the same
mode are regards as the same cluster belonging to the same object. The
segmentation procedure of mean shift algorithm is given as following steps.
step 1: estimate density of image with kernel density estimator as following

equation:
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Ly xx) (4)

nh i=1
when the spatial (image lattice) and range (graph level or color of spectral

information) domains are considered, K(x) can be expressed as follows.

Yy
{1 M1

where k(x) is epanechnikov kernel function, h is the size of moving window, d

K(z)= (" y'])=
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and p are dimension number while ¢ is used to normalize the function of K(x).
step 2 for each image pixel z; , initialize y;, =x; and then apply mean shift
algorithm to it until convergence. The new point resulting from =z, by using

mean shift algorithm is derived as following iteration equation.

yUH—Ew(H Y T )/Eg

where g(x)=k’(x), n is the number of samples (pixel points) within the moving

2
| ) 6)

H y?] T

window.

step 3: update the pixel value of z; as z; = (zj,y/ ). That is, the value of pixel
point at location z; is assigned with the converged feature point yf which 1is

the mode in the probability density. As a result, pixel points with the same
mode are viewed as the same cluster and belong to the same object.

The above three steps are the fundamental procedures for image segmentation
with mean shift algorithm. However, it is also easy produce over-segmentation
problem. For better segmentation performance, more procedures such as

merging smaller regions should be included.

3.1.1.4 Deformable Contour Model-based Segmentation
There are two kinds of deformable contour model-based segmentation method

[68-69]. They are parametric model and geometric deformable mode. The former

1s usually referred to as snake and the latter one as level set. The contour in a
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parametric model is propagated directly on the image which means the points
on the curve is parameterized and evolved explicitly while the evolution of
contour on the level set is independent to any parameterization and the curve is
propagated implicitly by evolving a surface in a high dimension. The basic
concept about snake and level set are described as follows.

The curve in snake model is defined as wv(s)= [z(s),y(s)] where x(s) and
y(s) are x and y coordinates in image and s€[0,1] are points on the snake.
The segmentation is achieved by minimizing an energy function on the snake

which is expressed as follows [69-70]:

1
Es’na,ke = / Es’nu,k,e (U (S ))dS (7)
0

= [ B )+ B o)+ B (015))

where F,,, is the internal energy due to bending of curve, £,,, is energy from
image force and E,, is energy from external constraint forces defined by user.
The internal and image energy can be simpled expressed as following equations
for image segmentation.

v |’
ds®
By =— IV f(z,y)] 9)

— | +p8(s) (8)

where a(s) and B(s) specify the elasticity and stiffness of the snake, Vf(z,y)
is the image gradient. When calculus of variation [] is applied to the functional

in equation 7, the Euler-Lagrange condition can be derived as follows.

d dv d’
vE’ezt (U) Ea dS d 26 (10)
where E,,,=E,,,+E,, Then, the evolution equation can be formed as

equation 11.

vis,t+1)= 11

d dv(sit) d* dv(s,t)
I T N , A
dS @ dS d82 ﬁ d$2 VEfﬁ.lft(v(S/t)) X t"”l}(s,t)

However, the implementation is easy to suffer from numerical instability and
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numerous parameters have to be designed. Many kinds of varied snakes can be
found in [71-73].

The snakes cannot properly deal with split and merge problem during image
segmentation while level set can solve those disadvantages. As level set
[74-75], the curve X(s;t) is embedded into a level set function ®(x,y,t) and the
curve is obtained by determining zero level set in the level set function.
Consequently, the curve can be obtained by evolving the level set function and
be chosen as the zero level set instead of evolving the curve explicitly. The
embedded curve in level set can be described as following equation [68].

D(X(s,t),t)=0 (12)
use chain rule and do differential to Equation 12 with respect to t, the following
equation can be achieved:

%+ v@%: 0 (13)
when the speed of the curve 8X/8t= V(c)N and the inward unit normal of
level set curve N=—v&/|v®| is inserted into Equation 13, the curve evolution
using the level set method can be described as follows:

2 Vo)l val (14)
where V(c) is the speed function. The basic speed function from image can be
written as 1/(1+ |V (G, x I)|) where V(G, * 1) denotes the gradient of
smoothed image with Gaussian filter. As implementation, an initial level set
function that the curve has zero level set should be defined. Since Equation 14
is defined only for zero-level set, other level sets also need to be defined for

implementation. A large number of varied level set methods can be found in

[76-81].
3.1.1.5 Graph-based Segmentation

The snake and level set segmentation method can be also classified as
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energy—based segmentation algorithm. These methods cannot reach global
minimum energy during function minimization. Here, only the graph -cut
segmentation approach [82-85] which try to minimize an energy function with
graph cut and can achieve global minimum value is focused.

A graph denoted as G=<V,E> includes node and weight. The cut is the total
weight of edges that have been removed between two groups resulted from a
cut in the graph. Image segmentation based on graph cut is to find the
minimum cut which can reach minimum energy. The energy for graph cut

segmentation is defined as following equation [82-83].

E(A)=)\R(A)+ B(A) (15)
where R(A) and B(A) are defined as:
R(4)= Y R /(4,) (16)
pEP
BA)=Y Y B, 4,4, (17)
pEP p,gEN
1 A =A
where §(A4,,A,)= b
)T 4, =4,

where R(A) is called as regional term and defines the penalties for assigning
A, (pixel point p on image) to object or background which can be denoted as
R,(obj’) and R,('bkg’), B(A) is the boundary term which describes the
boundary properties of the segmentation, A is the relative importance factor
between regional and boundary term. The energy function in Equation 15 can
be minimized by the graph cut theory while the cut is the segmentation
boundary. To get segmentation result, the graph should be established first by
using the original image. Then, the minimum cut of the graph can be obtained
by max-flow algorithm [59] which can achieve the minimum cut. When the
result is not good, the refinement/interactive process can be used. For graph
construction, two extra terminal nodes (other nodes that are not from image
pixel points) which represent object and background are applied and this kind
of graph i1s called as s-t graph. After the nodes are defined, next step is to

give weight to the corresponding edges. The weight can be given as criterion
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shown in Table.l [82-83].

Table. 1 Graph Construction

Edge Weight Condition
n-link {p,q} B{p,q} P,qEN

AR, ('bkg") pEP, pE OUB
t-link {p,s} K pEO

0 pEDB

)\Rp(,obj,) pEP, pEOURB
t-link {p,t} 0 pE O

pEB

where n-link is the edge between nodes in image, t-link is the edge between

nodes in image and two terminal nodes (s and t nodes), By, ,,R,('bkg’), K, and

qb

R,('obj") are defined as follows:

I—1)
By, ;0 exp|— < QQ) (18)
' 20
K=1+ 13X ( B,() (19)
pEP q:{1§61v (p.a)
R,('obj’) =—1n Pr(1]0) (20)
R,('bkg') =—1nPr(1|B) (21)

where {p,q} denotes two neighboring nodes in image, Pr(Z|0) and Pr(Z|B)
denote the intensity distribution of object and background which are usually
estimated from the seed points that are manually selected or automatically
detected. When the weight in graph is assigned as the method showed in
Table.l, the min—cut can be achieved by max-flow method and the minimum
energy in Equation 15 is achieved while the cut edge is corresponding to the
segmentation results. The graph cut segmentation is widely used in interactive

segmentation approach.
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3.1.2 Segmentation Results of Red Blood Cell Phase

Images

Red blood cells of healthy laboratory personnel were obtained from the
Laboratoire Suisse d’Analyse Du Dopage, CHUV. The RBCs were stored at
4° ¢ and DHM measurements were conducted on several days after the blood
were drawn from the laboratory personel. 100-150ul of RBC stock solution were
suspended in HEPA buffer at 0.2% hematocrit. 4ul of the erythrocyte
suspension were diluted to 150ul of HEPA buffer and introduced into the
experimental chamber, consisting of two cover slips separated by spacers 1.2
mm thick. Cells were incubated for 30 min at a temperature of 37° C before
mounting the chamber on the DHM stage. All experiments were conducted at

room temperature (22° Q).

(a) (b)
Fig. 3 Reconstructed RBCs phase images. (a) The RBCs with predominantly
stomatocyte shape. (b) The RBCs with predominantly discocyte shape

The RBC phase images are numerically reconstructed from the RBC

holograms that are recorded with DHM. Two of the reconstructed RBC phase
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images are shown in Figure 3. The Figure 3(a) are reconstructed RBCs phase
image with RBCs of predominantly stomatocyte shape and Figure 3(b) are
reconstructed RBCs phase image with RBCs of predominantly discocyte shape.
By analyzing a series of segmentation methods, the marker—controlled watershed
transform segmentation method combined with morphological operation 1is
applied to remove the unnecessary background existed in RBCs phase image
due to its advantage in terms of getting isolated target. The detail procedures
for segmenting RBCs phase images with marker—controlled watershed transform
can be found in [37]. Consequently, each RBC can be separately extracted and
the corresponding features can be measured for the further analysis. Two of the

segmented RBCs phase images are given in Figure 4.

(a)
Fig. 4 The segmented RBCs phase image. (a) The segmented RBCs of Fig.3(a)
(b) The segmented RBCs of Fig.3(b).

Moreover, the inside part of RBCs are also helpful for the analysis of
RBC-related disease. It is meaningful to extract the inner part of RBCs as well.
The marker—-controlled watershed transform method can also be used to
segment the inside area of RBCs based on the segmented RBCs phase images

shown in Figure 4. Consequently, it is easy to derive the outer part of RBCs

_20_



once the inner parts are obtained. The segmentation results of inner and outer

part of RBCs are given in Figure 5 [37].

©) ' A

Fig. 5 Segmentation results of the inner and outer parts of the RBC phase
images. (a) and (b) are the inner part of RBCs in Fig. 4(a) and (b). (c) and (d)
are the outer part of the RBCs in Fig. 4(a) and (b).

It is noted from Figure 4 and Figure 5 that the marker—controlled watershed
transform segmentation method combined with morphological operation can

segment the RBCs phase image properly, not only robust to the whole RBCs

_21_



but also to the inner and outer part of the RBCs. This segmentation method
can be used to segment the RBCs phase images and do the further analysis

about RBCs.

3.1.3 Performance Comparison and Evaluation

The segmentation results about RBCs with predominantly stomatocyte and
discocyte shape are compared and evaluated. These RBCs segmented with
conventional marker—controlled watershed algorithm in [59] are given in Figure
6. It 1s noted from Figure 4 and Figure 6 that our method can get much better

segmentation results in terms of over-segmentation and under-segmentation.

(a)
Fig. 6. The segmented RBCs with marker—controlled watershed method in [59].
(a) The segmented RBCs of Fig. 3(a) (b) The segmented RBCs of Fig. 3(b).

Moreover, a scientific tool developed by F. Sadjadi [103], which is based on
the experimental design methodology and independent of the systems output has
been applied for performance evaluation. The performance comparison of two

algorithms with biased results is mainly dependent on the varied parameters in
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segmentation. The procedure of the performance evaluation approach can be
briefly described as steps of data characterization, data sampling, primary
parameter selection, parameter sampling, performance metrics definition,
performance model calculation and statistical analysis. The quantitative phases
of RBCs in this study are given to two categories namely stomatocyte and
discocyte shape RBCs. The primary parameter which largely affects the
segmentation result in our procedure is the value of threshold obtained by
Otsu’s method while the main parameter for the marker—controlled watershed in
[59] is also a threshold which is used to find the regional minimum values. The
assessment of segmentation results for RBC inner and outer parts are not
conducted because they heavily rely on the previous segmentation results. For
the performance metrics, the segmentation accuracy is adopted and it is simply
defined as the absolute value of correlation between segmented RBCs image and
reference image which is manually obtained. The closer the segmented image
is to the reference image, the closer the segmentation accuracy will tend to
approach 1.

The homologous performance models between segmentation accuracy and
threshold for RBCs with stomatocyte and discocyte shape are presented in
Figure 7. For curve fitting, the least square error estimation technique was
employed and the polynomials were examined with degrees up to 6. Then,
statistical analysis of Chi—squared test was performed for checking of the
similarity between the obtained results (the measured data with the
segmentation method and that in the fitted polynomial) [103]. Consequently, the
p-values for the null hypothesis that the predictive performance models
approximately satisfy with the measured response curve were achieved to be
0.7578, 0.3571, 09135 and 0.1213 for Figure 7(a), (b), (c) and (d) respectively.
Therefore, the null hypothesis that the fitting curve is similar with the
measured one should be accepted at the 0.05 level of significance. It is also
noted that the maximum segmentation accuracy in our method outperforms that

presented in [59].
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Fig. 7 Performance models. (a) and (b) are performance models for RBCs with
stomatocyte and discocyte shape in the method of [59]. (¢) and (d) are
performance models for RBCs with stomatocyte and discocyte shape in our

proposed procedure.

3.1.4 Subsection Summaries

In summary, all of the segmentation methods can work well for image that
the target is very different from the background and the intensity values of the
pixel points of the same region are very similar. Among these segmentation
approaches, thershold-based method has the advantage of fast computation time.
However, it is difficult to choose an appropriate threshold. Region growing,
region splitting and merging method can get better segmentation results when
the property of target is very similar. This kind of method suffers from

unsmooth boundary and is not easy to define the stop criterion. In addition, this
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method is not good for segmented targets with weak boundary. As edge-based
segmentation algorithms, the most used methods such as Sobel, Prewitt,
Roberts, Laplacian of a Gaussian and Canny will work well when they are
combined with other post-processing techniques such as morphology operation.
It is also easy for these methods to produce false edges due to image noise.
For watershed transform segmentation algorithm, it has the advantage to get
isolated object and disadvantage of producing over-segmentation. However,
when the object can be approximately detected, the marker-controlled watershed
algorithm will work well and can reduce the over-segmentation problem.
Usually, the segmentation results are not good when the edge-based method is
used solely. For clustering-based segmentation, assumption that each region
should have similar property is required. This kind of method is also robust to
color image. After clustering the pixel point, post processing such as merging
small region is necessary. Snakes and level set segmentation method can be
applied to medical image with heavy noise and weak edge in object. Compared
with snakes, level set algorithm can solve the split and merge problem during
the curve evolution. These kinds of methods are widely used in biomedical
images. For the graph cut segmentation method, the regional and boundary
information on 1image are combined. The graph cut can work well when
different targets are existed in image. The graph cut method can get
appropriate segmentation results to all kinds of image when the user’s
intervention 1is introduced. All kinds of segmentation methods have many
improved version which can reach an acceptant execution time. For the
segmentation of RBCs phase images, the RBCs phase images are segmented by
using marker-controlled watershed transform algorithm due to its advantages of
achieving isolated object while the internal and external markers are identified
with morphological operation and thresholding technique. Moreover, the
execution time of watershed transform algorithm is acceptable compared with

active contour and graph—based segmentation approaches.
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3.2 Quantitative Analysis of Human Red Blood Cells

Stored in Different Periods

In this section, the modifications of the 3D morphology and mean hemoglobin
(MCH) in RBCs induced by the length of storage time for the purpose of 3D
classification of RBCs having different storage periods by using an off-axis
DHM 1is studied. To analyze the morphological changes in RBCs induced by the
length of storage time, datasets from blood samples stored for 8, 13, 16, 23, 27,
30, 34, 37, 40, 47, and 57 days are used, respectively. The datasets are divided
into eleven classes of RBCs stored in eleven different periods. The eleven
classes have more than 3,300 blood cells, with averagely more than 300 blood
cells per class. The classes indicate the storage period of RBCs and are listed
in chronological order. Using the RBCs donated by healthy persons, off-axis
digital holographic microscopy reconstructs several RBC quantitative phase
images from each class of blood sample. In order to automatically calculate the
characteristic properties such as projected surface area, averaged phase value,
corpuscular volume, hemoglobin content and hemoglobin surface density of
RBCs, the image segmentation method [37] based on marker—controlled
watershed algorithm [59] is applied to remove the unnecessary background in
the RBC quantitative phase image. All the RBCs that exist in the quantitative
phase image are extracted to measure the characteristic properties of RBCs.
Averagely, more than 300 RBCs are extracted from the segmented quantitative
phase images for each class of blood sample. The sample size is large enough
to allow us to obtain statistical distributions of the characteristic properties of
RBCs at a specific storage time. Our main focus is to quantitatively analyze the
relationship between the RBC characteristic properties and their aging. This
analysis will be beneficial to the understanding of the features of RBCs with
different storage periods and evaluation of any modifications in the 3D cell

morphology and hemoglobin content induced by the length of storage time.
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3.2.1 Sample Preparation

The original RBC’s were donated by healthy people and stored in a
transfusion bag which were obtained from the Service Régional Vaudois de
Transfusion Sanguine in Switzerland and stored at 4°C during the storage
period. The erythrocyte concentrate was extracted from the blood transfusion
bag and diluted in HEPA buffer (15 mM HEPES pH 7.4, 130 mM NaCl, 54
mM KCI, 10 mM glucose, 1 mM CaCl2, 0.5 mM MgCI2 and 1 mg/ml bovine
serum albumin) at a concentration of ~ 0.15 % Vol. 0.2 ml of the erythrocyte
suspension was then introduced into the experimental chamber, consisting of
two coverslips separated by spacers 1.2 mm thick. In order to allow for
sedimentation of the cells on the bottom coverslip, cells were incubated for 30
min at a temperature of 37°C before mounting the chamber on the DHM stage.

All experiments were conducted at room temperature.

3.2.2 Three-dimensional Sensing and Segmentation of
Red Blood Cells

To analyze morphological changes in RBCs induced by the length of storage
time, eleven classes of blood samples stored for 8, 13, 16, 23, 27, 30, 34, 37, 40,
47, and 57 days were prepared. The off-axis DHM reconstructed several RBC
quantitative phase images for each class of blood samples, where holograms of
RBC preparations were acquired in an out-of-focus plane. In-focus phase
images of RBCs were obtained through a numerical reconstruction of the object
wavefront and subsequent digital propagation of the reconstructed field to the
focus plane. Most of the contained RBCs are discocyte RBCs which have a
discoid-shape. Some of the reconstructed RBCs phase images are given In

Figure 6 [86].
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(e) (f)
Fig. 8 Reconstructed RBCs images at different storage days. (a)-(f) are
RBCs with 8, 16, 30, 34, 47 and 57 days of storage, respectively.

For automated investigation of the characteristic properties of RBCs,
individual RBC must be extracted from the quantitative phase image. The
segmentation method based on marker—-controlled watershed algorithm as
described in section 3.1 is applied to remove the background from the
quantitative phase images. For the purpose of comparing the RBC quantitative

phase images with different storage times, the phase value of the background of
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the RBC quantitative phase image is set to 0°. The corresponding segmentation

results for RBCs phase images shown in Figure 8 are given in Figure 9.

Fig. 9 Segmentation results of Reconstructed RBCs images at different
storage days. (a)-(f) are the corresponding segmented RBCs images shown in
Fig.6 (a)-(f) with 8, 16, 30, 34, 47 and 57 days of storage, respectively.
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3.2.3 Measurement of Red Blood Cells Features

The characteristic properties used to analyze the 3D morphological changes in
RBCs induced by the length of storage time are the projected surface area, the
mean phase value allowing to calculate mean corpuscular volume (MCV),
hemoglobin (MCH) - the average volume and mass of hemoglobin per red
blood cell in a sample of blood - and MCH surface density (MCHSD), defined
as the ratio of MCH to the projected surface, three highly relevant parameters,
altered in various pathological states.

The average phase value @ induced by the whole RBC which is related to
the dry mass [87] and the projected surface area S which may influence the
functionality of RBCs are defined as follows:

1 <

&= Wi; ©; (22)

S= Np* (23)

where N is the total number of pixels within a RBC, p denotes the pixel size
in the quantitative phase image, and ¢, is the phase value of each pixel within
the RBC. RBC volume or the size of RBC is a good indicator of the
functionality of RBCs. A RBC with a larger volume means a larger surface
area and thus can transform more oxygen [88]. It is also beneficial to the
diagnosis of polycythemia vera [89]. According to [87], the volume of a single

RBC, or the corpuscular volume is denoted as:

N
Pz)\Z%

Vg 27T(nrb(: - nm)

; (24)

where p is the pixel size in quantitative phase image, ¢; is the phase value
of each pixel within the RBC, and )\ is the wavelength of the light source.
Coherently, when a population of RBCs is considered, Equation. (24) allows us
to derive the mean corpuscular volume (MCV) [90]. The refractive index of

RBCs, nrbc, has been measured with a dual-wavelength digital holographic
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microscope as described in [91]. Here, nrbc, is 1.396 with no significant
difference between groups of different ages. The index of refraction of the
HEPA medium, nm, is 1.3334. Another important characteristic property is the
dry mass which measures the weight of the cell after dehydration. The dry
mass 1s a reliable biomass, which is widely used to compare cells since it is
free from the disturbance of water existing in living beings [87]. According to
[87, 92], the dry mass of a cell is related to the phase value and can be defined

as follows:

Dry Mass (DM) 10)\ fgo ds = &455 (25)

where )\ is the wavelength of the light source, @ is the average phase value
induced by the whole cell, o« is a constant known as the specific refraction
increment (in m3/kgordl/g) related mainly to the protein concentration [29]. As
far as RBCs are concerned, o= a,, =0.00196dl/g is the hemoglobin refraction
increment between 663nm and 682nm [90]. When a RBC population is
considered Equation. (25) provides the mean corpuscular hemoglobin (MCH)
according to [92]. The MCH is used as an important parameter for the
investigation of change in the hemoglobin content in the RBCs.

The last property used to evaluate the morphological changes in RBC induced
by the length of storage time is the MCH surface density (MCHSD), which can
show the hemoglobin concentration. It is defined as the ratio between MCH and
projected surface area S as follows:

MCHSD = MTCH (26)

All the properties defined as in the above equations can be appropriately
calculated and compared by using the segmented RBCs phase images stored at

different periods.
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3.2.4 Experimental Results and Discussion

After segmentation and extraction of RBCs from the quantitative phase
images, the characteristic properties including the mean projected surface area
S, the mean average phase value &, MCV, MCH and MCHSD as well as their
standard deviation were calculated for each class of blood sample with method
of moments [34]. In the same way, the mean and standard deviation of the
projected surface area for RBCs with different storage periods can be calculated.
The other properties of RBCs including corpuscular volume (CV) hemoglobin
(CH) and hemoglobin surface density (CHSD) can also be obtained by the
method of moments. Table 2 shows the calculated mean and standard deviation

for all of the characteristic properties of RBCs with different storage times [86].

Table. 2 Characteristic properties of RBCs with different storage days

storage time[days] 8 |13 116 | 23 | 27 | 30 | 34 | 37 | 40 | 47 | 57

projected mean | 45 | 46 | 47 | 45 | 47 | 42 | 43 | 41 | 39 | 34 | 26

area std 5 6 7 7 10 8 9 8 9 9 6
Mean phase| mean | 74 | 74 | 81 | 76 | 77 | 76 | 78 | 87 | 96 | 112 | 136
value std 12 |15 |16 | 16 | 15 | 24 | 21 | 26 | 27 | 28 | 28
cv mean | 91 | 92 [ 102 | 94 | 98 | 8 | 8 | 93 | 98 | 98 | 94
std 9 12 14 14 15 20 12 11 12 13 11
CH mean | 32.2 323|357 328|348 | 292 | 309 | 32.7 | 336 | 346 | 325

std 50 | 55| 77|73 |86 | 76 | 61|57 |50 68 |51

CH surface mean | 0.70 [ 0.70 | 0.76 | 0.71 | 0.72 | 0.71 | 0.73 | 0.82 | 0.90 | 1.05 | 1.28

density std 011013014 |0.15]0.14| 023 | 0.20 | 0.24 | 0.25 | 0.26 | 0.26

All of the property values are measured automatically once the RBC phase
images are successfully segmented. It can be seen from Table.2 that the mean
phase value and CH surface density have similar variation tendency that tend
to increase as the increase of storage time. For CV and CH, they don’t change

quickly as the extension of storage time and seem to fluctuate around their
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respective mean value. In contrast, the RBC projected area is obviously
decreased as the increase of storage days. On the other hand, the standard
deviations for all of these properties achieve significant value when the RBCs
storage time is around 30 days (27-34days). Around 30 days’ storage, the
standard deviations of projected area, CV and CH achieve big value. As RBCs
mean phase value and CH surface density, the standard deviations are inclined
to iIncrease at the time with 30 storage days. These phenomena may be
explained that the RBCs are suffering from drastic variation when the stored
days are around 30 days.

In order to view the trend of the modification of the 3D morphology of RBCs
as a function of storage time, the mean and standard deviation are plotted
against storage time.

Figure 10 presents the relationship between the mean projected surface area,
mean average phase value and the varied storage time of RBC samples. It was
discovered that the variation trends of RBC projected surface area and the
average phase value are almost opposite as the increase of storage days.

Figure 10(a) shows the relationship between the mean projected surface area
S and storage time. Roughly, the trend of S of RBCs decreases with increasing
storage time. As shown in Figure 10(a), it is noted that when the storage time
of RBCs is less than 27 days, S remains quite constant. Furthermore, the
decrease rate of S for RBCs with storage time less than 34 days is much
smaller than that for those with storage time longer than 34 days. When the
storage time is longer than 34 days, S experiences a substantial decrease. On
the other hand, Figure 10(b) shows the relationship between the mean average
phase value & [see Equation.(22)]and storage time. ¢ and its standard deviation
are obtained from 300 individual RBCs in each class of blood sample. From
Figure 10(b), it can be observed that does not experience a significant change
when the storage time is less than around 34 days. In contrast, when the

storage time is longer than 34 days, @& apparently increases. As can be seen
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from Figure 10(a) and Figure 10(b), both S and & remain constant when the
storage time is less than around 34 days. However, S and & change in the
opposite directions when the storage time of RBCs is longer than 34 days.
Decrease in S results in the increasing occurrence of echinocytes in the RBC
preparations. RBCs that have aged significantly begin decomposition and have a
serrated margin and burr appearance. The RBCs with this morphologic

abnormality are called echinocytes.
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Fig. 10 Relationship between the mean projected surface areas, mean average

phase value and the different storage times. (a) Relationship between S and
storage time. (b) Relationship between @ and storage time. Square and bar are

the mean and standard deviation of @ and S.

Figure 11 illustrates the relationship between RBCs MCV, MCH and the
different storage time of RBC samples. The results reveal that the trends for
RBCs MCV and MCH with increase storage time are almost the same. In
addition, both MCV and MCH values seem to swing around their respective
mean value.

Figure 11(a) shows the relationship between the mean corpuscular volume
MCV and the storage time. It is noted that the MCV fluctuates around a value
of 94 um® even if the storage time of RBCs is increased. Therefore, one
conclusion that may be derived is that the MCV is not significantly affected by
the storage time. In contrast, Figure 11(b) shows the relationship between the
mean corpuscular hemoglobin MCH and RBC storage time. As shown in Figure
11(b), although the MCH fluctuates around a value of 32pg, the MCH is almost
stable even if the storage time is increased. Therefore, it may conclude that the

hemoglobin content within RBCs does not change as a function of storage time.
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Since MCV and nrbc do not vary over storage time, this is an expected result.
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Fig. 11 Relationship between MCV, MCH of RBCs and varied storage time.
(a) Relationship between MCV and storage time. Square is the mean and bar is
the standard deviation of corpuscular volume. (b) Relationship between MCH of

RBCs and storage time. Square represents the mean and bar represents the

standard deviation of the corpuscular hemoglobin content.

Figure 12 shows the relationship between the mean corpuscular hemoglobin

surface density MCHSD and storage time. Even though the MCH in Figure
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11(b) shows little fluctuations over the storage period, the MCHSD tends to
increase as shown in Figure 12. This can be explained by the fact that the
MCH remains constant while the mean projected surface area of RBCs tends to
decrease with increased storage time. It can also be noted that the MCHSD is
almost constant when the storage time of RBCs is less than 34 days. When the
storage time is longer than 34 days, the increase in MCHSD is noticeable and

the 3D morphological modification of RBC is drastic.
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Fig. 12 Relationship between MCHSD of RBCs and varied storage time.
Square represents the mean and bar represents the standard deviation of the

dry mass surface density.

From the relationship between 3D morphological modifications of RBCs and
the storage time, it is found that the MCH of RBCs with different storage
times remains constant while the other properties such as S, & and MCHSD
change more substantially. When the storage time is less than 34 days, there is
no change in the 3D morphology of RBCs. However, when the storage time is
longer than 34 days, the morphological change of RBCs is drastic such that the
functionality of RBCs can be altered. From these experimental results, it can be

seen that the modifications of the 3D morphology and the MCHSD of RBCs are
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induced by the length of storage time and that the shelf-life of RBC’'s may be
about 35 days when the blood is stored at refrigerator temperatures [93, 94].

3.2.5 Subsection Summaries

In this section, the 3D morphology and MCH of RBCs with different storage
periods are investigated. First, RBC quantitative phase images have been
obtained by off-axis digital holographic microscopy and numerical reconstruction
method. Then, many single RBCs have been extracted from the RBC
quantitative phase Iimages by using the segmentation method based on
marker—controlled watershed algorithm. Finally, the characteristic properties of
RBCs including projected surface area, average phase value, volume, hemoglobin
content and surface density measured at a single cell level have been evaluated
over samples of several hundred RBCs using an automated analysis of the
quantitative phase images. A statistical analysis indicates that 3D morphological
changes in RBCs are induced by the length of storage time, while the
hemoglobin content within RBCs is not changed substantially. In addition, it is
concluded that 34 days of storage may be a threshold across which the
morphology of RBCs starts to change substantially and hence possibly alter
their functionality. Automated analysis of the relationship between the
characteristic properties of RBCs and storage time may be helpful for drug

tests.

3.3 Automated Method for Counting of
Morphological Normal Red Blood Cells

The counting morphologically normal cells in human red blood cells (RBCs) is

extremely beneficial in the health care field. In this paper, a three-dimensional

_38_



(3D) classification method of automatically determining the morphologically
normal RBCs in the phase image of multiple human RBCs that are obtained by
off-axis digital holographic microscopy (DHM) is proposed. The RBC holograms
are first recorded by DHM, and then the phase images of multiple RBCs are
reconstructed by a computational numerical algorithm [56-57]. To design the
classifier, the three typical RBC shapes, which are stomatocyte, discocyte, and
echinocyte, are used for training and testing. Non-main or abnormal RBC
shapes different from the three normal shapes are defined as the fourth
category. Ten features, including projected surface area, average phase value,
mean corpuscular hemoglobin (MCH), perimeter, MCH surface density
(MCHSD), circularity, mean phase of center part, sphericity coefficient,
elongation, and pallor, are extracted from each RBC after segmenting the
reconstructed phase images by using watershed transform algorithm [4].
Moreover, four additional properties, such as projected surface area, perimeter,
average phase value, and elongation, are measured from the inner part of each
cell that can give significant information beyond the previous ten features for
the separation of the RBC groups; these are verified in the experiment by the
statistical method of Hotelling’s T-square test [96]. The principal component
analysis (PCA) algorithm [97] is also applied to reduce the dimension number of
variables and establish the Gaussian mixture densities using the projected data
with the first eight principal components. Consequently, the Gaussian mixtures
are used to design the discriminant functions based on Bayesian decision theory
[98]. To improve the performance of Bayes classifier and the accuracy of
estimation of its error rate, the leaving—one-out technique is applied [98].
Experimental results show that the proposed method can yield good results for
calculating the percentage of each typical normal RBC shape in a reconstructed
phase image of multiple RBCs that will be favorable to the analysis of
RBC-related diseases. In addition, it shows that the discrimination performance
for counting of normal shapes of RBCs can be improved by using 3D features
of a RBC.
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3.3.1 Bayesian Decision Algorithm

Bayesian decision algorithm is a kind of statistical decision making approach
for the problem of pattern classification. The probability of a pattern belonging
to a specific class is the combination of prior probability and a likelihood
probability which can be expressed as following equation with one feature and
n classes [3, 59].

p(z)
where p(z)=plC)p(C)+ p(alCy)p(Cy)+ ...+ p(zlC,)p(C,) is viewed as scale

P(Clz) = (27)

factor so as to make the summation of posterior probabilities p(Clz) equal to 1
or just be taken as constant, p(C;) is the priori probability which represent the
probability of class 1 appeared among all of the populations while conditional
probability p(z|C;) is called as likelihood which denotes the probability of
feature x occurring in a given class C, n is the number of classes.
Consequently, the posterior probabilities p(CJlz) which means the probability for
a given feature x that is classified into a specific class 1 can be derived by
basic Bayes theorem in equation 27. Most of the time, a single feature is not
enough to discriminate the classes. Multiple features are a better choice to
distinguish the classes in a high dimension. The Bayes theorem for multiple
features can be expressed as equation 28 which is similar as equation 27 but
replacing single feature x with a feature vector X including multiple features

and the likelihood p(Cjlz) is a joint conditional probability (for discrete case).

P(ClX)= p(ﬂ@)p(@) (28)

()= Mp(xICp(C)

j=1

For the pattern classifiers based on Bayesian decision theory, discriminant
functions, which are represented as g¢;(z) while i=1,...,n denoting the ith class,

are widely used. For a sample with multiple features X, when g,(X)> g;(X)
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and i # j,the sample is classified into class C; that is corresponding to the class
with the highest posterior probability in the Bayes theorem. Thus, the
discriminant functions can be achieved by the following equation.

9.(X)=P(C|X) = p(XIC)p(Cy) .

p(X) = Xn]p(X|q>p(q-)

j=1

Since p(X)will not affect the decision and can be viewed as constant, the
denominator in Equation (29) can be eliminated. In order to simplify and make
the discriminant function much easier to understand, the discriminant function
can be written in a simpler form as follows by taking natural logarithm to the
numerator in Equation (29):

9;(X)=Inp(X|C)+1np(C). (30)

As a result, the discriminant function based on bayesian decision theory is
decided by the conditional probabilities (likelihood) p(X|C,)) and priori
probabilities p(C;).In particular, when the multiple features satisfy with the
multivariate normal distribution, the conditional probabilities can be described by

multivariate normal density as follows[3].

p(X1C)= exp

W _%(X_ ) (30) " (x— Nz')] (31)

where X is a d-dimensional feature column vector, p; is the d-dimensional
mean vector of the ith class, ZZ 1s the d-by-d dimensional covariance matrix
of the ith class, |Zz| and (E)_l are the determinant and inverse of
covariance matrix respectively. Consequently, the discriminant fuction in
Equation (30) can be easily evaluated as Equation (32) if the conditional
probabilities are mixture gaussian distribution (replace p(X|C:) in Equation (30)
with Equation (31)).
1 - 1
g;(X)=— E(X*M,;)t(zi) lfganW*Eln‘E”—an(C,) (32)

Thus, the features are classified into the class that can achieve the biggest

discriminant value. The discriminant function derived from bayesian decision
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theory is proven that can achieve minimum-error-rate among all of the

classifiers [3, 59].

3.3.2 Leaving-One-Out Technique

It is evident that a classifier designed with as much training and testing sets
as possible will be much more robust in terms of improving the performance of
classifier and the accuracy for estimating its error rate. However, due to the
restriction of available sample data, the accuracy for both training and testing
in a classifier design will be limited. Leaving-one-out method is such kinds of
technique that can avoid the previous drawback to a large extent since this
approach can nearly double the effective size of the sample data [3]. The
procedure of leaving—one—out technique is described as follows. Suppose n
samples are given in the data set, the classifier obtained by leaving-one-out is
not designed and investigated by simply dividing the samples into training and
testing sets at one time but n times. In this process, one sample from the data
set 1s withdraw for testing set and the other n-1 samples is used to design the
classifier. Thus, this withheld sample can be tested by the designed classifier
with n-1 samples. It makes sense because the classifier is designed without
this sample. The previous step can be repeatedly processed with n times so
that each time one different testing sample will be left out and totally n
samples can be conducted as testing set. For each round, a new classifier will
be established with n-1 samples and tested by the one sample that is not used
in the design of classifier. Consequently, the expected probability of error can
be deduced as k/n on an average classifier which is trained on the n-1 samples
and k 1s the number of errors in the testing phase. Since the samples in this
technique i1s avoided to be both training and testing for a given classifier, the
estimate of error rate can be regarded as unbiased and it will be as accurate as

possible since all of the samples are used for testing [98-99]. Finally, the
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classifier is designed by using the total n samples as training and its expected
error rate will be at least as low as k/n since this classifier is created with n
samples but not n-1 samples which is used in the leaving-one-out step. This
process is illustrated in Figure 13. Step 1 in Figure 13 is conducted n times
until no new sample can be used as test. The classifier gi(x) is designed based
on Bayesian decision algorithm. After the table showed in step 2 of Figure 13
is achieved, the misclassification rate can be measured. Finally, all of the
samples are applied to design the classifier which will be used to predict the

sample with unknown class.

Total n samples with predicted class
known class ¢,
Input sample sample 1
with unknown Use nsamples Sample 2 Use the left n-1 samples to Test  Actual predicted
class to design the Sample 3 design the classifier = Sample  class  class
classifier Classifier Test1 1 1 ({true}
! (ilx]) Test2 1 2 (false)
S lei Test3 2 2 (true
plii Sequentially choose one fao
sample as Test | | |
Classifier Testn 3 3true)
(&) ) o
Step 3 Step 1 Step 2

Fig. 13 Flowchart of leaving-one-out technique

3.3.3 Procedures of the Classifier Design

When the RBCs phase images are reconstructed by using computational
numerical algorithm from the holograms obtained by off-axis digital holographic
microscopy, each RBC is extracted with the background removed by
marker—controlled watershed transform segmentation approach [37]. Then, ten
features showed in table 3 are calculated from each whole segmented RBC. In
addition, in order to increase the performance for separating the RBC groups,
four more features including projected surface area, perimeter, average phase
value and elongation are measured from the inside part of segmented RBCs

which 1s also presented in Table 3. The whole segmented and inside part of
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RBC is illustrated in Figure 14.

Table. 3 Description of Total Fourteen Features

The whole segmented RBC

Feature

Description

F1: projected
surface area

Number of pixels within single RBCxone

pixel area

F2: perimeter

The length of cell boundary

F3: circularity

(Perimeterxperimeter)/area

F4: average
phase value

Average phase value for pixels with in

single RBC

F5: mch mean corpuscular  hemoglobin
F6:mchsd mch surface density
F7: phase of phase value of center pixel (average 5x5

center pixel

pixels)

F8&: sphericity
coefficient

Center part phase value/maximal phase value

F9:elongation

Orientation of chain code in the cell boundary

F10: D-value

Center pixel phase value minus maximal pixel
phase value

Inside part of the segmented RBC

F11: projected
surface area

Number of pixels within inside part of

RBCxone pixel area

F12: perimeter

The length of boundary in the inside part
of cell

F13: average
phase value

Average phase value for pixels with in

inside part of RBC

F14:elongation

Orientation of chain code in the boundary of
inside part of cell
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Original
Red Blood Cell

Segmented whole cell Segmented inner part

Fig. 14 Illustration of segmented whole and inside part of the cell.

The projected surface area, average phase value, mean corpuscular hemoglobin
(MCH) and MCH surface density (MCHSD) are calculated from each whole

segmented RBC as following equations respectively.

2

S= N# (33)
- 1 X
o= ; 0 (34)
10N —
MCH= =S¢ (35)
MCHSD = MTCH (36)

where N is the number of pixels within a single RBC, p is the pixel size, M
is the magnification of the digital holography microscopy, ¢, is the phase value
at ith pixel within a single RBC, )\ is the wavelength of the light source and «
known as the specific refraction increment is a constant. When the boundary of
each cell is marked by an 8-directional Freeman chain code [100], the features
of perimeter, circularity and elongation can be achieved by equations as follows
[1001.

perimeter = N, X1+ N, X V2, (37)

cirularity = perimeterz/S (38)

_45_



elongation - maX(|NO‘4 - N2,6 |, |N1‘5 - N377|)7 (39)

where Ny = 231 1,
a,_jora,_,
where N, is the number of even valued elements while N, is the number of
odd element in the chain code of boundary in single RBC, n (=N,+N, )is total
number of element in the Freeman chain code for each RBC. Also, the phase
value of center pixel (pcp) is defined as the average phase value of the center
5x5 pixel, sphericity coefficient (sc) is the division between phase value of
center pixel and maximal phase value within each whole segmented RBC and

the D-value (dValue) is the difference between phase value in center pixel and

maximal phase value. These features are defined as following equations.

1
pep = o > p VLA (40)

—2<i<2 —2<;<2

sc=LL (41)
Pmax
dValue = pep— 0y ax (42)

where ¢" is the phase value at location (i,j) within a 5x5 window while (0,0)
is the central location of the single RBC or inner part of RBC, ¢,,. is the
maximal phase value within the analyzed single RBC or inner part of RBC.

For the measurement of four features in the inside part of RBC, the previous
equations can be repeatedly used while only need to determine these features in
the inside part instead of the whole segmented cell.

Here, the statistically method of Hotelling’'s T-square test [95] is applied to
evaluate that the features calculated from the inside part of cell can indeed
provide additional separation between each pair of RBC groups beyond the
separation already achieved by the ten features obtained from the whole
segmented cell. Let y denote the px1 vector where p=10 here which include ten
variables for measuring the features in the segmented cell and x denote the gx1
vector where =4 that express the four variables for calculating the properties

in the segmented inside part of cell. It is assumed that each pair of samples is
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from multivariate normal populations and x1, x2 are two gx1 vectors while yl1,,
y2 are two px1 vectors from two different groups. Then, the null hypothesis
[H,: x1 and x2 are redundant for separating the two classes beyond yl, and

y2lcan be represented as follows [95,97-98]:

T2 _ 2
T (aly)= (v—p) 21—, (43)
! P i
which is distributed as Tq%v_p where v=n, +n, —2 while nl,n2 are the number
of samples in two groups respectively. When, 7%(zly)> T2 so—p the null

hypothes i1s that x is redundancy would be rejected at significance level of «
where the critical value of ]Zf,q’,,,f, can be achieved from the 7°-table with g

and v—p degree of freedom. In Equation (43), T,I?+ , and Tﬁ are expressed as

following equations respectively [95].

_ _ T _ —
nyMy Y Y2 S,y S\ Y2
- () (2] (s 2 (2] w
pel n1+n2 (1’1) (IQJ SrySzz €y Ty
NN — —\7T o — —
‘= = (yl_ y2> Syyl(yl_ y?)ﬂ (45)

v =
n; +ny

where y, and y, are the sample mean vectors, Sy S, and 8, are the

covariance matrixes. In the experimental section, the 77°statistic test results
among each pair of RBC groups are presented.

In order to demonstrate that 3D features of a RBC extracted from DHM
imaging technique are beneficial to distinguish different kinds of RBCs, the
RBC’s features are divided into two categories that are given in Table. 4. One
is defined as 2D features which can be acquired from 2D imaging system and
the other is defined as 3D features which are obtained from DHM technique.
Then, the Hotelling’'s T-square test as previous description for inner part
feature analysis is conducted to check whether the 3D features can provide
additional separation among RBCs classes beyond the partition already achieved
by the 2D features. In this case, x in Equation (43) denotes the seven features

from 2D features category and y represents the other seven features from 3D
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features group.

Table. 4 Division of RBC features

2D Features F1, F2, F3, F9, F11, F12, F14
3D Features F4, F5, F6, F7, F8, F10, F13

Table. 5 Samples for training the classifier
RBCs with

stomatocyte E GG B E
shape (Total

== EEIEIENY
o coo0
discocyte shape

(Total samples:

00009
. OOono
echynocyte shape

(Total samples:

Y Do

In our experiment, 87 RBCs labeled with stomatocyte shape, 103 RBCs labeled

with discocyte shape and 106 RBCs labeled with echinocyte shape are extracted
as samples. Also, the total fourteen features denoted by feature vector as
[ X, X5+, X, in each single RBC are calculated. What calls for special
attention is that when there are no inside part for some RBCs, a random value
from standard normal distribution will be assigned to the features from F11 to
F14 in Table 3. Samples with known class which will be used to design the
classifier are showed in Table 5.

After all of the fourteen properties are determined from the samples, the PCA

algorithm is applied to these features so as to reduce the variables dimension
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and the 609 principal components that is 8 components are retained for the
classifier design in the next step. Consequently, the original data can be
projected onto an eight dimension space by using the 8 principal components.
Here, it is assumed that the all of the obtained data satisfy with the
multivariate normal distribution. Accordingly, the joint density (conditional
probability in Equation (28)) of the multiple features for each type of RBCs can
be represented by mixture Gaussian density as expressed in Equation (31) with
features after being projected from the eight principle components. Furthermore,
It can assume that the priori probabilities (p(C;) in Equation (32)) for each
class are equal so that this term can be removed from the discriminant function
as well as the constant term 0.5dIn27 since they do not affect the pattern
classification in this case. Therefore, the discriminant function in Equation (32)
based on Bayesian decision theory can be further simplified as follows:

g;(x)=— %(x—ui)T(Zi)il(x—ui)— %ln|22|, 1<i<3 (46)

where p; and ZZ are estimated from respective sample data by using
unbiased estimator [97]. As a consequence, one type of RBCs is corresponding
to one discriminant function and three dicriminant functions are needed for the
classification of three classes of RBCs (Class 1: stomatocyte shape RBCs, Class
2: discocyte shape RBCs, Class 3: echinocyte shape RBCs). The testing pattern
will be categorized into the class which can achieve the biggest value by the
corresponding discriminant function. Considering the situation that there are
other types of RBCs excepting the three typical kinds of RBCs, the fourth
class, which includes all types of RBCs excluding these three classical classes,
is defined. When the probability of one sample belonging to any one of the
three typical types of RBCs is low, it will be grouped into the fourth class.
This can be achieved by Equation. (31) since the discriminant function in
Equation. (29) is proportional to the value of likelihood (Equation.(31)) when the
priori probability is assumed to be the same for all types of RBCs. In this
paper, when the density in the likelihood (Equation. (31)) for the extracted
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features from a RBC is less than 0.001 among all of the three typical types of

RBCs, the corresponding RBC will be classified into the fourth class.

The

flowchart for our classifier design and RBCs classification is presented in

Figure 15.

5 =~

input reconstructed
phase image with
multiple RBCs

A 4
segmentation of
multiple RBCs

RBC extraction &
feature calculation

step 1

am-0
|

samples with
known class

training

X =[X,%,...%

classifier

1]
14 features are projected E
onto 8-dimensional space

step 3

class 1 if max(g,(x))=g,(x) & p(x|C;)=0.001
1<i<3

class2 if max(g;(x))=g,(x) & p(x|C,)=0.001
1

<i<3

class3  if ' max(g,(x))= g;(x) & p(x|C;)=0.001

1<i<3

class4  if max(p(x|C;)<0.001

1<i<3

step 4 | percentage of each type of RBC
in reconstructed phase image

with multiple RBCs
§|class1 a%
class2 b%
] | class3  c%

il | class4  d%

Fig. 15 Flowchart of RBCs classification.

Firstly, the classifier will be designed based on the Bayesian design theory by

the leaving-one-out technique with the samples of known class (step 1 in

Figure 15). Then, the obtained classifier is used to classify the RBCs in a

reconstructed phase image with multiple RBCs (step 2 in Figure 15). In this

step, the original RBCs phase image and the inside part of the RBC has to be

segmented so as to extract all of the RBC and calculate the corresponding
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features.

After that, all of the RBCs in the reconstructed RBCs phase image are
grouped into one of the four types of RBCs as described in Figure 15. Finally,
the percentage of different kinds of RBCs in the RBCs phase image can be
calculated and analyzed (step 4 in Figure 15). Especially, when the occupation
ratio of the fourth class achieves a highest value in a reconstructed RBCs
phase image, this image should be examined carefully in further since this
situation is not normal for a normal person. The leaving—one—out technique for
improving the design of classifier and estimating the error rate is implemented
by the pseudo—code showed in Figure 16 (based on Matlab). For the final
design of classifiers (Class 1 denoted as g,(z), Class 2 denoted as g,(z) and

Class 3 denoted as g,(xz) ),all of the sample data are used as training set.

Step 1. samples preparation
(87 RBCs with stomatocyte shape, 103 RBCs with discocyte shape,
106 RBCs with echinocyte shape)

Step 2: feature calculation
(measure features from F1 to F14 for each RBC)

Step 3: conduct principle component analysis (PCA) and derive new data
with the main eight components.

Step 4: design the classifier with the discriminant function based on
Bayesian decision theory by using leaving-one-out technique

Step 5: measure the misclassification rate

Step 6: design the classifier without leaving one out (using all of the
samples)

Fig. 16 Pseudo—code for the leaving-one-out test.

3.3.4 Experimental Results

The RBCs of healthy laboratory personnel were obtained through the
Laboratoire Suisse d Analyse Du Dopage--CHUV and stored at 4 °C during
the storage period. The DHM measurements were performed several days after

the blood was collected from the laboratory personnel. A total of 100-150 ul of
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RBC stock solution were suspended in a HEPA buffer (15 mM HEPES pH 7.4,
130 mM NaCl, 54 mM KCI, 10 mM glucose, 1 mM Cacl2, 0.5 mM MgCl2, and
1 mg/ml bovine serum albumin) at 0.2% hematocrit for predominantly
stomatocyte and discocyte shape RBCs while at a concentration of ~0.15% for
predominantly echinocyte shape RBCs. A total of 4 ul of the erythrocyte
suspension were diluted to 150 ul of the HEPA buffer and introduced into the
experimental chamber, including two cover slips separated by spacers 1.2 mm
thick. The cells were incubated for 30 min at a temperature of 37 °C before
mounting the chamber on the DHM stage. All experiments were performed at
room temperature (22 °C).

The simulation and measurement in this section are all executed on a 32-bit
Windows 7 computer with a 3.30 GHz Intel Core 15-2500 CPU,4GB RAM, and 4
cores. The RBC phase images are reconstructed using the computational
numerical algorithm from the holograms obtained by the off-axis DHM,; then,
the phase images are segmented by the watershed transform algorithm. Some
of the reconstructed phase images, segmented RBCs, and the segmented inner
part of the RBCs are shown in Figure 17 with the three typical types of RBC.
After segmentation, all the 14 features are measured. Table 6 lists the

quantitative validation for the extracted 14 features.
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Fig. 17 Reconstructed RBC phase images and their segmented phase images.
(a), (b), and (c) are reconstructed phase images for predominantly stomatocyte,
discocyte, and echinocyte shape RBCs, respectively.(d),(e),and (f) are the
corresponding segmented phase images from (a),(b),and (c). (g),(h),and (i) are
the segmented inner part of the RBCs in (a),(b),and (c).
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Table. 6 Quantitative validation of calculated 14 features from samples

RBCs with RBCs with RBCs with
stomatocyte discocyte shape | echinocyte shape
Features | shape (103 samples) (106 samples)
(87 samples)
Mean Std Mean Std Mean Std
F1 34.31 3.83 47.28 5.40 25.76 3.96
F2 21.96 1.30 25.36 1.58 18.83 1.73
F3 14.13 0.44 13.67 0.37 13.84 0.93
F4 97.75 12.58 67.55 10.13 136.86 16.77
F5 31.60 412 30.10 5.01 33.04 4.29
F6 0.92 0.11 0.65 0.08 1.29 0.15
F7 84.35 28.21 26.84 14.41 207.70 37.73
F8 0.50 0.11 0.24 0.12 0.91 0.10
F9 7.73 5.32 8.38 5.73 6.12 475
F10 81.88 24.07 88.70 25.60 23.21 20.41
F11 9.83 3.36 20.50 4.43 0.01 0.93
F12 12.61 2.43 17.03 1.94 0.08 0.83
F13 81.50 11.65 56.72 7.72 0.10 0.97
F14 12.13 6.25 7.30 5.69 0.06 1.03

In this experiment, it has demonstrated that the features from the inner part

of the RBCs are not redundant, but can contribute information to the separation
of the RBC groups by Hotelling’s T-square test. The calculated 7*(zly) value

and critical value of 77 (see Section 3.3.3 for details) searched from the

aqv—p
T?- table are shown in Figure 18. It is noted that all the 77%(zly) values
among each pair of RBC groups are larger than their corresponding critical
value. Consequently, the null hypothesis H, when the features from the inner
part of the RBCs are not significant in separating the RBC groups at the 0.05
level of significance is rejected. In other words, the features from the inner part
of the RBCs can be helpful to classify the RBCs. Similarly, Statistical analysis
results shown in Figure 19 reveal that 3D features of a RBC extracted from

DHM imaging system can contribute to separate the RBCs classes. Therefore,
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the discrimination performance for counting normal shapes of RBCs can be

improved by adding to the 3D features of a RBC to the 2D ones.

Stomatocyte
shape RECS

A ™,
T(x|y)=648" STE|Y)=7217

I:-J.;-J:.’f.r? = 9_9[]#,:' L\\‘n. IJ:-ZIE.-L]i] =0.85
[’ ')

Discocyte

T(x|y)=17192
shape RB':S .é...:...........
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Echinooyte
shape RECs

Fig. 18 Redundance analysis results for inner part features of RBCs with

Hotelling’s T-square test
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Fig. 19 Redundance analysis results for 3D features [see Table.4] of RBCs
with Hotelling’s T-square test

Next, the PCA algorithm is applied to the 14 features, and the 60% principal
components (that is eight principal components) are retained to design the
Bayesian—-based classifier. Because it assumes that the multiple variables satisfy

the multivariate Gaussian distribution, the mixture Gaussian density of each
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group can be established by the features obtained from the multiplication of the
original sample features with the extracted eight principal components.
Therefore, the corresponding discriminant function can be realized with the
created mixture Gaussian density for each RBC population as Equation (46). As
the design presented in Figure 16, the leave-one-out experiment results show
that the misclassification rate for the RBCs with stomatocyte shape is 3 / 87 =
3.45%, the misclassification rate for the RBCs with discocyte shape is 4 / 103 =
3.88%, and the misclassification rate for the RBCs with echinocyte shape is 3 /
106 = 2.83%. On the contrary, the misclassification rates for RBCs with
stomatocyte, discocyte and echinocyte shape by only using 2D features (see
Table.4d) are measured to be 11/87=12.64%, 13/103=12.62 and 6/106=5.66%
respectively. It is noted that the classifier based on the Bayesian decision
algorithm with both 2D and 3D features achieved a very good result for the
classification of RBCs with three different shapes. These classification results
and misclassification rate for the three types of RBC by using 2D and 3D
features are shown in Table. 7. It demonstrates that the discrimination
performance for classification of different types of RBCs can be enhanced by
using 3D features of a RBC. Moreover, the throughput which is defined as the
processed data per second in our method is measured to be 27.64Mb/s and the
total computational time for training and testing process is calculated to be
0.0024 second by averaging simulation result of 20 times.

The results of analyzing the percentage of morphologically normal RBCs in
the reconstructed phase images with multiple RBCs are also shown in Figure
20. Figures 18(a), (b), and (c) are the measured percentages of the typical
normal shapes of RBCs in the reconstructed RBC phase images. It is visually
found that the majority of RBCs in each RBCs phase image are consistent with
the highest percentage rate for the corresponding image in Figure 20. These
percentages are automatically derived from the classifier that is obtained by our
classifier algorithm whose misclassification rates are demonstrated to be low. It

1s believed that the proposed classifier can be adopted to count automatically
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the morphologically normal cells

in multiple human RBCs.

In addition, the

classifier can be helpful for the analysis of RBC-related diseases because the

occupation ratio of the different types of RBC is associated with certain types

of diseases.

Table. 7 Classification Results of the three types of RBCs

Using Both 2D and 3D Features for RBC Classification

Predicted Group . o

Actual Gr Number of - ) ) Misclassification

ctua oup Observations Stomatocyte Discocyte Echinocyte rate

RBC RBC RBC

Stomatocyte 87 84 3 0 3.45%
Discocyte RBC 103 3 9 1 3.889%
Echinocyte RBC 106 3 0 103 2.83%

Using only 2D Features for RBC Classification

Stomatocyte 87 66 9 2 12.64%
Discotyie RBC 103 11 90 2 12.62%
Echinocyte RBC 106 5 1 100 5.66%
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Class 1: 74.0% Class 1: 28.1%

Class 2: 14.6% Class 2: 69.2%
Class 3: 7.3% Class 3: 0.9% Class 3: 92,29
Class 4: 4.1% Class &: 1.8% Class 4:1.5%

Fig. 20 Analysis of reconstructed phase image with multiple RBCs. (a), (b),
and (c) are segmented images with percentages of each type of RBC labeled by
our designed classifier method. (Class 1: RBCs with stomatocyte shape, Class 2:

RBCs with discocyte shape, Class 3: RBCs with echinocyte shape, Class 4:

other types of RBC).

3.3.5 Subsection Summaries

In this section, a classifier using DHM and Bayesian decision theory for
automatic counting of the morphologically normal RBCs of stomatocyte,
discocyte, and echinocyte shapes which allows us to quantitatively determine
the percentage of normal cell shapes in multiple human RBCs is designed. The
hologram patterns of the RBCs were first captured by the off-axis DHM, and
the RBC phase images were reconstructed through the computational numerical
algorithm. Ten patterns were calculated from each RBC that was extracted
from the RBC phase images through the watershed transform segmentation
method, and four more features were collected from the inner part of the RBC.
Hotelling’'s T-square test showed that the features from the inner part of the

RBC can significantly improve the separation of different RBC groups. In order
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to reduce the dimension space of the variables, the PCA algorithm was adopted,
and the first eight principal components were retained to retrieve new projected
features to establish the mixture Gaussian densities for each type of RBC.
Subsequently, the discriminant function based on Bayesian decision theory was
used to design the classifiers. Finally, in order to improve the accuracy for
estimating the error rate of the classifier, the leaving-one-out technique was
used and tested. Experimental results demonstrated that our classifier can give
a good performance for the classification of RBCs with stomatocyte, discocyte,
and echinocyte shape. Their misclassification rates were at least as low as
3.45%, 3.88% and 2.83%, respectively. In addition, we demonstrate that the
discrimination performance for RBCs classification can be improved by using
both 2D and 3D features of a RBC. Furthermore, the designed classifier was
able to group an RBC into a fourth class when the 2D and 3D features of the
RBC are extremely different from the three typical types of RBC. This
automatic RBC classification method can be extremely helpful for drug testing
and for analyzing certain RBC-related diseases because the percentage of

normal cell shapes in multiple human RBCs varies from disease to disease.
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4. Automated Analysis of Three-dimensional

Cardiomyocytes

Compounds tested during drug development may have adverse effects on the
heart; therefore all new chemical entities have to undergo extensive preclinical
assessment for cardiac liability. Conventional intensity-based imaging techniques
are not robust enough to provide detailed information for cell structure and the
captured images result in low-contrast, especially to cell with semi-transparent
or transparent feature, which would affect the cell analysis. In this dissertation
it is shown, for the first time, that digital holographic microscopy (DHM)
integrated with information processing algorithms automatically provide dynamic
quantitative phase profiles of beating cardiomyocytes. It is experimentally
demonstrated that relevant parameters of cardiomyocytes can be obtained by
our automated algorithm based on DHM phase signal analysis and used to
characterize the physiological state of resting cardiomyocytes. Our study opens
the possibility of automated quantitative analysis of cardiomyocyte dynamics
suitable for further drug safety testing and compounds selection as a new

paradigm in drug toxicity screens.
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Fig. 21 Two optical path difference (OPD)[nm] images of cardiomyocytes
captured at different time.(a) Frame #101 (b) Frame #102 (total 540 frames).

In the present work, the dynamic beating profile of cardiomyocytes obtained
by DHM is analyzed using two proposed methods, either by monitoring the
average or the variance information of imaged cells. The contraction and
relaxation movement are also quantified by analyzing the difference between
two successively acquired DHM quantitative phase images. From these
experimental results, automated procedures are proposed for multiple parameters
recording on cardiomyocytes dynamics imaged by DHM for a new methodology
in drug toxicity screens. For the quantitative analysis of cardiomyocyte
dynamics, the beating activity are calculated using two alternative methods,
averaged optical path difference (OPD) images and variance of OPD images.
The contraction and relaxation feature of cardiomyocyte were also measured
using the proposed automated procedure. Figure 21 shows two OPD images of

cardiomyocytes reconstructed from holograms.
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4.1 Cell Culture and Imaging

iCell cardiomyocytes (human induced pluripotent stem (iPS) cell-derived
cardiomyocytes) obtained for Cellular Dynamics Int. (Madison, WI) were culture
according to the manufacturer's indication and grown for 14 days before
recording. Measurements were achieved in a Chamlide WP incubator system for
96-well plate (LCI, South Korea) set at 37°/5% C02 with high humidity.

DHM images were acquired in an off-axis configuration on a commercially
available DHM T-1001 from LynceeTec SA (Lausanne, Switzerland) equipped
with a motorized xy stage (Miarzhiauser Wetzlar GmbH & Co. KG, Wetzlar,
Germany, ref. S429). Images were recorded using a Leica 20x/0.4 NA objective
(Leica Microsystems GmbH, Wetzlar, Germany, ref. 11566049). Time-lapse

images were acquired at 10 Hz for 1 minute.

4.2 Cardiomyocytes Beating Profile Measurement

using Averaged OPD Images

The beating profile of cardiomyocytes was briefly calculated by thresholding
the cardiomyocyte OPD images [see Figure 21] with a threshold value of 10%
of the maximum OPD signal and then the thresholded images were averaged.
10% i1s an empirical value and is used to restrain the effect of noise. This

process is described by the following equation:

E(i) = average (opd_thresh (z,y)'"), (47)

)(i) — Opd(xyy)(i) ifOPd($7y)(i) > max(opd(x,y)w x0.10

ith opd_thresh (x, . ) .
et op resh(zy 0 if opd(z,y)'"” < max (opd(z,y)'” x0.10

where @(i) 1s the average value of ith OPD image after thresholding, opd

opd,thresh(x,y)(i) is the OPD value at location of (x,y) on the ith threshodled
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cardiomyocyte image, opd(x,y) is the OPD value at location of (x,y) for the ith
cardiomyocyte image in optical path difference while 1=x<M, 1=y=N (M and
N are the size of cardiomyocyte OPD image), max(opd(z,y))” means the
maximum value of ith cardiomyocyte image. One of the thresholded
cardiomyocyte images obtained with this method is given in Figure 22. In
addition, the beating profile with the capture time of cardiomyocytes resulted
from this method is showed in Figure 23 including a small inset with a zoom
on a single beating pattern. It is noted that the beating activity of

cardiomyocytes is obvious (short peaks of high amplitude).

Fig. 22 Threshold cardiomyocyte image (red color denotes background after
thresholding).
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Fig. 23 Beating activity of cardiomyocyte (Inset shows a single beat).

After the segmentation, every single RBC can be extracted. Then, the RBC’s
properties such as Mean phase value, Area, Dry Mass and sphericity coefficient
can be obtained. The following subsections are the definition of these properties
used for RBCs analysis. Then, multiple parameters including amplitude, rising
time, falling time, IBD50, IBD10, rising/falling slope, beating rate and beating
period based on beating profile in Figure 23 were derived. These parameters are
defined in Table 8 [101]:

In order to measure the above-defined parameters, peaks are detected by
applying the first derivative technique to the original data curve in Figure 23
and finding locations where the first derivative values are zeros. The detected

peaks based on cardiomyocytes beating profile are given in Figure 24(a).
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Table. 8 Characteristic Parameters of Cardiomyocyte

Parameter Definition

Value difference from each positive peak to the following

Amplitude negative peak (Amplitude=Ampmax - Ampmin)[see Fig. 25]
tRirirslieng The time elapsed from Amp20toAmp80(=T3-T1)[see Fig. 25]
gre;llléng The time elapsed from Amp80toAmp20(=T6-T4)[see Fig. 25]
IBD50 The time elapsed for two points compose one
Amp50(=T5-T2)[see Fig. 25]
IBDI10 The time elapsed for two points compose on
AmplO(=T7-T0)[see Fig. 25]
Rising/ The change of increased/decreased amplitude over the time
Falling course between Amp80andAmp20(=Amp80 - Amp20)[see
slope Fig. 25]
Beating The total number of positive/negative peaks in 1 minute
rate (= total number of positive peaks/total time)
Beatin The time between two adjacent positive and/or negative
oo dg peaks (= the time of ith positive peak-the time of (i-1)th
p positive peak)
The number of beating period per second
Frequency (= total number of beating period/total time)
60 T T T T % positive peaks []
(a) N )
negative peaks
K 3 A&
59+ .
E
o
o
58+ .
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Fig. 24 Detected peaks in beating profile of cardiomyocytes. (a) Detected

peaks on raw data. (b) Filtered peaks based on results of (a).

It can be noted from Figure 24(a) that many peaks including false peaks are
detected. As a sorting process, positive peaks with values below a threshold
and the negative peaks with values above a threshold are removed. This
threshold can be automatically determined with Otsu’s method [59] by using all
of the positive peaks detected in Figure 24(a). In addition, the minimum
negative peak between two neighbor positive peaks is extracted and then the
maximum positive peak between two neighboring negative peaks is selected.
This process reduces some inappropriate peaks and results in appropriate peaks
for each beating period as shown in Figure 24(b).

Consequently, the beating profile between two adjacent negative peaks
considered as one beating period is extracted [see Figure 25]. It is noted that
the beating periods calculated between two negative peaks 1is approximately
equal to that between two positive peaks. At the same time, the extracted
beating profile for each beating period can be fitted with polynomials of degree
9 in a least-square criterion. The degree of 9 i1s reached by examining

polynomials of up to degree 9 (up to degree 9 because data samples among
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some beating profiles are around 10) for fitting the data based on the final

fitting errors. The fitted polynomial with degree of 9 is described with the
following equation:

10

flx)= i;aixw_ ‘ (48)

where X represents the sample point on each beating period and ai which is

the coefficient of polynomial are obtained with least-square criterion based on

sample points. The average absolute error for each sample point (absolute error

between actual and fitted point) is measured to be 0.1900. One of the fitting

polynomial curves and the measured parameters are given in Figure 25.
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Fig. 25 Illustration of the fitted curves with parameters within one beating

period on cardiomyocytes beating profile.

With the fitted polynomials curves, the amplitude value defined in Table 8

can be calculated as the maximum value minus the minimum value on the
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fitted curve. Thus, the corresponding time [unit is second] in x axis for AmplO,
Amp20, Amp50, Amp80 [see Figure 25] can be also be computed by solving the
fitted polynomial equation. Then, all of the above mentioned parameters are
measured for each individual beating period and a population average with
coefficient of variation, (cv=standard deviation/average value, a parameter often

used in high-throughput screening) is computed as shown in Table 9.

Table. 9 Measured Values of Multiple Parameters

on Cardiomyocytes Beating Profile

Multi-parameter Values  (mean/cv)
1: Amplitude: 2.05/0.30
2: Rising time: 0.58/1.05 (seconds)
3: Falling time: 0.86/0.69 (seconds)
4: IBD50: 0.79/0.33 (seconds)
5. IBDI10: 2.94/0.19 (seconds)
6: Rising/Falling slope: 1.19/0.30
7: Beating rate: 21.86/0
8. Beating period: 2.94/(sd=0.10  seconds)
9: Frequency 0.34/0

4.3 Cardiomyocytes Beating Profile Measurement

using Variance of OPD Images

An alternative way to derive the beating profile of cardiomyocytes which is
less sensitive to noise (originating from shot noise, speckle and contribution of
out-of-focus structures), but requires more computer resources is to measure
the variance of each OPD image after the temporal mean of the image stack is
subtracted. This method is illustrated by Equation 49:

) — opd, e,y (49)

5((,;),1 = variance [opd (z,y
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where opd(x,y)(i) is the ith OPD image, while 1=x=M and 1=x,y=N (M
and N are the size of cardiomyocyte OPD image), 6((,;),1 represents the variance

of the ith cardiomyocyte image after temporal mean subtracted and @wml, is
the temporal mean which is calculated as the mean value of the image stack in
the temporal dimension. The beating profile measured with this method is
showed in Figure 26. Compared to the previous analysis method (Figure 24),
this approach is more stable and less sensitive to noise (changes in the

absolute value of the OPD signal).
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Fig. 26 Measured beating profile with variance information (inset shows a

single beat)

Similar with the previous method, the peaks in Figure 26 can be detected
using the first derivative property [see Figure 27(a)]. In addition, the positive
and negative peaks are screened with a threshold value obtained by Otsu’s
method [30]. Consequently, the minimum negative peak between two
neighboring positive peaks and the maximum positive peak between two

neighboring negative peaks are selected [see Figure 27(b)].
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Fig. 27 Detected peaks on cardiomyocyte beating profile. (a) Detected multiple

peaks. (b) Detected multiple peaks with some false peaks removed.

The beating profile within one beating period (between two negative peaks)
can be individually extracted and is fitted with polynomial equation of degree 9
in a least-square error sense as that in Figure 25. The average absolute error
for each sample point 1s measured to be 2.0359. Consequently, the same

parameters as in the previous method can be measured and the corresponding
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mean and coefficient of variation (cv) are given in Table 10. The measured

parameters are in excellent agreement with the literature [102].

Table. 10 Measured Multiple Parameters on Cardiomyocytes Beating Profile

Multi-parameter Values (mean/cv)
10 Amplitude: 23.06/0.17
2: Rising time: 0.45/0.98 (seconds)
3: Falling time: 0.26/1.04 (seconds)
4: |BD50: 0.66/0.23 (seconds)
5: I1BD10: 2.30/0.25(seconds)
6: Rising/Falling slope: 13.83/0.17
7: Beating rate: 21.91/0
8: Beating period: 2.93/(sd=0.10)
9: Frequency 0.34/0
4.4 Cardiomyocytes Contraction and Relaxation
Measurement

In order to observe the contraction and relaxation feature of cardiomyocyte,
each captured image in the temporal stack is subtracted from the following one
and then the spatial variance of the OPD i1s measured thus quantifying the
amount of spatial displacement between successive frames (the cells used here
are the same as those showed in Figure 21). The resulting image contains
cardiomyocytes contraction and relaxation information (both indicated by an
increase in the temporal variance signal). Two of the subtracted images are
shown in Figure 28 where Figure 28(a) and 26(b) are different images at the
minimum and maximum of a beat, respectively. The beating profile with
contraction and relaxation information of cardiomyocyte is given in Figure 29(a),

where one higher peak is for contraction and the neighboring lower peak is for

relaxation. Then, the peaks can be detected with the first derivative criterion
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(locations where the first derivative values are zeros). Similarly, positive peaks
for contraction can be properly extracted with Otsu’s thresholding algorithm by
using all of the detected positive peaks. Next, a maximum peak between two
neighboring contraction peaks 1s chosen as a positive peak for relaxation.
Consequently, the inappropriate peaks can be removed. The resulted curves from

Figure 29(a) with peaks indicated are given in Figure 29(b).

Fig. 28 Ilustration of the difference images. (a) different image at the

minimum of a beat (b) different image at the maximum of a beat.

Finally, the beating rate, beating period and frequency for cardiomyocytes
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contraction and relaxation can be measured based on the detected positive peaks
that include contraction and relaxation peaks. In addition, the time between the
cardiomyocytes contraction and the following relaxation can be also calculated
with the detected peaks in Fig. 27(b). These measured data are given in Table
11.

Table. 11 Measured Multiple Parameters on

Cardiomyocyte Contraction and Relaxation Curve

Multi-parameters (l’l’\li;llrLll/eCSV)
Beating rate: 23.14/0
Contraction Beating period: 2.94/0.03
Frequency 0.36/0
Beating rate: 23.14/0
Relaxation Beating period: 3.06/0.16
Frequency 0.36/0
Time between contraction and the following relaxation | 0.41/0.14
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Fig. 29 Cardiomyocytes beating profile with contraction and relaxation
information. (a) raw data of cardiomyocytes beating profile. (b) cardiomyocytes
beating profile with contraction and relaxation peaks indicated. (inset shows a

single beat with contraction and relaxation peaks)

4.5 Discussions and Section Summaries

In this paper, for the first time, human cardiac muscle cells’ dynamics and
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their spontaneous beating rates are quantitatively explored through the fusion of
digital holography microscopy and information processing algorithms.

Experimental demonstrations have been provided for this new concept on
multiple parameters recording on cardiomyocytes dynamics. From the
experiments in the cardiomyocytes beating profile measurement using averaged
OPD images and variance of OPD Images reported in Figure 25, Figure 27,
Table 9 and Table 10, it 1s assured that interesting parameters of
cardiomyocytes dynamics can be automatically measured. In addition, statistical
parameters such as mean and coefficient of wvariation on the cardiomyocyte
characteristics can be estimated. Four more cardiomyocyte image sequences
were analyzed in order to show the generality of the proposed methods.

Among these image sequences, one of them is acquired with difficult
conditions which mean having severe disturbance (a few out-of-focus debris
are flowing through the field of view during the acquisition ) while the other
sequences are comparable inquality to the one presented previously.Four image
sequences with peaks detected using the first (Section 4.2),second (Section 4.3)
and third (Section 4.4) methods are given in Figure 30, Figure 31 and Figure 32
respectively where Figure 30 (a), Figure 31 (a) and Figure 32 (a) are from
image sequences under tough/difficult conditions. It should be noted from these
figures that our proposed method can detect all of the peaks, even in image
sequences with debris interference. However, we found that the first method
generated many noisy peaks in difficult conditions (I1st image sequence ) which
makes the parameter measurement not accurate. On the other hand, the second
and third methods are more stable to analyze these image sequences even those
obtained under difficult conditions. Consequently, all of the needed
multi-parameters can be measured based on these images, therefore proving the

robustness of the analysis algorithm.
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Fig. 30 Detected peaks based on four more cardiomyocyte sequences with the
method in the Section 4.2. (a) cardiomyocyte image sequences acquired with
difficult conditions. (b), (c), and (d) "noise-free” recordings (i.e. no debris

interfering with the measurement) similar to the previous recording.
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Fig. 31 Detected peaks based on four more cardiomyocyte sequences with the
method in the Section 4.3. (a) cardiomyocyte image sequences acquired with
difficult conditions. (b), (c), and (d) "noise-free” recordings (i.e. no debris

interfering with the measurement) similar to the previous recording.
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Fig. 32 Detected peaks based on four more cardiomyocyte sequences with the
method in the Section 4.4. (a) cardiomyocyte image sequences acquired with
difficult conditions. (b), (c), and (d) "noise-free” recordings (i.e. no debris

interfering with the measurement) similar to the previous recording

Finally, the mean value of each of the parameter described in the first

_82_



(Section 4. 2), second (Section 4. 3) and third (Section 4. 4) methods is

measured based on all the five sequences used previously. The measured mean

values for the three methods are given in Table 12, Table 13, and Table 14,

respectively.

Table. 12 Measured Multiple Parameters on Cardiomyocytes Beating Profile

on Five Sequences with the First Method

Multi-parameter

Values (mean/cv)

1: Amplitude: 0.85/1.50

2: Rising time: 0.62/1.37 (seconds)

3: Falling time: 0.85/0.99 (seconds)

4: IBD50: 0.44/0.50 (seconds)

5: IBD10: 2.44/0.45 (seconds)

6: Rising/Falling slope: 0.51/1.52

7: Beating rate: 71.14/0.81

8. Beating period: 0.95/ (sd=0.84 seconds)
9: Frequency 1.16/0.83

Table. 13 Measured Multiple Parameters on Cardiomyocytes Beating Profile

on Five Sequences with the Second Method

Multi—-parameter

Values (mean/cv)

1: Amplitude: 40.01/1.21

2: Rising time: 0.57/0.86 (seconds)
3: Falling time: 0.43/1.13 (seconds)
4: IBD50: 0.79/0.65 (seconds)
5: IBD10: 2.35/0.38(seconds)
6: Rising/Falling slope: 24.00/1.21

7: Beating rate: 34.48/0.36

8: Beating period: 1.98/(sd=0.83)

9: Frequency 0.55/0.37
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Table. 14 Measured Multiple Parameters on Cardiomyocytes Contraction and

Relaxation Curve on Five Sequences

Multi—parameters Values (mean/cv)
Beating rate: 31.31/0.17
Contraction Beating period: 2.20/0.19
Frequency 0.49/0.17
Beating rate: 31.31/0.17
Relaxation Beating period: 2.23/0.31
Frequency 0.49/0.17
Time between contraction and the following relaxation 0.59/0.62

The combined measurements show the robustness of the proposed algorithm
and how they allows quantify important cardiomyocyte dynamic parameters that
can be used to screen compounds cytotoxic effects. The beating profile contains
more information than that is obtained by electrophysiology or fluorescence
imaging as it integrates the effect of all the ion—-channel involved and thus offer
a signature that can be used to predict the effect of specific compounds. For
instance inhibitors of hERG channel (the main class of channels assessed in
cardio safety, which are involved in repolarization current) all results in a
similar profile.In addition, due to the non-invasive aspect of the measurements,
both short-term and long-term effects of the monitored compounds can be
assessed with DHM.

The suitability of DHM is demonstrated for monitoring and quantifying the
beating function of cardiomyocytes and automatically measuring multiple
parameters of cardiomyocytes based on the quantitative phase profiles acquired
with DHM. The proposed method can be rapid, noninvasive and effective and
allows for automated analysis between normal cardiomyocyte dynamics and all
other abnormal activities. It is believed that our automated non-invasive
measurement procedures can open new perspectives for cardiotoxicological
screening or profiling of candidate molecules in preclinical drug discovery and

safety testing programs.
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5. Conclusions

In this dissertation, a three dimensional imaging technique which is digital
holographic microscopy has been applied to visualize human red blood cells and
cardiomyocytes. The digital holographic microscopy has advantages of low cost,
easy configuration, non-destruction, and fast imaging. Compared with
conventional two dimensional imaging approaches, digital holographic microscopy
1S robust to sense semitransparent or transparent microorganism. The
reconstructed image from holograms obtained by digital holographic microscopy
with numerical reconstruction algorithm can provide rich three dimensional
information such as the optical thickness of biological cells in live and dynamic
conditions, which are helpful for the quantitative analysis of three—dimensional
cells. Two Kkinds of transparent cells which are red blood cells and
cardiomyocytes are 1imaged with digital holographic microscopy and the
reconstructed images are automatically analyzed. For the analysis of
three—dimensional red blood cells, the reconstructed phase images are segmented
with marker-controlled watershed transform algorithm and the corresponding
red blood cells features are measured. The modifications of three-dimensional
morphology and mean hemoglobin of red blood cells induced by the length of
storage time are also studied. This analysis is beneficial to the understanding of
the features of RBCs with different storage periods and evaluation of any
modifications in the 3D cell morphology and hemoglobin content. Moreover, a
classifier using Bayesian decision theory for automatic counting of the
morphologically normal RBCs of stomatocyte, discocyte, and echinocyte shapes
which allows us to quantitatively determine the percentage of normal cell
shapes in multiple RBCs has been designed. This proposed method is favorable
to the analysis of RBC-related diseases. In addition, it is shown that the
discrimination performance for counting of normal shapes of RBCs can be

improved by using 3D features of a RBC. For the analysis of 3D
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cardiomyocytes, the dynamic beating profile of cardiomyocytes obtained by
digital holographic microscopy 1is investigated using two proposed methods,
either by monitoring the average or the variance information of imaged cells.
The contraction and relaxation movement are also quantified by analyzing the
difference between two successively acquired digital holographic microscopy
quantitative phase images. From the experimental results, automated procedures
for multiple parameters recording on cardiomyocytes dynamics imaged by digital
holographic microscopy for a new methodology in drug toxicity screens is
proposed. It i1s shown, for the first time, that digital holographic microscopy
integrated with information processing algorithms can automatically provide
dynamic quantitative phase profiles of beating cardiomyocytes. Our study opens
the possibility of automated quantitative analysis of red blood cells and
cardiomyocyte dynamics suitable for further drug safety testing and compounds

selection as a new paradigm in drug toxicity screens.
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ABSTRACT

Quantitative Analysis of Three-dimensional
Morphology and Biophysical Cell Parameters of Live
Cells using Digital Holographic Imaging

Faliu Yi
Advisor : Prof. Inkyu Moon, Ph.D.
Department of Computer Engineering

Graduate School of Chosun University

For semitransparent or transparent biological cells, the intensity based
two—dimensional (2D) imaging system suffers from losses of a large amount
of quantitative detailed information about cell structure and content. 2D
imaging method also results in low-contrast image. On the contrary,
three-dimensional imaging (3D) technique such as digital holography comes to
the forefront as promising tools for 3D biological cells visualization, pattern
recognition and study of their dynamics as it can provide rich 3D information,
such as the surface morphological and optical thickness data of these
microscopic objects. Among a large number of developed 3D imaging
platforms, digital holographic microscopy (DHM) as a promising 3D imaging
system has widely viewed in life sciences, medical diagnoses, and medicine
due to its advantages in terms of easy configuration and fast imaging,
low-cost and non-destruction to microorganisms.

In this dissertation, The automated analysis of 3D cells that are obtained by

DHM is focused. Totally, two different kinds of transparent cells, which are

_vi_



red blood cells (RBCs) and cardiomyocytes, are three-dimensionally imaged
and quantitatively analyzed. Both RBCs and cardiomyocytes phase images are
numerically reconstructed from holograms recorded by DHM. RBCs has been
extensively studied in bio—medical fields due to its important functionality in
delivering oxygen from lungs to body tissues and transporting carbon dioxide
from the tissues to the lungs. The resulted characteristic properties of 3D
RBCs from DHM are beneficial to characterize cell storage lesions, recognize
unnormal RBCs, and evaluate drug testing. On the other hand, cardiomyocytes
or myocardial cells, which are the main contractile elements of the heart
muscle, generate human heart beating and control blood flow through the
blood vessels of the circulatory system. The automated analysis of 3D
cardiomyocytes are crucial to improve the predictability of compound toxicity
through safety profiling assays during the lengthy drug discovery process in
order that potentially toxic compounds are detected early in the process before
significant time and important financial investments are made. Experimental
results are presented that demonstrate the feasibility of the automated

analysis procedure for both 3D RBCs and cardiomyocytes.
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1. Introduction

For semitransparent or transparent biological targets, the intensity based
two-dimensional (2D) imaging system suffers from losses of a large amount of
quantitative detailed information about cell structure and content. 2D imaging
method also results in low-contrast image [1-4]. Even though some advanced
2D imaging systems, such as quantitative phase contrast and differential
interference contrast microscopes [3-6], have the feature to quantitatively
investigate the biological microorganisms to some extent, they cannot provide
optical thickness information about the imaging biological cells, which in turn
make the analysis of microscopic object limited. 2D imaging microscopic system
has fundamental limitations on quantifying information about 3D morphology,
dry mass production, and density of the biological cells. Moreover, it is difficult
to dynamically visualize the character of variations in morphology of
semitransparent or transparent microorganisms because they seen to be the
same under 2D imaging microscopic systems [7].

The three-dimensional (3D) holographic imaging system has been studied for
visualization, identification, and tracking of biological micro/nano- organisms
[8-20]. In the areas of biomedical imaging, defense, medical diagnosis, medical
therapeutics, and security, the 3-D holographic imaging system has a lot of
potential [8-26]. Consequently, 3D digital image processing, which can directly
affect future research on the microscopic objects under study, becomes more
and more important because it becomes easier and more convenient to obtain
the computational 3D image of the microorganisms with the development of the
3D optical holographic imaging system. Without limitations existed in 2D image
system, the holographic images reconstructed numerically from a hologram
obtained by 3D digital holography-based imaging systems can provide rich 3D
information, such as the surface morphological and optical thickness data of the

microorganism targets, which make it possible for the 3D measurement of



microscopic objects. Among varied number of 3D imaging techniques, digital
holographic microscopy (DHM) as one of the promising 3D imaging methods
has been widely researched for observation, metrology, and tracking of
biological micro/nano-organism as it is a low-cost and non-invasive, fast
imaging and easy configured approach [27-32]. Compared with classical optical
microscopy, DHM provides a major advantage in overcoming the classical depth
of field Iimitation. DHM 1is also a quantitative phase imaging technique which
directly and non-invasively provides the optical thickness of biological cells in
live and dynamic conditions which other 3D imaging techniques such as the
electron microscopy are destructive to the imaging cells. Since DHM is not
destructive for specimens, they can be investigated once more by any other
optical imaging systems.

In this dissertation, the automated analysis of 3D cells that are obtained by
DHM is focused. Totally, two different kinds of transparent cells, which are red
blood cells (RBCs) and cardiomyocytes, are three-dimensionally imaged and
quantitatively analyzed. Both RBCs and cardiomyocytes quantitative phase
images are numerically reconstructed from holograms recorded by DHM. As
essential ingredients of human being, the automated analysis of both 3D RBCs
and cardiomyocytes are helpful to the investigation of RBC-related and
cardiomyocyte-related diseases [7]. Moreover, the characteristic properties of
these 3D cells can be used to screen the compounds during drug testing.

RBCs are essential ingredients of bloodstream in human being. They cannot
only deliver oxygen to body tissues via the blood flowing through the
circulatory system in vertebrate organisms, but also absorb oxygen in the lungs
and release it when squeezing through the body’s capillaries [33-34]. Normally,
a relatively stable number of RBCs is maintained in the circulatory system and
it 1s necessary to stimulate RBCs production with medications for patients
suffering from anemia. Recent studies show that there are numerous
biochemical, structural, inflammatory, and physiologic changes in stored red

cells, referred to as red cell storage lesion, which to some extent impacts the
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clinical outcome in transfused patients [35]. Therefore, the analysis of some
quantitative cell parameters provided by DHM, including 3D morphology, mean
corpuscular volume, and hemoglobin content at different storage periods will be
helpful to characterize red cell storage lesions [36]. Moreover, it is estimated
that the composition of RBCs types in human blood would be different for
varied RBC-related diseases. The disordered change of 3D RBC in morphology
shape can affect other body tissues indirectly. As a result, it is extremely
important to have a classificaton algorithm that can categorize different types of
RBCs effectively and efficiently in order to overcome the shortage of the
traditional method that is time-consuming and labor-intensive [4]. In addition,
counting cell types in the blood is an important task for evaluating clinical
status. However, the RBCs extraction which refers to as RBCs segmentation
has to be conducted first in order to measure the characteristic properties of
each RBC. RBCs segmentation also benefit to the further RBCs analysis such
as RBC recognition and tracking. In this dissertation, three directions are done
in terms of automated 3D RBCs analysis after the RBCs phase images are
numerically reconstructed from holograms that are recorded with DHM system.
The fundamental and the most important one is the RBCs segmentation [37].
The results of RBCs segmentation can directly affect the following study of
RBCs. A good RBCs extraction method should at least results in low
over—-segmentation and under-segmentation. The second research direction about
3D RBCs is the quantitative analysis of RBCs stored in different periods. These
results would reveal the relationship between the RBC characteristic properties
and their aging. This analysis will also be beneficial to the understanding of
the features of RBCs with different storage periods and evaluation of any
modifications in the 3D cell morphology and hemoglobin content induced by the
length of storage time. The third research direction about 3D RBCs is the
automated counting of morphologically normal RBCs. This will be helpful to
measure the percentage of typical normal shapes of RBCs in a reconstructed

RBC phase image that consists of multiple RBCs for disease diagnosis and drug
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testing.

Cardiomyocytes or myocardial cells [38], which are the main contractile
elements of the heart muscle, generate human heart beating and control blood
flow through the blood vessels of the circulatory system. Like many other types
of biological cells, cardiomyocytes are mostly transparent.The optical imaging
systems used to capture cardiomyocytes images previously reproted include
fluorescence microscopy, atomic force microscopy, phase contrast and differential
interference contrast microscopy [39-42]. For fluorescence microscopy, biological
molecules can be fluorescently stained and the location of a protein can be
traced. However, the fluorescence is not permanent and easily fades. In addition,
fluorescence labeling can induce adverse effect on the measured molecule or
interfere with the parameter assessed. Similarly atomic force microscopy
provides a 3D surface profile of the samples. However, this technique is limited
by its scanning speed. On the contrary, DHM as described previously is a
label-free quantitative imaging technique, able to non-invasively capture the
entire complex field distribution including the amplitude and phase information
of cardiomyocytes. Consequently, much richer information on the cardiomyocyte
structure can be obtained by using DHM. During the lengthy drug discovery
process it is crucial to improve the predictability of compound toxicity through
safety profiling assays in order that potentially toxic compounds are detected
early in the process before significant time and important financial investments
are made. Between 1994 and 2006 from the new drugs approved by the US
Food and Drug Administration (FDA), 38 were later withdrawn from the
market because of safety concerns, the majority being cardiotoxic or
hepatotoxic. Safety assements are therefore performed in preclinical drug
development for revealing the possible drug side effects in particular those that
may affect the electrical conduction and beating of the heart [43-47]. Therefore,
researchers and pharmaceutical companies have to ensure that the effect to lead
candidate compounds on cardiac function strictly satisfy criteria. Consequently, it

1s critical to establish more informative in vitro cardiotoxicity screens and data
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analysis algorithms at the early phases of drug development for preventing late
stage failure [48-50]. In the present work, the dynamic phase profile of beating
cardiomyocytes, which are proportional to the optical path delay profile of the
cell, are reconstructed from holograms that are captured through DHM. The
beating activities of cardiomyocytes, and contraction and relaxation profiles are
derived from the reconstructed phase image. In addition, other characteristic
parameters used to categorize phenotypes such as rising time, falling time, peak
width, and frequency are analyzed. These parameters are valuable for the
analysis of drug candidates’ effects on cardiomyocytes. More precisely, the
dynamic beating profile of cardiomyocytes are obtained with two proposed
methods, either by monitoring the average or the variance information of
imaged cardiomyocytes. On the other hand, the contraction and relaxation
movement of cardiomyocytes are quantified by analysis the difference between
two successively acquired DHM phase images. The automated procedure for
multiple parameters recording on cardiomyocytes dynamics for application in
drug toxicity screens is proposed.

This dissertation is organized as follows. In section 2, the digital holographic
microscopy 1s described. In section 3, the automated analysis of RBCs phase
images obtained by DHM with experimental results is given. In section 4, the
automated analysis about multiple parameters of dynamic cardiomyocytes images
resulted from DHM 1is presented along with experimental results. Then, this

dissertation is concluded in section 5.



2. Digital holographic microscopy

Digital holographic microscopy (DHM) has been studied for application in the
field of cell biology, including automated cell counts, recognition, classification,
three—dimensional tracking, and discrimination between physiological and
pathophysiological states [27-32, 51-55]. Briefly, DHM is a label-free
interferometric microscopy technique which provides a quantitative measurement
of the optical path length. It is a two—step process where a hologram consisting
of an interference pattern is first recorded on a digital CCD camera and the
quantitative phase 1mages are reconstructed numerically using a specific
algorithm [56-57]. With current computer power, the reconstruction process can
be achieved on-the-fly at a speed of 100Hz. The quantitative phase images are
related to the optical path difference (OPD)expressed in terms of physical
properties as:

OPD(z,y) = d(z,y) < [n.(z,y) —n,], oY)

where d(x,y) is the cell thickness, n.(z,y) is the mean intracellular refractive
index integrated along the optical axis at the (x,y) position and n,,is the
refractive index of the surrounding culture medium. Simply, Equation 1 means
that the OPD signal i1s proportional to both the cell thickness and the
intracellular refractive index, a property linked to the protein and water content
of the cells [564-55]. DHM systems generally use a low intensity laser as a
light source for specimen illumination and a digital camera to record the
hologram. Here, the 684 nm laser source delivers roughly 200 pw/ecm? at the
specimen plane - that is some six orders of magnitude less than intensities
typically associated with confocal fluorescence microscopy. With that amount of
light, the exposure time is only 400 us. An extensive quality control of DHM
can be found in [55]. The schematic of the off-axis digital holographic
microscopy 1s shown in Figure 1.The experimental setup in Figure 1 is a

modified MachZehnder configuration with a laser diode source (A= 684 nm). The
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laser beam is divided into a reference wave and an object wave. The object
wave is diffracted by the biological samples, magnified by a 40x/0.75NA
microscope objective and interferes, in the off-axis geometry, with the reference
wave to produce the hologram recorded by the CCD camera. The reconstruction
and aberration compensation of the microorganism wavefront is obtained by

using the numerical algorithm described in [56-57].

Beam Splitter

—Reference Wave

@

Taser BeamExpander

Beam Splitter

Fig. 1 Schematic of the off-axis digital holographic microscopy.



3. Automated Analysis of Three-dimensional
Red Blood Cells

The holograms of RBCs are recorded on CCD camera with DHM technique.
Then, the RBCs phase images are numerically reconstructed from these RBC
holograms. In this section, the RBC phase images have to be firstly segmented
and then the segmented RBCs are used to do following analysis such as
quantitative analysis of RBCs stored in different periods and automated counting

of morphological normal RBCs.

3.1 Segmentation of Red Blood Cell Phase Images

Image segmentation is defined as partitioning an image into different regions
which have similar texture, intensity values, or color. Image segmentation as a
preprocessing step 1s imperative for the analysis of object in a higher level
such as image classification, recognition, and tracking [58]. Because of the
unnecessary background noise in the computational holographic RBC image, it is
also necessary to perform holographic image segmentation algorithm to extract
the RBC target which would be used for assessing hematological functions and
the presence of disease of RBC. A brief review of segmentation approach is

viewed and the segmentation results of RBCs phase images are presented.

3.1.1 Review of Image Segmentation Algorithms

Image segmentation algorithms are useful in the area of medical image
analysis, computer vision, object recognition, tracking, and motion analysis

[59-60]. Till now, a lot of image segmentation approaches have been proposed



but no one of them can satisfy with the segmentation requirement for all kinds
of images. Here, the image segmentation methods are classified into five
groups. They are region-based, edge-based, clustering—based, deformable
contour model-based, and graph-based segmentation schemes. The most typical

and used segmentation algorithms for each category are introduced.
3.1.1.1 Region—-based Segmentation

The conventional region-based segmentation methods consists of thresholding,
region growing, region splitting and merging.

Thresholding is the simplest and fast algorithm in image segmentation. The
grouping of each pixel point belonging to object or background is based on the
comparison between pixel intensity value and the given threshold. For instance,
f(x,y) is the pixel point value at location of (x,y) in image. It is classified as
object if f(x,y)>T while it is viewed as background if f(x,y)<T where T is the

threshold value. This process can be described as following equation:

(1 ifflzy)>T
g(x’y)_{o iffle,y) < T @)

where g(x,y) is the segmented image, f(x,y) is the intensity value at (x,y) in
the original image, and T is a given threshold. If more threshold values are
used, Equation (2) can be extended into multiple thresholding segmentation. For
threshold-based method, the choice of threshold is very important. The
threshold value can be manually selected or automatically acquired from the
analysis of histogram or intensity values of image, such as Otsu’s method that
can automatically find a threshold maximizing the variance of inter-regions [59].

For region growing segmentation method [59], some seeds representing
extracted targets should be selected in advance. Starting from these seed points,
neighboring pixel points can be recruited if they are similar with them (similar
means similar intensity value). Otherwise, the neighboring pixel is viewed as

new seed and used to recruit it’s around pixel points. Consequently, the region



connected to the seed points can be grown. The segmentation results of this
method are sensitive to the definition of similarity between seed points and
their neighboring ones. Also, this method will make the segmentation boundary
unsmooth.

For region splitting and merging [59], the original image is first subdivided
into some arbitrary, disjointed areas. Then, these small areas are merged or
splitted so as to satisfy with the prerequisite conditions. That is, the pixel
points belonging to the same region should have similar properties. The
traditional region splitting and merging method is described as following steps:

step 1: split the image into four disjoint parts.

step 2: merge any adjacent regions that reach the requirement to be one
region.

step 3! iteratively split the sub-region and merge neighboring regions until no
further merging or splitting is possible.

The region splitting and merging segmentation approach is sensitive to the
splitting and merging condition, and the segmented edge of target will be also

unsmooth as region growing segmentation algorithm.

3.1.1.2 Edge—based Segmentation

Edge detection method can find discontinuities in image with first or
second-order derivative and the discontinuities always correspond to object
edge. Edge detection methods include Sobel, Prewitt, Roberts, Laplacian of a
Gaussian, and Canny [59]. Since image usually includes many fault edges, direct
edge detection method cannot get good segmentation results. Usually,
segmentation method based on edge detection is combined with other methods
such as morphology operation [61]. Here, one of the most famous edge detection
methods-Canny edge detector and one segmentation method-watershed
transform algorithm which can be classified as edge-based segmentation

approach are introduced.
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Canny edge detection is known as optimal edge detector. This method can
reduce the error rate, localize the edge well and response only to single edge.
The process of Canny edge detection can be described as following steps:

step 1: smooth the original image with Gaussian filter so as to reduce noise
in the image.

step 2: obtain the edge strength with any one of the gradient operators such
as Sobel, Roberts, and Rprewitt.

step 3. suppress non-maxima pixels. It is implemented by checking whether
the point gradient is greater than its two neighbors along the gradient direction.
If so, it means this point may be the edge point and thus the corresponding
value is kept. Otherwise, the value is set to be zero.

step 4: using two thresholds (7; < 7,) to threshold the previous result. The
bigger threshold value can reserve apparent edges while the smaller one can
keep the week edges.

step 5 connect edge segments in thresholded image obtained with threshold
value of 7, with edge segments that result from segmented image by using
threshold value of 7). When the edge segments result from threshold value 7}
can link the edge segments obtained from threshold value 7,, then these edge
segments from 7 are used to form the final edge by combining with the edge
segments from threshold value of 7;.

Watershed transform segmentation is from the flooding simulation [59]. The
gray scale image is regarded as topological surface and the regional minimal
values are taken as valleys while regional maximal values are viewed as peaks.
When water emits from the valleys, dams are built so as to prevent water in
valleys from merging together. That is, the watershed transform can find peak
value between two neighboring valleys. The flooding simulation of watershed
transform algorithm 1is illustrated in Figure 2 with one dimension. Usually,
watershed transform is applied to gradient image since the edge having high

gradient corresponds to the peaks. The implementation of watershed transform

_11_



can be found in [62]. Since there are many regional minimum and maximum
values in original image, it is easy to produce over-segmentation problem when
the watershed transform is applied to image directly. In order to solve this
problem, marker-controlled watershed transform algorithm is proposed. In this
algorithm, the regional minimum values only happen at the locations that are
marked. These makers consist of internal and external makers. Internal makers
usually denote the extracted targets while the external markers represent the

connected background.

® peaks
s valleys

water

Fig. 2 Ilustration of watershed transform algorithm

3.1.1.3 Clustering—based Segmentation

Clustering—based segmentation algorithms assume that the same object would
have similar intensity values. Supervised and unsupervised clustering methods
[63] which include hierarchical -clustering, partitional clustering, k-means
clustering, and fuzzy clustering methods can be used for image segmentation.
Here, the k-means clustering and mean shift segmentation method which is
also regarded as partitional clustering approach are briefly introduced.

For k-means clustering method, the number of cluster has to be defined

before applying it to image. K-means method tries to minimize a within—cluster
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sum of squares. Namely, attempt to minimize the following term [64]:

where k is the cluster number, S; is the set of the ith cluster and p; is the
mean value of the ith cluster, DQ(;z:j, u;) is the distance between a pixel point
value and the mean value p; of the ith cluster. The procedure for minimizing
formula 3 is described as following procedures:

step 1: define the number of cluster k.

step 2: randomly choose k points from the observations/pixel points as centroid
points.

step 3: group each point to one of the k clusters by comparing the similarity
between the point and the k centroid points. The comparing point is classified
into the group with the most similarity. This step will be conducted to all of
the observation points.

step 4: update the centroid points with the previous result and then do step 3.
The last two steps will be repeated until the centroid points are converged.

When the k-means clustering method is applied to image segmentation, the
number of object should be known and the values of pixel point within each
object should be similar.

Mean shift [65-67] is a kind of gradient ascent segmentation method. Firstly,
the image data should be transformed into probability density by using Kkernel
density estimation [66-67].The density obtained by kernel estimation is much
smoother than that from histogram. Then, mean shift algorithm is applied to
each point on the density where the mean shift vector will point to the
gradient. Consequently, each point will converge to the closest mode where the
mode 1s considered as a cluster center. Thus, the points that share the same
mode are regards as the same cluster belonging to the same object. The
segmentation procedure of mean shift algorithm is given as following steps.
step 1: estimate density of image with kernel density estimator as following

equation:
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Ly xx) (4)

nh i=1
when the spatial (image lattice) and range (graph level or color of spectral

information) domains are considered, K(x) can be expressed as follows.

Yy
{1 M1

where k(x) is epanechnikov kernel function, h is the size of moving window, d

K(z)= (" y'])=
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and p are dimension number while ¢ is used to normalize the function of K(x).
step 2 for each image pixel z; , initialize y;, =x; and then apply mean shift
algorithm to it until convergence. The new point resulting from =z, by using

mean shift algorithm is derived as following iteration equation.

yUH—Ew(H Y T )/Eg

where g(x)=k’(x), n is the number of samples (pixel points) within the moving

2
| ) 6)

H y?] T

window.

step 3: update the pixel value of z; as z; = (zj,y/ ). That is, the value of pixel
point at location z; is assigned with the converged feature point yf which 1is

the mode in the probability density. As a result, pixel points with the same
mode are viewed as the same cluster and belong to the same object.

The above three steps are the fundamental procedures for image segmentation
with mean shift algorithm. However, it is also easy produce over-segmentation
problem. For better segmentation performance, more procedures such as

merging smaller regions should be included.

3.1.1.4 Deformable Contour Model-based Segmentation
There are two kinds of deformable contour model-based segmentation method

[68-69]. They are parametric model and geometric deformable mode. The former

1s usually referred to as snake and the latter one as level set. The contour in a
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parametric model is propagated directly on the image which means the points
on the curve is parameterized and evolved explicitly while the evolution of
contour on the level set is independent to any parameterization and the curve is
propagated implicitly by evolving a surface in a high dimension. The basic
concept about snake and level set are described as follows.

The curve in snake model is defined as wv(s)= [z(s),y(s)] where x(s) and
y(s) are x and y coordinates in image and s€[0,1] are points on the snake.
The segmentation is achieved by minimizing an energy function on the snake

which is expressed as follows [69-70]:

1
Es’na,ke = / Es’nu,k,e (U (S ))dS (7)
0

= [ B )+ B o)+ B (015))

where F,,, is the internal energy due to bending of curve, £,,, is energy from
image force and E,, is energy from external constraint forces defined by user.
The internal and image energy can be simpled expressed as following equations
for image segmentation.

v |’
ds®
By =— IV f(z,y)] 9)

— | +p8(s) (8)

where a(s) and B(s) specify the elasticity and stiffness of the snake, Vf(z,y)
is the image gradient. When calculus of variation [] is applied to the functional

in equation 7, the Euler-Lagrange condition can be derived as follows.

d dv d’
vE’ezt (U) Ea dS d 26 (10)
where E,,,=E,,,+E,, Then, the evolution equation can be formed as

equation 11.

vis,t+1)= 11

d dv(sit) d* dv(s,t)
I T N , A
dS @ dS d82 ﬁ d$2 VEfﬁ.lft(v(S/t)) X t"”l}(s,t)

However, the implementation is easy to suffer from numerical instability and
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numerous parameters have to be designed. Many kinds of varied snakes can be
found in [71-73].

The snakes cannot properly deal with split and merge problem during image
segmentation while level set can solve those disadvantages. As level set
[74-75], the curve X(s;t) is embedded into a level set function ®(x,y,t) and the
curve is obtained by determining zero level set in the level set function.
Consequently, the curve can be obtained by evolving the level set function and
be chosen as the zero level set instead of evolving the curve explicitly. The
embedded curve in level set can be described as following equation [68].

D(X(s,t),t)=0 (12)
use chain rule and do differential to Equation 12 with respect to t, the following
equation can be achieved:

%+ v@%: 0 (13)
when the speed of the curve 8X/8t= V(c)N and the inward unit normal of
level set curve N=—v&/|v®| is inserted into Equation 13, the curve evolution
using the level set method can be described as follows:

2 Vo)l val (14)
where V(c) is the speed function. The basic speed function from image can be
written as 1/(1+ |V (G, x I)|) where V(G, * 1) denotes the gradient of
smoothed image with Gaussian filter. As implementation, an initial level set
function that the curve has zero level set should be defined. Since Equation 14
is defined only for zero-level set, other level sets also need to be defined for

implementation. A large number of varied level set methods can be found in

[76-81].
3.1.1.5 Graph-based Segmentation

The snake and level set segmentation method can be also classified as
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energy—based segmentation algorithm. These methods cannot reach global
minimum energy during function minimization. Here, only the graph -cut
segmentation approach [82-85] which try to minimize an energy function with
graph cut and can achieve global minimum value is focused.

A graph denoted as G=<V,E> includes node and weight. The cut is the total
weight of edges that have been removed between two groups resulted from a
cut in the graph. Image segmentation based on graph cut is to find the
minimum cut which can reach minimum energy. The energy for graph cut

segmentation is defined as following equation [82-83].

E(A)=)\R(A)+ B(A) (15)
where R(A) and B(A) are defined as:
R(4)= Y R /(4,) (16)
pEP
BA)=Y Y B, 4,4, (17)
pEP p,gEN
1 A =A
where §(A4,,A,)= b
)T 4, =4,

where R(A) is called as regional term and defines the penalties for assigning
A, (pixel point p on image) to object or background which can be denoted as
R,(obj’) and R,('bkg’), B(A) is the boundary term which describes the
boundary properties of the segmentation, A is the relative importance factor
between regional and boundary term. The energy function in Equation 15 can
be minimized by the graph cut theory while the cut is the segmentation
boundary. To get segmentation result, the graph should be established first by
using the original image. Then, the minimum cut of the graph can be obtained
by max-flow algorithm [59] which can achieve the minimum cut. When the
result is not good, the refinement/interactive process can be used. For graph
construction, two extra terminal nodes (other nodes that are not from image
pixel points) which represent object and background are applied and this kind
of graph i1s called as s-t graph. After the nodes are defined, next step is to

give weight to the corresponding edges. The weight can be given as criterion
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shown in Table.l [82-83].

Table. 1 Graph Construction

Edge Weight Condition
n-link {p,q} B{p,q} P,qEN

AR, ('bkg") pEP, pE OUB
t-link {p,s} K pEO

0 pEDB

)\Rp(,obj,) pEP, pEOURB
t-link {p,t} 0 pE O

pEB

where n-link is the edge between nodes in image, t-link is the edge between

nodes in image and two terminal nodes (s and t nodes), By, ,,R,('bkg’), K, and

qb

R,('obj") are defined as follows:

I—1)
By, ;0 exp|— < QQ) (18)
' 20
K=1+ 13X ( B,() (19)
pEP q:{1§61v (p.a)
R,('obj’) =—1n Pr(1]0) (20)
R,('bkg') =—1nPr(1|B) (21)

where {p,q} denotes two neighboring nodes in image, Pr(Z|0) and Pr(Z|B)
denote the intensity distribution of object and background which are usually
estimated from the seed points that are manually selected or automatically
detected. When the weight in graph is assigned as the method showed in
Table.l, the min—cut can be achieved by max-flow method and the minimum
energy in Equation 15 is achieved while the cut edge is corresponding to the
segmentation results. The graph cut segmentation is widely used in interactive

segmentation approach.
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3.1.2 Segmentation Results of Red Blood Cell Phase

Images

Red blood cells of healthy laboratory personnel were obtained from the
Laboratoire Suisse d’Analyse Du Dopage, CHUV. The RBCs were stored at
4° ¢ and DHM measurements were conducted on several days after the blood
were drawn from the laboratory personel. 100-150ul of RBC stock solution were
suspended in HEPA buffer at 0.2% hematocrit. 4ul of the erythrocyte
suspension were diluted to 150ul of HEPA buffer and introduced into the
experimental chamber, consisting of two cover slips separated by spacers 1.2
mm thick. Cells were incubated for 30 min at a temperature of 37° C before
mounting the chamber on the DHM stage. All experiments were conducted at

room temperature (22° Q).

(a) (b)
Fig. 3 Reconstructed RBCs phase images. (a) The RBCs with predominantly
stomatocyte shape. (b) The RBCs with predominantly discocyte shape

The RBC phase images are numerically reconstructed from the RBC

holograms that are recorded with DHM. Two of the reconstructed RBC phase
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images are shown in Figure 3. The Figure 3(a) are reconstructed RBCs phase
image with RBCs of predominantly stomatocyte shape and Figure 3(b) are
reconstructed RBCs phase image with RBCs of predominantly discocyte shape.
By analyzing a series of segmentation methods, the marker—controlled watershed
transform segmentation method combined with morphological operation 1is
applied to remove the unnecessary background existed in RBCs phase image
due to its advantage in terms of getting isolated target. The detail procedures
for segmenting RBCs phase images with marker—controlled watershed transform
can be found in [37]. Consequently, each RBC can be separately extracted and
the corresponding features can be measured for the further analysis. Two of the

segmented RBCs phase images are given in Figure 4.

(a)
Fig. 4 The segmented RBCs phase image. (a) The segmented RBCs of Fig.3(a)
(b) The segmented RBCs of Fig.3(b).

Moreover, the inside part of RBCs are also helpful for the analysis of
RBC-related disease. It is meaningful to extract the inner part of RBCs as well.
The marker—-controlled watershed transform method can also be used to
segment the inside area of RBCs based on the segmented RBCs phase images

shown in Figure 4. Consequently, it is easy to derive the outer part of RBCs
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once the inner parts are obtained. The segmentation results of inner and outer

part of RBCs are given in Figure 5 [37].

©) ' A

Fig. 5 Segmentation results of the inner and outer parts of the RBC phase
images. (a) and (b) are the inner part of RBCs in Fig. 4(a) and (b). (c) and (d)
are the outer part of the RBCs in Fig. 4(a) and (b).

It is noted from Figure 4 and Figure 5 that the marker—controlled watershed
transform segmentation method combined with morphological operation can

segment the RBCs phase image properly, not only robust to the whole RBCs
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but also to the inner and outer part of the RBCs. This segmentation method
can be used to segment the RBCs phase images and do the further analysis

about RBCs.

3.1.3 Performance Comparison and Evaluation

The segmentation results about RBCs with predominantly stomatocyte and
discocyte shape are compared and evaluated. These RBCs segmented with
conventional marker—controlled watershed algorithm in [59] are given in Figure
6. It 1s noted from Figure 4 and Figure 6 that our method can get much better

segmentation results in terms of over-segmentation and under-segmentation.

(a)
Fig. 6. The segmented RBCs with marker—controlled watershed method in [59].
(a) The segmented RBCs of Fig. 3(a) (b) The segmented RBCs of Fig. 3(b).

Moreover, a scientific tool developed by F. Sadjadi [103], which is based on
the experimental design methodology and independent of the systems output has
been applied for performance evaluation. The performance comparison of two

algorithms with biased results is mainly dependent on the varied parameters in
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segmentation. The procedure of the performance evaluation approach can be
briefly described as steps of data characterization, data sampling, primary
parameter selection, parameter sampling, performance metrics definition,
performance model calculation and statistical analysis. The quantitative phases
of RBCs in this study are given to two categories namely stomatocyte and
discocyte shape RBCs. The primary parameter which largely affects the
segmentation result in our procedure is the value of threshold obtained by
Otsu’s method while the main parameter for the marker—controlled watershed in
[59] is also a threshold which is used to find the regional minimum values. The
assessment of segmentation results for RBC inner and outer parts are not
conducted because they heavily rely on the previous segmentation results. For
the performance metrics, the segmentation accuracy is adopted and it is simply
defined as the absolute value of correlation between segmented RBCs image and
reference image which is manually obtained. The closer the segmented image
is to the reference image, the closer the segmentation accuracy will tend to
approach 1.

The homologous performance models between segmentation accuracy and
threshold for RBCs with stomatocyte and discocyte shape are presented in
Figure 7. For curve fitting, the least square error estimation technique was
employed and the polynomials were examined with degrees up to 6. Then,
statistical analysis of Chi—squared test was performed for checking of the
similarity between the obtained results (the measured data with the
segmentation method and that in the fitted polynomial) [103]. Consequently, the
p-values for the null hypothesis that the predictive performance models
approximately satisfy with the measured response curve were achieved to be
0.7578, 0.3571, 09135 and 0.1213 for Figure 7(a), (b), (c) and (d) respectively.
Therefore, the null hypothesis that the fitting curve is similar with the
measured one should be accepted at the 0.05 level of significance. It is also
noted that the maximum segmentation accuracy in our method outperforms that

presented in [59].
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Fig. 7 Performance models. (a) and (b) are performance models for RBCs with
stomatocyte and discocyte shape in the method of [59]. (¢) and (d) are
performance models for RBCs with stomatocyte and discocyte shape in our

proposed procedure.

3.1.4 Subsection Summaries

In summary, all of the segmentation methods can work well for image that
the target is very different from the background and the intensity values of the
pixel points of the same region are very similar. Among these segmentation
approaches, thershold-based method has the advantage of fast computation time.
However, it is difficult to choose an appropriate threshold. Region growing,
region splitting and merging method can get better segmentation results when
the property of target is very similar. This kind of method suffers from

unsmooth boundary and is not easy to define the stop criterion. In addition, this
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method is not good for segmented targets with weak boundary. As edge-based
segmentation algorithms, the most used methods such as Sobel, Prewitt,
Roberts, Laplacian of a Gaussian and Canny will work well when they are
combined with other post-processing techniques such as morphology operation.
It is also easy for these methods to produce false edges due to image noise.
For watershed transform segmentation algorithm, it has the advantage to get
isolated object and disadvantage of producing over-segmentation. However,
when the object can be approximately detected, the marker-controlled watershed
algorithm will work well and can reduce the over-segmentation problem.
Usually, the segmentation results are not good when the edge-based method is
used solely. For clustering-based segmentation, assumption that each region
should have similar property is required. This kind of method is also robust to
color image. After clustering the pixel point, post processing such as merging
small region is necessary. Snakes and level set segmentation method can be
applied to medical image with heavy noise and weak edge in object. Compared
with snakes, level set algorithm can solve the split and merge problem during
the curve evolution. These kinds of methods are widely used in biomedical
images. For the graph cut segmentation method, the regional and boundary
information on 1image are combined. The graph cut can work well when
different targets are existed in image. The graph cut method can get
appropriate segmentation results to all kinds of image when the user’s
intervention 1is introduced. All kinds of segmentation methods have many
improved version which can reach an acceptant execution time. For the
segmentation of RBCs phase images, the RBCs phase images are segmented by
using marker-controlled watershed transform algorithm due to its advantages of
achieving isolated object while the internal and external markers are identified
with morphological operation and thresholding technique. Moreover, the
execution time of watershed transform algorithm is acceptable compared with

active contour and graph—based segmentation approaches.
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3.2 Quantitative Analysis of Human Red Blood Cells

Stored in Different Periods

In this section, the modifications of the 3D morphology and mean hemoglobin
(MCH) in RBCs induced by the length of storage time for the purpose of 3D
classification of RBCs having different storage periods by using an off-axis
DHM 1is studied. To analyze the morphological changes in RBCs induced by the
length of storage time, datasets from blood samples stored for 8, 13, 16, 23, 27,
30, 34, 37, 40, 47, and 57 days are used, respectively. The datasets are divided
into eleven classes of RBCs stored in eleven different periods. The eleven
classes have more than 3,300 blood cells, with averagely more than 300 blood
cells per class. The classes indicate the storage period of RBCs and are listed
in chronological order. Using the RBCs donated by healthy persons, off-axis
digital holographic microscopy reconstructs several RBC quantitative phase
images from each class of blood sample. In order to automatically calculate the
characteristic properties such as projected surface area, averaged phase value,
corpuscular volume, hemoglobin content and hemoglobin surface density of
RBCs, the image segmentation method [37] based on marker—controlled
watershed algorithm [59] is applied to remove the unnecessary background in
the RBC quantitative phase image. All the RBCs that exist in the quantitative
phase image are extracted to measure the characteristic properties of RBCs.
Averagely, more than 300 RBCs are extracted from the segmented quantitative
phase images for each class of blood sample. The sample size is large enough
to allow us to obtain statistical distributions of the characteristic properties of
RBCs at a specific storage time. Our main focus is to quantitatively analyze the
relationship between the RBC characteristic properties and their aging. This
analysis will be beneficial to the understanding of the features of RBCs with
different storage periods and evaluation of any modifications in the 3D cell

morphology and hemoglobin content induced by the length of storage time.
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3.2.1 Sample Preparation

The original RBC’s were donated by healthy people and stored in a
transfusion bag which were obtained from the Service Régional Vaudois de
Transfusion Sanguine in Switzerland and stored at 4°C during the storage
period. The erythrocyte concentrate was extracted from the blood transfusion
bag and diluted in HEPA buffer (15 mM HEPES pH 7.4, 130 mM NaCl, 54
mM KCI, 10 mM glucose, 1 mM CaCl2, 0.5 mM MgCI2 and 1 mg/ml bovine
serum albumin) at a concentration of ~ 0.15 % Vol. 0.2 ml of the erythrocyte
suspension was then introduced into the experimental chamber, consisting of
two coverslips separated by spacers 1.2 mm thick. In order to allow for
sedimentation of the cells on the bottom coverslip, cells were incubated for 30
min at a temperature of 37°C before mounting the chamber on the DHM stage.

All experiments were conducted at room temperature.

3.2.2 Three-dimensional Sensing and Segmentation of
Red Blood Cells

To analyze morphological changes in RBCs induced by the length of storage
time, eleven classes of blood samples stored for 8, 13, 16, 23, 27, 30, 34, 37, 40,
47, and 57 days were prepared. The off-axis DHM reconstructed several RBC
quantitative phase images for each class of blood samples, where holograms of
RBC preparations were acquired in an out-of-focus plane. In-focus phase
images of RBCs were obtained through a numerical reconstruction of the object
wavefront and subsequent digital propagation of the reconstructed field to the
focus plane. Most of the contained RBCs are discocyte RBCs which have a
discoid-shape. Some of the reconstructed RBCs phase images are given In

Figure 6 [86].
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(e) (f)
Fig. 8 Reconstructed RBCs images at different storage days. (a)-(f) are
RBCs with 8, 16, 30, 34, 47 and 57 days of storage, respectively.

For automated investigation of the characteristic properties of RBCs,
individual RBC must be extracted from the quantitative phase image. The
segmentation method based on marker—-controlled watershed algorithm as
described in section 3.1 is applied to remove the background from the
quantitative phase images. For the purpose of comparing the RBC quantitative

phase images with different storage times, the phase value of the background of
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the RBC quantitative phase image is set to 0°. The corresponding segmentation

results for RBCs phase images shown in Figure 8 are given in Figure 9.

Fig. 9 Segmentation results of Reconstructed RBCs images at different
storage days. (a)-(f) are the corresponding segmented RBCs images shown in
Fig.6 (a)-(f) with 8, 16, 30, 34, 47 and 57 days of storage, respectively.
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3.2.3 Measurement of Red Blood Cells Features

The characteristic properties used to analyze the 3D morphological changes in
RBCs induced by the length of storage time are the projected surface area, the
mean phase value allowing to calculate mean corpuscular volume (MCV),
hemoglobin (MCH) - the average volume and mass of hemoglobin per red
blood cell in a sample of blood - and MCH surface density (MCHSD), defined
as the ratio of MCH to the projected surface, three highly relevant parameters,
altered in various pathological states.

The average phase value @ induced by the whole RBC which is related to
the dry mass [87] and the projected surface area S which may influence the
functionality of RBCs are defined as follows:

1 <

&= Wi; ©; (22)

S= Np* (23)

where N is the total number of pixels within a RBC, p denotes the pixel size
in the quantitative phase image, and ¢, is the phase value of each pixel within
the RBC. RBC volume or the size of RBC is a good indicator of the
functionality of RBCs. A RBC with a larger volume means a larger surface
area and thus can transform more oxygen [88]. It is also beneficial to the
diagnosis of polycythemia vera [89]. According to [87], the volume of a single

RBC, or the corpuscular volume is denoted as:

N
Pz)\Z%

Vg 27T(nrb(: - nm)

; (24)

where p is the pixel size in quantitative phase image, ¢; is the phase value
of each pixel within the RBC, and )\ is the wavelength of the light source.
Coherently, when a population of RBCs is considered, Equation. (24) allows us
to derive the mean corpuscular volume (MCV) [90]. The refractive index of

RBCs, nrbc, has been measured with a dual-wavelength digital holographic
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microscope as described in [91]. Here, nrbc, is 1.396 with no significant
difference between groups of different ages. The index of refraction of the
HEPA medium, nm, is 1.3334. Another important characteristic property is the
dry mass which measures the weight of the cell after dehydration. The dry
mass 1s a reliable biomass, which is widely used to compare cells since it is
free from the disturbance of water existing in living beings [87]. According to
[87, 92], the dry mass of a cell is related to the phase value and can be defined

as follows:

Dry Mass (DM) 10)\ fgo ds = &455 (25)

where )\ is the wavelength of the light source, @ is the average phase value
induced by the whole cell, o« is a constant known as the specific refraction
increment (in m3/kgordl/g) related mainly to the protein concentration [29]. As
far as RBCs are concerned, o= a,, =0.00196dl/g is the hemoglobin refraction
increment between 663nm and 682nm [90]. When a RBC population is
considered Equation. (25) provides the mean corpuscular hemoglobin (MCH)
according to [92]. The MCH is used as an important parameter for the
investigation of change in the hemoglobin content in the RBCs.

The last property used to evaluate the morphological changes in RBC induced
by the length of storage time is the MCH surface density (MCHSD), which can
show the hemoglobin concentration. It is defined as the ratio between MCH and
projected surface area S as follows:

MCHSD = MTCH (26)

All the properties defined as in the above equations can be appropriately
calculated and compared by using the segmented RBCs phase images stored at

different periods.
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3.2.4 Experimental Results and Discussion

After segmentation and extraction of RBCs from the quantitative phase
images, the characteristic properties including the mean projected surface area
S, the mean average phase value &, MCV, MCH and MCHSD as well as their
standard deviation were calculated for each class of blood sample with method
of moments [34]. In the same way, the mean and standard deviation of the
projected surface area for RBCs with different storage periods can be calculated.
The other properties of RBCs including corpuscular volume (CV) hemoglobin
(CH) and hemoglobin surface density (CHSD) can also be obtained by the
method of moments. Table 2 shows the calculated mean and standard deviation

for all of the characteristic properties of RBCs with different storage times [86].

Table. 2 Characteristic properties of RBCs with different storage days

storage time[days] 8 |13 116 | 23 | 27 | 30 | 34 | 37 | 40 | 47 | 57

projected mean | 45 | 46 | 47 | 45 | 47 | 42 | 43 | 41 | 39 | 34 | 26

area std 5 6 7 7 10 8 9 8 9 9 6
Mean phase| mean | 74 | 74 | 81 | 76 | 77 | 76 | 78 | 87 | 96 | 112 | 136
value std 12 |15 |16 | 16 | 15 | 24 | 21 | 26 | 27 | 28 | 28
cv mean | 91 | 92 [ 102 | 94 | 98 | 8 | 8 | 93 | 98 | 98 | 94
std 9 12 14 14 15 20 12 11 12 13 11
CH mean | 32.2 323|357 328|348 | 292 | 309 | 32.7 | 336 | 346 | 325

std 50 | 55| 77|73 |86 | 76 | 61|57 |50 68 |51

CH surface mean | 0.70 [ 0.70 | 0.76 | 0.71 | 0.72 | 0.71 | 0.73 | 0.82 | 0.90 | 1.05 | 1.28

density std 011013014 |0.15]0.14| 023 | 0.20 | 0.24 | 0.25 | 0.26 | 0.26

All of the property values are measured automatically once the RBC phase
images are successfully segmented. It can be seen from Table.2 that the mean
phase value and CH surface density have similar variation tendency that tend
to increase as the increase of storage time. For CV and CH, they don’t change

quickly as the extension of storage time and seem to fluctuate around their
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respective mean value. In contrast, the RBC projected area is obviously
decreased as the increase of storage days. On the other hand, the standard
deviations for all of these properties achieve significant value when the RBCs
storage time is around 30 days (27-34days). Around 30 days’ storage, the
standard deviations of projected area, CV and CH achieve big value. As RBCs
mean phase value and CH surface density, the standard deviations are inclined
to iIncrease at the time with 30 storage days. These phenomena may be
explained that the RBCs are suffering from drastic variation when the stored
days are around 30 days.

In order to view the trend of the modification of the 3D morphology of RBCs
as a function of storage time, the mean and standard deviation are plotted
against storage time.

Figure 10 presents the relationship between the mean projected surface area,
mean average phase value and the varied storage time of RBC samples. It was
discovered that the variation trends of RBC projected surface area and the
average phase value are almost opposite as the increase of storage days.

Figure 10(a) shows the relationship between the mean projected surface area
S and storage time. Roughly, the trend of S of RBCs decreases with increasing
storage time. As shown in Figure 10(a), it is noted that when the storage time
of RBCs is less than 27 days, S remains quite constant. Furthermore, the
decrease rate of S for RBCs with storage time less than 34 days is much
smaller than that for those with storage time longer than 34 days. When the
storage time is longer than 34 days, S experiences a substantial decrease. On
the other hand, Figure 10(b) shows the relationship between the mean average
phase value & [see Equation.(22)]and storage time. ¢ and its standard deviation
are obtained from 300 individual RBCs in each class of blood sample. From
Figure 10(b), it can be observed that does not experience a significant change
when the storage time is less than around 34 days. In contrast, when the

storage time is longer than 34 days, @& apparently increases. As can be seen
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from Figure 10(a) and Figure 10(b), both S and & remain constant when the
storage time is less than around 34 days. However, S and & change in the
opposite directions when the storage time of RBCs is longer than 34 days.
Decrease in S results in the increasing occurrence of echinocytes in the RBC
preparations. RBCs that have aged significantly begin decomposition and have a
serrated margin and burr appearance. The RBCs with this morphologic

abnormality are called echinocytes.

o))
=)

al
o

N
o

w
=]

N
=)

Mean projected surface area [ym?]

8 13 16 23 27 30 34 37 40 47 57
Storage time [days]

(a)

-
(]

_34_



180
1601

140

]
1201 /
100 /

8of D_U/D\D-/‘U‘\D/U/H/

60

Mean average phase value [degree]

40 i i i 1 1 i i i i 1
0 8 13 16 23 27 30 34 37 40 47 57

Storage time [days]

(b)
Fig. 10 Relationship between the mean projected surface areas, mean average

phase value and the different storage times. (a) Relationship between S and
storage time. (b) Relationship between @ and storage time. Square and bar are

the mean and standard deviation of @ and S.

Figure 11 illustrates the relationship between RBCs MCV, MCH and the
different storage time of RBC samples. The results reveal that the trends for
RBCs MCV and MCH with increase storage time are almost the same. In
addition, both MCV and MCH values seem to swing around their respective
mean value.

Figure 11(a) shows the relationship between the mean corpuscular volume
MCV and the storage time. It is noted that the MCV fluctuates around a value
of 94 um® even if the storage time of RBCs is increased. Therefore, one
conclusion that may be derived is that the MCV is not significantly affected by
the storage time. In contrast, Figure 11(b) shows the relationship between the
mean corpuscular hemoglobin MCH and RBC storage time. As shown in Figure
11(b), although the MCH fluctuates around a value of 32pg, the MCH is almost
stable even if the storage time is increased. Therefore, it may conclude that the

hemoglobin content within RBCs does not change as a function of storage time.
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Since MCV and nrbc do not vary over storage time, this is an expected result.
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Fig. 11 Relationship between MCV, MCH of RBCs and varied storage time.
(a) Relationship between MCV and storage time. Square is the mean and bar is
the standard deviation of corpuscular volume. (b) Relationship between MCH of

RBCs and storage time. Square represents the mean and bar represents the

standard deviation of the corpuscular hemoglobin content.

Figure 12 shows the relationship between the mean corpuscular hemoglobin

surface density MCHSD and storage time. Even though the MCH in Figure
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11(b) shows little fluctuations over the storage period, the MCHSD tends to
increase as shown in Figure 12. This can be explained by the fact that the
MCH remains constant while the mean projected surface area of RBCs tends to
decrease with increased storage time. It can also be noted that the MCHSD is
almost constant when the storage time of RBCs is less than 34 days. When the
storage time is longer than 34 days, the increase in MCHSD is noticeable and

the 3D morphological modification of RBC is drastic.
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Fig. 12 Relationship between MCHSD of RBCs and varied storage time.
Square represents the mean and bar represents the standard deviation of the

dry mass surface density.

From the relationship between 3D morphological modifications of RBCs and
the storage time, it is found that the MCH of RBCs with different storage
times remains constant while the other properties such as S, & and MCHSD
change more substantially. When the storage time is less than 34 days, there is
no change in the 3D morphology of RBCs. However, when the storage time is
longer than 34 days, the morphological change of RBCs is drastic such that the
functionality of RBCs can be altered. From these experimental results, it can be

seen that the modifications of the 3D morphology and the MCHSD of RBCs are
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induced by the length of storage time and that the shelf-life of RBC’'s may be
about 35 days when the blood is stored at refrigerator temperatures [93, 94].

3.2.5 Subsection Summaries

In this section, the 3D morphology and MCH of RBCs with different storage
periods are investigated. First, RBC quantitative phase images have been
obtained by off-axis digital holographic microscopy and numerical reconstruction
method. Then, many single RBCs have been extracted from the RBC
quantitative phase Iimages by using the segmentation method based on
marker—controlled watershed algorithm. Finally, the characteristic properties of
RBCs including projected surface area, average phase value, volume, hemoglobin
content and surface density measured at a single cell level have been evaluated
over samples of several hundred RBCs using an automated analysis of the
quantitative phase images. A statistical analysis indicates that 3D morphological
changes in RBCs are induced by the length of storage time, while the
hemoglobin content within RBCs is not changed substantially. In addition, it is
concluded that 34 days of storage may be a threshold across which the
morphology of RBCs starts to change substantially and hence possibly alter
their functionality. Automated analysis of the relationship between the
characteristic properties of RBCs and storage time may be helpful for drug

tests.

3.3 Automated Method for Counting of
Morphological Normal Red Blood Cells

The counting morphologically normal cells in human red blood cells (RBCs) is

extremely beneficial in the health care field. In this paper, a three-dimensional
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(3D) classification method of automatically determining the morphologically
normal RBCs in the phase image of multiple human RBCs that are obtained by
off-axis digital holographic microscopy (DHM) is proposed. The RBC holograms
are first recorded by DHM, and then the phase images of multiple RBCs are
reconstructed by a computational numerical algorithm [56-57]. To design the
classifier, the three typical RBC shapes, which are stomatocyte, discocyte, and
echinocyte, are used for training and testing. Non-main or abnormal RBC
shapes different from the three normal shapes are defined as the fourth
category. Ten features, including projected surface area, average phase value,
mean corpuscular hemoglobin (MCH), perimeter, MCH surface density
(MCHSD), circularity, mean phase of center part, sphericity coefficient,
elongation, and pallor, are extracted from each RBC after segmenting the
reconstructed phase images by using watershed transform algorithm [4].
Moreover, four additional properties, such as projected surface area, perimeter,
average phase value, and elongation, are measured from the inner part of each
cell that can give significant information beyond the previous ten features for
the separation of the RBC groups; these are verified in the experiment by the
statistical method of Hotelling’s T-square test [96]. The principal component
analysis (PCA) algorithm [97] is also applied to reduce the dimension number of
variables and establish the Gaussian mixture densities using the projected data
with the first eight principal components. Consequently, the Gaussian mixtures
are used to design the discriminant functions based on Bayesian decision theory
[98]. To improve the performance of Bayes classifier and the accuracy of
estimation of its error rate, the leaving—one-out technique is applied [98].
Experimental results show that the proposed method can yield good results for
calculating the percentage of each typical normal RBC shape in a reconstructed
phase image of multiple RBCs that will be favorable to the analysis of
RBC-related diseases. In addition, it shows that the discrimination performance
for counting of normal shapes of RBCs can be improved by using 3D features
of a RBC.
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3.3.1 Bayesian Decision Algorithm

Bayesian decision algorithm is a kind of statistical decision making approach
for the problem of pattern classification. The probability of a pattern belonging
to a specific class is the combination of prior probability and a likelihood
probability which can be expressed as following equation with one feature and
n classes [3, 59].

p(z)
where p(z)=plC)p(C)+ p(alCy)p(Cy)+ ...+ p(zlC,)p(C,) is viewed as scale

P(Clz) = (27)

factor so as to make the summation of posterior probabilities p(Clz) equal to 1
or just be taken as constant, p(C;) is the priori probability which represent the
probability of class 1 appeared among all of the populations while conditional
probability p(z|C;) is called as likelihood which denotes the probability of
feature x occurring in a given class C, n is the number of classes.
Consequently, the posterior probabilities p(CJlz) which means the probability for
a given feature x that is classified into a specific class 1 can be derived by
basic Bayes theorem in equation 27. Most of the time, a single feature is not
enough to discriminate the classes. Multiple features are a better choice to
distinguish the classes in a high dimension. The Bayes theorem for multiple
features can be expressed as equation 28 which is similar as equation 27 but
replacing single feature x with a feature vector X including multiple features

and the likelihood p(Cjlz) is a joint conditional probability (for discrete case).

P(ClX)= p(ﬂ@)p(@) (28)

()= Mp(xICp(C)

j=1

For the pattern classifiers based on Bayesian decision theory, discriminant
functions, which are represented as g¢;(z) while i=1,...,n denoting the ith class,

are widely used. For a sample with multiple features X, when g,(X)> g;(X)
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and i # j,the sample is classified into class C; that is corresponding to the class
with the highest posterior probability in the Bayes theorem. Thus, the
discriminant functions can be achieved by the following equation.

9.(X)=P(C|X) = p(XIC)p(Cy) .

p(X) = Xn]p(X|q>p(q-)

j=1

Since p(X)will not affect the decision and can be viewed as constant, the
denominator in Equation (29) can be eliminated. In order to simplify and make
the discriminant function much easier to understand, the discriminant function
can be written in a simpler form as follows by taking natural logarithm to the
numerator in Equation (29):

9;(X)=Inp(X|C)+1np(C). (30)

As a result, the discriminant function based on bayesian decision theory is
decided by the conditional probabilities (likelihood) p(X|C,)) and priori
probabilities p(C;).In particular, when the multiple features satisfy with the
multivariate normal distribution, the conditional probabilities can be described by

multivariate normal density as follows[3].

p(X1C)= exp

W _%(X_ ) (30) " (x— Nz')] (31)

where X is a d-dimensional feature column vector, p; is the d-dimensional
mean vector of the ith class, ZZ 1s the d-by-d dimensional covariance matrix
of the ith class, |Zz| and (E)_l are the determinant and inverse of
covariance matrix respectively. Consequently, the discriminant fuction in
Equation (30) can be easily evaluated as Equation (32) if the conditional
probabilities are mixture gaussian distribution (replace p(X|C:) in Equation (30)
with Equation (31)).
1 - 1
g;(X)=— E(X*M,;)t(zi) lfganW*Eln‘E”—an(C,) (32)

Thus, the features are classified into the class that can achieve the biggest

discriminant value. The discriminant function derived from bayesian decision
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theory is proven that can achieve minimum-error-rate among all of the

classifiers [3, 59].

3.3.2 Leaving-One-Out Technique

It is evident that a classifier designed with as much training and testing sets
as possible will be much more robust in terms of improving the performance of
classifier and the accuracy for estimating its error rate. However, due to the
restriction of available sample data, the accuracy for both training and testing
in a classifier design will be limited. Leaving-one-out method is such kinds of
technique that can avoid the previous drawback to a large extent since this
approach can nearly double the effective size of the sample data [3]. The
procedure of leaving—one—out technique is described as follows. Suppose n
samples are given in the data set, the classifier obtained by leaving-one-out is
not designed and investigated by simply dividing the samples into training and
testing sets at one time but n times. In this process, one sample from the data
set 1s withdraw for testing set and the other n-1 samples is used to design the
classifier. Thus, this withheld sample can be tested by the designed classifier
with n-1 samples. It makes sense because the classifier is designed without
this sample. The previous step can be repeatedly processed with n times so
that each time one different testing sample will be left out and totally n
samples can be conducted as testing set. For each round, a new classifier will
be established with n-1 samples and tested by the one sample that is not used
in the design of classifier. Consequently, the expected probability of error can
be deduced as k/n on an average classifier which is trained on the n-1 samples
and k 1s the number of errors in the testing phase. Since the samples in this
technique i1s avoided to be both training and testing for a given classifier, the
estimate of error rate can be regarded as unbiased and it will be as accurate as

possible since all of the samples are used for testing [98-99]. Finally, the
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classifier is designed by using the total n samples as training and its expected
error rate will be at least as low as k/n since this classifier is created with n
samples but not n-1 samples which is used in the leaving-one-out step. This
process is illustrated in Figure 13. Step 1 in Figure 13 is conducted n times
until no new sample can be used as test. The classifier gi(x) is designed based
on Bayesian decision algorithm. After the table showed in step 2 of Figure 13
is achieved, the misclassification rate can be measured. Finally, all of the
samples are applied to design the classifier which will be used to predict the

sample with unknown class.

Total n samples with predicted class
known class ¢,
Input sample sample 1
with unknown Use nsamples Sample 2 Use the left n-1 samples to Test  Actual predicted
class to design the Sample 3 design the classifier = Sample  class  class
classifier Classifier Test1 1 1 ({true}
! (ilx]) Test2 1 2 (false)
S lei Test3 2 2 (true
plii Sequentially choose one fao
sample as Test | | |
Classifier Testn 3 3true)
(&) ) o
Step 3 Step 1 Step 2

Fig. 13 Flowchart of leaving-one-out technique

3.3.3 Procedures of the Classifier Design

When the RBCs phase images are reconstructed by using computational
numerical algorithm from the holograms obtained by off-axis digital holographic
microscopy, each RBC is extracted with the background removed by
marker—controlled watershed transform segmentation approach [37]. Then, ten
features showed in table 3 are calculated from each whole segmented RBC. In
addition, in order to increase the performance for separating the RBC groups,
four more features including projected surface area, perimeter, average phase
value and elongation are measured from the inside part of segmented RBCs

which 1s also presented in Table 3. The whole segmented and inside part of

_43_



RBC is illustrated in Figure 14.

Table. 3 Description of Total Fourteen Features

The whole segmented RBC

Feature

Description

F1: projected
surface area

Number of pixels within single RBCxone

pixel area

F2: perimeter

The length of cell boundary

F3: circularity

(Perimeterxperimeter)/area

F4: average
phase value

Average phase value for pixels with in

single RBC

F5: mch mean corpuscular  hemoglobin
F6:mchsd mch surface density
F7: phase of phase value of center pixel (average 5x5

center pixel

pixels)

F8&: sphericity
coefficient

Center part phase value/maximal phase value

F9:elongation

Orientation of chain code in the cell boundary

F10: D-value

Center pixel phase value minus maximal pixel
phase value

Inside part of the segmented RBC

F11: projected
surface area

Number of pixels within inside part of

RBCxone pixel area

F12: perimeter

The length of boundary in the inside part
of cell

F13: average
phase value

Average phase value for pixels with in

inside part of RBC

F14:elongation

Orientation of chain code in the boundary of
inside part of cell
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Original
Red Blood Cell

Segmented whole cell Segmented inner part

Fig. 14 Illustration of segmented whole and inside part of the cell.

The projected surface area, average phase value, mean corpuscular hemoglobin
(MCH) and MCH surface density (MCHSD) are calculated from each whole

segmented RBC as following equations respectively.

2

S= N# (33)
- 1 X
o= ; 0 (34)
10N —
MCH= =S¢ (35)
MCHSD = MTCH (36)

where N is the number of pixels within a single RBC, p is the pixel size, M
is the magnification of the digital holography microscopy, ¢, is the phase value
at ith pixel within a single RBC, )\ is the wavelength of the light source and «
known as the specific refraction increment is a constant. When the boundary of
each cell is marked by an 8-directional Freeman chain code [100], the features
of perimeter, circularity and elongation can be achieved by equations as follows
[1001.

perimeter = N, X1+ N, X V2, (37)

cirularity = perimeterz/S (38)
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elongation - maX(|NO‘4 - N2,6 |, |N1‘5 - N377|)7 (39)

where Ny = 231 1,
a,_jora,_,
where N, is the number of even valued elements while N, is the number of
odd element in the chain code of boundary in single RBC, n (=N,+N, )is total
number of element in the Freeman chain code for each RBC. Also, the phase
value of center pixel (pcp) is defined as the average phase value of the center
5x5 pixel, sphericity coefficient (sc) is the division between phase value of
center pixel and maximal phase value within each whole segmented RBC and

the D-value (dValue) is the difference between phase value in center pixel and

maximal phase value. These features are defined as following equations.

1
pep = o > p VLA (40)

—2<i<2 —2<;<2

sc=LL (41)
Pmax
dValue = pep— 0y ax (42)

where ¢" is the phase value at location (i,j) within a 5x5 window while (0,0)
is the central location of the single RBC or inner part of RBC, ¢,,. is the
maximal phase value within the analyzed single RBC or inner part of RBC.

For the measurement of four features in the inside part of RBC, the previous
equations can be repeatedly used while only need to determine these features in
the inside part instead of the whole segmented cell.

Here, the statistically method of Hotelling’'s T-square test [95] is applied to
evaluate that the features calculated from the inside part of cell can indeed
provide additional separation between each pair of RBC groups beyond the
separation already achieved by the ten features obtained from the whole
segmented cell. Let y denote the px1 vector where p=10 here which include ten
variables for measuring the features in the segmented cell and x denote the gx1
vector where =4 that express the four variables for calculating the properties

in the segmented inside part of cell. It is assumed that each pair of samples is
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from multivariate normal populations and x1, x2 are two gx1 vectors while yl1,,
y2 are two px1 vectors from two different groups. Then, the null hypothesis
[H,: x1 and x2 are redundant for separating the two classes beyond yl, and

y2lcan be represented as follows [95,97-98]:

T2 _ 2
T (aly)= (v—p) 21—, (43)
! P i
which is distributed as Tq%v_p where v=n, +n, —2 while nl,n2 are the number
of samples in two groups respectively. When, 7%(zly)> T2 so—p the null

hypothes i1s that x is redundancy would be rejected at significance level of «
where the critical value of ]Zf,q’,,,f, can be achieved from the 7°-table with g

and v—p degree of freedom. In Equation (43), T,I?+ , and Tﬁ are expressed as

following equations respectively [95].

_ _ T _ —
nyMy Y Y2 S,y S\ Y2
- () (2] (s 2 (2] w
pel n1+n2 (1’1) (IQJ SrySzz €y Ty
NN — —\7T o — —
‘= = (yl_ y2> Syyl(yl_ y?)ﬂ (45)

v =
n; +ny

where y, and y, are the sample mean vectors, Sy S, and 8, are the

covariance matrixes. In the experimental section, the 77°statistic test results
among each pair of RBC groups are presented.

In order to demonstrate that 3D features of a RBC extracted from DHM
imaging technique are beneficial to distinguish different kinds of RBCs, the
RBC’s features are divided into two categories that are given in Table. 4. One
is defined as 2D features which can be acquired from 2D imaging system and
the other is defined as 3D features which are obtained from DHM technique.
Then, the Hotelling’'s T-square test as previous description for inner part
feature analysis is conducted to check whether the 3D features can provide
additional separation among RBCs classes beyond the partition already achieved
by the 2D features. In this case, x in Equation (43) denotes the seven features

from 2D features category and y represents the other seven features from 3D
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features group.

Table. 4 Division of RBC features

2D Features F1, F2, F3, F9, F11, F12, F14
3D Features F4, F5, F6, F7, F8, F10, F13

Table. 5 Samples for training the classifier
RBCs with

stomatocyte E GG B E
shape (Total

== EEIEIENY
o coo0
discocyte shape

(Total samples:

00009
. OOono
echynocyte shape

(Total samples:

Y Do

In our experiment, 87 RBCs labeled with stomatocyte shape, 103 RBCs labeled

with discocyte shape and 106 RBCs labeled with echinocyte shape are extracted
as samples. Also, the total fourteen features denoted by feature vector as
[ X, X5+, X, in each single RBC are calculated. What calls for special
attention is that when there are no inside part for some RBCs, a random value
from standard normal distribution will be assigned to the features from F11 to
F14 in Table 3. Samples with known class which will be used to design the
classifier are showed in Table 5.

After all of the fourteen properties are determined from the samples, the PCA

algorithm is applied to these features so as to reduce the variables dimension
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and the 609 principal components that is 8 components are retained for the
classifier design in the next step. Consequently, the original data can be
projected onto an eight dimension space by using the 8 principal components.
Here, it is assumed that the all of the obtained data satisfy with the
multivariate normal distribution. Accordingly, the joint density (conditional
probability in Equation (28)) of the multiple features for each type of RBCs can
be represented by mixture Gaussian density as expressed in Equation (31) with
features after being projected from the eight principle components. Furthermore,
It can assume that the priori probabilities (p(C;) in Equation (32)) for each
class are equal so that this term can be removed from the discriminant function
as well as the constant term 0.5dIn27 since they do not affect the pattern
classification in this case. Therefore, the discriminant function in Equation (32)
based on Bayesian decision theory can be further simplified as follows:

g;(x)=— %(x—ui)T(Zi)il(x—ui)— %ln|22|, 1<i<3 (46)

where p; and ZZ are estimated from respective sample data by using
unbiased estimator [97]. As a consequence, one type of RBCs is corresponding
to one discriminant function and three dicriminant functions are needed for the
classification of three classes of RBCs (Class 1: stomatocyte shape RBCs, Class
2: discocyte shape RBCs, Class 3: echinocyte shape RBCs). The testing pattern
will be categorized into the class which can achieve the biggest value by the
corresponding discriminant function. Considering the situation that there are
other types of RBCs excepting the three typical kinds of RBCs, the fourth
class, which includes all types of RBCs excluding these three classical classes,
is defined. When the probability of one sample belonging to any one of the
three typical types of RBCs is low, it will be grouped into the fourth class.
This can be achieved by Equation. (31) since the discriminant function in
Equation. (29) is proportional to the value of likelihood (Equation.(31)) when the
priori probability is assumed to be the same for all types of RBCs. In this
paper, when the density in the likelihood (Equation. (31)) for the extracted
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features from a RBC is less than 0.001 among all of the three typical types of

RBCs, the corresponding RBC will be classified into the fourth class.

The

flowchart for our classifier design and RBCs classification is presented in

Figure 15.

5 =~

input reconstructed
phase image with
multiple RBCs

A 4
segmentation of
multiple RBCs

RBC extraction &
feature calculation

step 1

am-0
|

samples with
known class

training

X =[X,%,...%

classifier

1]
14 features are projected E
onto 8-dimensional space

step 3

class 1 if max(g,(x))=g,(x) & p(x|C;)=0.001
1<i<3

class2 if max(g;(x))=g,(x) & p(x|C,)=0.001
1

<i<3

class3  if ' max(g,(x))= g;(x) & p(x|C;)=0.001

1<i<3

class4  if max(p(x|C;)<0.001

1<i<3

step 4 | percentage of each type of RBC
in reconstructed phase image

with multiple RBCs
§|class1 a%
class2 b%
] | class3  c%

il | class4  d%

Fig. 15 Flowchart of RBCs classification.

Firstly, the classifier will be designed based on the Bayesian design theory by

the leaving-one-out technique with the samples of known class (step 1 in

Figure 15). Then, the obtained classifier is used to classify the RBCs in a

reconstructed phase image with multiple RBCs (step 2 in Figure 15). In this

step, the original RBCs phase image and the inside part of the RBC has to be

segmented so as to extract all of the RBC and calculate the corresponding
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features.

After that, all of the RBCs in the reconstructed RBCs phase image are
grouped into one of the four types of RBCs as described in Figure 15. Finally,
the percentage of different kinds of RBCs in the RBCs phase image can be
calculated and analyzed (step 4 in Figure 15). Especially, when the occupation
ratio of the fourth class achieves a highest value in a reconstructed RBCs
phase image, this image should be examined carefully in further since this
situation is not normal for a normal person. The leaving—one—out technique for
improving the design of classifier and estimating the error rate is implemented
by the pseudo—code showed in Figure 16 (based on Matlab). For the final
design of classifiers (Class 1 denoted as g,(z), Class 2 denoted as g,(z) and

Class 3 denoted as g,(xz) ),all of the sample data are used as training set.

Step 1. samples preparation
(87 RBCs with stomatocyte shape, 103 RBCs with discocyte shape,
106 RBCs with echinocyte shape)

Step 2: feature calculation
(measure features from F1 to F14 for each RBC)

Step 3: conduct principle component analysis (PCA) and derive new data
with the main eight components.

Step 4: design the classifier with the discriminant function based on
Bayesian decision theory by using leaving-one-out technique

Step 5: measure the misclassification rate

Step 6: design the classifier without leaving one out (using all of the
samples)

Fig. 16 Pseudo—code for the leaving-one-out test.

3.3.4 Experimental Results

The RBCs of healthy laboratory personnel were obtained through the
Laboratoire Suisse d Analyse Du Dopage--CHUV and stored at 4 °C during
the storage period. The DHM measurements were performed several days after

the blood was collected from the laboratory personnel. A total of 100-150 ul of
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RBC stock solution were suspended in a HEPA buffer (15 mM HEPES pH 7.4,
130 mM NaCl, 54 mM KCI, 10 mM glucose, 1 mM Cacl2, 0.5 mM MgCl2, and
1 mg/ml bovine serum albumin) at 0.2% hematocrit for predominantly
stomatocyte and discocyte shape RBCs while at a concentration of ~0.15% for
predominantly echinocyte shape RBCs. A total of 4 ul of the erythrocyte
suspension were diluted to 150 ul of the HEPA buffer and introduced into the
experimental chamber, including two cover slips separated by spacers 1.2 mm
thick. The cells were incubated for 30 min at a temperature of 37 °C before
mounting the chamber on the DHM stage. All experiments were performed at
room temperature (22 °C).

The simulation and measurement in this section are all executed on a 32-bit
Windows 7 computer with a 3.30 GHz Intel Core 15-2500 CPU,4GB RAM, and 4
cores. The RBC phase images are reconstructed using the computational
numerical algorithm from the holograms obtained by the off-axis DHM,; then,
the phase images are segmented by the watershed transform algorithm. Some
of the reconstructed phase images, segmented RBCs, and the segmented inner
part of the RBCs are shown in Figure 17 with the three typical types of RBC.
After segmentation, all the 14 features are measured. Table 6 lists the

quantitative validation for the extracted 14 features.
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Fig. 17 Reconstructed RBC phase images and their segmented phase images.
(a), (b), and (c) are reconstructed phase images for predominantly stomatocyte,
discocyte, and echinocyte shape RBCs, respectively.(d),(e),and (f) are the
corresponding segmented phase images from (a),(b),and (c). (g),(h),and (i) are
the segmented inner part of the RBCs in (a),(b),and (c).
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Table. 6 Quantitative validation of calculated 14 features from samples

RBCs with RBCs with RBCs with
stomatocyte discocyte shape | echinocyte shape
Features | shape (103 samples) (106 samples)
(87 samples)
Mean Std Mean Std Mean Std
F1 34.31 3.83 47.28 5.40 25.76 3.96
F2 21.96 1.30 25.36 1.58 18.83 1.73
F3 14.13 0.44 13.67 0.37 13.84 0.93
F4 97.75 12.58 67.55 10.13 136.86 16.77
F5 31.60 412 30.10 5.01 33.04 4.29
F6 0.92 0.11 0.65 0.08 1.29 0.15
F7 84.35 28.21 26.84 14.41 207.70 37.73
F8 0.50 0.11 0.24 0.12 0.91 0.10
F9 7.73 5.32 8.38 5.73 6.12 475
F10 81.88 24.07 88.70 25.60 23.21 20.41
F11 9.83 3.36 20.50 4.43 0.01 0.93
F12 12.61 2.43 17.03 1.94 0.08 0.83
F13 81.50 11.65 56.72 7.72 0.10 0.97
F14 12.13 6.25 7.30 5.69 0.06 1.03

In this experiment, it has demonstrated that the features from the inner part

of the RBCs are not redundant, but can contribute information to the separation
of the RBC groups by Hotelling’s T-square test. The calculated 7*(zly) value

and critical value of 77 (see Section 3.3.3 for details) searched from the

aqv—p
T?- table are shown in Figure 18. It is noted that all the 77%(zly) values
among each pair of RBC groups are larger than their corresponding critical
value. Consequently, the null hypothesis H, when the features from the inner
part of the RBCs are not significant in separating the RBC groups at the 0.05
level of significance is rejected. In other words, the features from the inner part
of the RBCs can be helpful to classify the RBCs. Similarly, Statistical analysis
results shown in Figure 19 reveal that 3D features of a RBC extracted from

DHM imaging system can contribute to separate the RBCs classes. Therefore,
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the discrimination performance for counting normal shapes of RBCs can be

improved by adding to the 3D features of a RBC to the 2D ones.

Stomatocyte
shape RECS

A ™,
T(x|y)=648" STE|Y)=7217

I:-J.;-J:.’f.r? = 9_9[]#,:' L\\‘n. IJ:-ZIE.-L]i] =0.85
[’ ')

Discocyte

T(x|y)=17192
shape RB':S .é...:...........

a4

Echinooyte
shape RECs

Fig. 18 Redundance analysis results for inner part features of RBCs with

Hotelling’s T-square test
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i Ty

Discooyte
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Echinooyte
shape RECs
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Fig. 19 Redundance analysis results for 3D features [see Table.4] of RBCs
with Hotelling’s T-square test

Next, the PCA algorithm is applied to the 14 features, and the 60% principal
components (that is eight principal components) are retained to design the
Bayesian—-based classifier. Because it assumes that the multiple variables satisfy

the multivariate Gaussian distribution, the mixture Gaussian density of each
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group can be established by the features obtained from the multiplication of the
original sample features with the extracted eight principal components.
Therefore, the corresponding discriminant function can be realized with the
created mixture Gaussian density for each RBC population as Equation (46). As
the design presented in Figure 16, the leave-one-out experiment results show
that the misclassification rate for the RBCs with stomatocyte shape is 3 / 87 =
3.45%, the misclassification rate for the RBCs with discocyte shape is 4 / 103 =
3.88%, and the misclassification rate for the RBCs with echinocyte shape is 3 /
106 = 2.83%. On the contrary, the misclassification rates for RBCs with
stomatocyte, discocyte and echinocyte shape by only using 2D features (see
Table.4d) are measured to be 11/87=12.64%, 13/103=12.62 and 6/106=5.66%
respectively. It is noted that the classifier based on the Bayesian decision
algorithm with both 2D and 3D features achieved a very good result for the
classification of RBCs with three different shapes. These classification results
and misclassification rate for the three types of RBC by using 2D and 3D
features are shown in Table. 7. It demonstrates that the discrimination
performance for classification of different types of RBCs can be enhanced by
using 3D features of a RBC. Moreover, the throughput which is defined as the
processed data per second in our method is measured to be 27.64Mb/s and the
total computational time for training and testing process is calculated to be
0.0024 second by averaging simulation result of 20 times.

The results of analyzing the percentage of morphologically normal RBCs in
the reconstructed phase images with multiple RBCs are also shown in Figure
20. Figures 18(a), (b), and (c) are the measured percentages of the typical
normal shapes of RBCs in the reconstructed RBC phase images. It is visually
found that the majority of RBCs in each RBCs phase image are consistent with
the highest percentage rate for the corresponding image in Figure 20. These
percentages are automatically derived from the classifier that is obtained by our
classifier algorithm whose misclassification rates are demonstrated to be low. It

1s believed that the proposed classifier can be adopted to count automatically
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the morphologically normal cells

in multiple human RBCs.

In addition, the

classifier can be helpful for the analysis of RBC-related diseases because the

occupation ratio of the different types of RBC is associated with certain types

of diseases.

Table. 7 Classification Results of the three types of RBCs

Using Both 2D and 3D Features for RBC Classification

Predicted Group . o

Actual Gr Number of - ) ) Misclassification

ctua oup Observations Stomatocyte Discocyte Echinocyte rate

RBC RBC RBC

Stomatocyte 87 84 3 0 3.45%
Discocyte RBC 103 3 9 1 3.889%
Echinocyte RBC 106 3 0 103 2.83%

Using only 2D Features for RBC Classification

Stomatocyte 87 66 9 2 12.64%
Discotyie RBC 103 11 90 2 12.62%
Echinocyte RBC 106 5 1 100 5.66%
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Class 1: 74.0% Class 1: 28.1%

Class 2: 14.6% Class 2: 69.2%
Class 3: 7.3% Class 3: 0.9% Class 3: 92,29
Class 4: 4.1% Class &: 1.8% Class 4:1.5%

Fig. 20 Analysis of reconstructed phase image with multiple RBCs. (a), (b),
and (c) are segmented images with percentages of each type of RBC labeled by
our designed classifier method. (Class 1: RBCs with stomatocyte shape, Class 2:

RBCs with discocyte shape, Class 3: RBCs with echinocyte shape, Class 4:

other types of RBC).

3.3.5 Subsection Summaries

In this section, a classifier using DHM and Bayesian decision theory for
automatic counting of the morphologically normal RBCs of stomatocyte,
discocyte, and echinocyte shapes which allows us to quantitatively determine
the percentage of normal cell shapes in multiple human RBCs is designed. The
hologram patterns of the RBCs were first captured by the off-axis DHM, and
the RBC phase images were reconstructed through the computational numerical
algorithm. Ten patterns were calculated from each RBC that was extracted
from the RBC phase images through the watershed transform segmentation
method, and four more features were collected from the inner part of the RBC.
Hotelling’'s T-square test showed that the features from the inner part of the

RBC can significantly improve the separation of different RBC groups. In order
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to reduce the dimension space of the variables, the PCA algorithm was adopted,
and the first eight principal components were retained to retrieve new projected
features to establish the mixture Gaussian densities for each type of RBC.
Subsequently, the discriminant function based on Bayesian decision theory was
used to design the classifiers. Finally, in order to improve the accuracy for
estimating the error rate of the classifier, the leaving-one-out technique was
used and tested. Experimental results demonstrated that our classifier can give
a good performance for the classification of RBCs with stomatocyte, discocyte,
and echinocyte shape. Their misclassification rates were at least as low as
3.45%, 3.88% and 2.83%, respectively. In addition, we demonstrate that the
discrimination performance for RBCs classification can be improved by using
both 2D and 3D features of a RBC. Furthermore, the designed classifier was
able to group an RBC into a fourth class when the 2D and 3D features of the
RBC are extremely different from the three typical types of RBC. This
automatic RBC classification method can be extremely helpful for drug testing
and for analyzing certain RBC-related diseases because the percentage of

normal cell shapes in multiple human RBCs varies from disease to disease.
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4. Automated Analysis of Three-dimensional

Cardiomyocytes

Compounds tested during drug development may have adverse effects on the
heart; therefore all new chemical entities have to undergo extensive preclinical
assessment for cardiac liability. Conventional intensity-based imaging techniques
are not robust enough to provide detailed information for cell structure and the
captured images result in low-contrast, especially to cell with semi-transparent
or transparent feature, which would affect the cell analysis. In this dissertation
it is shown, for the first time, that digital holographic microscopy (DHM)
integrated with information processing algorithms automatically provide dynamic
quantitative phase profiles of beating cardiomyocytes. It is experimentally
demonstrated that relevant parameters of cardiomyocytes can be obtained by
our automated algorithm based on DHM phase signal analysis and used to
characterize the physiological state of resting cardiomyocytes. Our study opens
the possibility of automated quantitative analysis of cardiomyocyte dynamics
suitable for further drug safety testing and compounds selection as a new

paradigm in drug toxicity screens.
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Fig. 21 Two optical path difference (OPD)[nm] images of cardiomyocytes
captured at different time.(a) Frame #101 (b) Frame #102 (total 540 frames).

In the present work, the dynamic beating profile of cardiomyocytes obtained
by DHM is analyzed using two proposed methods, either by monitoring the
average or the variance information of imaged cells. The contraction and
relaxation movement are also quantified by analyzing the difference between
two successively acquired DHM quantitative phase images. From these
experimental results, automated procedures are proposed for multiple parameters
recording on cardiomyocytes dynamics imaged by DHM for a new methodology
in drug toxicity screens. For the quantitative analysis of cardiomyocyte
dynamics, the beating activity are calculated using two alternative methods,
averaged optical path difference (OPD) images and variance of OPD images.
The contraction and relaxation feature of cardiomyocyte were also measured
using the proposed automated procedure. Figure 21 shows two OPD images of

cardiomyocytes reconstructed from holograms.
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4.1 Cell Culture and Imaging

iCell cardiomyocytes (human induced pluripotent stem (iPS) cell-derived
cardiomyocytes) obtained for Cellular Dynamics Int. (Madison, WI) were culture
according to the manufacturer's indication and grown for 14 days before
recording. Measurements were achieved in a Chamlide WP incubator system for
96-well plate (LCI, South Korea) set at 37°/5% C02 with high humidity.

DHM images were acquired in an off-axis configuration on a commercially
available DHM T-1001 from LynceeTec SA (Lausanne, Switzerland) equipped
with a motorized xy stage (Miarzhiauser Wetzlar GmbH & Co. KG, Wetzlar,
Germany, ref. S429). Images were recorded using a Leica 20x/0.4 NA objective
(Leica Microsystems GmbH, Wetzlar, Germany, ref. 11566049). Time-lapse

images were acquired at 10 Hz for 1 minute.

4.2 Cardiomyocytes Beating Profile Measurement

using Averaged OPD Images

The beating profile of cardiomyocytes was briefly calculated by thresholding
the cardiomyocyte OPD images [see Figure 21] with a threshold value of 10%
of the maximum OPD signal and then the thresholded images were averaged.
10% i1s an empirical value and is used to restrain the effect of noise. This

process is described by the following equation:

E(i) = average (opd_thresh (z,y)'"), (47)

)(i) — Opd(xyy)(i) ifOPd($7y)(i) > max(opd(x,y)w x0.10

ith opd_thresh (x, . ) .
et op resh(zy 0 if opd(z,y)'"” < max (opd(z,y)'” x0.10

where @(i) 1s the average value of ith OPD image after thresholding, opd

opd,thresh(x,y)(i) is the OPD value at location of (x,y) on the ith threshodled
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cardiomyocyte image, opd(x,y) is the OPD value at location of (x,y) for the ith
cardiomyocyte image in optical path difference while 1=x<M, 1=y=N (M and
N are the size of cardiomyocyte OPD image), max(opd(z,y))” means the
maximum value of ith cardiomyocyte image. One of the thresholded
cardiomyocyte images obtained with this method is given in Figure 22. In
addition, the beating profile with the capture time of cardiomyocytes resulted
from this method is showed in Figure 23 including a small inset with a zoom
on a single beating pattern. It is noted that the beating activity of

cardiomyocytes is obvious (short peaks of high amplitude).

Fig. 22 Threshold cardiomyocyte image (red color denotes background after
thresholding).
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Fig. 23 Beating activity of cardiomyocyte (Inset shows a single beat).

After the segmentation, every single RBC can be extracted. Then, the RBC’s
properties such as Mean phase value, Area, Dry Mass and sphericity coefficient
can be obtained. The following subsections are the definition of these properties
used for RBCs analysis. Then, multiple parameters including amplitude, rising
time, falling time, IBD50, IBD10, rising/falling slope, beating rate and beating
period based on beating profile in Figure 23 were derived. These parameters are
defined in Table 8 [101]:

In order to measure the above-defined parameters, peaks are detected by
applying the first derivative technique to the original data curve in Figure 23
and finding locations where the first derivative values are zeros. The detected

peaks based on cardiomyocytes beating profile are given in Figure 24(a).
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Table. 8 Characteristic Parameters of Cardiomyocyte

Parameter Definition

Value difference from each positive peak to the following

Amplitude negative peak (Amplitude=Ampmax - Ampmin)[see Fig. 25]
tRirirslieng The time elapsed from Amp20toAmp80(=T3-T1)[see Fig. 25]
gre;llléng The time elapsed from Amp80toAmp20(=T6-T4)[see Fig. 25]
IBD50 The time elapsed for two points compose one
Amp50(=T5-T2)[see Fig. 25]
IBDI10 The time elapsed for two points compose on
AmplO(=T7-T0)[see Fig. 25]
Rising/ The change of increased/decreased amplitude over the time
Falling course between Amp80andAmp20(=Amp80 - Amp20)[see
slope Fig. 25]
Beating The total number of positive/negative peaks in 1 minute
rate (= total number of positive peaks/total time)
Beatin The time between two adjacent positive and/or negative
oo dg peaks (= the time of ith positive peak-the time of (i-1)th
p positive peak)
The number of beating period per second
Frequency (= total number of beating period/total time)
60 T T T T % positive peaks []
(a) N )
negative peaks
K 3 A&
59+ .
E
o
o
58+ .
57 1 1 1 1 1 1
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Time [Second]
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Fig. 24 Detected peaks in beating profile of cardiomyocytes. (a) Detected

peaks on raw data. (b) Filtered peaks based on results of (a).

It can be noted from Figure 24(a) that many peaks including false peaks are
detected. As a sorting process, positive peaks with values below a threshold
and the negative peaks with values above a threshold are removed. This
threshold can be automatically determined with Otsu’s method [59] by using all
of the positive peaks detected in Figure 24(a). In addition, the minimum
negative peak between two neighbor positive peaks is extracted and then the
maximum positive peak between two neighboring negative peaks is selected.
This process reduces some inappropriate peaks and results in appropriate peaks
for each beating period as shown in Figure 24(b).

Consequently, the beating profile between two adjacent negative peaks
considered as one beating period is extracted [see Figure 25]. It is noted that
the beating periods calculated between two negative peaks 1is approximately
equal to that between two positive peaks. At the same time, the extracted
beating profile for each beating period can be fitted with polynomials of degree
9 in a least-square criterion. The degree of 9 i1s reached by examining

polynomials of up to degree 9 (up to degree 9 because data samples among
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some beating profiles are around 10) for fitting the data based on the final

fitting errors. The fitted polynomial with degree of 9 is described with the
following equation:

10

flx)= i;aixw_ ‘ (48)

where X represents the sample point on each beating period and ai which is

the coefficient of polynomial are obtained with least-square criterion based on

sample points. The average absolute error for each sample point (absolute error

between actual and fitted point) is measured to be 0.1900. One of the fitting

polynomial curves and the measured parameters are given in Figure 25.
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Fig. 25 Illustration of the fitted curves with parameters within one beating

period on cardiomyocytes beating profile.

With the fitted polynomials curves, the amplitude value defined in Table 8

can be calculated as the maximum value minus the minimum value on the
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fitted curve. Thus, the corresponding time [unit is second] in x axis for AmplO,
Amp20, Amp50, Amp80 [see Figure 25] can be also be computed by solving the
fitted polynomial equation. Then, all of the above mentioned parameters are
measured for each individual beating period and a population average with
coefficient of variation, (cv=standard deviation/average value, a parameter often

used in high-throughput screening) is computed as shown in Table 9.

Table. 9 Measured Values of Multiple Parameters

on Cardiomyocytes Beating Profile

Multi-parameter Values  (mean/cv)
1: Amplitude: 2.05/0.30
2: Rising time: 0.58/1.05 (seconds)
3: Falling time: 0.86/0.69 (seconds)
4: IBD50: 0.79/0.33 (seconds)
5. IBDI10: 2.94/0.19 (seconds)
6: Rising/Falling slope: 1.19/0.30
7: Beating rate: 21.86/0
8. Beating period: 2.94/(sd=0.10  seconds)
9: Frequency 0.34/0

4.3 Cardiomyocytes Beating Profile Measurement

using Variance of OPD Images

An alternative way to derive the beating profile of cardiomyocytes which is
less sensitive to noise (originating from shot noise, speckle and contribution of
out-of-focus structures), but requires more computer resources is to measure
the variance of each OPD image after the temporal mean of the image stack is
subtracted. This method is illustrated by Equation 49:

) — opd, e,y (49)

5((,;),1 = variance [opd (z,y
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where opd(x,y)(i) is the ith OPD image, while 1=x=M and 1=x,y=N (M
and N are the size of cardiomyocyte OPD image), 6((,;),1 represents the variance

of the ith cardiomyocyte image after temporal mean subtracted and @wml, is
the temporal mean which is calculated as the mean value of the image stack in
the temporal dimension. The beating profile measured with this method is
showed in Figure 26. Compared to the previous analysis method (Figure 24),
this approach is more stable and less sensitive to noise (changes in the

absolute value of the OPD signal).
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Fig. 26 Measured beating profile with variance information (inset shows a

single beat)

Similar with the previous method, the peaks in Figure 26 can be detected
using the first derivative property [see Figure 27(a)]. In addition, the positive
and negative peaks are screened with a threshold value obtained by Otsu’s
method [30]. Consequently, the minimum negative peak between two
neighboring positive peaks and the maximum positive peak between two

neighboring negative peaks are selected [see Figure 27(b)].
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Fig. 27 Detected peaks on cardiomyocyte beating profile. (a) Detected multiple

peaks. (b) Detected multiple peaks with some false peaks removed.

The beating profile within one beating period (between two negative peaks)
can be individually extracted and is fitted with polynomial equation of degree 9
in a least-square error sense as that in Figure 25. The average absolute error
for each sample point 1s measured to be 2.0359. Consequently, the same

parameters as in the previous method can be measured and the corresponding
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mean and coefficient of variation (cv) are given in Table 10. The measured

parameters are in excellent agreement with the literature [102].

Table. 10 Measured Multiple Parameters on Cardiomyocytes Beating Profile

Multi-parameter Values (mean/cv)
10 Amplitude: 23.06/0.17
2: Rising time: 0.45/0.98 (seconds)
3: Falling time: 0.26/1.04 (seconds)
4: |BD50: 0.66/0.23 (seconds)
5: I1BD10: 2.30/0.25(seconds)
6: Rising/Falling slope: 13.83/0.17
7: Beating rate: 21.91/0
8: Beating period: 2.93/(sd=0.10)
9: Frequency 0.34/0
4.4 Cardiomyocytes Contraction and Relaxation
Measurement

In order to observe the contraction and relaxation feature of cardiomyocyte,
each captured image in the temporal stack is subtracted from the following one
and then the spatial variance of the OPD i1s measured thus quantifying the
amount of spatial displacement between successive frames (the cells used here
are the same as those showed in Figure 21). The resulting image contains
cardiomyocytes contraction and relaxation information (both indicated by an
increase in the temporal variance signal). Two of the subtracted images are
shown in Figure 28 where Figure 28(a) and 26(b) are different images at the
minimum and maximum of a beat, respectively. The beating profile with
contraction and relaxation information of cardiomyocyte is given in Figure 29(a),

where one higher peak is for contraction and the neighboring lower peak is for

relaxation. Then, the peaks can be detected with the first derivative criterion
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(locations where the first derivative values are zeros). Similarly, positive peaks
for contraction can be properly extracted with Otsu’s thresholding algorithm by
using all of the detected positive peaks. Next, a maximum peak between two
neighboring contraction peaks 1s chosen as a positive peak for relaxation.
Consequently, the inappropriate peaks can be removed. The resulted curves from

Figure 29(a) with peaks indicated are given in Figure 29(b).

Fig. 28 Ilustration of the difference images. (a) different image at the

minimum of a beat (b) different image at the maximum of a beat.

Finally, the beating rate, beating period and frequency for cardiomyocytes
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contraction and relaxation can be measured based on the detected positive peaks
that include contraction and relaxation peaks. In addition, the time between the
cardiomyocytes contraction and the following relaxation can be also calculated
with the detected peaks in Fig. 27(b). These measured data are given in Table
11.

Table. 11 Measured Multiple Parameters on

Cardiomyocyte Contraction and Relaxation Curve

Multi-parameters (l’l’\li;llrLll/eCSV)
Beating rate: 23.14/0
Contraction Beating period: 2.94/0.03
Frequency 0.36/0
Beating rate: 23.14/0
Relaxation Beating period: 3.06/0.16
Frequency 0.36/0
Time between contraction and the following relaxation | 0.41/0.14
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Fig. 29 Cardiomyocytes beating profile with contraction and relaxation
information. (a) raw data of cardiomyocytes beating profile. (b) cardiomyocytes
beating profile with contraction and relaxation peaks indicated. (inset shows a

single beat with contraction and relaxation peaks)

4.5 Discussions and Section Summaries

In this paper, for the first time, human cardiac muscle cells’ dynamics and
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their spontaneous beating rates are quantitatively explored through the fusion of
digital holography microscopy and information processing algorithms.

Experimental demonstrations have been provided for this new concept on
multiple parameters recording on cardiomyocytes dynamics. From the
experiments in the cardiomyocytes beating profile measurement using averaged
OPD images and variance of OPD Images reported in Figure 25, Figure 27,
Table 9 and Table 10, it 1s assured that interesting parameters of
cardiomyocytes dynamics can be automatically measured. In addition, statistical
parameters such as mean and coefficient of wvariation on the cardiomyocyte
characteristics can be estimated. Four more cardiomyocyte image sequences
were analyzed in order to show the generality of the proposed methods.

Among these image sequences, one of them is acquired with difficult
conditions which mean having severe disturbance (a few out-of-focus debris
are flowing through the field of view during the acquisition ) while the other
sequences are comparable inquality to the one presented previously.Four image
sequences with peaks detected using the first (Section 4.2),second (Section 4.3)
and third (Section 4.4) methods are given in Figure 30, Figure 31 and Figure 32
respectively where Figure 30 (a), Figure 31 (a) and Figure 32 (a) are from
image sequences under tough/difficult conditions. It should be noted from these
figures that our proposed method can detect all of the peaks, even in image
sequences with debris interference. However, we found that the first method
generated many noisy peaks in difficult conditions (I1st image sequence ) which
makes the parameter measurement not accurate. On the other hand, the second
and third methods are more stable to analyze these image sequences even those
obtained under difficult conditions. Consequently, all of the needed
multi-parameters can be measured based on these images, therefore proving the

robustness of the analysis algorithm.
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Fig. 30 Detected peaks based on four more cardiomyocyte sequences with the
method in the Section 4.2. (a) cardiomyocyte image sequences acquired with
difficult conditions. (b), (c), and (d) "noise-free” recordings (i.e. no debris

interfering with the measurement) similar to the previous recording.
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Fig. 31 Detected peaks based on four more cardiomyocyte sequences with the
method in the Section 4.3. (a) cardiomyocyte image sequences acquired with
difficult conditions. (b), (c), and (d) "noise-free” recordings (i.e. no debris

interfering with the measurement) similar to the previous recording.

_80_



Variance

Variance

140 T T T T T T
(@) + positive peaks for contraction
120} l *  positive peaks for relaxation
100} ’l |
801 |
[
60
aof |
20
LLLLALT LT
0 i i ' i i ' i
0 10 20 30 40 50
Time [Second]
251(b) . * positive peaks for contraction ||
T4 #  positive peaks for relaxation
*F *
20 L ‘- *
4 ¥
* % *T e
* * ¥
*
15
+
101
5 -
Il i i i i i
0 10 20 30 40 50

Time [Second]

- £;1 -



18 T T T

() * positive peaks for contraction I
*  positive peaks for relaxation
16 i ¥*
*
+ ¥* * *
141 * * Ny
*
*
(O] 12 - * * .
8 * *
0
< 1or §
8f S i ) L . i
4 i i i Il i i
0 10 20 30 40 50
Time [Second]
16 (d) T T T #* positive peaks for contraction []
*  positive peaks for relaxation
14} ¥ -
¥ *
£
*
12 I T * ¥ -
*
*
0] x
o
s wof |f i T . ]
(© -
>
8 - -
o
6f u 1 M .
4 i M i i [l Il i
0 10 20 30 40 50

Time [Second]

Fig. 32 Detected peaks based on four more cardiomyocyte sequences with the
method in the Section 4.4. (a) cardiomyocyte image sequences acquired with
difficult conditions. (b), (c), and (d) "noise-free” recordings (i.e. no debris

interfering with the measurement) similar to the previous recording

Finally, the mean value of each of the parameter described in the first
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(Section 4. 2), second (Section 4. 3) and third (Section 4. 4) methods is

measured based on all the five sequences used previously. The measured mean

values for the three methods are given in Table 12, Table 13, and Table 14,

respectively.

Table. 12 Measured Multiple Parameters on Cardiomyocytes Beating Profile

on Five Sequences with the First Method

Multi-parameter

Values (mean/cv)

1: Amplitude: 0.85/1.50

2: Rising time: 0.62/1.37 (seconds)

3: Falling time: 0.85/0.99 (seconds)

4: IBD50: 0.44/0.50 (seconds)

5: IBD10: 2.44/0.45 (seconds)

6: Rising/Falling slope: 0.51/1.52

7: Beating rate: 71.14/0.81

8. Beating period: 0.95/ (sd=0.84 seconds)
9: Frequency 1.16/0.83

Table. 13 Measured Multiple Parameters on Cardiomyocytes Beating Profile

on Five Sequences with the Second Method

Multi—-parameter

Values (mean/cv)

1: Amplitude: 40.01/1.21

2: Rising time: 0.57/0.86 (seconds)
3: Falling time: 0.43/1.13 (seconds)
4: IBD50: 0.79/0.65 (seconds)
5: IBD10: 2.35/0.38(seconds)
6: Rising/Falling slope: 24.00/1.21

7: Beating rate: 34.48/0.36

8: Beating period: 1.98/(sd=0.83)

9: Frequency 0.55/0.37
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Table. 14 Measured Multiple Parameters on Cardiomyocytes Contraction and

Relaxation Curve on Five Sequences

Multi—parameters Values (mean/cv)
Beating rate: 31.31/0.17
Contraction Beating period: 2.20/0.19
Frequency 0.49/0.17
Beating rate: 31.31/0.17
Relaxation Beating period: 2.23/0.31
Frequency 0.49/0.17
Time between contraction and the following relaxation 0.59/0.62

The combined measurements show the robustness of the proposed algorithm
and how they allows quantify important cardiomyocyte dynamic parameters that
can be used to screen compounds cytotoxic effects. The beating profile contains
more information than that is obtained by electrophysiology or fluorescence
imaging as it integrates the effect of all the ion—-channel involved and thus offer
a signature that can be used to predict the effect of specific compounds. For
instance inhibitors of hERG channel (the main class of channels assessed in
cardio safety, which are involved in repolarization current) all results in a
similar profile.In addition, due to the non-invasive aspect of the measurements,
both short-term and long-term effects of the monitored compounds can be
assessed with DHM.

The suitability of DHM is demonstrated for monitoring and quantifying the
beating function of cardiomyocytes and automatically measuring multiple
parameters of cardiomyocytes based on the quantitative phase profiles acquired
with DHM. The proposed method can be rapid, noninvasive and effective and
allows for automated analysis between normal cardiomyocyte dynamics and all
other abnormal activities. It is believed that our automated non-invasive
measurement procedures can open new perspectives for cardiotoxicological
screening or profiling of candidate molecules in preclinical drug discovery and

safety testing programs.
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5. Conclusions

In this dissertation, a three dimensional imaging technique which is digital
holographic microscopy has been applied to visualize human red blood cells and
cardiomyocytes. The digital holographic microscopy has advantages of low cost,
easy configuration, non-destruction, and fast imaging. Compared with
conventional two dimensional imaging approaches, digital holographic microscopy
1S robust to sense semitransparent or transparent microorganism. The
reconstructed image from holograms obtained by digital holographic microscopy
with numerical reconstruction algorithm can provide rich three dimensional
information such as the optical thickness of biological cells in live and dynamic
conditions, which are helpful for the quantitative analysis of three—dimensional
cells. Two Kkinds of transparent cells which are red blood cells and
cardiomyocytes are 1imaged with digital holographic microscopy and the
reconstructed images are automatically analyzed. For the analysis of
three—dimensional red blood cells, the reconstructed phase images are segmented
with marker-controlled watershed transform algorithm and the corresponding
red blood cells features are measured. The modifications of three-dimensional
morphology and mean hemoglobin of red blood cells induced by the length of
storage time are also studied. This analysis is beneficial to the understanding of
the features of RBCs with different storage periods and evaluation of any
modifications in the 3D cell morphology and hemoglobin content. Moreover, a
classifier using Bayesian decision theory for automatic counting of the
morphologically normal RBCs of stomatocyte, discocyte, and echinocyte shapes
which allows us to quantitatively determine the percentage of normal cell
shapes in multiple RBCs has been designed. This proposed method is favorable
to the analysis of RBC-related diseases. In addition, it is shown that the
discrimination performance for counting of normal shapes of RBCs can be

improved by using 3D features of a RBC. For the analysis of 3D
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cardiomyocytes, the dynamic beating profile of cardiomyocytes obtained by
digital holographic microscopy 1is investigated using two proposed methods,
either by monitoring the average or the variance information of imaged cells.
The contraction and relaxation movement are also quantified by analyzing the
difference between two successively acquired digital holographic microscopy
quantitative phase images. From the experimental results, automated procedures
for multiple parameters recording on cardiomyocytes dynamics imaged by digital
holographic microscopy for a new methodology in drug toxicity screens is
proposed. It i1s shown, for the first time, that digital holographic microscopy
integrated with information processing algorithms can automatically provide
dynamic quantitative phase profiles of beating cardiomyocytes. Our study opens
the possibility of automated quantitative analysis of red blood cells and
cardiomyocyte dynamics suitable for further drug safety testing and compounds

selection as a new paradigm in drug toxicity screens.
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