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Abstract 

Lightweight Algorithms for Reliable Personalized Health 

Monitoring 

 
By: Olufemi Oluwole Adeluyi 

Advisor : Prof Jeong-A Lee, Ph. D 

Department of Computer Engineering 

Graduate School of Chosun University 

Patient monitoring techniques are fast evolving from the traditional curative, doctor-centered 

approach to one that is preventive and patient-centered.  A number of factors have influenced 

this transition; notable among these are the spiraling costs of healthcare management, the 

ageing of society and the advances in sensor technology. Personalized Health Monitoring 

Healthcare (PHM) systems play an important role in this new approach.  

 

PHM systems are usually implemented in resource constrained environments such as 

embedded systems running on limited battery power.  As such, any algorithm used for 

diagnosing and classifying diseases should be lightweight and reliable.    

 

The cardiovascular and neurologic domains were used for the analysis in this thesis.  For the 

neurologic domain we proposed an algorithm known as Bio-inspired electroceptive 

Compressive System (BeCoS).  BeCoS was inspired by wave-type active electroception used 

by weakly electric fish.  It was used for the sensing, processing, telemetry and reconstruction 

of neural signals.  BeCoS was compared with the well regarded Block Sparse Bayesian 

Learning-Bound Optimization (BSBL-BO) and it gave higher quality results.  BeCoS resulted 

in coherence, average latency, compression ratio and estimated per epoch power values that 

were 35.38%, 62.85%, 53.26% and 13mW better than BSBL-BO, respectively, while 

structural-similarity was only 6.295% worse. The original and reconstructed signals still remain 

visually similar. 
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The identification of the R-peaks of electrocardiograms (ECG) represents one of the most 

important steps for the successful monitoring of cardiovascular health.  The Pan-Tompkins (P-

T) algorithm has been used as a key reference in the design and testing of algorithms used for 

the detection of R-peaks.  The P-T algorithm uses a cascade of filters to process the ECG 

signals prior to the identification of the R-peaks.  This filtration process results in a large 

overhead.  A Rapid-Ramp Effective Algorithm for Detection of ECG R-peaks (R-READER) 

has been proposed as an alternative to P-T.  It is an intuitive algorithm that uses ECG slopes 

and inflexion points as a basis for the identification of R-peaks without the need to pass the 

signals through the filters used in traditional approaches. R-READER gave average accuracy, 

positive predictivity and sensitivity values of 97.79%, 98.23% and 99.54% when compared to 

values of 87.47%, 88.57% and 98.59% for the P-T algorithm. 

 

In this dissertation we demonstrate that the BeCoS and R-READER algorithms provide reliable 

and lightweight alternative for health monitoring in the neurologic and cardiovascular domains 

respectively.  Experimental results also demonstrate a potential for significant performance 

enhancements when compared to the main algorithms used in the domains. 

 

[KEYWORDS]: personalized health monitoring, reliable computing, lightweight processing, 

electrocardiogram, encephalogram 
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요  약 

신뢰할 수있는 개인 건강 모니터링을위한 경량 알고리즘 
 

아델루이 올루페미 올루월이 

지도교수 : 이정아 

컴퓨터공학과 

조선대학교 대학원 

환자 모니터링 기술은, 의사 중심적인 치료 위주의 전통적 접근법에서, 환자 

중심적인 예방 위주의 새로운 접근법으로 빠르게 진화하고 있다. 헬스케어 관리 

비용의 증가, 사회의 노령화와 센서 기술의 발달 등이 이러한 변화에 영향을 

미치는 요소들이다. 개인 맞춤형 건강 모니터링 헬스케어 (PHM) 시스템은 이러한 

새로운 접근법에서 중요한 역할을 하고 있다. 

 

제한된 배터리 전력으로 작동하는 embedded 시스템과 유사하게, PHM 시스템은 

통상적으로 자원이 제한된 환경에서 구현 되기 때문에, 질병을 진단하고 분류하는 

알고리즘은 신뢰성은 물론이고, 연산처리량이 가벼워야 한다. 

 

본 논문에서는 신경계 및 심혈관 영역에서 신뢰성을 유지하면서도 연산처리량을 

가볍게 하는 알고리즘을 제안한다.  신경계 영역에서는 Bio-inspired electroceptive 

Compressive System (BeCoS)라는 알고리즘을 제안한다. BeCoS 의 개념은 약한 전기를 

사용하는 어류의 파동형(wave-type) 활성 전기인식(electroception)에서 착안하였다.  

이 알고리즘은 신경 신호의 감지, 처리, 원격 측정 그리고 신호 복원을 위해 

사용되었다. BeCoS 알고리즘은 잘 알려진 Block Sparse Bayesian Learning-Bound 

Optimization (BSBL-BO)와 비교했을 때 보다 높은 품질의 결과를 제공하였다. 

BeCoS 는 BSBL-BO 보다 62.85% 증가한 일관성, 35.38% 감소한 평균 처리시간, 

53.26% 증가한 압축비, 13mW 감소한 추정 epoch 당 전력값을 보였고, 구조적 

유사성에서는  6.295% 감소하였지만,  원래 신호와 복원된 신호는 시각적 유사성을 

유지했다. 

 

심혈관 영역에서는, 심혈관 건강의 성공적 모니터링에 가장 중요한 단계들 중 

하나인, 심전도 R-peaks 의 검출에 중점을 두었다. 주요 비교대상으로 Pan-Tompkins 

(P-T) 알고리즘을 활용하면서, R-peaks 을 찾기 위한 경량 알고리즘을 설계하고 

실험하였다. P-T 알고리즘은 R-peaks 의 확인 이전에 ECG 신호를 처리하기 위해 

연속적인 필터를 사용하는데, 이 과정이 큰 오버헤드(overhead)를 초래한다. 본 
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논문에서는 P-T 알고리즘의 대안으로 ECG R-peaks 의 발견을 위한 Rapid-Ramp 

Effective 알고리즘, R-READER 를 제안한다. R-READER 는 R-peaks 검출 기반으로, 

전통적 접근법이 사용하는 필터가 아닌, ECG 의 기울기와 만곡점(inflexion point)을 

사용하는 직관적 알고리즘이다. R-READER 는, P-T 알고리즘이 보인 각각 87.47%, 

88.57%, 그리고 98.59%의 평균 정확성, 긍정적 예측도 그리고 감도 값과 비교할 때, 

각각 97.79%, 98.23% 그리고 99.54% 값을 제공했다.  

 

본 논문에서는, 신경계 및 심혈관 영역에서의 건강 모니터링을 위하여, 신뢰성을 

유지하면서도 연산처리량이 가벼운 대안으로 BeCoS 와 R-READER 알고리즘을 

제시하였으며, 이 영역들에서 사용된 기존의 주요 알고리즘과 비교해 보았을 때, 

제시된 BeCoS 와 R-READER 알고리즘의 성능이 향상됨을 실험 결과를 통하여 

보였다.  

 

[KEYWORDS]: 개인 맞춤형 건강 모니터링(PHM), 신뢰할 수 있는 계산, 경량 

프로세싱, 심전도, 뇌파기록 
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I. Introduction  

A. Overview 

Health monitoring refers to a systematic approach for keeping track of the health status of any 

given entity.  It can refer to both animate and inanimate objects.  For example, the process of 

monitoring the degradation of infrastructure like bridges and buildings falls under this category, 

as does the process of monitoring the health of a human being.  The former is usually referred 

to as structural health monitoring (SHM) [1], while the latter is called personalized health 

monitoring (PHM) [2]. 

 

In this thesis, PHM refers to the process of using wearable sensors to monitor a patient’s 

biosignals over an extended period in order to track, predict and maintain their health.  PHM 

usually takes place in uncontrolled environments outside the confines of a hospital [3, 4]. It is 

more useful for monitoring signals that change over time rather than those that rarely change or 

those that do not change such as a patient’s genotype. Fig 1 shows the common parts of a PHM 

system. 

 

 

Figure 1: A Typical PHM System 
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The global healthcare industry has evolved from one that places an emphasis on a curative, 

doctor-centered healthcare approach to a patient-centered approach that focuses on prevention 

[5, 6].  This paradigm shift has increased the importance of diagnostic health monitoring and 

has played a role in making PHM a core part of today’s healthcare delivery system.  Fig 2 

shows the approximate location of PHM systems in the healthcare delivery research space; 

toward the top ends of preventive and automated medicine. 

 

Figure 2: Location of PHM Systems on the Healthcare Delivery Research Space [7] 

In addition to the effect of the paradigm shift, three (3) main developments have led to the 

popularity of PHM: 

1. The Rapid Ageing of Society 

2. The Rising Cost of Healthcare and the Dwindling Budgets 

3. The Availability of Cost-effective Enabling Technologies 

 

The Rapid Ageing of Society 

Recent demographic studies have indicated an increase in the Average Life Expectancy (ALE) 

in many developed countries. As shown in Fig 3, the 2011 ALE at birth for countries in the 

Organisation for Economic Co-operation and Development (OECD) is now 80.1 years [8].  

This represents an average increase of 10.1 years from 1970, with the Republic of Korea and 
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Turkey having the largest individual increase of 19.0 and 20.4 years respectively. 

 

Figure 3: OECD ALE at Birth (1970-2011) [8] 

 

The Rising Cost of Healthcare and the Dwindling Budgets 

Healthcare is traditionally perceived as a key determinant of the general quality of life of 

people and it usually forms a significant part of a country's economy [9].  As shown in Fig 4, 

there has been a steady increase in the amount of healthcare costs as a percentage of GDP.  In 

2009, the average share of the total healthcare expenditure as a part of GDP in OECD countries 

was 9.6%. The United States, Netherlands, Italian and Korean GDP shares were 17.7%, 11.9%, 

9.2% and 7.4% respectively [8].   
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Figure 4: Healthcare Cost as a % of GDP [10] 

 

This increase has not led to a rise in healthcare budgets as many governments have adopted a 

more frugal approach to government spending in virtually every sector of the economy, 

including the healthcare sector.  For example, in the United Kingdom there was a shortfall of 

630million GBP in the 2013/2014 budget for the National Health Scheme (NHS) [11].  Many 

governments now view the use of technology as a viable option for reducing healthcare costs 

[12]. 

 

The Availability of Cost-effective Enabling Technologies 

Recent technological advances in areas such as the sensors, memory, wireless communication 

and digital signal processing have aided the deployment of PHM systems [13, 14]. 

Semiconductor technologies like Micro-Electro-Mechanical Systems (MEMS) and Nano-

Electro-Mechanical-Systems (NEMS) have also enabled the design of devices with high levels 

of functionality and miniaturization [15]. As a result of these advances, sensors and actuators 

have become smaller, cheaper, more sensitive and less power hungry [16].   
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B. Motivation 

Current PHM systems have been generally limited to fitness applications and do not play a 

significant role in clinical decision making [17, 18].  This is because a number of the systems 

do not provide the level of reliability required of standard medical systems [19].  Current 

PHM systems also focus on intermittent monitoring and detection of abnormal signals rather 

than on the continuous long term monitoring of the entire signals as is common in standard 

devices at the hospital [20, 21]. 

 

PHM systems, unlike their hospital-based equivalents, have to operate under a number of 

resource constraints [22].  Many PHM systems use batteries to meet their energy requirements 

[23] and these batteries would be easily depleted when the systems are designed to support 

long term monitoring and more reliable analysis.   

 

In addition to pattern recognition and disease classification, PHM systems need to support the 

telemetry of the signals to the physician [24].  These wireless systems usually have limited 

bandwidths and may experience interference.  This would increase the amount of latency 

required to transmit the signals and would restrict the system’s ability to support real time 

monitoring. 

 

PHM systems have a limited storage capacity but they process biosignals, many of which have 

a high temporal resolution [25].  This leads to very big datasets which require a large amount 

for storage sometimes beyond the storage capacity of the systems. These challenges have led to 

research efforts that are aimed at developing PHM systems whose computational requirements 

are more sensitive to the resource constraints. Such systems should be lightweight in terms of 

their power, storage and latency profiles. 
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The algorithms for processing and classifying the signals play an important role in determining 

the level of complexity of the PHM systems [26, 27].  As such, a proper design of the 

algorithms is a suitable approach for ensuring that the systems are lightweight. Physicians base 

their decisions on inferences drawn from the biosignals of the patients.  For PHM systems to 

be reliable they must provide results that are similar to the results obtained by using standard 

medical devices.  Reliability refers to the ability of a system to deliver a service that can 

justifiably be trusted and the ability to avoid failures that are more frequent and more severe 

than is acceptable [28, 29].   

 

As a result of the sensitive nature of healthcare, the ultimate decision of the medical choices 

that are made lies with the physicians.  However, a lot will depend on the reliability of the 

data that is made available to them by the PHM systems.   

 

Ideally PHM systems can be used to monitor signals from any part of the human body. 

However, this research will focus on two key domains- cardiovascular and neurologic.  The 

cardiovascular domain was selected because it is the leading cause of global deaths.  In 2012, 

it accounted for 17.5 million deaths- 31% of the total number of global deaths [30].   

 

Neurologic disorders now constitute a significant global disease burden [31] and they account 

for 35% of the global disease burden. An estimated cost of 798 billion EUR was spent on this 

burden in Europe in 2010 [32]. As a result of its growing importance a number of research 

efforts around the world now focus on reducing this burden [33, 34].  

 

The research presented in this thesis deals with issues involving lightweight processing and 

reliability of PHM systems in general, with a greater emphasis on PHM systems in the 

cardiovascular and neurologic domains. 
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C. Contributions 

In this thesis, we have described a suite of lightweight algorithms for reliable personalized 

health monitoring.  The main contributions are as follows: 

 A systematic analysis of the present state, inhibiting challenges and future outlook of 

medical instrumentation in personalized health monitoring 

 Identification of key requirements for lightweight and reliable personalized health 

monitoring 

 Design of a bioinspired lightweight and reliable multichannel algorithms for 

continuous long term monitoring of neural signals 

 Design of an intuitive lightweight and reliable algorithm for continuous long term 

monitoring of the main fiducial point in cardiovascular signals 

 

D. Thesis Outline 

The rest of this thesis is organized as follows:  A systematic review of the current body of 

work on PHM is given in Chapter 2.  It identifies the key disease domains, sensors, platforms, 

algorithms, communication protocols and challenges of PHM systems.   

 

Chapter 3 describes BeCoS- an algorithm for the lightweight sensing, processing, transmission 

and reconstruction of neural signals.  The R-READER algorithm is described in Chapter 4.  

It is a lightweight approach for identifying the R-peaks of an ECG signal without a need for the 

noise filtering used in traditional techniques. The conclusions and proposed future work are 

given in Chapter 6. 
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II. Related Work  

A. Medical Instrumentation for PHM 

PHM systems aim to attain a level of reliability comparable to the reliability of medical 

instruments based at the hospital.  Insights on the key requirements for these PHM systems 

was gained from a systematic literature search that focused on the present state, inhibiting 

challenges and future outlook of medical instrumentation used for personalized health 

monitoring.   

 

A total of 915 main articles were reviewed from a search on instrumentation and health 

monitoring that covered the following databases- Cochrane Library (1992 – August 2014: 40 

articles were selected), Web of Science (1973 – August 2014: 233 articles were selected) and 

MEDLINE (1996 – August 2014: 642 articles were selected). The objective of this systematic 

review is to give an overview of the current body of work covering instrumentation used for 

personalized health monitoring.  

 

The emphasis is on the identification of key architectures used for such systems in terms of the 

type of sensors, modality, type of communication interface and network model. Second, it 

describes the important application domains of PHM, its level of adaptation and the common 

algorithms utilized.  Third, it outlines the key outcomes of PHM systems, as well as the 

current challenges and the anticipated future research directions for the field.  

 

Selection Process 

The 915 articles generated from the search were further narrowed using a selection process 

based on the following 5-stage strategy: 
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1. Deletion of doubles 

2. Title scan 

3. Abstract scan 

4. Cursory full text scan 

5. Detailed full text scan 

 

The search strategy is shown in Fig. 5. 

 

Figure 5: Search Strategy 

 

There were 46 articles that were duplicated and these were deleted before the articles were 

screened based on their titles.  Titles that indicated contents very different from research 

related to PHM were discarded.  There were 573 articles discarded at this stage, leaving a total 

of 296 articles for the abstract-scan stage. During the abstract scan we eliminated articles that 

did not align with the theme of medical instrumentation in PHM; 127 articles were filtered out 

at this stage.   



 

10 

 

The remaining 169 articles were subjected to a cursory scan of the full text which essentially 

involved identifying the sections, as well as reading the introduction, discussion and conclusion 

sections.  Articles that did not give sufficient details on the items relating to the theme were 

discarded.  After this stage there were 56 articles that were subjected to a detailed full text 

scan out of which a further 39 articles were discarded.  The criteria included the ones listed in 

the previous stage and for articles that contained similar ideas we chose the one that outlined 

the idea with the greatest level of detail.  A preference was also given to articles that covered 

multiple domains, those that addressed unique applications and those which described the 

instrumentation process in some detail. After these stages we retained 26 core articles for the 

review. A description of each of these articles is given in Appendix A.  

 

B. Analysis of Search Results 

From the analysis of the 26 research articles included in this review, we identified a number of 

key features that characterize the use of instrumentation for PHM.  These features will be 

discussed in the subsequent sections under the following groupings: 

• Architecture 

• Application 

• Outcomes 

 

Architecture of PHM Systems 

The architecture describes the hardware portion of the PHM system and the communication 

interface.  It comprises the sensors, system platform and the communication interface utilized 

for both the local and remote ends of the MVI. 

 

Sensors and Sensing 

The sensors capture the analog biosignals from the patient and condition it for further 
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processing. The sensing technology plays an important role in the utility of PHM systems. The 

sensors used in PHM systems can categorized based on the level of invasiveness.   

 

Table 1: Sensors used for PHM 

S/No. Sensor Cases % 

1 

Electrocardiogram [35, 39, 44, 45, 

46, 47, 48, 51, 54, 55] 10 38.50% 

2 

Blood Pressure [35, 39, 45, 49, 51, 

53] 6 23.10% 

3 

Accelerometer [38, 46, 50, 51, 53, 

56] 6 23.10% 

4 Oxygen Saturation [38, 45, 51, 53] 4 15.40% 

5 Temperature [38, 49, 53, 54] 4 15.40% 

6 Microphone [39, 52, 54, 61] 4 15.40% 

7 Posture [38, 45, 53] 3 11.50% 

8 Pressure [40, 49, 59] 3 11.50% 

9 Weight [35, 45] 2 7.70% 

10 

Cardiac Implantable Electronic 

Device [36, 43] 2 7.70% 

11 Gyroscope [38, 56] 2 7.70% 

12 Blood Glucose [57, 60] 2 7.70% 

13 Photodiode [41, 53] 2 7.70% 

14 Surface Electromyography [37] 1 3.80% 

15 Electroencephalography [58] 1 3.80% 

16 Tilt [46] 1 3.80% 

17 Camera [54] 1 3.80% 

18 Pedometer [56] 1 3.80% 

19 Gastrocnemius Expansion [56] 1 3.80% 

21 Electro Dermal Activity [61] 1 3.80% 

22 Chest Impedance [45] 1 3.80% 

 

Invasiveness refers to a need for a puncture of a patient’s skin or the introduction of a foreign 
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body into a patient in order to monitor some signal. Thus, the sensors can be classified as non-

invasive or invasive. Tab. 1 shows the type of sensors used in the selected articles and the 

percentage of the 26 studies where they were used. 

 

At 38.5%, Electrocardiogram (ECG) sensors represent the most extensively used sensors for 

PHM and when one includes the Cardiac Implantable Electronic Device (CIED) sensors this 

rises to 46.2%, implying that close to half of PHM systems monitor heart signals. Blood 

pressure (BP) sensors and accelerometers are the next most prevalent at 23.1% each.  It is 

interesting to note that a number of some of these sensors measure signals as a proxy for 

another signal of interest and are thus known as virtual sensors. 

 

Virtual sensors [42] are fast becoming an important part of the PHM architecture.  They refer 

to sensors that are based on software rather than hardware and they infer their readings from 

the relevant hardware sensor(s).  These virtual sensors enable patients to monitor biosignals 

for which it is either impractical to have access to the signal of interest or for which the sensors 

or related equipment may be too expensive.  From the reviewed articles, there were 13 cases 

(or half) that used virtual sensing.  The actual sensors used for this process are listed in Tab 2. 

 

Platform 

Many PHM systems do not use a personal computer (PC) as their platform (only one uses the 

PC [41]). Most of them use a custom device [38, 39, 40, 44, 45, 46, 47, 49, 50, 51, 52, 53, 56, 

58, 59, 60, 61] or a mobile phone/personal digital assistant (PDA) [35, 37, 48, 54, 55, 57] as 

their platform of choice as shown in Fig. 6.  The 2 cases of Cardiac Implantable Electronic 

Devices (CIEDs) [36, 43] were not included since they only use mobile phones for 

communicating with a remote system. 
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Table 2:  Examples of Virtual Sensing in PHM 

S/No. Virtual Sensor Actual Sensor No of Cases 

1 Respiratory Rate [38, 50, 53, 59] ECG, Accelerometer, 

Pressure 

4 

2 Heart Rate [53, 55] ECG 2 

3 Respiratory Input Impedance 

[40] 

Pressure 1 

4 Blood Flow Velocity [41] Optical 1 

5 Drowsiness Analysis [61] EDA 1 

6 Gait Analysis [56] Gastrocnemius Expansion 

Measurement Unit (GEMU) 

1 

7 Parkinson’s Disease Progression 

[39] 

Microphone 1 

8 Obstructive Sleep Apnea 

Syndrome (OSAS) [52] 

Microphone 1 

9 Consciousness Awareness [58] EEG 1 

 Total  13 

 

 

 

Figure 6:  Platforms used in MVIs 
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Network Models and Communication System 

All the PHM systems in the reviewed articles were based on a client-server network model.  

In most of the systems, the sensed signals were forwarded from the local (or patient) end to an 

access point device in close proximity to the sensors for onward transmission to a remote 

server at the remote (or physician) end. In many cases the platforms described in the previous 

section were used as the access points.  

 

One trend worth noting about PHM network models involves the direct connection between the 

output of the biosignals and a remote webserver or cloud service, rather than a connection to a 

specific remote server at the physician’s end. Five (5) of the reviewed articles [46, 52, 55, 60, 

61] used such a model. A number of advantages can be derived from this approach. One such 

advantage is the potential of “geographically decoupling” the biosignals [60]. In other words, it 

reduces the mobility restrictions on the patients since their signals can be streamed to the 

webserver while they move around freely.  The platforms need to be configured as a 

webserver and should have access to the Internet. Another advantage of this approach is that 

the signals can be simultaneously viewed by different authorized people (such as the physician 

and the care giver).  The approach can also exploit the memory and processing capabilities of 

a web or cloud service while reducing the computational complexity of the PHM system at the 

patient end. 

 

Communication in PHM systems can either be within the modules at the local (patient) end or 

between the instruments at the patient end and those at the remote (physician) end.  As shown 

in Fig. 7, the wireless protocol was the most common for local-PHM communication and was 

used in 73.9% of the cases. This included 26.1% for Bluetooth [35, 45, 54, 55, 57, 58], 8.7% 

for ZigBee [46, 48] and 39.1% of wireless protocols that were not specified [36, 43, 44, 47, 49, 

52, 53, 56, 57]. There were 8.7% of the cases that used RS-232 protocols [38, 61] and another 
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17.4% that used other methods [39, 40, 44, 50]. Some articles did not specify the 

communication protocol [41, 51, 59]. 

 

The cellular networks were the most common approach of for communication in PHM systems 

between the patient-end and the physician-end.  They were used in 56% of the cases [35, 36, 

37, 38, 43, 44, 45, 48, 51, 52, 53, 54, 57, 60].  It was followed by the wireless approach (36%, 

of which 28% were for WiFi [37, 40, 44, 46, 50, 55, 56] and another 8% for unspecified 

wireless techniques [40, 47]. Digital Subscriber Lines (DSL) were used in 8% of the references 

[40, 45].  The details are shown in Fig. 8. Some articles used multiple techniques for remote 

communication and others did not specify the communication protocol [41, 49, 50, 51, 58, 59, 

61]. 

 

 

Figure 7:  Communication Protocols used for PHM at the Patient-end 
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Figure 8:  Remote-PHM Communication Protocols 

 

Applications 

PHM applications refer to the disease domains, adopted modality, level of system adaptability 

and algorithms that govern the operation of the instrument.  

 

Disease Domains 

PHM systems can be used for medical research applications, clinical applications, healthcare 

information management systems and mathematical modeling of physiologic systems [63], to 

name but a few domains of application.  However, an analysis of the research articles in this 

review showed that PHM systems focus on some specific disease domains (Fig 9).   

 

Figure 9  Disease Domains 
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The Cardiovascular Disease (CVD) domain accounts for over half of the cases.  This is 

understandable since CVDs are the largest single contributor to global mortality.  This domain 

covers the monitoring of biosignals that give an insight into the state of the patient’s heart.   

 

Fitness monitoring refers to cases where the PHM did not target a specific domain.  These 

cases were basically for monitoring general health and fitness.  They accounted for about a 

quarter of the cases.  The musculoskeletal domain addressed areas like fall detection, gait 

analysis and back pain.   

 

Table 3: Monitoring Scenarios for the Cardiovascular Disease Domain 

S/No. Monitoring Scenario No of 

Cases 

1 Heart Monitoring [35, 43, 44, 47, 48, 55, 58]  7 

2 Chronic Heart Failure [35, 45] 2 

3 Spirometry [40, 53] 2 

4 Hypertension    [49] 2 

5 Blood Flow Velocity [42] 1 

6 Snoring [59] 1 

7 Obstructive Sleep Apnea [52] 1 

 Total 16 

 

The cases under the neurologic domain focused on mental health monitoring using EEG 

sensors in one case [48] and using an EDA sensor [51] as a virtual sensor for monitoring 

drowsiness in the second case.  The hormonal disease domain involved a case where blood 

glucose levels were monitored for the management of diabetes [47]. 
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The constituent monitoring scenarios classified under the cardiovascular domain are shown in 

Tab 3. 

 

Modality 

The modality refers to the expected effect on the state of health of the patient.  An 

overwhelming number of the cases reviewed (24 cases or 92.3%) focused solely on extracting, 

analyzing and reporting a patient’s biosignals. Only 2 PHM systems (7.7%) triggered some 

form of therapeutic activity in response to the results of the analysis.  The first case controlled 

the delivery of insulin to the diabetic patient [47] and the second case involved a stimulation to 

help the sleeping patient to stop snoring [52].  

 

System Adaptability 

The theme ‘personalized health monitoring’ presupposes a need to have systems that are 

personalized to suit the individual needs of a patient.  This requires that the systems support 

some level of adaptability.  In the literature review there were 11 (or 42.3%) of the articles 

that supported some level of adaptation [36, 37, 45, 47, 51, 52, 53, 55, 57, 58, 60]. Most of 

these were based on adaptation at the communication and architectural levels rather than at the 

patient level. Five of the six cases with adaptation at the patient level [36, 52, 53, 57, 58] were 

based on the patient’s clinical profile while the sixth was based on the activity state of the 

patient [61]. 

 

Algorithms 

The algorithms used in PHM systems refer to a step-by-step procedure for diagnosing and 

classifying a disease using a finite number of steps [63].  They help patients and physicians to 

make sense of the biosignals generated by the patient. The choice of the algorithm depends on 
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the type of diseases to be diagnosed, type of input parameters available for the process and the 

available resources for the computation.   

 

Several algorithms can be used with PHM systems.  A number of the main algorithms used 

across the various disease domains are either a subset or a combination of the following 

categories: Derivative-based, Support Vector Machine (SVM), Genetic Algorithm (GA), 

Threshold-based, Wavelet-based, Neural Networks and Compressive Sensing. 

 

An SVM is a supervised learning model that uses data points (support vectors) closest to the 

decision surface (hyperplane) of the expected diagnosis to classify new data [64].  It provides 

a deterministic approach for obtaining an accurate classification that is unique and global.  

However, the algorithm can tend to be complex and it has high memory requirements [65].   

In [66], SVM is used for classify the risk of epilepsy in patients based on their EEG signals. 

 

A GA is a bio-inspired approach that is based on adaptive heuristics.  It mimics the process of 

natural selection in nature and implements the classification using a fitness function.  This 

algorithm is conceptually simple and useful for scenarios where there are several input 

parameters.  The inductive nature of GA means that it can work with internal rules and does 

not need to know or work with the problem-specific rules.  As a result, GAs can be used for 

several types of problems.  It also has the advantage of being robust to dynamic changes in the 

system environment but cannot integrate problem specific information [67].  GA was used to 

predict the presence of heart disease in [68].   

 

For many of the biosignals it is possible to predict the presence or absence of a disease based 

on a given level in the signal and this level is known as the threshold. Algorithms based on the 

thresholds classify the disease based on some pre-specified or adaptive threshold.  These types 
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of algorithms provide a heuristic approach that is straight forward and generally simpler to 

implement than the other types of algorithms.  Threshold based algorithms were used with 

ECG signals in [69] and for fall detection in [70]. 

 

The NN is a nondeterministic algorithm that was inspired by the interconnection of the neurons 

in the brain.  Its classification is based on simple but highly connected processing elements 

whose weights are dynamically modified in response to incoming signals based on some 

learning rule. It is an accurate, robust and highly parallel technique.  However, it is 

comparatively slower than other algorithms and tends to be resource intensive for systems with 

large input data sets [71].  It was used to screen for heart diseases in [72]. 

 

Compressive sensing (CS) is an emerging paradigm for energy efficient sensing, data 

compression and transmission of biosignals [73, 74].  The CS approach involves the 

transformation of the sensed data into a domain where the data is sparse in order to reduce the 

signal processing requirements. It is quite useful for applications where data capture is 

expensive in terms of time and power. Compressive sensing is discussed in more detail in the 

next chapter. 

 

Tab 4 shows a list of the algorithms that were explicitly stated by the authors of the reviewed 

articles. The Pan-Tompkins algorithm featured in the most number of cases (3) and was used 

for systems targeting the cardiovascular domain.  It was proposed in the late 1980s but has 

remained relevant today because of its suitability for real-time and resource-light processing of 

ECG signals.  It is a first-derivative method that detects the R-peaks of the ECG signals using 

thresholding techniques following a series of filter stages.  This algorithm is described in 

greater detail in Chapter IV. Peak detection algorithms also were also used in 3 of the systems. 
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Evaluation Metrics 

The choice of the algorithm to use for a given disease domain depends on the following 

metrics- accuracy, precision, training time, speed, robustness, scalability, specificity and 

selectivity [75, 76]. 

 

The accuracy refers to the proximity of the measured value to the actual value.  In the field of 

medicine the accuracy of the measurement has a greater level of importance as it may well be 

the difference between life and death for the patient.  The accuracy is a ratio of the correct 

readings (true positives and true negatives) to all the readings taken as shown in Eq 1.   

 

Table 4: Common Algorithms used for PHM 

Algorithm Cases 

Pan-Tompkins [45, 48, 51] 3 

Peak detection [38, 50, 58] 3 

Thresholding [38, 39] 2 

Wavelet transform [55, 59] 2 

Correlation [41, 43] 2 

Fuzzy-based [44] 1 

Machine learning [54] 1 

Least squares [40] 1 

Edge detection [50] 1 

 

 

 

Accuracy =  
Number of correct assessments

Number of total assessments
= 

TN+TP

TN+TP+FN+FP
   (1) 
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Precision refers to the consistency of the results under unchanged conditions.  It is the ratio of 

the true positives to the total number of positives (true and false). The true positives refer to the 

number of positive outcomes that were correctly identified while the true negatives refer to the 

number of negative outcomes that were correctly identified.  Conversely, the false positives 

(FP) and the false negatives (FN) refer to those incorrectly identified as positive and negative 

respectively. 

 

Speed refers to the duration it takes to complete the classification process and this includes the 

time used in the training process for the classifier algorithm. For many medical signals this 

training process is needed to ensure proper analysis and classification. The robustness of an 

algorithm describes how much the performance is independent of the type and distribution of 

the input signals.   

 

Scalability refers to the ability of the system to maintain its level of performance as the size of 

the input signal increases. In medical diagnosis, the specificity is the proportion negative 

classifications that are correctly made while the sensitivity refers to the proportion of positive 

classifications that are correctly made. As such specificity focuses on correct exclusions while 

specificity focuses on correct detections. The specificity and sensitivity can be calculated using 

Eq 2 and Eq 3 respectively. 

 

Specificity =  
Number of true negative assessments

Number of all negative assessments
= 

TN

TN+FP
   (2) 

 

Sensitivity =  
Number of correct assessments

Number of all positive assessments
= 

TN+TP

TP+FN
   (3) 
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C. PHM: Key Issues and Prospects 

There are five (5) themes that were identified from the review as the key issues in the design 

and development of PHM systems, namely:  

1. The need for personalization based on the profile of the patient 

2. The need for more diverse PHM systems 

3. The need for resource-light systems that support reliable long-term monitoring 

4. The need for more non-invasive and non-intrusive PHM systems 

5. The need for a greater degree of system miniaturization, virtualization and for more 

cloud based applications 

 

Personalization for PHM Systems 

Personalization is one of the main motivations for PHM [77].  It is a trend away from the 

sometimes ineffective “one-size-fits-all” approach used in standard medicine to a more 

effective approach that is customized for the specific needs of a given patient.  The conclusion 

of The Human Genome Project [78] in 2001 has significantly increased interest in the area of 

personalized medicine, where diagnostic routines are used to determine the best treatment 

approach that can suit a specific patient.  Many research efforts are exploring approaches that 

would enable PHM systems to adapt themselves to the unique profile of the patient in areas 

such as the patient’s genetic information or other biomedical data unique to the patient [79, 80]. 

 

Diversity for PHM Systems 

More research effort is needed to increase the variety of PHM systems, away from devices that 

mainly focus on cardiovascular health and general fitness monitoring.  For example, mental 

health is becoming a big global healthcare concern. It has been reported that one in four people 

now experience a mental health problem in their lifetime [81].  EEG sensors provide a low 

cost option for monitoring brain signals and researchers need to take advantage of this. 
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Reduced Processing Complexity and Long Term Monitoring 

The requirement for mobility in PHM systems comes with a need for flexible and less power 

hungry applications since many of these systems use batteries as their power sources. The 

current need for continuous biosignal monitoring puts an additional strain on the limited 

resources of the PHM systems [82, 83, 84, 85]. As such, lightweight algorithms are required to 

ensure reliable health monitoring within the constraints imposed by these systems.  Such 

algorithms must be lightweight with regard to the following metrics: 

(i) Power 

(ii) Memory 

(iii) Bandwidth 

(iv) Latency 

 

Non-invasiveness and Non-intrusiveness 

Non-invasive and non-intrusive are two words that describe the desired type of sensors for 

PHM systems [86].  It is desirable to provide comfortable sensors for the patients since the 

PHM systems are expected to support long term monitoring.  Many PHM systems are non-

invasive and these include systems that use ECG, EEG and accelerometer based sensors. In 

addition to a need to support non-invasive sensing, recent PHM systems go a step further by 

supporting non-intrusive sensors.  The goal of a non-intrusive PHM system is to sense 

biosignals without intruding into the activities of daily living of the patient. A common 

approach involves the use of non-contact and capacitive sensors that are embedded into 

clothing, furniture, watches or jewelry [87, 88, 89]. 

 

Another approach involves the use of proxy or virtual sensors.  For example, [59] uses a 

virtual sensor based on a pressure sensor embedded in a pillow.  By using this approach, the 
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authors avoided the need for expensive, complex and intrusive polysomnography equipment by 

inferring its readings from the virtual sensor. 

 

D. Application of the Information to this Thesis 

In this thesis we will focus on the third key issue of PHM- the need resource-light systems that 

support reliable long-term monitoring.  The thesis addresses two main domains- the dominant 

domain for PHM systems (the cardiovascular domain) and one of the fastest growing domains 

of interest (the neurologic domain). 

 

The approach involved studying these two domains and identifying the unique features of the 

relevant biosignals that can be exploited to develop an intuitive approach for reducing the 

complexity of signal processing. we identified the main lightweight approaches used for long 

term monitoring of biosignals in these domains, located the most computationally intensive 

portions of the algorithms and devised a way around them without sacrificing the reliability of 

the system.   Algorithms have been developed for the two domains and compared with the 

current leading lightweight algorithms. 
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III.  A Bioinspired Algorithm for Lightweight Neural Telemetry 

A. Telemonitoring of Neural Signals 

Neural signals usually result in a very large dataset, the processing and transmission of which 

require much energy, storage and processing time. In this chapter we present a Bio-inspired 

electroceptive Compressive System (BeCoS) as an approach for minimizing these penalties.  

It is a lightweight and dependable system for the compression, transmission and reconstruction 

of neural signals inspired by active electroceptive sensing used by weakly-electric fish.  It 

uses a signature-signal and a sensed pseudo-sparse differential signal to transmit and 

reconstruct the neural signals remotely. 

 

Some signals from a 64-channel EEG dataset have been used to compare BeCoS with the 

Block Sparse Bayesian Learning-Bound Optimization (BSBL-BO) technique - a popular 

compressive sensing technique used for low energy and reliable wireless telemonitoring of 

EEG signals.  This research explores the possibility of using BeCoS as a lightweight and 

dependable approach for the compression and recovery of non-sparse EEG signals. 

 

Compressive Sensing 

Traditional sensing techniques are based on the Nyquist theorem [90] and this requires signals 

to be sampled at a frequency equal to at least double their bandwidth in order to perfectly 

capture the signal. Compressive sensing (CS) techniques approach the challenge of sensing in a 

much different way.   

 

In CS, the goal is to find a base, γ, to transform a high dimensional analogue data, 𝐱, of 

dimension N , into a k-sparse analogue data set, 𝐱∗ using the Eq (4). 
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𝐱 = 𝛄𝐱∗       (4) 

 

The next step in CS involves the use of a user defined sensing matrix, 𝚽  , to generate 𝐲, a 

compressively sensed representation of 𝐱 using Eq (4) and (5). 

𝐲 = 𝚽𝐱         (5) 

 

The original signal, 𝐱, is then reconstructed at the remote receiver using 𝐲 and 𝚽.  𝐲 is a 

compressively sensed representation of 𝐱 when γ and 𝚽 are incoherent.  This condition is 

met when 𝚽  is chosen as a random matrix.  The CS approach is effective when there is a 

sparse representation of the original signal.  In this approach, the greater the level of sparsity 

of the sensing matrix, 𝚽, the greater the potential compression ratio and the lower the energy 

requirements.  

 

CS [91] provides a good option for the lightweight sensing, processing, transmission and 

reconstruction of signals.  However, CS systems need to use signals that are sparse in the time 

or transformed domains in order to reconstruct the signals with a high level of fidelity.  EEG 

signals are neither sparse in the time nor the transformed domains and this makes the 

traditional CS- based EEG telemonitoring approach inadequate for clinical applications. 

 

For non-sparse signals, it is necessary to use a sparsifying dictionary matrix, 𝐃, to obtain a 

sparsified form of 𝐱 (𝐱𝐝) as shown in Eq (6).  Eq (5) can thus be replaced by Eq (7).  

 

𝐱 = 𝐃𝐱𝐝     (6) 

𝐲 = 𝚽𝐃𝐱𝐝        (7) 
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Again, the success of the approach depends on the system’s ability to find a sparse 

representation of 𝐱.  This underscores the importance of finding an appropriate user defined 

dictionary matrix, 𝐃.  This process can be challenging for arbitrary signals like EEG since 

general dictionary matrices are unable to sparsify them sufficiently. 

 

Block Sparse Bayesian Learning Bound Optimization (BSBL-BO) 

The Block Sparse Bayesian Learning (BSBL) framework has recently been proposed as a 

lightweight approach for processing biosignals in a way that avoids the requirement of an 

optimal dictionary matrix.  It is based on the premise that most natural signals have a rich 

structure and can be represented as a concatenation of blocks [92] as shown in Eq(8).  It uses 

user defined block partitions and assumes that most of these blocks are sparse. 

 

s =  [s1, . . . , sl1⏟      
s1
T

, . . ., slg−1+1 , . . . , slg⏟        
sg
T

, ]T  (8) 

where si describes the block interval i of length l. 

 

BSBL-BO is a fast learning BSBL based on the bound-optimization method [92].  It has been 

effectively applied as a lightweight solution for the reconstruction of temporally correlated 

EEG signals [93]. The authors’ empirical results showed that non-sparse EEG signals can be 

reconstructed with a high level of fidelity by using BSBL-BO with standard dictionary matrices. 

 

In [93], the solution was based on the use of a sparse binary matrix as the sensing matrix, 𝚽, 

and an inverse Discrete Cosine Transform (DCT) as the dictionary matrix, 𝐃. The use of this 

type of dictionary matrix created a system that was 2.58 times faster than a system which did 

not use the dictionary matrix [93]. BSBL-BO has been used as the reference technique for 
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comparing BeCoS. 

 

B. The Basics of Electroception 

Electroception, also known as electroreception, refers to the ability to perceive natural 

electrical stimuli.  Lampreys, bees, sharks, cockroaches and rays are examples of species that 

use electroception either for communication or location of objects [94].  Some of these 

species are highly sensitive to changes in the electric field around them.  For example, the 

shark can detect changes as low as 1x10
-10

V/m [95]. 

 

Electroception can either be active or passive. In passive electroception the sensing species 

detects a field originating from another species while in active electroception the specie senses 

its environment by generating an electric field and detecting the distortions made to it by the 

field of another animal or object.  The biological sensors used for the detection are known as 

the “Ampullae of Lorenzini”[94]. The generated electric field, also known as its signature 

signal, may be modulated to make it unique to the sending species.  It can give information of 

the fish’s individual identity, sex, social and non-social behavior [96].  

 

The weakly electric fish is a good example of an animal that uses active electroception [95, 97]. 

This approach can either be based on small pulses (pulse-type) or a quasi-sinusoidal discharge 

(wave-type) and it allows the specie to identify the properties of the sensed object.  For 

example, a weakly electric fish can detect and discriminate objects based on their ohmic and 

capacitive properties [94, 95, 98, 99].  The signature signal of the fish has very large 

intraspecific waveform variability and usually has a triangular or sawtooth pattern [100].  

Fig 10 shows some examples of signature signals. 
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Figure 10:  Examples of Signature Signals used for Electroception [96, 102, 

103] 

 

Similar electrolocation techniques are used by bats and in radar technology. In those 

approaches there is a Doppler shift as a result of a relative motion between the source and the 

target.  However, in electroception there is no frequency shift due to the movement of electric 

signals [103]. 

 

The fish makes the process of sensing more efficient by matching the impedance between itself 

and its sensing environment. This way it can use a minimal amount of energy to sense its 

environment.  The impedance, Z, is a combination of the resistance, R, and the capacitive 

reactance, XC as shown in Eq (9). All living organisms have considerable capacitive properties 

that filter the signature signal in a way that maintains the phase [104]. 

 

Z = R + Xc     (9) 

 

The resistance is independent of frequency while the capacitive reactance is inversely 

proportional to the product of the frequency and capacitance. The fish detects the distortions to 

the electric field that reflect the conductivity of the sensed object.  The change is measured as 

a change in the transepidermal voltage gradient in the area next to the skin of the prey [103]. It 

was also noted that good conductors increase the transepidermal voltage while insulators have 

a decreasing effect. Also, the detection of object waveforms relies on a purely temporal (and 

not spectral frequency) analysis. [100]. 
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A description of the key features of electroception used in BeCoS is given in the section on 

‘Porting Key Electroceptive Features into BeCoS’. 

 

C. Bio-inspired electroreceptive Compressive System (BeCoS) 

The BeCoS approach utilizes the electroreceptive approach for the sensing, compression and 

transmission of physiological signals as shown in Fig. 11.  The approach is based on the 

wave-type active electroception option. The modulated vector derived from this approach 

contains a high proportion of elements whose amplitude is close to zero. The Results section of 

this chapter provides further details about this. 

 

Figure 11.  BeCoS Sensing Approach 

 

 

BeCoS assumes that the signature signal vector  (of length, E), originates from H, analogous 

to the local-end of the weakly electric fish. The 𝐡 vector is transmitted in the direction of R, 

analogous to the position of the object to be sensed, which generates an 𝐫 vector (of length, Z).  

Z>>E  and Z=wE (where w is a positive integer).  
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A modulated vector, 𝐩,  is generated when the 𝐡 and 𝐫 vector waves interact.  The vector, 

p, is given by Eq (10): 

 

p = [p1, p2, … , pw] = [
d𝐫jE+1,jE+2,…,E(1+j)

d𝐡
]|
j=0,1,2,…

            (10) 

where each vector pw has a length, E which is the size of each epoch of the neural signals. 

 

In this approach, 
dβ

dα
 is a numerical differentiation given as the gradient between two adjacent 

points and defined as shown in Eq. (11). 

 

df(α)

dα
 =  

f(α+∆α)− f(α)

(α+∆α)− (α)
    (11) 

 

The neural signals of interest are usually measured and stored as time series data. As such, 

there is a need to compute modulated signal, p= 
dr

dh
  by using the differentiation-by-part as 

shown in Eq (12): 

𝐩 =
d𝐫

d𝐡
= 

d𝐫

dt
÷ [ 

d𝐡

dt
+  δ]  = �̇�

(�̇� +  δ)
⁄  ; δ = {

1x10−6,    �̇� = 0

0,    �̇� ≠ 0
   (12) 

where δ is a small positive stabilizer that prevents numerical instability when �̇� = 0 

 

Similarly, 𝐫 is reconstructed by integration as shown in Eq (13).  The cumulative trapezoidal 

numerical integration method was used. 

 𝐫𝐫𝐞𝐜𝐨𝐧 = ∫𝐩d𝐡 = ∫𝐩�̇�d𝐭       (13) 

 

 



 

33 

 

D. System Model and Performance Metrics 

The BeCoS model is shown in Fig. 12.  The multi-channel physiological signals are captured 

in real-time using appropriate sensors at the patient’s end- the local end of the Medical Virtual 

Instrument (MVI).  A sparse differential signal is then generated in quasi real time.  For each 

channel, a vector (𝐡) of length E is selected as the signature signal and all subsequent signals 

are differentiated with respect to the appropriate signature signal. This differential signal (𝐩) is 

wirelessly transferred to the physician’s end- the remote MVI.  Here, the differentiated signal 

is integrated with respect to 𝐝𝐡 in order to reconstruct the original signals.  An Additive 

White Gaussian Noise (AWGN) channel with an SNR of 0dB is assumed. The reconstructed 

signals (𝐫𝐫𝐞𝐜𝐨𝐧) are then compared to the original signal using a set of performance metrics. 

 

 

The 𝐫 vector is segmented into w equal non-overlapping segments, each representing an 

epoch block, with a length equal to the length of the signature signal vector, 𝐡, as shown in Eq 

 

 
 

Figure 12:  Conceptual Diagram of the BeCoS System Model 
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(14).   

r = [u1, . . . , uE⏟      
1st seg

, uE+1 , . . . , u2E⏟        
2nd seg

, , . . ., uE(w−2)+1 , . . . , u(w−1)E⏟              
(w−1)th seg

, , uE(w−1)+1 , . . . , uwE⏟            
wth seg

]  (14) 

where ui is the i
th

 element of 𝐫  

 

Dataset of Physiological Signals  

Standard EEG databases have been used for this work. The EEG signals were taken from a 64-

channel EEG Motor Movement/Imagery Dataset.  It was obtained from an arrangement of 

sensors based on the international 10-10 system and provided on the Physionet website [105].  

 

The Physionet signals were sampled at 160 samples/s and the following 8 channels were used 

for the analysis- Fc5, Fc3, Fc1, Fcz, Fc2, Fc4, Fc6 and C5, as channels 1-8 respectively.  Each 

channel had a sequence length of 9,760 data points. An epoch length, E, of 244 was used and 

this resulted in 40 epochs, (w). 

 

The signals were used to simulate a typical signal compression, transmission and 

reconstruction scenario for EEG signals as shown in Fig 13.  An Analog to Digital Converter 

(ADC) is used to emulate the signal acquisition phase. Location A refers to the patient-end of 

the MVI, where resource-constrained portable and mobile instruments are used.  The 

instruments are usually powered by batteries. By contrast, location B refers to the physician-

end of the MVI, where the signals are reconstructed on desktop computers or servers and 

powered by AC power. 
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Figure 13:  System Diagram for Testing Models: (a) BSBL-BO and (b) 

BeCoS  

 

Performance Metrics  

Five performance metrics have been chosen to evaluate the BeCoS approach.  They are 

coherence, latency, compression ratio (CR), power and structural similarity as described in this 

section. 

 

Coherence  

EEG signal processing techniques are reliant on the frequency content of the signal [106].  As 

such, it is important to take the frequency content into consideration when comparing the 

signals at the local and remote ends. Spectral coherence provides this type of comparison. It is 

a measurement of the linear correlation between two neural electrodes [107] as a function of 

frequency and it is very useful for comparing EEG signals [108].  It computes the amount of 

synchrony between 2 stationary signals at a specific frequency [106]. The coherence metric 

compares the signals sensed at location A of Fig 13 with the signals reconstructed at location B 

of the same figure. The magnitude squared Coherence, CXY, of two signals X and Y is given by 

Eq (15). 
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CXY(f) =
|PXY(f)|

2

PXX(f)PYY(f)
     (15) 

PXXand PYY are the power spectral densities of X and Y respectively. PXY is the cross spectrum 

of X and Y. 

 

It is calculated based on the standard Welch’s averaged periodogram method [109].  A 

Hamming window size of 125 was used for the computation. 

 

Latency  

The latency is calculated as the time between the acquisition of the sensed signal at location A 

and its reconstruction at location B of Fig 13.  A zero delay over the noiseless wireless 

channel has been assumed. The learning phase of the BSBL-BO algorithm takes place at 

location B, prior to reconstruction.  Many PHM systems require real-time monitoring and it is 

important to keep the latency at a minimum. 

 

Compression Ratio  

The compression ratio, CR, refers to the ratio of the dimensionality of the original signal to that 

of the sparsified sensed signals.  The dimensionalities (non-sparseness) of the sensed and 

original signals are given as m and n respectively. CR is given in Eq (16). The compression 

takes place at location A of Fig 13. 

 CR = 1 −
𝑚

𝑛
     (16) 

 

Power Consumption 

Power consumption is a major consideration for health monitoring systems as they are likely to 

depend on batteries for their energy requirements [93, 110, 111]. According to [92], low energy 
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health monitoring systems are lighter and more comfortable for patients since they use smaller, 

longer lasting batteries. Power is important at the patient-end (location A) due to the use of 

batteries but it is not an important consideration at location B.  The patient side core-engines 

of BeCoS and BSBL-BO were implemented in a Xilinx Virtex 5 FPGA and used to calculate 

the power consumption. 

 

Structural Similarity 

The frequency content of EEG signals has already been identified as an important feature for 

neural signal processing.   The second important feature is the structural similarity of the 

reconstructed waveform with respect to the original signal [112]. A Structural Similarity (SSIM) 

index [93] is the standard metric for quantifying this.  However, it has been shown in [112] 

that even a slight translation, scaling or rotation of the reconstructed signals can greatly affect 

the SSIM value. [112] went further to propose a Complex-Wavelet SSIM (CW-SSIM) as a 

more robust metric for comparison. The CW-SSIM index has been chosen as the metric since 

the BeCoS approach scales and translates the signals. CW-SSIM is calculated using Eq (17). 

Ã(sx, sy) =
2| ∑ sx,isy,i

∗N
i=1 |+𝑗

2∑ |sx,i+ sy,i
∗ |+ 𝑗N

i=1

   (17) 

where sx and sy are the coefficients extracted from the same spatial locations of the same 

wavelength sub-bands of the two images being compared; s* is the complex conjugate of s. j is 

a small positive constant (stabilizer) 

 

E. Porting Key Electroceptive Features into BeCoS 

This section shows how BeCoS integrates the most relevant features of the electroception 

discussed in the section entitled “The Basics of Electroception”.  Some of these features were 

italized for emphasis in that section. The features have been identified and discussed below: 
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1. Same Type: The signature signal should be of the same type as the monitored signal. This 

requires the following: 

 The signal should be of the same length as the signal being monitored.  In the case of 

long term monitored signals, BeCoS requires the biosignal to be monitored in 

segments equal to the length of the signature signal 

 The signal should be a similar biosignal to the biosignal of interest.  As such, an EEG 

signal will be used for monitoring EEG signals 

 More importantly, there should be a good level of ‘impedance matching’ between the 

signature signal and the segments of the biosignal of interest.  This feature is further 

described in feature #4. 

 

2. Signal Sparsification: The signature signal of the electric fish significantly sparsifies the 

monitored signals. BeCoS also uses a similar signature signal to achieve sparsification without 

a need for the base or dictionary matrices shown in Eqs (4-7). The level of sparsity can be 

further increased through the design of a signature signal with very large gradients at specific 

points as determined by the designer.  

 

As shown in Eq (12), the modulated sparse signal, 𝐩, is computed by dividing the inter-signal 

gradient of the sensed signal by that of the signature signal.  As such, the designer can 

generate a very sparse signal, by choosing a signature signal, �̇� , with many large swing 

gradients (those that are very large compared to the corresponding gradient of the sensed signal, 

�̇� ).  

 

3. Support for Sample Rate Conversion: The design of a signature signal described in #2 can 

also be used for downsampling of the sensing process and for sampling rate conversion without 

the need for the measurement matrix used in standard CS techniques.  By noting the points in 
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the signature signal where there are very large gradients, the sensing protocol can avoid 

sampling those points since 𝐩, will always be close to zero at those points. 

 

For example the sampling rate can be halved by ensuring that the signature signal has very 

large swings at every other point or a third of the sampling rate can be used if two out of every 

three points have large swings.   

 

4. Impedance Matching: As mentioned previously, the weakly electric fish uses an impedance 

matching between the local and remote ends in order to ensure an efficient sensing process.  

As shown in Eq 18, this impedance has both ohmic (R) and reactive components (XC). In the 

‘Basics of Electroception’’ section we highlighted the fact that electroreception is not affected 

by shifts in frequency and it maintains the phase of the signature frequency. 

 

Z = R + XC    (18) 

 

This suggests that the impedance matching in electroception aims to maintain the ohmic value, 

while keeping the frequency dependent reactance at a minimum.  The transfer function of a 

system is a mathematical function relating the output or response of a system to the input or 

stimulus [113]. For systems that have the same impedance, the transfer function is equal to 1. 

This appears similar to a scenario where input and output EEG signals are matched.  In such a 

scenario the coherence is also equal to 1.  As such, for BeCoS we will use a coherence term to 

represent the ohmic resistance. 

 

The capacitive reactance, XC, for capacitance, C, at frequency, f, is computed [114] as shown 

in Eq (19): 



 

40 

 

XC =
1

2πfC
    (19) 

 

The capacitance, C, can be calculated [114] as shown in Eq (20) and Eq (21): 

C = I dV
dt

⁄     (20) 

C = εoεr
A

d
    (21) 

Where I is the current in amps, 
dV

dt
 is the voltage swing rate in Volts/second, εr is the dielectric 

constant, εo is the permittivity of free space (≈ 8.854×10
−12

 Farad/m). A is the overlap area 

between the two objects and d is the distance (in meters) between the two objects. 

 

The brain can be modeled as a constant current source [115] and in electroception the overlap 

area between the fish and the prey is relatively constant.  The dielectric constant and the 

permittivity of free space do not change.  As such only d and 
dV

dt
 may vary and these are the 

parameters that can be adjusted to alter the capacitance.  Both terms need to be low in order to 

keep C high. This is logical since the fish would prefer sensing prey located at a close distance 

to it.  The EEG signals do not provide any d parameter but the voltage swing rate can be 

calculated as shown in Eq 22: 

 

𝑆𝑤𝑖𝑛𝑔 =
1

t
∑ |xt − xt−1|
t
0   (22) 

where xt is the EEG signal at time, t 

 

The Swing Ratio (SR) is the ratio of the voltage swing of the system response (EEG signal 

being sensed) to the voltage swing of the stimulus (signature signal).  The impedance equation 

shown in Eq (18) can be re-written to indicate the parts for coherence and SR as shown in Eq 
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(23). BeCoS does not work with impedance per se, as such, another term will be used to 

describe this similarity- zygosity (ZBeCoS).  The name was inspired by a similar term used to 

describe the degree of identity in the genome of twins [116].  

 

ZBeCoS = R⏟
∝CXY

+   XC⏟
∝SR

     (23) 

 

ZBeCoS is dependent on the coherence and SR as shown in Eq (24): 

 

ZBeCoS ∝ (CXY , SR)    (24) 

 

From Eqs (23) and (24), an ideal optimized signature signal for BeCoS should have the 

following properties: 

1. Have a high level of coherence to the sensed signal 

2. Have a low swing ratio (ie the voltage swing of the signature signal should be high when 

compared to the voltage swing of the original EEG signal) 

The second property can be attained by making using a signature signal that follows a pattern 

similar to the pattern of the natural signature signal used by weakly electric fish- the sawtooth 

waveform pattern.  However, this signal still needs to be coherent with the sensed signal in 

order to meet the first requirement. 

 

According to [116] it is possible to maintain a high level of coherence between two signals 

with different amplitudes and/or phases as long as the phase difference tends to remain 

constant. In calculating coherence it is necessary to know how stable the phase between two 

waves is and how quickly it changes with time. In [117], the coherence of a high-order 

harmonic spectrum was controlled by adjusting the sawtooth shape parameter.   

Minimize 
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EEG signals reflect the personalized information about the unique anatomical and functional 

attributes of a patient’s brain, including personality traits and genetic information [118, 119, 

120, 121]. The signal coherence of EEG signals was used as a biometric in a recent study 

[107]. As such, the signature signal should have a high coherence when compared to a signal 

segment taken from the measured EEG signal.   

 

Based on the foregoing discussions a procedure for designing an ideal optimized signature 

signal is presented in the next section. 

 

Designing an Optimized Signature Signal 

In this section we describe the process for designing an ideal optimized signature signal that 

satisfies the primary requirement of high coherence and the secondary requirement of a large 

swing ratio as described in the previous section.  The process is shown in Fig 14. 

 

 
 

Figure 14 : Steps for generating an optimized signature signal 
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The following are the steps for generating an ideal optimized signature signal for BeCoS: 

 

1. The first option for getting a non-optimized signature signal involves the selection of a 

signal that is highly coherent with the signal to be sensed.  A segment of the sensed 

signal can be used as the seed signal. In this study the first epoch is used as the seed 

signal. 

2. The second option for a more optimized signature signal requires the addition of a 

sawtooth signal with a known voltage swing to the coherent signature signal used in 

the first option. This composite signal should still be coherent to the measured signal. 

3. A third option for an ideal optimized signal requires the addition of high valued input 

pulses to the summation of the seed signature signal and sawtooth signal.  The output 

of step 3, called ‘SS’, is then compared with the seed signal to determine the coherence.  

If the average coherence is high enough (≥0.9), then SS is chosen as the signature 

signal.  If the coherence is less than 0.9, steps ‘2’ and ‘3’ are iteratively modified 

until an ‘SS’ with the required coherence is attained. This gives an ideal optimized 

signature signal but the process has extra computational requirements. 

 

F. Results 

The EEG datasets were used to compare BSBL-BO and BeCoS based on the 5 metrics 

described in the previous section.  The tests were conducted on a Xilinx Virtex 5 FPGA and 

an Intel Pentium 4 system, with a 3.0GHz CPU and 2GB RAM. For the BSBL-BO experiments 

a 122 x 384 sparse binary sensing matrix, Φ, was used and a 244 x 244 inverse DCT matrix as 

the dictionary matrix, D. 

 

 



 

44 

 

Coherence 

The average coherence value for BeCoS and BSBL-BO were compared (Table 5).  The 

average coherence was also compared across a frequency range of 0-90Hz (Fig. 15). BeCoS 

had an average coherence of 0.949 across the 8 channels while BSBL-BO had an average of 

0.701. Also, BeCoS maintained a near optimum coherence between 2.1Hz and 84.38Hz.  On 

the other hand, BSBL-BO fluctuated across the spectrum with a peak of 0.996 at 0.7Hz and a 

trough of 0.497 at 90Hz.  

 

Table 5: Comparison of BSBL-BO and BeCoS Coherence Values 

BSBL-BO BeCoS % Increase 

0.701 0.949 35.38% 

 

Overall, BeCoS had 35.38% better average values.  BSBL-BO is an adaptive learning 

approach that exploits the intra-block correlation of the signals.  This is less linear than the 

BeCoS approach and increases the power of the noise in the reconstructed signal.  BeCoS 

generates a reconstructed signal that is linearly dependent on the original signal since the 

differential and integral operators used have a linear time invariant property in the Fourier 

domain.  
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Figure 15:  Coherence across the frequency spectrum 

 

Latency 

The latency refers to the time taken for sensing, processing, transmitting and reconstructing the 

neural signals.  In BSBL-BO it involves these stages as well as the learning stage as discussed 

earlier.  For BeCoS, it involves the steps shown in Eqs (12-13). The sensing, processing and 

reconstruction phases of BeCoS basically involve a few additions and multiplications.  For the 

BSBL-BO it involves additions on the accumulators that result from the sparse binary sensing 

matrix, the multiplications with the inverse DCT dictionary matrix and the learning process.  

 

With BeCoS we had an average of 0.117ms for processing each epoch, compared to 5.869ms 

that was used by BSBL-BO.  As such, BeCoS used just 1.99% of the processing time used by 

BSBL-BO.  The processing time we got was similar to the time reported in the reference 

BSBL-BO paper [93], where 105ms was used to process an epoch.  The epoch length used in 
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that paper was 384 data points for 32 channels.  This results in 0.273ms per data point or 

2.085ms per epoch.  That paper also used a 192x384 sparse binary matrix to sparsify the 

signal while we used a 122x244 sparse binary matrix for this work.  By factoring in this ratio 

of 2.477,  one can estimate that the process described in the reference paper would have taken 

about 5.165ms/epoch for the experimental setup used in this paper. Also, the system used in the 

reference paper had a 2.8GHz CPU and 6GB RAM while a system with a 3GHz CPU and a 

2GB RAM was used in this research. This may also explain why the result in the reference 

paper was slightly faster than the BSBL-BO processing results obtained in this research.  

 

Compression Ratio 

By representing the sensed signal with respect to a pre-specified signature signal, the BeCoS 

approach reduces a large portion of the original values to values that are close to zero. Values 

of the sensed signal, x, where |x|<0.99mV were taken to be sparse. This pseudo-sparsity 

reduces the dimensionality of the transmitted signal and increases the effective compression 

ratio (see Eq. 16). The comparison was based on the same optimal configuration for BSBL-BO 

used to attain a low-cost EEG system in [93] (compression ratio of 50%). As seen in Table 6, 

BeCoS achieved an average compression ratio of 76.73% or 53.26% better than BSBL-BO, 

even though the non-optimized signature signal was used for the analysis.  

 

Table 6: Comparison of BSBL-BO and BeCoS Compression Ratios 

BSBL-BO BeCoS % Increase 

50% 76.63% 53.26% 

 

 

Power and Hardware Resource Consumption 

Previous research [95] already shows that weakly electric fish use the electroceptive approach 
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to maximize the energy efficiency of their sensing process and we have also used it for the 

efficient sensing, processing and transmission of the neural signals. We implemented the core 

compression engines of BeCoS and BSBL-BO in hardware in order to get a realistic estimation 

of the power consumption at the patient-end of the telemonitoring system. 

 

The Simple Bus Architecture (SBA) [122] was used for both designs.  The SBA is lightweight 

computer architecture that implements a minimum essential subset of the open source 

Wishbone signals interface [123].  It consists of software tools and intellectual property (IP) 

cores that are interconnected by buses and it enables the implementation of a System on Chip 

(SoC). The availability of the essential blocks enable the system designer to concentrate on the 

core design and this helps to speed up the design process and makes it portable across different 

FPGA platforms. The master core is a special state machine that performs basic dataflow like a 

microprocessor without the high resource utilization that characterizes soft processor. 

 

The top level block diagrams for the BeCoS and BSBL-BO compression engines are shown in 

Fig 16 and 17 respectively. 

 

Figure 16:  Top level block diagram of the BeCoS compression engine 
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Figure 17:  Top level block diagram of the BSBL-BO compression engine 

The following blocks and signal names were used for the BeCoS engine (Fig 16): 

 SBA Controller: Master System Controller 

 SBA Decoder: SBA Address Decoder 

 DPSram: Dual Port Single Clock RAM 

 DataInf: Data Output Bus Interface 

 CLK_I: Main clock (1 bit) 

 RST_I: Active high reset (1 bit) 

 ADR0_I: Address output bus (8 bit) 

 DAT0_O: Data output bus (16 bit) 

 WE1_I: Write Enable (16 bit) 

 STB1_I: Strobe acknowledgement (1 bit) 

 ADR1_I: Address input bus (1 bit) 

 DAT1_I: Data input bus (8 bit) 

 INT-I: Interrupt (16 bit) 

 RAM 10  (0-255, for EEG data values) 

 RAM 00 (0-255 for output values) 

Similarly, the following blocks and signal names were used for the BSBL-BO engine (Fig 17): 

 SBA Controller: Master System Controller 

 SBA Decoder: SBA Address Decoder 

 DPSram: Dual Port Single Clock RAM 

 DataInf: Data Output Bus Interface 

 CLK_I: Main clock (1 bit) 

 RST_I: Active high reset (1 bit) 
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 ADR0_I: Address output bus (8 bit) 

 DAT0_O: Data output bus (16 bit) 

 WE1_I: Write Enable (16 bit) 

 STB1_I: Strobe acknowledgement (1 bit) 

 ADR1_I: Address input bus (1 bit) 

 DAT1_I: Data input bus (8 bit) 

 INT-I: Interrupt (16 bit) 

 RAM 10  (0-255, for EEG data values) 

 RAM 00 (0-127 for output values) 

 

A master clock of 160Hz was used. At each rising edge of the clock one EEG signal was sent 

as an input to the compression engine.  This process mimics the data acquisition process in a 

live PHM system where an EEG sensor captures signals at a given sampling rate. The epoch 

EEG data was stored in a RAM (RAM 10) with a resolution of 16bits.  The BeCoS engine 

stores 245 consecutive EEG signals in RAM 10 per epoch while the BSBL-BO engine stores 

244 EEG signals. Both systems used two banks of double port memories.  The first was for 

the input data whiled the second was for the output data. 

 

The BeCoS engine uses 3 internal buffers (IB1, IB2 and IBS). At each rising clock edge, an 

EEG signal is fed into the first internal buffer (IB1).  At the second rising edge, the content of 

IB1 is transferred to IB2 and the next EEG signal is fed into IB2. On the third cycle, the 

difference (IB2-IB1) is computed and stored in IBS (see Eq 11). The BSBL-BO engine has 244 

internal buffers because all 244 EEG values must be obtained in order to compute the output 

signals for each epoch. 

 

For BSBL-BO, at each rising edge of the clock a new consecutive EEG signal is stored in the 

internal buffers consecutively from IB1 to IB244. For BeCoS, only two consecutive signals are 

required to compute the corresponding output signal.  For example, the 1st and 2nd EEG 

signals are used to compute the 1st output, the 13th and 14th EEG signals are used to compute 
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the 13th output and the 244th output signal can be computed when the 244th and 245th EEG 

values are in the internal buffers. The buffers were implemented using Configurable Logic 

Blocks (CLBs). 

 

To compute the output signal, the BeCoS engine divides the value of the BS buffer with the 

corresponding signature signal as shown in Eq. 12. The signature signals were stored in a ROM 

table. The BSBL-BO output signals were computed using a sparse binary sensing matrix (Φ) as 

shown in Eq. 5. Each column of the sensing matrix contained just two non-zero entries to allow 

the use of accumulator registers, rather than multipliers. The resulting output signals were then 

generated based on the sensing matrix. The BeCoS engine has an output of 244 signals while 

the BSBL-BO has an output of 122.  As such, the BeCoS system has 244 output registers 

(OR) while the BSBL-BO approach has 122 output registers. 

 

Table 7: Comparison of the Power and FPGA Resource Utilization for the BSBL-BO and 

BeCoS Core Engines 

 FFs LUTs IOBs BRAMs Power 

Total No of FPGA 

Resources 

69,120 69,120 

 

640 

 

148 

 

- 

BSBL-BO 

(% Utilization) 

3,981 

(5.8%) 

1,743 

(2.52%) 

51 

(7.97%) 

2 

(1.35%) 

1.204W 

BeCoS 

(% Utilization) 

123 

(0.18%) 

881 

(1.27%) 

52 

(8.13%) 

3 

(2.03%) 

1.191W 

 

 

The hardware synthesis report is shown in Tab. 7 and it gives the resource utilization for both 

systems using a Xilinx Virtex 5 FPGA (XUPV5-LX110T).  The table shows the amount of 
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Flip Flops (FF), Look Up Tables (LUTs), Input Output Blocks (IOBs) and Block RAMs 

(BRAMs) used.  

 

The Value Change Dump (VCD) was used with the Xilinx Power Analyzer to calculate the 

power consumption of both systems.  The results are also shown in Table 7.  BeCoS used 

13mW less power than BSBL-BO to process one epoch of EEG signals at the patient’s end.  

To put this figure in better perspective, let us assume the system at the patient’s end is running 

on a Samsung Galaxy 4 phone with an Li-Ion battery rated at 2100mAh and 3.8V.  This 

battery would serve the BSBL-BO system for 8,837 hours and the BeCoS system for 

8,933hours- a difference of 96 hours or 4 days. 

 

Structural Similarity 

The average CW-SSIM values for both BSBL-BO and BeCoS are shown in Tab. 8. 

 

Table 8: Comparison of BSBL-BO and BeCoS CW-SSIM 

BSBL-BO BeCoS % Increase 

0.969 0.908 -6.295% 

 

Tab 8 shows that BeCoS has an average CW-SSIM decrease of 6.295%. As noted in the 

metrics section of structural similarity, the SSIM is highly altered by the scaling of the signal.  

Similarly, its enhancement (CW-SSIM) still gets affected by scaling and rotation, even though 

it is more robust that SSIM. There is a degree of scaling in the BeCoS approach as a result of 

the numerical integration during the reconstruction phase and this invariably lowers the CW-

SSIM. 

 

However, as seen in Figs 18-20, regardless of the scaling and translation, the structure of the 
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reconstructed signal using the BeCoS approach is still strikingly similar to the original EEG 

signal.  

 

Figure 18:  CW-SSIM for Ch7 [1:700] 

 

 

Figure 19:  CW-SSIM for Ch1 [3000:3650] 

 



 

53 

 

 

 

Figure 20:  CW-SSIM for Ch4 [6300:6900] 

 

Effects of Variations on SSIM and CW-SSIM 

To further explain the lower CW-SSIM value for BeCoS, consider a random sample shown in 

Tab 9 with columns for the original sample, its numerical differentiation, numerical integration, 

numerical integration plus the offset value and the variation. Numerical integration, as opposed 

to analytical integration, uses approximations and introduces a non-uniform variation when 

compared to the original signals. In order to use analytical approaches the exact equation of the 

signal must be known in advance and this is not possible for real time physiological signals.  

As such, a numerical integration method is the most feasible integration approach that can be 

used for such signals. 

 

Table 9: Effect of Numerical Methods on Signal Reconstruction 

Original Num Diff 

Num 

Int 

Num Int + 

Offset Variation 

40 1.2 0 40 0 

41.2 1 1.1 41.1 0.1 

42.2 1 2.1 42.1 0.1 

43.2 0.8 3 43 0.2 
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44 0.8 3.8 43.8 0.2 

44.8 0.6 4.5 44.5 0.3 

45.4 0.6 5.1 45.1 0.3 

46 0.5 5.65 45.65 0.35 

46.5 0.3 6.05 46.05 0.45 

46.8 0.3 6.35 46.35 0.45 

47.1 0.2 6.6 46.6 0.5 

47.3 0 6.7 46.7 0.6 

47.3 0 6.7 46.7 0.6 

47.3 -0.1 6.65 46.65 0.65 

47.2 -0.2 6.5 46.5 0.7 

47 -0.3 6.25 46.25 0.75 

46.7 -0.5 5.85 45.85 0.85 

46.2 -0.5 5.35 45.35 0.85 

45.7 -0.6 4.8 44.8 0.9 

45.1 -0.7 4.15 44.15 0.95 

44.4 -0.8 3.4 43.4 1 

43.6 -0.9 2.55 42.55 1.05 

42.7 -1 1.6 41.6 1.1 

41.7 -1.1 0.55 40.55 1.15 

40.6 -1.2 -0.6 39.4 1.2 

39.4 -1.3 -1.85 38.15 1.25 

38.1 -1.4 -3.2 36.8 1.3 

36.7 -1.5 -4.65 35.35 1.35 

35.2 -1.6 -6.2 33.8 1.4 

33.6 -1.7 -7.85 32.15 1.45 

31.9 -1.8 -9.6 30.4 1.5 

30.1 -1.9 -11.45 28.55 1.55 

28.2 -2 -13.4 26.6 1.6 

26.2 -2 -15.4 24.6 1.6 

24.2 -2.2 -17.5 22.5 1.7 

22 -2.3 -19.75 20.25 1.75 

19.7 -2.4 -22.1 17.9 1.8 

17.3 -2.5 -24.55 15.45 1.85 

14.8 -2.5 -27.05 12.95 1.85 

12.3 -2.7 -29.65 10.35 1.95 
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9.6 -2.8 -32.4 7.6 2 

6.8 -2.8 -35.2 4.8 2 

4 -3 -38.1 1.9 2.1 

1 -3.1 -41.15 -1.15 2.15 

-2.1 -3.1 -44.25 -4.25 2.15 

-5.2 -3.3 -47.45 -7.45 2.25 

-8.5 -3.3 -50.75 -10.75 2.25 

-11.8 -3.5 -54.15 -14.15 2.35 

-15.3 -3.5 -57.65 -17.65 2.35 

-18.8 -3.7 -61.25 -21.25 2.45 

 

Fig 21 shows the original sample and sample reconstructed by numerical integration as well as 

this reconstructed sample value plus an addition of the initial offset. 

 

 

Figure 21:   Effect of Numerical Methods on Signal Reconstruction 

 

The figure clearly shows that all three signals have a similar structure.  The variation is shown 

in Fig. 22.  A regression analysis was used to generate a Linear Regression Variation (LRV) 

model in order to estimate the equation of this variation and we obtained the following 
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equation:  

y=0.049011x+(-0.02478) 

 

 

Figure 22:  A Model of the Variation Generated by Numerical Methods 

We have used the data in channel 1 of the EEG signals used in this research to visualize the 

effect of variations on the SSIM and CW-SSIM values. The SSIM and CW-SSIM were 

calculated by comparing the data in channel 1 with the following samples: 

(i) Original sample (comparing it with itself, Or) 

(ii) Original sample minus 1mV (Or-1) 

(iii) Original sample plus 1mV (Or+1) 

(iv) Original sample minus 5mV (Or-5) 

(v) Original sample plus 5mV (Or+5) 

(vi) Original sample plus 10mV (Or+10) 

(vii) Original sample plus 20mV (Or+20) 

(viii) Original sample plus 50mV (Or+50) 

(ix) Original Sample plus Linear Regression Variation model (Or+LRV) 

(x) Original Sample plus Linear Regression Variation model, treating it one 

epoch at a time (Or+LRV, 1 epoch) 
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Figure 23:  The Effect of Variation on SSIM 

 

Figure 24:  The Effect of Variation on CW-SSIM 

 

As seen from Fig 23, any variation beyond 1mV significantly diminishes the SSIM values.  

The SSIM value for Or+LRV is almost zero but it gives a better result when it is treated epoch 

Or Or-1 Or+1 Or-5 Or+5 Or +10 Or+20 Or+50 Or+LRV

Or+LRV

(1

epoch)

SSIM 1 0.728 -0.5731 0.2595 -0.3475 -0.1635 -0.0789 -0.0309 -0.0015 0.8638

-0.8
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0.4

0.6

0.8

1

1.2

SSIM 

Or Or-1 Or+1 Or-5 Or+5 Or +10 Or+20 Or+50 Or+LRV

Or+LRV

(1

epoch)

CW-SSIM 1 0.999979 -0.99998 0.999454 0.99944 0.997547 0.988253 0.90029 0.275866 0.96993

-1.5

-1

-0.5

0

0.5

1

1.5

CW-SSIM 
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by epoch. 

 

The CW-SSIM measurements are fairly stable for different variations. The degradation 

becomes more apparent for higher variations as well as for the model that uses LRV. Such a 

model is feasible in practice since PHM systems are likely to fall under the LRV model.  This 

is because the noise level experienced by the system can be affected by the location of the 

patient as well as the condition of the sensors. 

 

The CW-SSIM calculation in the BeCoS approach is similar to the LRV based model and this 

explains why the values are lower than the CW-SSIM values for the BSBL-BO approach even 

though the reconstructed signals look similar.  The CW-SSIM was used for the analysis in this 

research because it is currently regarded as one of the most robust approaches for measuring 

structural similarity.  However, in the future it may be necessary for researchers to develop a 

new type of structural similarity index that is more robust to variations such as LRV. 

 

A Combination of BeCoS and BSBL-BO for Personalized Health Monitoring 

The following points succinctly describe how BeCoS relates to traditional CS techniques used 

for the telemonitoring of biosignals: 
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1. BeCoS can be used as a lightweight approach for significantly sparsifying an 

otherwise non-sparse signal.  We obtained a compression ratio of at least 75% in 

each case. After this stage the sparse biosignal can be suited to traditional CS 

techniques 

2. BeCoS can be used as a stand alone technique as an alternative to conventional CS 

techniques used for the telemonitoring of 'costly-to-sparsify' biosignals.   

.  
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IV. R-READER: An Algorithm for Lightweight Detection of 

Fiducial Points in the Cardiovascular Domain 

A. Detection of R-peaks in ECG Signals 

The accurate identification of the R-peak of an electrocardiogram (ECG) cycle is the first step 

towards automated classification of the cycle. In this chapter we present a lightweight 

algorithm, known as R-READER: a Rapid-Ramp Effective Algorithm for Detection of ECG R-

peaks. It is based on an intuitive and effective identification of inflexion points in the ECG 

cycle through the calculation of adjacent slopes between the signals.  Traditional techniques 

require a number of expensive filtration stages in order to detect the R-peaks.   

 

The R-READER approach significantly reduces the amount of filters and takes advantage of 

the unique shape and fiducial features of the ECG signal to accurately identify the R-peaks.  It 

is compared with the Pan-Tompkins (P-T) algorithm - a popular lightweight algorithm used for 

the detection of R-peaks. The MIT-BIH Arrhythmia database was used for the analysis. 

. 

The Fiducial Points of an Electrocardiogram 

An ECG signal is a record of the electrical activity of the heart and it is the basic cardiologic 

test used to analyze the condition of a patient’s heart [124, 125].  It gives a graphic 

representation of the readings obtained from electrodes that are placed on the surface of the 

human skin and near the heart. [126].  The ECG signal is made up of a number of 

regions/fiducial points, namely the P-wave, Q-R-S complex and the T-wave as shown in Fig. 

25. It traces a morphology identified by P, Q, R, S and T peaks and troughs [127]. The QRS-

complex is the most distinguishing feature of the ECG and it serves as the basis for detection 
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and analysis.  The peak of this complex is known and the R-peak and it is the most important 

point in virtually every ECG algorithm.  The ECG signal has the most unique fiducial points 

when compared to other biosignals and R-READER takes advantage of this attribute. 

 

Figure 25:  A Typical ECG Signal Showing the Fiducial Points  

 

Automated R-peak Detection 

As stated earlier, personalized health monitoring has become an important approach to patient 

care and ECG monitoring is the most common feature of this approach. The R-peak is the most 

striking point in the QRS complex.  In general, the R-peak of an ECG cycle is that point in the 

cycle where the highest (or lowest) amplitude occurs.  Its detection is the most important step 

in the diagnosis of cardiac disorders and is the basis for virtually all ECG algorithms [128]. The 

heart rate variability (HRV) can say a lot about a person’s health.  For example, diabetes, 

arrhythmias, sleep apnea, congestive heart failure, neonatal sepsis and even Post-traumatic 

stress disorder (PTSD) can be inferred from the heart rate and heart rate variability (HRV), all 

of which can be computed when the locations of the R-peaks are known [129, 130, 131, 132, 

133]. 
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There are a number of automated methods for the detection of the R-peaks of the ECG signals 

already in literature.  A common approach for most existing methods involves the use of two 

stages, namely the preprocessor stage and the decision phase.  The preprocessor phase is used 

to improve the general quality of the ECG signal; a major part of which is the denoising of the 

signal.  After this is complete, the decision phase is activated for the selection of the per-cycle 

R-peak based on some given algorithm. 

 

A range of techniques currently being used for these phases are based on Derivatives & Digital 

Filters, Wavelet Transformation, Neural Networks and Genetic algorithms amongst others [134, 

135].  The Derivatives & Digital Filters approaches are the most common.  This approach is 

based on the fact that typical ECG signals have frequency components between the ranges of 

about 10Hz to 25Hz.  A filter stage is thus used to suppress components outside this range.  

The most well known algorithm in this approach is the algorithm proposed by Pan & Tompkins 

[136, 137].  Most research papers that focus on algorithms for the real-time detection of R-

peaks compare themselves to the Pan-Tompkins algorithm.  The paper has been cited 793 

times [138]. 

 

The P-T algorithm uses a set of filters to extract a noise free ECG signal before the detection of 

R-peaks and the QRS complex.  Prior to the detection phase, the P-T passes the ECG signal 

through low and high pass filters, followed by a differentiator, a squaring operator and a 

moving window integrator.  These stages are shown in Fig. 26. 
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Figure 26: Steps in the Pan & Tompkins Algorithm 

 

It also takes advantage of the fact that there is a steep slope in the region surrounding the QRS 

complex.  The use of thresholds, θ and θ2, make up a major part of the P-T algorithm.  These 

thresholds are determined after two learning phases and QRS complexes are only searched for 

in regions that exceed the thresholds; θ is the primary threshold of interest and θ2 (which is a 

fixed fraction of θ) is only used as a backup threshold if no values exceed the primary threshold 

after a given time interval. 

 

Noise and the ECG Signal 

 

It is common to have ECG records that include noise from many sources [139].  Such noises 

include noise from sources like muscle movements and powerline interference.   Muscle 

movement noise results from the patient’s movement, while power line interference is the 

50/60Hz noise that is due to the presence of power lines around the location of the patient.  

The fiducial points in a noise-contaminated ECG signal may be obscured to such a point that 

detection can become difficult. An ECG analyzer performs many tasks, but its task of dealing 

with the noise has been identified as the major problem faced by system designers [140]. 
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Traditional methods of dealing with noise involve the use of one or more types of filters- high 

pass low pass filters.  However, the use of such methods presents two challenges; the first is 

that it increases the computational complexity of the system, along with the hardware and 

software resources required to obtain a reliable result.  The second challenge is that the 

accuracy of the filtering depends on an accurate or near accurate knowledge of the type(s) of 

noise present in the ECG signal.  The coloration of the noise can play an important role in the 

accuracy of the results.  The ideal situation is for the system designer to know the type of 

noise(s) affecting the signal.  However this is not always feasible.  Also, the growing trend 

of ambulatory PHM of ECG signals further limits the designer’s knowledge of the noise 

experience by the system in such a situation. 

 

The R-READER approach has been designed to support lightweight and dependable analysis 

of ECG signals in the presence of different kinds of noise without the need to filter the signal 

prior to analysis. 

 

Overhead and Complexity of Filtering Techniques 

As mentioned earlier, the complexity of the preprocessing stage of the P-T algorithm 

introduces some overhead in the detection process.  These overheads fall under different 

categories, including overhead in terms of time and memory.  A total of four filtration steps 

are present in the P-T Algorithm, namely the low pass filter, high pass filter, differential filter 

and moving window integrator filter. The P-T algorithm uses approximate integer filter and this 

makes it suitable for lightweight real-time R-peak detection.  An integer filter is a special type 

of filter that has only integer coefficients [141].  

 

The P-T algorithm is widely acknowledged to be one of the ECG processing algorithms with 

the least degree of processing complexity.  It uses approximate integer filters.  This makes it 



 

65 

 

suitable for lightweight real-time R-peak detection and for use in PHM systems.  However, 

the overhead incurred in the filtration phases still accounts for a significant amount of 

processing overhead. 

 

Algorithms can be implemented in either software or hardware (usually with FPGAs), with the 

FPGAs generally considered to have better performance in terms of speed.  By using integer 

filters the P-T algorithm is suitable for implementation in hardware.  However, even with this 

advantage there is still a considerable penalty.   

 

For example, with a Xilinx Spartan®  xc3s5000 FPGA, an average delay of 16 samples is 

introduced in the low pass filter, 6 samples from the high pass filter, 2 samples from the 

derivative filter, 7 samples from the squaring and 16 samples from the moving window 

integrator [142].  This gives a total of 47 sample delays or a 235s delay at a sampling rate of 

200Hz. Again, this inhibits the goal of a lightweight real-time PHM system. 

 

Another penalty worth noting is the memory penalty.  It depends on the amount of previous 

samples required to make a decision about a fiducial point. The preprocessor stage of the P-T 

algorithm requires at least 32 previous samples in order to determine a fiducial point.  More 

often, due to possible delays in the processing stage, memory capacity in excess of this amount 

is required; [142] used 60 samples.  These samples are stored in the system’s RAM.  These 

overheads do not even include the additional overhead required to implement the various filters. 

 

MIT-BIH Arrhythmia Database 

The Massachusetts Institute of Technology- Beth Israel Hospital (MIT-BIH) Arrhythmia 

database [143] contains 48 two-channel ambulatory ECG recordings that last for 30minutes 

each.  They were sampled at 360 samples per second and have a resolution of 11 bits over a 
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10mV range.  Each of the records includes a detailed annotation by experts and this provides a 

vital guide during the analysis of the accuracy of ECG algorithms. Most of the research articles 

focused on ECG algorithm use this as the test database [144].  The best (least noisy) record- 

Record #100 and the worst (most noisy) record- Record #108, were used to analyze R-

READER and P-T algorithms. 

 

B. The R-READER Process 

The design of R-READER has been guided by the objectives of having a light-weight, fault 

(noise) tolerant, latency reducing and quasi-realtime ECG analyzer for rapid and dependable 

analysis even in resource constrained environments, such a mobile phones and personal digital 

assistants (PDAs).  Thus, R-READER has been designed to strike a balance between the 

complexity of the algorithm and the dependability of the analysis.  Many previous algorithms 

expend a lot of overhead on the preprocessor stages, especially the filtering of the signals.  As 

such, a prime motive for this work is the design of a technique that reduces or eliminates the 

need for signal filtering without sacrificing the accuracy of the results. 

 

R-READER is based on the characteristics of the slopes of adjacent ECG signals and the 

identification of inflection points in the signal.  As shown in Fig 25, the ECG signal is 

comprised of 3 major parts, the most prominent of which is the QRS complex, with the R-peak 

being the distinguishing feature of the complex. 

 

A close observation of an ECG signal shows that the absolute values of the ECG signals in the 

QRS complex have the greatest values when compared to the signals of the other regions. It 

gives a sloping surface between the interconnection levels, also known as a ramp, and this 

inspired our choice of the name for the algorithm.  Using these varying slopes as a basis, we 

have developed an algorithm that can rapidly detect the QRS-complex region, especially the 
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start-of-complex, R-peak and end-of-complex. An example of the selection of fiducial points 

for one of the cycles in record #100 is shown in Fig. 27. 

 

The slope, s, between any two signals, x, is given by Eq (25): 

s =
xn−xn−1

tn−tn−1
  (25) 

where x is the signal and t is the corresponding time 

 

The time between samples is given by the sampling period and this is the inverse of the 

sampling frequency.  In effect, every adjacent signal is separated by the same constant 

interval- the sampling period.  This makes it possible to simplify the equation by removing the 

denominator to get a modified slope, sm, for use in R-READER as shown in Eq (26). This 

approach reduces the complexity involved in implementing the algorithm.   

sm = 𝑥𝑛 − xn−1  (26) 

where x is the signal  

 

 

 

 

 

 

 

 

 

 

Figure 27:  R-READER’s Selection of Fiducial and R-peak points for Record #100 
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Each of the fiducial points of the ECG signal occurs at an inflexion point.  An inflexion point 

is a point on a graph where the slope changes sign.  This simple point enables us to streamline 

the algorithm to obtain an efficient and accurate algorithm devoid of unnecessary complexity.   

 

The steps are described below: 

(i) Find the modified slope, sm, between two adjacent signals xn and xn-1 

(ii) Detect the presence of inflexion points from the slopes; inflexion points exist if 

there is a sign change between the adjacent modified slope values, sm,n and sm,n-1 

(iii) Store the ECG signal xn corresponding to the presence of a positive modified 

slope sm,n+ as the candidate cycle-r-peak; also store its associated sample time, tn 

(iv) Store the average maximum R-peak, Rpmax for the cycles 11-20 (the first 10 

cycles are omitted to enable us obtain a Rpmax that reflects the overall ECG 

signal rather than the transients at startup) 

(v) Determined the peak-adjacency-interval-detector (p-a-i-d) as the average of the 

intervals between the first 10 R-peak values analyzed 

(vi) Subject the subsequent analysis to the following conditions: 

a. the absolute value candidate cycle-r-peak must be greater than the R-peak 

threshold, R-p-Th, where R-p-Th>0.6* Rpmax  

b. adjacency between candidate r-peaks must be at least 0.5 of the p-a-i-d, but 

not greater than 1.5 of the p-a-i-d  

c. recompute Rpmax and/or p-a-i-d if the preceding 10 detected values fall 

below 0.8 of the current Rpmax and/or p-a-i-d of after 500 detected R-peaks, 

whichever comes first 

(vii) For multiple inflexion points in the region of interest, the following 4-point 

sieving criteria is used: 
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a. choose the maximum value closest to the p-a-i-d interval signal from the 

last selected R-peak 

b. first priority is given to signals that are ±5samples from the p-a-i-d interval 

signal from the last selected R-peak 

c. second priority is given to signals that are ±5inflexion points from the p-a-i-

d interval signal from the last selected R-peak 

d. third priority is given to signals that are ±10inflexion points from the p-a-i-d 

interval signal from the last selected R-peak 

(viii) Compare the R-peak signal points to the R-peak points in the annotated result 

(ix) Determine the accuracy, sensitivity and positive predictivity 

 

The post-training steps in the R-READER 2.0 algorithm are depicted in the flowchart shown in 

Fig.28. 
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Figure 28: Flowchart of Steps in the R-READER Process 
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The R-READER Training Process, p-a-i-d and Rpmax 

A training process, also known as learning phase, is an important requirement in many 

adaptable algorithms.  It allows a designer to obtain an optimized result for any given scenario.  

The R-READER training process involves the implementation of the algorithm to detect the R-

peaks in the first 20 cycles.  For this phase, an initial Rpmax value of 0.6 is used. 

 

For the R-READER algorithm there are two key parameters upon which the decisions are 

based- namely the Rpmax and the p-a-i-d. The Rpmax is the median maximum R-peak for a given 

set of cycles being reviewed.  It gives a good estimate of the expected range of the R-peak in 

subsequent cycles and enables the selection of a threshold value as a fraction of the Rpmax.  An 

initial value is determined at the onset of the execution of the algorithm and is used for the 

remainder of the analysis.  However, R-READER is an adaptable algorithm, as such, a new 

calculation of Rpmax can be initiated by the system designer or automatically if the preceding 10 

R-peaks of the current analysis all fall below 0.8 of the current Rpmax or after 500 detected 

peaks, whichever comes first. 

 

The next important parameter is the peak-adjacency-interval-detector (or p-a-i-d).  This 

parameter is also very crucial as it helps the algorithm to eliminate potential R-peaks that occur 

too soon after a selected R-peak.  The basis of using this parameter stems from the fact that is 

physiologically impossible for a patient to encounter an R-peak within a given time window 

after a previous R-peak.  The p-a-i-d value takes precedence over the R-p-Th in the 

determination of the R-peak for a given cycle.  Again, the p-a-i-d value is obtained after the 

training process at the onset of the execution of the algorithm and a recalculation can be 

initiated automatically or by the system designer, similar to the case with Rpmax. 
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In both cases the training values from the first 10 cycles are discarded and the decisions are 

made based on the values obtained from cycles 11-20.  This is to rule out the effect of 

transient values that are possibly obtained during the start of the ECG readings in preference 

for values that are likely to better reflect the overall ECG signals. 

 

R-READER and Filtering Process 

A key goal of the various filtering steps used in P-T and related algorithms is the accentuation 

of the fiducial points.  Since all these fiducial points occur at inflexion points, R-READER 

focuses on locating all the existing fiducial points without filtering and these points are used as 

a basis for decision making in the R-READER process. 

 

At a sampling rate of 200Hz, each ECG sample point occurs 5ms after the preceding sampled 

point.  Noise, regardless of its coloration, occurs for a finite duration of the ECG signal and 

when it occurs it affects a group of succeeding samples, rather than just an individual sample.  

As such, it is still possible to accurately determine the relative inflexion points in an ECG 

signal even in the presence of noise. 

 

C. Performance Evaluation  

To assess the performance of R-READER, we have selected some records from the MIT-BIH 

Arrhythmia Database.  In particular, we have chosen the best (least noisy) record- #100 and 

the worst (most noisy) record- #108.  Both records run for approximately 30 minutes and 

include 650,000 samples, containing an average of over 2,000 cycles each.  The #100 is from 

a 69 year old male patient, while the #108 is from an 87 year old female patient. Record #108 

is widely acknowledged as being a very noisy signal [145]. 

 



 

73 

 

The R-READER is compared with the popular Pan Tompkins algorithm using the following 

metrics: 

 Average Accuracy 

 Positive Predictivity and 

 Sensitivity 

In line with convention, the accuracy has been determined as the proportion of the true 

positives (TP), which is the number of right R-peak locations detected within ±5 samples from 

the peak chosen by the annotators of the database [140].  The failed detections are the false 

positives (FP) and false negatives (FN).  The false positives refer to detections made by R-

READER that were not chosen by the annotators while the false negatives are the peaks that 

were not detected by R-READER but were identified by the annotators.  The accuracy can be 

calculated by Eq (27). 

Accuracy =  
1−Failed Detections

Total Beats Given in Annotation
   (27) 

The positive predictivity, +P, is given by Eq (28): 

 

+P =
TP

TP+FP
    (28) 

 

The sensitivity, Se, is given by Eq (29): 

 

Se =
TP

TP+FN
    (29) 

 

Tables 10 and 11 compare the R-peak positions chosen by R-READER for the first 20 cycles 

and the ones chosen by the annotators for records #100 and #108 respectively.  It also gives 

the deviation between the R-READER detected values and those detected by the annotators. 
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Table 10. R-Peak Points in R-READER and Annotation for Record #100 

 

Cycle # R-

READER 

R-peak 

Annotated 

R-peak 

Deviation 

1 78 77 1 

2 371 370 1 

3 664 662 2 

4 948 946 2 

5 1232 1231 1 

6 1516 1515 1 

7 1810 1809 1 

8 2046 2044 2 

9 2404 2402 2 

10 2707 2706 1 

11 2999 2998 1 

12 3284 3282 2 

13 3561 3560 1 

14 3864 3862 2 

15 4172 4170 2 

16 4467 4466 1 

17 4766 4764 2 

18 5062 5060 2 

19 5348 5346 2 

20 5635 5633 2 

 

 



 

75 

 

Table 11. R-Peak Points in R-READER and Annotation for Record #108 

 

Cycle # R-

READER 

R-peak 

Annotated 

R-peak 

Deviation 

1 23 23 0 

2 88 89 1 

3 442 442 0 

4 789 791 2 

5 1155 1156 1 

6 1493 1493 0 

7 1821 1822 1 

8 2157 2158 1 

9 2517 2518 1 

10 2889 2890 1 

11 3238 3238 0 

12 3593 3594 1 

13 3924 3926 2 

14 4105 4104 1 

15 4197 4198 1 

16 4602 4604 2 

17 4971 4972 1 

18 5350 5351 1 

19 5715 5716 1 

20 6115 6115 0 
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Table 12 compares the R-READER and P-T algorithms for records #100 and #108 in terms of 

true positives, false positives, false negatives, accuracy, positive predictivity and sensitivity.  

Graphical comparisons of the accuracy, positive predictivity and sensitivity are shown in Fig. 

27, Fig. 28 and Fig. 29 respectively. 

 

Table 12. Accuracy of the R-READER Algorithm 

Record#100 

Algorithm Total Number 

of ECG Cycles 

TP FP FN Accuracy +P Se 

P-T 2273 2273 0 0 100.00% 100.00% 100.00% 

R-READER 2273 2273 0 0 100.00% 100.00% 100.00% 

Record #108 

Algorithm Total Number 

of ECG Cycles 

TP FP FN Accuracy +P Se 

P-T 1763 1542 199 22 87.47% 88.57% 98.59% 

R-READER 1763 1724 31 8 97.79% 98.23% 99.54% 

Average Accuracy of Both Records 

Algorithm Accuracy +P Se 

P-T 93.74% 94.29% 99.30% 

R-READER 98.90% 99.12% 99.77% 
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Figure 29: Accuracy Comparison for the 2 Algorithms 

 

 

Figure 30: +P Comparison for the 2 Algorithms 
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Figure 31: Se Comparison for the 2 Algorithms 
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V. Conclusion and Future Work 

A. Conclusion 

In this thesis we have dealt with the design considerations for developing PHM systems.  In 

particular, we have focused on the need for lightweight processing as a means of reducing the 

complexity of such systems.  We noted the importance of system dependability in PHM 

systems and proposed some techniques that satisfy the need for lightweight processing as well 

as the need for system dependability. 

 

The Cardiovascular and Neurologic domains were chosen as the main domains of interest.  

The former was chosen because it accounts for a large proportion of current PHM systems.  

The latter was chosen because of the growing interest in the domain as a result of the steep rise 

in the number of people with neurologic disorders around the world. We proposed a lightweight 

technique for each of the domains. 

 

The Rapid-Ramp Effective Algorithm for Detection of ECG R-peaks (R-READER) algorithm 

was proposed for the cardiovascular domain.  The current lightweight techniques require a 

cascade of filters before the detection of R-peaks of an ECG signal can take place. The R-

READER is an intuitive technique that takes advantage of the unique shape of ECG signals to 

accurately detect the R-peaks without a need for the traditional filter approach. It was 

compared to the widely used Pan-Tompkins algorithm and it gave superior results in terms of 

accuracy, sensitivity and positive predictivity.  

 

We also proposed a Bio-inspired electroceptive Compressive System (BeCoS) for the 

lightweight processing of neural signals.  BeCoS was inspired by wave-type active 
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electroception used by weakly electric fish.  It included some key features of the 

electroceptive approach and was able to achieve the lightweight sensing, processing, 

transmission and reconstruction of neural signals. BeCoS was compared to the Block Sparse 

Bayesian Learning-Bound Optimization (BSBL-BO) technique- a popular approach for 

lightweight processing of neural signals.  Metrics like latency, coherence, level of 

compression, estimated power and structural similarity were used to compare both approaches.  

BeCoS gave superior results for most of the metrics. 

 

B. Future Work 

For future work we plan to develop algorithms for other PHM domains as well as algorithms 

that emphasize a need for adaptation to the unique characteristics of the patient, in addition to 

the current requirements for lightweight processing and system dependability. We intend to 

further profile and refine the R-READER by running it on embedded systems used for Holter-

based long term monitoring of ECG signals. 

 

The BeCoS approach has been used for the monitoring of neural signals in this thesis.  

However, the technique can be used telemetry of other biosignals as well, especially for signals 

that are difficult or expensive to sparsify.  The signature signal also has the potential to be 

used as an EEG-based biometric and we plan to explore this possibility in the near future. By 

using an appropriate disease signature signal, this approach has the potential to be used for the 

screening of blood for diseases based on the computed values for resistance and capacitance. 

 

Personalized health monitoring is still in its infancy and it has elicited a lot of interest.  

However, it is yet to be accorded the same level of priority and importance as the health 

monitoring based on medical instruments located at the hospital. The design of algorithms and 

techniques that support lightweight signal processing, system dependability and adaptation to 
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the patient's personal profile will improve the utility and importance of PHM systems.  
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Appendix A 

APPENDIX A. Summary of Studies included in the Review 

S/N AUTH

-ORS 

YEAR JOURNAL ARCHITECTURE APPLICATION ADAPTATION/ 

PERSONALIZA

TION 

STUDY DESIGN OUTCOME/ RESULTS 

1. Koehle

r et al. 
2-1 

2011 Circulation 

(Journal of the 

American 

Heart 

Association) 

12-lead ECG, BP, Weight; Dynamic encryption on cell phone; PDA 

(Central Device), Bluetooth (Communication) 

Impact of remote 

monitoring on 

Chronic Heart 

Failure 

 710 stable chronic heart 

failure patients; 17-month 

(duration); Low statistical 

power (limitation); Study 

evaluated effect of remote 

telemonitoring on 

mortality. 

Primary outcome: Rate of all 

cause mortality (death) was 

reduced to 8.4% as compared 

with 8.7% for normal care; 

 

Secondary outcome: 

Cardiovascular death and 

hospitalization per 100 person 

years of follow up reduced to 

14.7% as compared to 16.5% for 

normal care. 

2. Ricci 

et al  
2-2 

2009 Eurospace 

(Europe 

Society for 

Cardiology) 

Home monitoring, long distance telemetry, automatic transmission 

of pacemaker data on a daily basis; 

 

Implanted cardio device (ICD) with wireless telemetry via a GSM 

phone as encrypted sms; 

 

Data transmitted every night and critical conditions are reported to 

service center within 3 minutes; 

 

Error detection to distinguish between true arrhythmias and R-wave 

far field oversensing. 

Impact of home 

monitoring on 

Atrial Fibrillation 

(AF) 

Pacemaker and 

ICD programming 

was tailored to 

patient’s 

individual clinical 

profile 

166 patients for 2 years Remote monitoring led to AF 

detection and alert that occurred 

an average of 148days before 

scheduled follow up visit 

 

Limitation: It was an 

observational study with no 

clinical outcome 

 

Open issue: how to select 

appropriate alerts 

3. Guerri 

et al  
2-3 

2009 Multimedia 

Tools and 

Applications 

8-channel Surface EMG, Portable handheld prototype (Platform),  

 

connected to phone/PDA via WiFi; PDA: HP IPAQ HX4700, 

phone: Nokia E41; Includes online telemetry mode and offline 

mode (with storage on CF card) 

Use of mobile 

devices and 

wireless 

networking for 

assessment of 

muscular 

conditions 

Configured via a 

mobile device;  

 

Configuration was 

based on patient’s 

profile or system 

parameters like 

duration of 

exercise, sampling 

frequency and 

monitored muscle 

 

Config modes: 

Offline and online 

Duration: 55 seconds 

 

Phase 1: Feasibility and 

Reliability: 12 volunteers 

 

Phase 2: Usability 

Assessment: 

Questionnaires completed 

by 7 users 

Design of a portable device 

capable of advanced EMG 

measurements 

 

Can be used by both expert and 

non-expert users 

4. Kang 2006 IEEE Wrist worn device with 6 biosensors for: (i) Fall detection [2-axis Wrist-worn  Limitation: Low fidelity Error Range and Detection 
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et al. 2-

4 

Transactions 

on 

Instrumentatio

n and 

Measurement 

accelerometer, gyroscope and in-house posture sensor] (ii) 1-

channel ECG textile electrode (iii) Noninvasive BP [based on a 

wrist cuff] (iv) SPO2 (v) Respiratory Rate [based on Virtual sensing 

of r-r intervals of ECG] and (vi) Body Surface Temperature 

 

A cellular phone was used as the connection gateway; wireless 

connection used between wrist worn device and phone; CDMA was 

used for connection between the phone and medical service center 

 

Main algorithms were based on thresholding 

device for general 

health monitoring 

 

Anomalies were 

reported via sms 

of biosignals since most 

measurements were based 

on readings from the skin. 

Tests were based on 

simulated signals and 

human trials 

Rates: 

 

± 5mmHg (NIBP), 2%(SPO2), 

1%(ECG), 1.8% (Respiration 

Rate), 1.5% (Temperature), 

91.3% detection rate for 150 

simulated falls 

5. Tsanas 

et al 2-5 

2010 IEEE 

Transactions 

on Biomedical 

Engineering 

Virtual sensing based on speech tests from a microphone headset on 

an Intel AHTD Telemonitoring System for predicting Parkinson’s 

Disease (PD) 

 

Algorithm was based on thresholding. 

 

Speech signal processing was based on 16 dysphonia measures 

applied to 5923 sustained phonations. 

Accurate system 

for tracking the 

progression of 

Parkinson’s 

Disease  Rating 

Scale (UPDRS). 

 

Statististical 

mapping of a 

subset of speech 

features to 

UPDRS. 

 

It showed the 

potential of 

sustained vowel 

phonations in 

predicting average 

PD progression. 

 It was based on 6,000 

database recordings from 

42 PD patients. 

 

Based on objective (rather 

than subjective) 

assessment. 

 

Human trial was based on 

a 6 month study of 42 

idiopathic PD patients. 

 

 

This virtual sensing approach 

can estimate the result within 

about 7.5. UPDRS points 

difference from the clinicians' 

estimates using a simple, self 

administered non-invasive test. 

 

6. Dellac

a et al 
2-6 

2010 Physiological 

Measurement 

Pressure and flow sensors. 

 

Respiratory input impedance (Zrs) was measured after a 5Hz 

pressure stimulus from a loudspeaker was transmitted to the patient 

through a self-made mesh-type Pneumotachograph (PNT). 

 

Zrs was computed using the Least squares algorithm and 

transmitted over the Internet. 

 

Communication was based on GPRS, DSL or WiFi (depending on 

availability). 

 

Encryption was based on Public Key Algorithm. 

 

Realtime or scheduled transmission options were available. 

 

Reliable and standardized TCP/IP connection was established by 

using SSH. 

Forced Oscillation 

Technique (FOT) 

device for 

unsupervised 

monitoring to 

replace supervised 

spirometry.  

 

Useful for 

diagnosis and 

staging of 

obstructive 

diseases (like 

COPD and 

asthma) 

 5 healthy subjects, 36 

consecutive daily home 

measurements. 

 

Reduces the dimensions 

of current FOT device 

 

36 consecutive daily 

home measurements. 

 

Extensive tests on 7 

subjects. 

 

Limitation: Only 1 COPD 

patient was used in the 

tests. 

The portable FOT device can be 

used for unsupervised 

assessment of airway 

obstruction over prolonged 

periods.  The maximum error 

was 10%. 

 

 

7. Mesqu 2007 Review of Photosensor head and photodiodes (Sensors). Blood flow  Adding a virtual In vivo tests for 7-10 week old 
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ita J 

Jnr et 

al 2-7 

Scientific 

Instruments 

 

It was used to implement a virtual velocimeter based on digital 

cross correlation techniques. 

measurements 

that are less 

dependent on 

operator bias. 

 

Samples optical 

signals from 

microvessel and 

gives instant 

velocity. 

instrument module to an 

existing microcirculation 

hardware reduces operator 

bias and allows digital 

signal processing and 

storage. 

 

The manual system 

depended on the tuning of 

the system making it 

susceptible to operator 

bias. 

golden hamsters 

 

Pharmacological intervention: 

successful and accurate 

monitoring of blood flow 

velocity in one arteriole 

analyzed before and after the 

administration  of 

phenylphrine.  

8. Sticher

ling et 

al  2-9 

2009 Swiss Medical 

Weekly 

CIED; based on optivol sensor that measured intrathoracic 

impedance upon the accumulation of intrapulmonary fluid. 

 

GSM was used for remote monitoring. 

Remote 

monitoring of 

ICDs for early 

detection of 

disease and device 

anomaly. It was 

also used to 

number of patient 

visits to the 

hospital. 

 It was a survey.  

9. Wang 

et al  
2-10 

2010 IEEE Wireless 

Communicatio

ns 

It used a 3-lead ECG sensor with a transmission range of 100m. 

 

It used a low delay adaptive encryption scheme dependent on the 

condition of the wireless channel. 

Secure and 

resource aware 

body sensor 

network 

architecture for 

real-time health 

monitoring based 

on unequal 

resource 

allocations 

 

It used an on-

body healthnode 

data terminal to 

process and 

transmit sensor 

data. 

 The system allocated 

extra energy resources to 

protect the important 

portion of the transmitted 

signal. 

The tests were based on 

simulation and real time tests.  

This lowered energy 

consumption and gave better 

signal quality per energy used. 

Authors stated that shorter QRS 

windows can improve real-time 

encryption. 

10. Fanucc

i et al 
2-11 

2013 IEEE 

Transactions 

on 

Instrumentatio

n and 

Measurement 

7 Sensors: (i) 3-lead ECG (ii) SPO2 (iii) BP (iv) Weight (v) Chest 

impedance (vi) Respiration (vii) Posture 

 

Local-MVI communication: Bluetooth 

Remote-MVI communication: ADSL or mobile broadband. 

 

HTTPS used for security and encryption. 

 

A prototype was built and the Pan-Tompkins algorithm was used 

Flexible and 

highly 

configurable 

system for 

monitoring 

Chronic Health 

Failure (CHF). 

 

It provided alerts 

Configuration 

parameters: 

 

Alarm thresholds, 

transmission 

policy, selectable 

symptoms. 

 

It also supported 

One or few non-

continuous daily 

measurements were made. 

ECG simulators and Physionet 

Toolkit were used for analysis. 

 

Pre-prototype tests: 2 patients, 1 

month test 

 

Post-prototype tests: 30 patients 

with Chronic Heath Failure 

disease 
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for ECG analysis. 

 

 

for abnormal heart 

frequency, atrial 

fibrillation 

episodes, QRS 

complexes 

exceeding 120ms 

and signs of 

myocardial 

ischemia. 

remote 

configuration. 

 

Results: 

<3% activity misses (mostly in 

the 1st days). <5% false positive 

alarms, 95% patients found the 

system useful and 99% patients 

were satisfied with system. 

11. Lee et 

al 2-12 

2011 Telemedicine 

and e-Health 

The system used a Nintendo DS Game Console as the platform.  

However, the system can also use a PC or PDA. 

 

3-channel ECG, 3-axis accelerometer (±3g) , Tilting  (Sensors) 

 

1 ECG packet consists of 64 ECG signals 

 

ZigBee was used for the local-MVI communication while WiFi was 

used for the Remote-MVI communication.  The system also 

included a webserver.  

 

 

Mobile health 

ECG and gait 

monitoring 

system that 

obviates distance 

restrictions. 

  It used a 1 hour test to ensure 

appropriate wireless 

connectivity. 

 

The Health monitoring test 

lasted for over 24 hours without 

any interruption. 

 

Packet Loss: 

<5% for distances less than 20m, 

much higher and incremental 

loss beyond 20m 

 

For packet error rate (Pe): 

When Pe=0, no delay; Pe=0.2, 

25s delay and Pe=0.4, 157s 

delay (due to the need for 

retransmission) 

12. Dilma

ghani 

et al  
2-13 

2011 IEEE 

Transactions 

on Biomedical 

Circuits and 

Systems 

ECG (Sensor). 

 

Its Wireless Patient Portable Unit (Platform) had a webserver and 

connected to a central remote node via Internet access provided by a 

Wireless Access Point Unit (WAPU). 

System to monitor 

patients with 

chronic diseases 

in their homes 

WPPU can be 

configured for a 

variable gain 

between 500 and 

1000. 

The study avoided the use 

of a PC and PDA (to 

reduce cost). 

 

System objectives: 

Eliminate the need for a 

PC, eliminate the need for 

users to configure the 

system, support automatic 

transmission of signals, 

lower cost, increase ease 

of use. 

Same quality of service as PC 

based systems at a lower cost. 

13. Hii 

and 

Chung 
2-14 

2011 Sensors 

(Basel) 

ECG, Smartphone camera (Sensors). 

 

The system was based on 3 layers, namely: (i) Body Sensor Layer  

[ECG nodes on body] (ii) Personal Network Layer [Mobile phone] 

(iii) Global Network Layer  

 

Platform: Mobile Phone 

 

Local-MVI communication: ZigBee 

Mobile phone 

based real time 

ECG monitoring. 

 

It took advantage 

of the falling cost 

and rising 

complexity of 

mobile phones. 

  Successful  realtime 

monitoring on a testbed with  a 

human subject. 
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Remote-MVI communication: CDMA, GSM, 3G or WiFi 

 

Modes: Real-time (immediately viewable on phone) or Store-and-

forward (20 byte ECG data and summary reports transferred to the 

remote end).  One ECG data packet contained 10 ECG signals 

(phone screen could display 5 packets, equivalent to 5s of data). 

 

Algorithm: Pan-Tompkins (The analysis was for QRS peaks, QT 

and RR intervals) 

 

The camera was used for scanning the QR barcodes on medicine 

packs. 

 

A QR code 

scanner was used 

to determine 

patient adherence. 

14. Cleven 

et al 25 

2012 IEEE 

Transactions 

on Biomedical 

Engineering 

Capacitive pressure and temperature (Sensors). 

Measured intraarterterial pressure using an implant consisting of a 

sensor tip and transponder communicating with a readout station. 

 

Local-MVI communication: Inductive coupling. 

 

The pressure sensor was powered using wireless magnetic 

telemetry. 

Wireless BP 

measurement 

 A batteryless system that 

uses an implant into the 

Femoral artery.  The 

implant consists of a 

pressure sensor and 

telemetric unit and was 

placed under the skin. 

The trial used an anesthesized 

sheep and readings were 

compared to a reference catheter.  

The system had an accuracy of 

±1.0mmHg and a range of 30-

300mmHg. 

15. Pitts et 

al  2-16 

2013 Physiological 

Measurements 

Accelerometer (Sensor). 

 

The algorithm was based on peak and edge detection. 

 

The system provided virtual sensing of respiratory rate based on the 

longitudinal (Z) axis reading of the accelerometer placed on the 

patient’s clavicle. 

Simple low cost 

device for 

measuring 

respiratory rate 

and inferring 

disease if the rate 

falls outside the 

12-20 

breadth/minute 

rate of healthy 

adults. 

 Respiratory sensor based 

on clavicular motion 

 

A clavicular sensor was 

used since it gave signals 

with a greater amplitude 

and which were more 

consistent than thoracic 

sensors. 

 

The system was tested on 

8 volunteers. 

R2 values mean clavicular 

respiratory rate: 0.89 (lateral) 

and 0.98 (longitudinal), 

compared to 0.49 (thoracic). 

 

System was unaffected by 

bioelectrical or electrode 

problems. 

 

A 4-min breath-by-breadth test 

period was used. 

16. Anlike

r et al 
2-17 

2004 IEEE 

Transactions 

on Information 

Technology in 

Biomedicine 

Blood pressure, SPO2, 1/12-lead ECG, 2-axis accelerometer, pulse, 

heart rate, temperature (Sensors). 

 

Data was encrypted using techniques inherent in GSM/GPRS. 

 

Algorithm: Pan-Tompkins. 

Unobstrusive 

wrist-worn 

multiparametric 

monitoring 

system. 

Configuration was 

based on patient 

specific values: 

non 

aerobic/aerobic 

state 

(corresponding to 

level of user 

activity), age, 

gender, fitness 

and medical 

history. 

The study incorporated 

the patient’s profile in 

order to reduce false 

alarms. 

 

It measured pulse and 

SPO2 continuously.  BP 

and 30s of ECG were 

measured 3 times a day or 

at request of user. 

 

The user’s health 

condition/equipment state 

was grouped into the 

following zones based on 

the results: 

33 volunteers participated in a 

70mins test. 

 

Results: 

For BP, 85% had a difference of 

less than 5 beats when compared 

to standard instruments.  

 

The ECG results were poor as a 

result of noise but other readings 

were ok. 

 

70% of users found the system 

comfortable. 
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(i) Normal (ii) Deviant 

(iii)Risk (iv) High Risk 

(v) System error 

17. Chung 

et al  
2-18 

2008 Telemedicine 

and e-Health 

Microphone- an omnidirectional electrets condenser-type (Sensor). 

System used the measured signals for the virtual sensing of 

Obstructive Sleep Apnea Syndrome (OSAS) 

 

System supported both monitoring and therapeutic applications.  

The therapeutic application involved nerve stimulation using a low 

frequency transcutaneous electrical signal. 

 

The system included a local webserver. 

 

Algorithm: 

Absolute difference between input voltage and baseline and moving 

average filter with a window size of 20. 

A portable 

telemonitoring 

device to 

recognize sleep-

related breathing 

disorders in real-

time 

Configuration was 

based on the 

detection of a 

snoring pattern. 

The detection 

triggered a system 

configuration that 

stimulated the 

patient’s nerve in 

order to stop the 

snoring. 

5 regular snorers and 5 

OSAS patients tested the 

system. 

There was a positive predictivity 

of 94% and a snoring sensitivity 

of 94%. 

 

The results indicated an OSAS 

positive predictivity and 

sensitivity of 73.3% and 81.1% 

respectively. 

18. Chun 

et al  
2-19 

2005 Studies in 

Health 

Technology 

and 

Informatics 

Non-Invasive Blood Pressure [NIBP], SPO2, 1-channel ECG 

textrode electrode, Respiratory Rate [RR], Heart Rate [HR], Body 

surface temperature, Accelerometer, Posture (Sensors). 

 

RR and HR were virtual sensors based on ECG signals. 

 

Local-MVI communication: Wireless 

Remote-MVI communication: sms, cellular 

 

The expanded system (Integrated Home Telecare System) 

comprised the following sensors: 

12-channel ECG, Respiratory function, Blood glucose, NIBP, Body 

fat meter and Spirometer. 

Personal 

Wearable 

Wristworn 

Integrated Health 

Monitoring 

Device (WIHMD) 

System was 

configured based 

on patient’s 

diabetic history 

and postprandial 

time. 

 

The BP tests also 

considered the 

patient’s history. 

The primary system was 

based on the WIHMD. 

 

The secondary system had 

a number of non intrusive 

sensors used on the bed, 

toilet seat and chair. 

Capacitive sensors were 

used for the chair. 

 

10 volunteers tested the 

system and authors also 

used simulations. 

Simulatio

n 

Tests Results 

NIBP 100 ± 4 

mmHg 

SPO2 100 ±2% 

HR 100 ±0.9% 

RR 50 

peopl

e 

±1.8% 

Temp* 20 ±1.5 

Fall# 150 91.3%

# 

*: Tested in temperature 

controlled chamber 

 

#: Detection rate for simulated 

falls 

19. Yu et 

al 2-20 

2013 Telemedicine 

and e-Health 

Temperature, mobile phone camera and microphone (Sensors) 

 

System used a mobile phone as a miniaturized health exam toolkit. 

 

Electronic health records were sent to remote server as e-mails or 

mms messages. 

 

Local-MVI communication: Wireless 

Remote-MVI communication: Cellular 

 

Algorithms: Machine learning 

 

System carried out tests for about 12 parameters used in annual 

physical exams 

Mobile phone 

based system for 

convenient 

“annual physical 

exam”. 

 Eye tests were based on 

image sizes on phone and 

feedback from users. 

 

The system was trained as 

follows: 

3 deep breaths (for 

breadth sound), 1 minute 

data (for heart sound, 

temperature and ECG). 

 

There were 11 volunteers 

for the test. 

The entire test took just about 28 

minutes. 

20. Fong 2013 Sensors Platform: Android based phone Cloud-based Non- The system The measurements The results measured the 
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and 

Chung 

2-21 

(Basel)  

ECG, Heart Rate, Camera (Sensors) 

 

Data was shared over the Internet instantaneously using the 

embedded webserver. 

 

Local-MVI communication: Bluetooth communication between 

capacitive coupled ECG sensor and phone. 

 

Inter-MVI communication: WiFi 

 

HR was calculated using a virtual sensor based on ECG. 

contact ECG 

monitoring and a 

QR code based 

patient adherence 

scheme. 

supported a 

minimal level of 

adaptation based 

on QR code. 

required the patient to seat 

on a chair with capacitive 

sensors. 

website loading times as 

follows: 

1st view load time (2.833ms), 

repeat view time (0.124ms), the 

Document Complete  

parameter, which occurs after all 

the images content have been 

loaded (2.833s), the Fully 

Loaded parameter, which 

includes any activity triggered 

by the JavaScript (6.452s). 

21. Giansa

nti et 

al 2-22 

2013 Telemedicine 

and e-Health 

Sensors: Gastrocnemius Expansion Measurement Unit (GEMU), 

gyroscope, accelerometer, SECOSP (a step counter) 

 

Platform: Custom portable device 

 

Real-time simple 

portable kit for 

home-based gait 

analysis. 

 The portable kit works 

with a cascade of 

Instrumented Walkways 

(IWs).  It also uses 

walking aids. 

 

16 subjects tested the 

system. 

System has a high level of 

accuracy and costs 948EUR. 

22. Gomez 

et al 2-

23 

2008 IEEE 

Transactions 

on Information 

Technology in 

Biomedicine 

Realtime Continuous Glucose Monitoring (CGM) sensor. 

 

Platform: PDA (iPAQ hp2210) 

 

Local MVI: Bluetooth, Infrared or serial communication 

 

Remote MVI: Mobile GPRS for communication to the 

Telemedicine Central Server (TMCS). 

 

The system supports a therapeutic application- the control of an 

insulin pump. 

 The PDA was 

remotely 

programmed by 

the TCMS under 

the doctor’s 

supervision.  The 

insulin pump was 

configured and 

controlled 

remotely in 

response to the 

measured CGM 

values 

CGM with real-time 

programmable insulin 

pumps. 

 

4 system control 

strategies: 

(i) Patient control: Manual 

change supervised by 

doctor 

(ii) Doctor control: Come 

as suggestions that the 

patient should download 

and approve 

(iii) Remote loop control: 

Programmed by the 

TCMS under the doctor’s 

supervision.   

(iv) Personal loop control: 

Real-time control of the 

insulin pump based on 

glucose sensor data 

 

The patient has to issue e-

consents (digitally signed 

certificates) before 

personal data can be 

accessed. 

 

Only control strategies #1 and 

#2 were tested and the measured 

HbA1c values confirmed the 

effectiveness of the strategy 

 

System cost: 7,348 EUR 

(compared to 5,907 EUR for a 

CGM system based on a manual 

approach).   
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Feasibility testing phase:  

4 Type 1 diabetic patients 

for 6 months. 

 

Clinical testing phase:  

10 Type 1 patients for 8 

weeks. 

23. D’Arc

y et al  
2-24 

2011 IEEE 

Transactions 

on Biomedical 

Engineering 

EEG sensor. A headset for auditory stimulation. 

 

Local-MVI Communication: Bluetooth 

 

The algorithm was known as called Halifax Consciousness Scan 

(HCS). It was based on preprocessing, peak detection and score 

generation 

 

An approach for 

replacing the 

behavioral brain 

tests with one 

based on EEG 

signals. 

 

The test provides 

indicators for 5 

identifiable levels 

of neural 

processing: 

sensation, 

perception, 

attention, memory 

and language 

The specific 

parameters of the 

patient are 

compared to a 

normative 

database. 

The portable EEG device 

for scanning for 

consciousness awareness 

addressed 5 

challenges/areas: 

(i) Portability and noise 

resistance (ii) It has no 

need for advanced 

expertise or system 

training (iii) Addressed 

the spectrum of EEG-

cortical responses (iv) 

Compared results to a 

normative database (v) 

The range of results 

covered diagnosis, 

reliability, validity and 

progression  

The authors attempted to 

provide a solution at the 

interface between biomedical 

engineering and neuroscience. 

24. Chen 

et al  
2-25 

2008 Physiological 

Measurements 

A pressure sensor was embedded in a pillow for static and dynamic 

pressure measurements. 

 

Wavelet based algorithms were used. 

 

Virtual sensing of the pressure was used to reconstruct pulse related 

waveform information from D4 & D5 components of wavelet 

transformation.  Also, breadth related waveform was reconstructed 

from the A6 component. 

Web-based long 

term heart and 

breadth rate 

monitoring during 

sleep using a 

single sensor. 

 The raw pressure was 

measured under the neck-

neck occiput region. 

 

The system measures 

static pressure (based on 

weight of head) and 

dynamic pressure (based 

on fluctuations cased by 

breathing). 

 

Analysis was based on the 

dynamic pressure. 

 

1 patient was used to test 

the system over a period 

of 6 months 

The system detected 82.3% of 

sleep time. 

 

The system provided a cheap 1 

sensor alternative to replace the 

traditional $1,000 11-sensor 

polysomnography equipment 

25. Nemir

oskia 

et al  
2-26 

2014 Proceedings of 

the National 

Academy of 

Sciences, USA 

A portable system that includes a vibration meter and an audio jack.  

This system interfaces with a low end mobile phone (Nokia 1100 

series model 1112) and can also support 2G, 3G and 4G systems.   

 

The system uses a webserver to “geographically decouple” the 

measurement. 

It is an 

inexpensive 

device that 

couples most 

forms of 

electrochemical 

The system can 

switch between 

the following 

modes: 

(i) 2 or 3 electrode 

system.   

The system supports 

cyclic voltammetry, 

differential phase 

voltammetry, square wave 

voltammetry and 

potentiometry 

The system cost just $25. It is a 

simple system, much unlike 

complex microfluidic based 

system. Latency (transmit and 

receive) for the blood glucose 

application was just 2.2s. 
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Local-MVI communication: Standard audio cable. 

 

Remote-MVI communication: Cellular (based on a live voice link 

through VoIP Skype between the phone and remote system). 

 

The remote server decodes the Frequency Shift Keying (FSK) data 

and sends an acknowledgement to the phone as an sms to verify the 

measured value. 

analysis directly 

to the cloud.   

 

It uses a handheld 

device that works 

in a resource-

constrained 

environment. 

(ii) Amperometric 

(iii) 

Potentiometric 

 

The system can 

also be configured 

to accommodate 

new assays, 

sequences and 

standards  

 

It supports low-end 

phones and does not 

require apps that are 

usually required for 

Smartphone based 

systems. 

 

The proof of concept was 

demonstrated in 4 

application domains: 

(i) Blood glucose (ii) 

Trace heavy metals (iii) 

Sodium in urine and (iv) 

Test for malaria antigens 

 

The system results for the 4 

application domains were 

compared to results from a 

commercial bench-top analyzer 

and the following results were 

obtained: 

 

(i) No difference with respect to 

performance of the electronics. 

(ii) Blood glucose standard 

deviation: 5% (which is much 

better than most commercial 

glucometers). 

(iii) Heavy metals in water: 

Detection limit of 4µg/L, better 

than the recommended WHO 

level of 10µg/L 

(iii) Sodium in urine: Systematic 

error of 8%, which is within the 

certified range of ±14% 

(iv) Malaria: Limit of detection 

was 20ng/mL. 

26. Lee et 

al 2-27 

2010 Telemedicine 

and e-Health 

 

Sensors: Electrodermal Activity [EDA], Pulsewave [Condenser 

microphone]. 

 

The EDA sensor was made of conducting fabric lines (instead of 

AgCl). 

 

Platform: Portable arm-band computer 

 

Realtime processing  supported by a webserver. 

 

Local-MVI communication: Serial (RS-232). 

 

The algorithm was based on Fast Fourier Transform (FFT). 

A system to detect 

drowsiness based 

on a correlation 

between EDA 

signals and 

drowsiness. 

 The system investigated 

the correlation between 

skin impedance and 

drowsiness. 

 

The EDA signal was 

decomposed into 2 

signals: 

(i) Skin Impedance Level 

(SIL) and 

(ii) Skin Impedance 

Response (SIR) 

 

The experiment lasted for 

30mins. 

The detected states: 

- Aroused condition 

- Drowsiness 

- Sleeping 

 

The device was able to detect 

drowsiness before its onset. 
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Abstract 

Lightweight Algorithms for Reliable Personalized Health 

Monitoring 

 
By: Olufemi Oluwole Adeluyi 

Advisor : Prof Jeong-A Lee, Ph. D 

Department of Computer Engineering 

Graduate School of Chosun University 

Patient monitoring techniques are fast evolving from the traditional curative, doctor-centered 

approach to one that is preventive and patient-centered.  A number of factors have influenced 

this transition; notable among these are the spiraling costs of healthcare management, the 

ageing of society and the advances in sensor technology. Personalized Health Monitoring 

Healthcare (PHM) systems play an important role in this new approach.  

 

PHM systems are usually implemented in resource constrained environments such as 

embedded systems running on limited battery power.  As such, any algorithm used for 

diagnosing and classifying diseases should be lightweight and reliable.    

 

The cardiovascular and neurologic domains were used for the analysis in this thesis.  For the 

neurologic domain we proposed an algorithm known as Bio-inspired electroceptive 

Compressive System (BeCoS).  BeCoS was inspired by wave-type active electroception used 

by weakly electric fish.  It was used for the sensing, processing, telemetry and reconstruction 

of neural signals.  BeCoS was compared with the well regarded Block Sparse Bayesian 

Learning-Bound Optimization (BSBL-BO) and it gave higher quality results.  BeCoS resulted 

in coherence, average latency, compression ratio and estimated per epoch power values that 

were 35.38%, 62.85%, 53.26% and 13mW better than BSBL-BO, respectively, while 

structural-similarity was only 6.295% worse. The original and reconstructed signals still remain 

visually similar. 
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The identification of the R-peaks of electrocardiograms (ECG) represents one of the most 

important steps for the successful monitoring of cardiovascular health.  The Pan-Tompkins (P-

T) algorithm has been used as a key reference in the design and testing of algorithms used for 

the detection of R-peaks.  The P-T algorithm uses a cascade of filters to process the ECG 

signals prior to the identification of the R-peaks.  This filtration process results in a large 

overhead.  A Rapid-Ramp Effective Algorithm for Detection of ECG R-peaks (R-READER) 

has been proposed as an alternative to P-T.  It is an intuitive algorithm that uses ECG slopes 

and inflexion points as a basis for the identification of R-peaks without the need to pass the 

signals through the filters used in traditional approaches. R-READER gave average accuracy, 

positive predictivity and sensitivity values of 97.79%, 98.23% and 99.54% when compared to 

values of 87.47%, 88.57% and 98.59% for the P-T algorithm. 

 

In this dissertation we demonstrate that the BeCoS and R-READER algorithms provide reliable 

and lightweight alternative for health monitoring in the neurologic and cardiovascular domains 

respectively.  Experimental results also demonstrate a potential for significant performance 

enhancements when compared to the main algorithms used in the domains. 

 

[KEYWORDS]: personalized health monitoring, reliable computing, lightweight processing, 

electrocardiogram, encephalogram 
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요  약 

신뢰할 수있는 개인 건강 모니터링을위한 경량 알고리즘 
 

아델루이 올루페미 올루월이 

지도교수 : 이정아 

컴퓨터공학과 

조선대학교 대학원 

환자 모니터링 기술은, 의사 중심적인 치료 위주의 전통적 접근법에서, 환자 

중심적인 예방 위주의 새로운 접근법으로 빠르게 진화하고 있다. 헬스케어 관리 

비용의 증가, 사회의 노령화와 센서 기술의 발달 등이 이러한 변화에 영향을 

미치는 요소들이다. 개인 맞춤형 건강 모니터링 헬스케어 (PHM) 시스템은 이러한 

새로운 접근법에서 중요한 역할을 하고 있다. 

 

제한된 배터리 전력으로 작동하는 embedded 시스템과 유사하게, PHM 시스템은 

통상적으로 자원이 제한된 환경에서 구현 되기 때문에, 질병을 진단하고 분류하는 

알고리즘은 신뢰성은 물론이고, 연산처리량이 가벼워야 한다. 

 

본 논문에서는 신경계 및 심혈관 영역에서 신뢰성을 유지하면서도 연산처리량을 

가볍게 하는 알고리즘을 제안한다.  신경계 영역에서는 Bio-inspired electroceptive 

Compressive System (BeCoS)라는 알고리즘을 제안한다. BeCoS 의 개념은 약한 전기를 

사용하는 어류의 파동형(wave-type) 활성 전기인식(electroception)에서 착안하였다.  

이 알고리즘은 신경 신호의 감지, 처리, 원격 측정 그리고 신호 복원을 위해 

사용되었다. BeCoS 알고리즘은 잘 알려진 Block Sparse Bayesian Learning-Bound 

Optimization (BSBL-BO)와 비교했을 때 보다 높은 품질의 결과를 제공하였다. 

BeCoS 는 BSBL-BO 보다 62.85% 증가한 일관성, 35.38% 감소한 평균 처리시간, 

53.26% 증가한 압축비, 13mW 감소한 추정 epoch 당 전력값을 보였고, 구조적 

유사성에서는  6.295% 감소하였지만,  원래 신호와 복원된 신호는 시각적 유사성을 

유지했다. 

 

심혈관 영역에서는, 심혈관 건강의 성공적 모니터링에 가장 중요한 단계들 중 

하나인, 심전도 R-peaks 의 검출에 중점을 두었다. 주요 비교대상으로 Pan-Tompkins 

(P-T) 알고리즘을 활용하면서, R-peaks 을 찾기 위한 경량 알고리즘을 설계하고 

실험하였다. P-T 알고리즘은 R-peaks 의 확인 이전에 ECG 신호를 처리하기 위해 

연속적인 필터를 사용하는데, 이 과정이 큰 오버헤드(overhead)를 초래한다. 본 
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논문에서는 P-T 알고리즘의 대안으로 ECG R-peaks 의 발견을 위한 Rapid-Ramp 

Effective 알고리즘, R-READER 를 제안한다. R-READER 는 R-peaks 검출 기반으로, 

전통적 접근법이 사용하는 필터가 아닌, ECG 의 기울기와 만곡점(inflexion point)을 

사용하는 직관적 알고리즘이다. R-READER 는, P-T 알고리즘이 보인 각각 87.47%, 

88.57%, 그리고 98.59%의 평균 정확성, 긍정적 예측도 그리고 감도 값과 비교할 때, 

각각 97.79%, 98.23% 그리고 99.54% 값을 제공했다.  

 

본 논문에서는, 신경계 및 심혈관 영역에서의 건강 모니터링을 위하여, 신뢰성을 

유지하면서도 연산처리량이 가벼운 대안으로 BeCoS 와 R-READER 알고리즘을 

제시하였으며, 이 영역들에서 사용된 기존의 주요 알고리즘과 비교해 보았을 때, 

제시된 BeCoS 와 R-READER 알고리즘의 성능이 향상됨을 실험 결과를 통하여 

보였다.  

 

[KEYWORDS]: 개인 맞춤형 건강 모니터링(PHM), 신뢰할 수 있는 계산, 경량 

프로세싱, 심전도, 뇌파기록 
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I. Introduction  

A. Overview 

Health monitoring refers to a systematic approach for keeping track of the health status of any 

given entity.  It can refer to both animate and inanimate objects.  For example, the process of 

monitoring the degradation of infrastructure like bridges and buildings falls under this category, 

as does the process of monitoring the health of a human being.  The former is usually referred 

to as structural health monitoring (SHM) [1], while the latter is called personalized health 

monitoring (PHM) [2]. 

 

In this thesis, PHM refers to the process of using wearable sensors to monitor a patient’s 

biosignals over an extended period in order to track, predict and maintain their health.  PHM 

usually takes place in uncontrolled environments outside the confines of a hospital [3, 4]. It is 

more useful for monitoring signals that change over time rather than those that rarely change or 

those that do not change such as a patient’s genotype. Fig 1 shows the common parts of a PHM 

system. 

 

 

Figure 1: A Typical PHM System 
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The global healthcare industry has evolved from one that places an emphasis on a curative, 

doctor-centered healthcare approach to a patient-centered approach that focuses on prevention 

[5, 6].  This paradigm shift has increased the importance of diagnostic health monitoring and 

has played a role in making PHM a core part of today’s healthcare delivery system.  Fig 2 

shows the approximate location of PHM systems in the healthcare delivery research space; 

toward the top ends of preventive and automated medicine. 

 

Figure 2: Location of PHM Systems on the Healthcare Delivery Research Space [7] 

In addition to the effect of the paradigm shift, three (3) main developments have led to the 

popularity of PHM: 

1. The Rapid Ageing of Society 

2. The Rising Cost of Healthcare and the Dwindling Budgets 

3. The Availability of Cost-effective Enabling Technologies 

 

The Rapid Ageing of Society 

Recent demographic studies have indicated an increase in the Average Life Expectancy (ALE) 

in many developed countries. As shown in Fig 3, the 2011 ALE at birth for countries in the 

Organisation for Economic Co-operation and Development (OECD) is now 80.1 years [8].  

This represents an average increase of 10.1 years from 1970, with the Republic of Korea and 
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Turkey having the largest individual increase of 19.0 and 20.4 years respectively. 

 

Figure 3: OECD ALE at Birth (1970-2011) [8] 

 

The Rising Cost of Healthcare and the Dwindling Budgets 

Healthcare is traditionally perceived as a key determinant of the general quality of life of 

people and it usually forms a significant part of a country's economy [9].  As shown in Fig 4, 

there has been a steady increase in the amount of healthcare costs as a percentage of GDP.  In 

2009, the average share of the total healthcare expenditure as a part of GDP in OECD countries 

was 9.6%. The United States, Netherlands, Italian and Korean GDP shares were 17.7%, 11.9%, 

9.2% and 7.4% respectively [8].   
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Figure 4: Healthcare Cost as a % of GDP [10] 

 

This increase has not led to a rise in healthcare budgets as many governments have adopted a 

more frugal approach to government spending in virtually every sector of the economy, 

including the healthcare sector.  For example, in the United Kingdom there was a shortfall of 

630million GBP in the 2013/2014 budget for the National Health Scheme (NHS) [11].  Many 

governments now view the use of technology as a viable option for reducing healthcare costs 

[12]. 

 

The Availability of Cost-effective Enabling Technologies 

Recent technological advances in areas such as the sensors, memory, wireless communication 

and digital signal processing have aided the deployment of PHM systems [13, 14]. 

Semiconductor technologies like Micro-Electro-Mechanical Systems (MEMS) and Nano-

Electro-Mechanical-Systems (NEMS) have also enabled the design of devices with high levels 

of functionality and miniaturization [15]. As a result of these advances, sensors and actuators 

have become smaller, cheaper, more sensitive and less power hungry [16].   
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B. Motivation 

Current PHM systems have been generally limited to fitness applications and do not play a 

significant role in clinical decision making [17, 18].  This is because a number of the systems 

do not provide the level of reliability required of standard medical systems [19].  Current 

PHM systems also focus on intermittent monitoring and detection of abnormal signals rather 

than on the continuous long term monitoring of the entire signals as is common in standard 

devices at the hospital [20, 21]. 

 

PHM systems, unlike their hospital-based equivalents, have to operate under a number of 

resource constraints [22].  Many PHM systems use batteries to meet their energy requirements 

[23] and these batteries would be easily depleted when the systems are designed to support 

long term monitoring and more reliable analysis.   

 

In addition to pattern recognition and disease classification, PHM systems need to support the 

telemetry of the signals to the physician [24].  These wireless systems usually have limited 

bandwidths and may experience interference.  This would increase the amount of latency 

required to transmit the signals and would restrict the system’s ability to support real time 

monitoring. 

 

PHM systems have a limited storage capacity but they process biosignals, many of which have 

a high temporal resolution [25].  This leads to very big datasets which require a large amount 

for storage sometimes beyond the storage capacity of the systems. These challenges have led to 

research efforts that are aimed at developing PHM systems whose computational requirements 

are more sensitive to the resource constraints. Such systems should be lightweight in terms of 

their power, storage and latency profiles. 
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The algorithms for processing and classifying the signals play an important role in determining 

the level of complexity of the PHM systems [26, 27].  As such, a proper design of the 

algorithms is a suitable approach for ensuring that the systems are lightweight. Physicians base 

their decisions on inferences drawn from the biosignals of the patients.  For PHM systems to 

be reliable they must provide results that are similar to the results obtained by using standard 

medical devices.  Reliability refers to the ability of a system to deliver a service that can 

justifiably be trusted and the ability to avoid failures that are more frequent and more severe 

than is acceptable [28, 29].   

 

As a result of the sensitive nature of healthcare, the ultimate decision of the medical choices 

that are made lies with the physicians.  However, a lot will depend on the reliability of the 

data that is made available to them by the PHM systems.   

 

Ideally PHM systems can be used to monitor signals from any part of the human body. 

However, this research will focus on two key domains- cardiovascular and neurologic.  The 

cardiovascular domain was selected because it is the leading cause of global deaths.  In 2012, 

it accounted for 17.5 million deaths- 31% of the total number of global deaths [30].   

 

Neurologic disorders now constitute a significant global disease burden [31] and they account 

for 35% of the global disease burden. An estimated cost of 798 billion EUR was spent on this 

burden in Europe in 2010 [32]. As a result of its growing importance a number of research 

efforts around the world now focus on reducing this burden [33, 34].  

 

The research presented in this thesis deals with issues involving lightweight processing and 

reliability of PHM systems in general, with a greater emphasis on PHM systems in the 

cardiovascular and neurologic domains. 
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C. Contributions 

In this thesis, we have described a suite of lightweight algorithms for reliable personalized 

health monitoring.  The main contributions are as follows: 

 A systematic analysis of the present state, inhibiting challenges and future outlook of 

medical instrumentation in personalized health monitoring 

 Identification of key requirements for lightweight and reliable personalized health 

monitoring 

 Design of a bioinspired lightweight and reliable multichannel algorithms for 

continuous long term monitoring of neural signals 

 Design of an intuitive lightweight and reliable algorithm for continuous long term 

monitoring of the main fiducial point in cardiovascular signals 

 

D. Thesis Outline 

The rest of this thesis is organized as follows:  A systematic review of the current body of 

work on PHM is given in Chapter 2.  It identifies the key disease domains, sensors, platforms, 

algorithms, communication protocols and challenges of PHM systems.   

 

Chapter 3 describes BeCoS- an algorithm for the lightweight sensing, processing, transmission 

and reconstruction of neural signals.  The R-READER algorithm is described in Chapter 4.  

It is a lightweight approach for identifying the R-peaks of an ECG signal without a need for the 

noise filtering used in traditional techniques. The conclusions and proposed future work are 

given in Chapter 6. 
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II. Related Work  

A. Medical Instrumentation for PHM 

PHM systems aim to attain a level of reliability comparable to the reliability of medical 

instruments based at the hospital.  Insights on the key requirements for these PHM systems 

was gained from a systematic literature search that focused on the present state, inhibiting 

challenges and future outlook of medical instrumentation used for personalized health 

monitoring.   

 

A total of 915 main articles were reviewed from a search on instrumentation and health 

monitoring that covered the following databases- Cochrane Library (1992 – August 2014: 40 

articles were selected), Web of Science (1973 – August 2014: 233 articles were selected) and 

MEDLINE (1996 – August 2014: 642 articles were selected). The objective of this systematic 

review is to give an overview of the current body of work covering instrumentation used for 

personalized health monitoring.  

 

The emphasis is on the identification of key architectures used for such systems in terms of the 

type of sensors, modality, type of communication interface and network model. Second, it 

describes the important application domains of PHM, its level of adaptation and the common 

algorithms utilized.  Third, it outlines the key outcomes of PHM systems, as well as the 

current challenges and the anticipated future research directions for the field.  

 

Selection Process 

The 915 articles generated from the search were further narrowed using a selection process 

based on the following 5-stage strategy: 
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1. Deletion of doubles 

2. Title scan 

3. Abstract scan 

4. Cursory full text scan 

5. Detailed full text scan 

 

The search strategy is shown in Fig. 5. 

 

Figure 5: Search Strategy 

 

There were 46 articles that were duplicated and these were deleted before the articles were 

screened based on their titles.  Titles that indicated contents very different from research 

related to PHM were discarded.  There were 573 articles discarded at this stage, leaving a total 

of 296 articles for the abstract-scan stage. During the abstract scan we eliminated articles that 

did not align with the theme of medical instrumentation in PHM; 127 articles were filtered out 

at this stage.   
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The remaining 169 articles were subjected to a cursory scan of the full text which essentially 

involved identifying the sections, as well as reading the introduction, discussion and conclusion 

sections.  Articles that did not give sufficient details on the items relating to the theme were 

discarded.  After this stage there were 56 articles that were subjected to a detailed full text 

scan out of which a further 39 articles were discarded.  The criteria included the ones listed in 

the previous stage and for articles that contained similar ideas we chose the one that outlined 

the idea with the greatest level of detail.  A preference was also given to articles that covered 

multiple domains, those that addressed unique applications and those which described the 

instrumentation process in some detail. After these stages we retained 26 core articles for the 

review. A description of each of these articles is given in Appendix A.  

 

B. Analysis of Search Results 

From the analysis of the 26 research articles included in this review, we identified a number of 

key features that characterize the use of instrumentation for PHM.  These features will be 

discussed in the subsequent sections under the following groupings: 

• Architecture 

• Application 

• Outcomes 

 

Architecture of PHM Systems 

The architecture describes the hardware portion of the PHM system and the communication 

interface.  It comprises the sensors, system platform and the communication interface utilized 

for both the local and remote ends of the MVI. 

 

Sensors and Sensing 

The sensors capture the analog biosignals from the patient and condition it for further 
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processing. The sensing technology plays an important role in the utility of PHM systems. The 

sensors used in PHM systems can categorized based on the level of invasiveness.   

 

Table 1: Sensors used for PHM 

S/No. Sensor Cases % 

1 

Electrocardiogram [35, 39, 44, 45, 

46, 47, 48, 51, 54, 55] 10 38.50% 

2 

Blood Pressure [35, 39, 45, 49, 51, 

53] 6 23.10% 

3 

Accelerometer [38, 46, 50, 51, 53, 

56] 6 23.10% 

4 Oxygen Saturation [38, 45, 51, 53] 4 15.40% 

5 Temperature [38, 49, 53, 54] 4 15.40% 

6 Microphone [39, 52, 54, 61] 4 15.40% 

7 Posture [38, 45, 53] 3 11.50% 

8 Pressure [40, 49, 59] 3 11.50% 

9 Weight [35, 45] 2 7.70% 

10 

Cardiac Implantable Electronic 

Device [36, 43] 2 7.70% 

11 Gyroscope [38, 56] 2 7.70% 

12 Blood Glucose [57, 60] 2 7.70% 

13 Photodiode [41, 53] 2 7.70% 

14 Surface Electromyography [37] 1 3.80% 

15 Electroencephalography [58] 1 3.80% 

16 Tilt [46] 1 3.80% 

17 Camera [54] 1 3.80% 

18 Pedometer [56] 1 3.80% 

19 Gastrocnemius Expansion [56] 1 3.80% 

21 Electro Dermal Activity [61] 1 3.80% 

22 Chest Impedance [45] 1 3.80% 

 

Invasiveness refers to a need for a puncture of a patient’s skin or the introduction of a foreign 
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body into a patient in order to monitor some signal. Thus, the sensors can be classified as non-

invasive or invasive. Tab. 1 shows the type of sensors used in the selected articles and the 

percentage of the 26 studies where they were used. 

 

At 38.5%, Electrocardiogram (ECG) sensors represent the most extensively used sensors for 

PHM and when one includes the Cardiac Implantable Electronic Device (CIED) sensors this 

rises to 46.2%, implying that close to half of PHM systems monitor heart signals. Blood 

pressure (BP) sensors and accelerometers are the next most prevalent at 23.1% each.  It is 

interesting to note that a number of some of these sensors measure signals as a proxy for 

another signal of interest and are thus known as virtual sensors. 

 

Virtual sensors [42] are fast becoming an important part of the PHM architecture.  They refer 

to sensors that are based on software rather than hardware and they infer their readings from 

the relevant hardware sensor(s).  These virtual sensors enable patients to monitor biosignals 

for which it is either impractical to have access to the signal of interest or for which the sensors 

or related equipment may be too expensive.  From the reviewed articles, there were 13 cases 

(or half) that used virtual sensing.  The actual sensors used for this process are listed in Tab 2. 

 

Platform 

Many PHM systems do not use a personal computer (PC) as their platform (only one uses the 

PC [41]). Most of them use a custom device [38, 39, 40, 44, 45, 46, 47, 49, 50, 51, 52, 53, 56, 

58, 59, 60, 61] or a mobile phone/personal digital assistant (PDA) [35, 37, 48, 54, 55, 57] as 

their platform of choice as shown in Fig. 6.  The 2 cases of Cardiac Implantable Electronic 

Devices (CIEDs) [36, 43] were not included since they only use mobile phones for 

communicating with a remote system. 
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Table 2:  Examples of Virtual Sensing in PHM 

S/No. Virtual Sensor Actual Sensor No of Cases 

1 Respiratory Rate [38, 50, 53, 59] ECG, Accelerometer, 

Pressure 

4 

2 Heart Rate [53, 55] ECG 2 

3 Respiratory Input Impedance 

[40] 

Pressure 1 

4 Blood Flow Velocity [41] Optical 1 

5 Drowsiness Analysis [61] EDA 1 

6 Gait Analysis [56] Gastrocnemius Expansion 

Measurement Unit (GEMU) 

1 

7 Parkinson’s Disease Progression 

[39] 

Microphone 1 

8 Obstructive Sleep Apnea 

Syndrome (OSAS) [52] 

Microphone 1 

9 Consciousness Awareness [58] EEG 1 

 Total  13 

 

 

 

Figure 6:  Platforms used in MVIs 
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Network Models and Communication System 

All the PHM systems in the reviewed articles were based on a client-server network model.  

In most of the systems, the sensed signals were forwarded from the local (or patient) end to an 

access point device in close proximity to the sensors for onward transmission to a remote 

server at the remote (or physician) end. In many cases the platforms described in the previous 

section were used as the access points.  

 

One trend worth noting about PHM network models involves the direct connection between the 

output of the biosignals and a remote webserver or cloud service, rather than a connection to a 

specific remote server at the physician’s end. Five (5) of the reviewed articles [46, 52, 55, 60, 

61] used such a model. A number of advantages can be derived from this approach. One such 

advantage is the potential of “geographically decoupling” the biosignals [60]. In other words, it 

reduces the mobility restrictions on the patients since their signals can be streamed to the 

webserver while they move around freely.  The platforms need to be configured as a 

webserver and should have access to the Internet. Another advantage of this approach is that 

the signals can be simultaneously viewed by different authorized people (such as the physician 

and the care giver).  The approach can also exploit the memory and processing capabilities of 

a web or cloud service while reducing the computational complexity of the PHM system at the 

patient end. 

 

Communication in PHM systems can either be within the modules at the local (patient) end or 

between the instruments at the patient end and those at the remote (physician) end.  As shown 

in Fig. 7, the wireless protocol was the most common for local-PHM communication and was 

used in 73.9% of the cases. This included 26.1% for Bluetooth [35, 45, 54, 55, 57, 58], 8.7% 

for ZigBee [46, 48] and 39.1% of wireless protocols that were not specified [36, 43, 44, 47, 49, 

52, 53, 56, 57]. There were 8.7% of the cases that used RS-232 protocols [38, 61] and another 
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17.4% that used other methods [39, 40, 44, 50]. Some articles did not specify the 

communication protocol [41, 51, 59]. 

 

The cellular networks were the most common approach of for communication in PHM systems 

between the patient-end and the physician-end.  They were used in 56% of the cases [35, 36, 

37, 38, 43, 44, 45, 48, 51, 52, 53, 54, 57, 60].  It was followed by the wireless approach (36%, 

of which 28% were for WiFi [37, 40, 44, 46, 50, 55, 56] and another 8% for unspecified 

wireless techniques [40, 47]. Digital Subscriber Lines (DSL) were used in 8% of the references 

[40, 45].  The details are shown in Fig. 8. Some articles used multiple techniques for remote 

communication and others did not specify the communication protocol [41, 49, 50, 51, 58, 59, 

61]. 

 

 

Figure 7:  Communication Protocols used for PHM at the Patient-end 
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Figure 8:  Remote-PHM Communication Protocols 

 

Applications 

PHM applications refer to the disease domains, adopted modality, level of system adaptability 

and algorithms that govern the operation of the instrument.  

 

Disease Domains 

PHM systems can be used for medical research applications, clinical applications, healthcare 

information management systems and mathematical modeling of physiologic systems [63], to 

name but a few domains of application.  However, an analysis of the research articles in this 

review showed that PHM systems focus on some specific disease domains (Fig 9).   

 

Figure 9  Disease Domains 
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The Cardiovascular Disease (CVD) domain accounts for over half of the cases.  This is 

understandable since CVDs are the largest single contributor to global mortality.  This domain 

covers the monitoring of biosignals that give an insight into the state of the patient’s heart.   

 

Fitness monitoring refers to cases where the PHM did not target a specific domain.  These 

cases were basically for monitoring general health and fitness.  They accounted for about a 

quarter of the cases.  The musculoskeletal domain addressed areas like fall detection, gait 

analysis and back pain.   

 

Table 3: Monitoring Scenarios for the Cardiovascular Disease Domain 

S/No. Monitoring Scenario No of 

Cases 

1 Heart Monitoring [35, 43, 44, 47, 48, 55, 58]  7 

2 Chronic Heart Failure [35, 45] 2 

3 Spirometry [40, 53] 2 

4 Hypertension    [49] 2 

5 Blood Flow Velocity [42] 1 

6 Snoring [59] 1 

7 Obstructive Sleep Apnea [52] 1 

 Total 16 

 

The cases under the neurologic domain focused on mental health monitoring using EEG 

sensors in one case [48] and using an EDA sensor [51] as a virtual sensor for monitoring 

drowsiness in the second case.  The hormonal disease domain involved a case where blood 

glucose levels were monitored for the management of diabetes [47]. 
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The constituent monitoring scenarios classified under the cardiovascular domain are shown in 

Tab 3. 

 

Modality 

The modality refers to the expected effect on the state of health of the patient.  An 

overwhelming number of the cases reviewed (24 cases or 92.3%) focused solely on extracting, 

analyzing and reporting a patient’s biosignals. Only 2 PHM systems (7.7%) triggered some 

form of therapeutic activity in response to the results of the analysis.  The first case controlled 

the delivery of insulin to the diabetic patient [47] and the second case involved a stimulation to 

help the sleeping patient to stop snoring [52].  

 

System Adaptability 

The theme ‘personalized health monitoring’ presupposes a need to have systems that are 

personalized to suit the individual needs of a patient.  This requires that the systems support 

some level of adaptability.  In the literature review there were 11 (or 42.3%) of the articles 

that supported some level of adaptation [36, 37, 45, 47, 51, 52, 53, 55, 57, 58, 60]. Most of 

these were based on adaptation at the communication and architectural levels rather than at the 

patient level. Five of the six cases with adaptation at the patient level [36, 52, 53, 57, 58] were 

based on the patient’s clinical profile while the sixth was based on the activity state of the 

patient [61]. 

 

Algorithms 

The algorithms used in PHM systems refer to a step-by-step procedure for diagnosing and 

classifying a disease using a finite number of steps [63].  They help patients and physicians to 

make sense of the biosignals generated by the patient. The choice of the algorithm depends on 
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the type of diseases to be diagnosed, type of input parameters available for the process and the 

available resources for the computation.   

 

Several algorithms can be used with PHM systems.  A number of the main algorithms used 

across the various disease domains are either a subset or a combination of the following 

categories: Derivative-based, Support Vector Machine (SVM), Genetic Algorithm (GA), 

Threshold-based, Wavelet-based, Neural Networks and Compressive Sensing. 

 

An SVM is a supervised learning model that uses data points (support vectors) closest to the 

decision surface (hyperplane) of the expected diagnosis to classify new data [64].  It provides 

a deterministic approach for obtaining an accurate classification that is unique and global.  

However, the algorithm can tend to be complex and it has high memory requirements [65].   

In [66], SVM is used for classify the risk of epilepsy in patients based on their EEG signals. 

 

A GA is a bio-inspired approach that is based on adaptive heuristics.  It mimics the process of 

natural selection in nature and implements the classification using a fitness function.  This 

algorithm is conceptually simple and useful for scenarios where there are several input 

parameters.  The inductive nature of GA means that it can work with internal rules and does 

not need to know or work with the problem-specific rules.  As a result, GAs can be used for 

several types of problems.  It also has the advantage of being robust to dynamic changes in the 

system environment but cannot integrate problem specific information [67].  GA was used to 

predict the presence of heart disease in [68].   

 

For many of the biosignals it is possible to predict the presence or absence of a disease based 

on a given level in the signal and this level is known as the threshold. Algorithms based on the 

thresholds classify the disease based on some pre-specified or adaptive threshold.  These types 
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of algorithms provide a heuristic approach that is straight forward and generally simpler to 

implement than the other types of algorithms.  Threshold based algorithms were used with 

ECG signals in [69] and for fall detection in [70]. 

 

The NN is a nondeterministic algorithm that was inspired by the interconnection of the neurons 

in the brain.  Its classification is based on simple but highly connected processing elements 

whose weights are dynamically modified in response to incoming signals based on some 

learning rule. It is an accurate, robust and highly parallel technique.  However, it is 

comparatively slower than other algorithms and tends to be resource intensive for systems with 

large input data sets [71].  It was used to screen for heart diseases in [72]. 

 

Compressive sensing (CS) is an emerging paradigm for energy efficient sensing, data 

compression and transmission of biosignals [73, 74].  The CS approach involves the 

transformation of the sensed data into a domain where the data is sparse in order to reduce the 

signal processing requirements. It is quite useful for applications where data capture is 

expensive in terms of time and power. Compressive sensing is discussed in more detail in the 

next chapter. 

 

Tab 4 shows a list of the algorithms that were explicitly stated by the authors of the reviewed 

articles. The Pan-Tompkins algorithm featured in the most number of cases (3) and was used 

for systems targeting the cardiovascular domain.  It was proposed in the late 1980s but has 

remained relevant today because of its suitability for real-time and resource-light processing of 

ECG signals.  It is a first-derivative method that detects the R-peaks of the ECG signals using 

thresholding techniques following a series of filter stages.  This algorithm is described in 

greater detail in Chapter IV. Peak detection algorithms also were also used in 3 of the systems. 
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Evaluation Metrics 

The choice of the algorithm to use for a given disease domain depends on the following 

metrics- accuracy, precision, training time, speed, robustness, scalability, specificity and 

selectivity [75, 76]. 

 

The accuracy refers to the proximity of the measured value to the actual value.  In the field of 

medicine the accuracy of the measurement has a greater level of importance as it may well be 

the difference between life and death for the patient.  The accuracy is a ratio of the correct 

readings (true positives and true negatives) to all the readings taken as shown in Eq 1.   

 

Table 4: Common Algorithms used for PHM 

Algorithm Cases 

Pan-Tompkins [45, 48, 51] 3 

Peak detection [38, 50, 58] 3 

Thresholding [38, 39] 2 

Wavelet transform [55, 59] 2 

Correlation [41, 43] 2 

Fuzzy-based [44] 1 

Machine learning [54] 1 

Least squares [40] 1 

Edge detection [50] 1 

 

 

 

Accuracy =  
Number of correct assessments

Number of total assessments
= 

TN+TP

TN+TP+FN+FP
   (1) 
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Precision refers to the consistency of the results under unchanged conditions.  It is the ratio of 

the true positives to the total number of positives (true and false). The true positives refer to the 

number of positive outcomes that were correctly identified while the true negatives refer to the 

number of negative outcomes that were correctly identified.  Conversely, the false positives 

(FP) and the false negatives (FN) refer to those incorrectly identified as positive and negative 

respectively. 

 

Speed refers to the duration it takes to complete the classification process and this includes the 

time used in the training process for the classifier algorithm. For many medical signals this 

training process is needed to ensure proper analysis and classification. The robustness of an 

algorithm describes how much the performance is independent of the type and distribution of 

the input signals.   

 

Scalability refers to the ability of the system to maintain its level of performance as the size of 

the input signal increases. In medical diagnosis, the specificity is the proportion negative 

classifications that are correctly made while the sensitivity refers to the proportion of positive 

classifications that are correctly made. As such specificity focuses on correct exclusions while 

specificity focuses on correct detections. The specificity and sensitivity can be calculated using 

Eq 2 and Eq 3 respectively. 

 

Specificity =  
Number of true negative assessments

Number of all negative assessments
= 

TN

TN+FP
   (2) 

 

Sensitivity =  
Number of correct assessments

Number of all positive assessments
= 

TN+TP

TP+FN
   (3) 
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C. PHM: Key Issues and Prospects 

There are five (5) themes that were identified from the review as the key issues in the design 

and development of PHM systems, namely:  

1. The need for personalization based on the profile of the patient 

2. The need for more diverse PHM systems 

3. The need for resource-light systems that support reliable long-term monitoring 

4. The need for more non-invasive and non-intrusive PHM systems 

5. The need for a greater degree of system miniaturization, virtualization and for more 

cloud based applications 

 

Personalization for PHM Systems 

Personalization is one of the main motivations for PHM [77].  It is a trend away from the 

sometimes ineffective “one-size-fits-all” approach used in standard medicine to a more 

effective approach that is customized for the specific needs of a given patient.  The conclusion 

of The Human Genome Project [78] in 2001 has significantly increased interest in the area of 

personalized medicine, where diagnostic routines are used to determine the best treatment 

approach that can suit a specific patient.  Many research efforts are exploring approaches that 

would enable PHM systems to adapt themselves to the unique profile of the patient in areas 

such as the patient’s genetic information or other biomedical data unique to the patient [79, 80]. 

 

Diversity for PHM Systems 

More research effort is needed to increase the variety of PHM systems, away from devices that 

mainly focus on cardiovascular health and general fitness monitoring.  For example, mental 

health is becoming a big global healthcare concern. It has been reported that one in four people 

now experience a mental health problem in their lifetime [81].  EEG sensors provide a low 

cost option for monitoring brain signals and researchers need to take advantage of this. 
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Reduced Processing Complexity and Long Term Monitoring 

The requirement for mobility in PHM systems comes with a need for flexible and less power 

hungry applications since many of these systems use batteries as their power sources. The 

current need for continuous biosignal monitoring puts an additional strain on the limited 

resources of the PHM systems [82, 83, 84, 85]. As such, lightweight algorithms are required to 

ensure reliable health monitoring within the constraints imposed by these systems.  Such 

algorithms must be lightweight with regard to the following metrics: 

(i) Power 

(ii) Memory 

(iii) Bandwidth 

(iv) Latency 

 

Non-invasiveness and Non-intrusiveness 

Non-invasive and non-intrusive are two words that describe the desired type of sensors for 

PHM systems [86].  It is desirable to provide comfortable sensors for the patients since the 

PHM systems are expected to support long term monitoring.  Many PHM systems are non-

invasive and these include systems that use ECG, EEG and accelerometer based sensors. In 

addition to a need to support non-invasive sensing, recent PHM systems go a step further by 

supporting non-intrusive sensors.  The goal of a non-intrusive PHM system is to sense 

biosignals without intruding into the activities of daily living of the patient. A common 

approach involves the use of non-contact and capacitive sensors that are embedded into 

clothing, furniture, watches or jewelry [87, 88, 89]. 

 

Another approach involves the use of proxy or virtual sensors.  For example, [59] uses a 

virtual sensor based on a pressure sensor embedded in a pillow.  By using this approach, the 
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authors avoided the need for expensive, complex and intrusive polysomnography equipment by 

inferring its readings from the virtual sensor. 

 

D. Application of the Information to this Thesis 

In this thesis we will focus on the third key issue of PHM- the need resource-light systems that 

support reliable long-term monitoring.  The thesis addresses two main domains- the dominant 

domain for PHM systems (the cardiovascular domain) and one of the fastest growing domains 

of interest (the neurologic domain). 

 

The approach involved studying these two domains and identifying the unique features of the 

relevant biosignals that can be exploited to develop an intuitive approach for reducing the 

complexity of signal processing. we identified the main lightweight approaches used for long 

term monitoring of biosignals in these domains, located the most computationally intensive 

portions of the algorithms and devised a way around them without sacrificing the reliability of 

the system.   Algorithms have been developed for the two domains and compared with the 

current leading lightweight algorithms. 
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III.  A Bioinspired Algorithm for Lightweight Neural Telemetry 

A. Telemonitoring of Neural Signals 

Neural signals usually result in a very large dataset, the processing and transmission of which 

require much energy, storage and processing time. In this chapter we present a Bio-inspired 

electroceptive Compressive System (BeCoS) as an approach for minimizing these penalties.  

It is a lightweight and dependable system for the compression, transmission and reconstruction 

of neural signals inspired by active electroceptive sensing used by weakly-electric fish.  It 

uses a signature-signal and a sensed pseudo-sparse differential signal to transmit and 

reconstruct the neural signals remotely. 

 

Some signals from a 64-channel EEG dataset have been used to compare BeCoS with the 

Block Sparse Bayesian Learning-Bound Optimization (BSBL-BO) technique - a popular 

compressive sensing technique used for low energy and reliable wireless telemonitoring of 

EEG signals.  This research explores the possibility of using BeCoS as a lightweight and 

dependable approach for the compression and recovery of non-sparse EEG signals. 

 

Compressive Sensing 

Traditional sensing techniques are based on the Nyquist theorem [90] and this requires signals 

to be sampled at a frequency equal to at least double their bandwidth in order to perfectly 

capture the signal. Compressive sensing (CS) techniques approach the challenge of sensing in a 

much different way.   

 

In CS, the goal is to find a base, γ, to transform a high dimensional analogue data, 𝐱, of 

dimension N , into a k-sparse analogue data set, 𝐱∗ using the Eq (4). 
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𝐱 = 𝛄𝐱∗       (4) 

 

The next step in CS involves the use of a user defined sensing matrix, 𝚽  , to generate 𝐲, a 

compressively sensed representation of 𝐱 using Eq (4) and (5). 

𝐲 = 𝚽𝐱         (5) 

 

The original signal, 𝐱, is then reconstructed at the remote receiver using 𝐲 and 𝚽.  𝐲 is a 

compressively sensed representation of 𝐱 when γ and 𝚽 are incoherent.  This condition is 

met when 𝚽  is chosen as a random matrix.  The CS approach is effective when there is a 

sparse representation of the original signal.  In this approach, the greater the level of sparsity 

of the sensing matrix, 𝚽, the greater the potential compression ratio and the lower the energy 

requirements.  

 

CS [91] provides a good option for the lightweight sensing, processing, transmission and 

reconstruction of signals.  However, CS systems need to use signals that are sparse in the time 

or transformed domains in order to reconstruct the signals with a high level of fidelity.  EEG 

signals are neither sparse in the time nor the transformed domains and this makes the 

traditional CS- based EEG telemonitoring approach inadequate for clinical applications. 

 

For non-sparse signals, it is necessary to use a sparsifying dictionary matrix, 𝐃, to obtain a 

sparsified form of 𝐱 (𝐱𝐝) as shown in Eq (6).  Eq (5) can thus be replaced by Eq (7).  

 

𝐱 = 𝐃𝐱𝐝     (6) 

𝐲 = 𝚽𝐃𝐱𝐝        (7) 
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Again, the success of the approach depends on the system’s ability to find a sparse 

representation of 𝐱.  This underscores the importance of finding an appropriate user defined 

dictionary matrix, 𝐃.  This process can be challenging for arbitrary signals like EEG since 

general dictionary matrices are unable to sparsify them sufficiently. 

 

Block Sparse Bayesian Learning Bound Optimization (BSBL-BO) 

The Block Sparse Bayesian Learning (BSBL) framework has recently been proposed as a 

lightweight approach for processing biosignals in a way that avoids the requirement of an 

optimal dictionary matrix.  It is based on the premise that most natural signals have a rich 

structure and can be represented as a concatenation of blocks [92] as shown in Eq(8).  It uses 

user defined block partitions and assumes that most of these blocks are sparse. 

 

s =  [s1, . . . , sl1⏟      
s1
T

, . . ., slg−1+1 , . . . , slg⏟        
sg
T

, ]T  (8) 

where si describes the block interval i of length l. 

 

BSBL-BO is a fast learning BSBL based on the bound-optimization method [92].  It has been 

effectively applied as a lightweight solution for the reconstruction of temporally correlated 

EEG signals [93]. The authors’ empirical results showed that non-sparse EEG signals can be 

reconstructed with a high level of fidelity by using BSBL-BO with standard dictionary matrices. 

 

In [93], the solution was based on the use of a sparse binary matrix as the sensing matrix, 𝚽, 

and an inverse Discrete Cosine Transform (DCT) as the dictionary matrix, 𝐃. The use of this 

type of dictionary matrix created a system that was 2.58 times faster than a system which did 

not use the dictionary matrix [93]. BSBL-BO has been used as the reference technique for 
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comparing BeCoS. 

 

B. The Basics of Electroception 

Electroception, also known as electroreception, refers to the ability to perceive natural 

electrical stimuli.  Lampreys, bees, sharks, cockroaches and rays are examples of species that 

use electroception either for communication or location of objects [94].  Some of these 

species are highly sensitive to changes in the electric field around them.  For example, the 

shark can detect changes as low as 1x10
-10

V/m [95]. 

 

Electroception can either be active or passive. In passive electroception the sensing species 

detects a field originating from another species while in active electroception the specie senses 

its environment by generating an electric field and detecting the distortions made to it by the 

field of another animal or object.  The biological sensors used for the detection are known as 

the “Ampullae of Lorenzini”[94]. The generated electric field, also known as its signature 

signal, may be modulated to make it unique to the sending species.  It can give information of 

the fish’s individual identity, sex, social and non-social behavior [96].  

 

The weakly electric fish is a good example of an animal that uses active electroception [95, 97]. 

This approach can either be based on small pulses (pulse-type) or a quasi-sinusoidal discharge 

(wave-type) and it allows the specie to identify the properties of the sensed object.  For 

example, a weakly electric fish can detect and discriminate objects based on their ohmic and 

capacitive properties [94, 95, 98, 99].  The signature signal of the fish has very large 

intraspecific waveform variability and usually has a triangular or sawtooth pattern [100].  

Fig 10 shows some examples of signature signals. 

 



 

30 

 

 

Figure 10:  Examples of Signature Signals used for Electroception [96, 102, 

103] 

 

Similar electrolocation techniques are used by bats and in radar technology. In those 

approaches there is a Doppler shift as a result of a relative motion between the source and the 

target.  However, in electroception there is no frequency shift due to the movement of electric 

signals [103]. 

 

The fish makes the process of sensing more efficient by matching the impedance between itself 

and its sensing environment. This way it can use a minimal amount of energy to sense its 

environment.  The impedance, Z, is a combination of the resistance, R, and the capacitive 

reactance, XC as shown in Eq (9). All living organisms have considerable capacitive properties 

that filter the signature signal in a way that maintains the phase [104]. 

 

Z = R + Xc     (9) 

 

The resistance is independent of frequency while the capacitive reactance is inversely 

proportional to the product of the frequency and capacitance. The fish detects the distortions to 

the electric field that reflect the conductivity of the sensed object.  The change is measured as 

a change in the transepidermal voltage gradient in the area next to the skin of the prey [103]. It 

was also noted that good conductors increase the transepidermal voltage while insulators have 

a decreasing effect. Also, the detection of object waveforms relies on a purely temporal (and 

not spectral frequency) analysis. [100]. 
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A description of the key features of electroception used in BeCoS is given in the section on 

‘Porting Key Electroceptive Features into BeCoS’. 

 

C. Bio-inspired electroreceptive Compressive System (BeCoS) 

The BeCoS approach utilizes the electroreceptive approach for the sensing, compression and 

transmission of physiological signals as shown in Fig. 11.  The approach is based on the 

wave-type active electroception option. The modulated vector derived from this approach 

contains a high proportion of elements whose amplitude is close to zero. The Results section of 

this chapter provides further details about this. 

 

Figure 11.  BeCoS Sensing Approach 

 

 

BeCoS assumes that the signature signal vector  (of length, E), originates from H, analogous 

to the local-end of the weakly electric fish. The 𝐡 vector is transmitted in the direction of R, 

analogous to the position of the object to be sensed, which generates an 𝐫 vector (of length, Z).  

Z>>E  and Z=wE (where w is a positive integer).  
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A modulated vector, 𝐩,  is generated when the 𝐡 and 𝐫 vector waves interact.  The vector, 

p, is given by Eq (10): 

 

p = [p1, p2, … , pw] = [
d𝐫jE+1,jE+2,…,E(1+j)

d𝐡
]|
j=0,1,2,…

            (10) 

where each vector pw has a length, E which is the size of each epoch of the neural signals. 

 

In this approach, 
dβ

dα
 is a numerical differentiation given as the gradient between two adjacent 

points and defined as shown in Eq. (11). 

 

df(α)

dα
 =  

f(α+∆α)− f(α)

(α+∆α)− (α)
    (11) 

 

The neural signals of interest are usually measured and stored as time series data. As such, 

there is a need to compute modulated signal, p= 
dr

dh
  by using the differentiation-by-part as 

shown in Eq (12): 

𝐩 =
d𝐫

d𝐡
= 

d𝐫

dt
÷ [ 

d𝐡

dt
+  δ]  = �̇�

(�̇� +  δ)
⁄  ; δ = {

1x10−6,    �̇� = 0

0,    �̇� ≠ 0
   (12) 

where δ is a small positive stabilizer that prevents numerical instability when �̇� = 0 

 

Similarly, 𝐫 is reconstructed by integration as shown in Eq (13).  The cumulative trapezoidal 

numerical integration method was used. 

 𝐫𝐫𝐞𝐜𝐨𝐧 = ∫𝐩d𝐡 = ∫𝐩�̇�d𝐭       (13) 
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D. System Model and Performance Metrics 

The BeCoS model is shown in Fig. 12.  The multi-channel physiological signals are captured 

in real-time using appropriate sensors at the patient’s end- the local end of the Medical Virtual 

Instrument (MVI).  A sparse differential signal is then generated in quasi real time.  For each 

channel, a vector (𝐡) of length E is selected as the signature signal and all subsequent signals 

are differentiated with respect to the appropriate signature signal. This differential signal (𝐩) is 

wirelessly transferred to the physician’s end- the remote MVI.  Here, the differentiated signal 

is integrated with respect to 𝐝𝐡 in order to reconstruct the original signals.  An Additive 

White Gaussian Noise (AWGN) channel with an SNR of 0dB is assumed. The reconstructed 

signals (𝐫𝐫𝐞𝐜𝐨𝐧) are then compared to the original signal using a set of performance metrics. 

 

 

The 𝐫 vector is segmented into w equal non-overlapping segments, each representing an 

epoch block, with a length equal to the length of the signature signal vector, 𝐡, as shown in Eq 

 

 
 

Figure 12:  Conceptual Diagram of the BeCoS System Model 
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(14).   

r = [u1, . . . , uE⏟      
1st seg

, uE+1 , . . . , u2E⏟        
2nd seg

, , . . ., uE(w−2)+1 , . . . , u(w−1)E⏟              
(w−1)th seg

, , uE(w−1)+1 , . . . , uwE⏟            
wth seg

]  (14) 

where ui is the i
th

 element of 𝐫  

 

Dataset of Physiological Signals  

Standard EEG databases have been used for this work. The EEG signals were taken from a 64-

channel EEG Motor Movement/Imagery Dataset.  It was obtained from an arrangement of 

sensors based on the international 10-10 system and provided on the Physionet website [105].  

 

The Physionet signals were sampled at 160 samples/s and the following 8 channels were used 

for the analysis- Fc5, Fc3, Fc1, Fcz, Fc2, Fc4, Fc6 and C5, as channels 1-8 respectively.  Each 

channel had a sequence length of 9,760 data points. An epoch length, E, of 244 was used and 

this resulted in 40 epochs, (w). 

 

The signals were used to simulate a typical signal compression, transmission and 

reconstruction scenario for EEG signals as shown in Fig 13.  An Analog to Digital Converter 

(ADC) is used to emulate the signal acquisition phase. Location A refers to the patient-end of 

the MVI, where resource-constrained portable and mobile instruments are used.  The 

instruments are usually powered by batteries. By contrast, location B refers to the physician-

end of the MVI, where the signals are reconstructed on desktop computers or servers and 

powered by AC power. 
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Figure 13:  System Diagram for Testing Models: (a) BSBL-BO and (b) 

BeCoS  

 

Performance Metrics  

Five performance metrics have been chosen to evaluate the BeCoS approach.  They are 

coherence, latency, compression ratio (CR), power and structural similarity as described in this 

section. 

 

Coherence  

EEG signal processing techniques are reliant on the frequency content of the signal [106].  As 

such, it is important to take the frequency content into consideration when comparing the 

signals at the local and remote ends. Spectral coherence provides this type of comparison. It is 

a measurement of the linear correlation between two neural electrodes [107] as a function of 

frequency and it is very useful for comparing EEG signals [108].  It computes the amount of 

synchrony between 2 stationary signals at a specific frequency [106]. The coherence metric 

compares the signals sensed at location A of Fig 13 with the signals reconstructed at location B 

of the same figure. The magnitude squared Coherence, CXY, of two signals X and Y is given by 

Eq (15). 
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CXY(f) =
|PXY(f)|

2

PXX(f)PYY(f)
     (15) 

PXXand PYY are the power spectral densities of X and Y respectively. PXY is the cross spectrum 

of X and Y. 

 

It is calculated based on the standard Welch’s averaged periodogram method [109].  A 

Hamming window size of 125 was used for the computation. 

 

Latency  

The latency is calculated as the time between the acquisition of the sensed signal at location A 

and its reconstruction at location B of Fig 13.  A zero delay over the noiseless wireless 

channel has been assumed. The learning phase of the BSBL-BO algorithm takes place at 

location B, prior to reconstruction.  Many PHM systems require real-time monitoring and it is 

important to keep the latency at a minimum. 

 

Compression Ratio  

The compression ratio, CR, refers to the ratio of the dimensionality of the original signal to that 

of the sparsified sensed signals.  The dimensionalities (non-sparseness) of the sensed and 

original signals are given as m and n respectively. CR is given in Eq (16). The compression 

takes place at location A of Fig 13. 

 CR = 1 −
𝑚

𝑛
     (16) 

 

Power Consumption 

Power consumption is a major consideration for health monitoring systems as they are likely to 

depend on batteries for their energy requirements [93, 110, 111]. According to [92], low energy 
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health monitoring systems are lighter and more comfortable for patients since they use smaller, 

longer lasting batteries. Power is important at the patient-end (location A) due to the use of 

batteries but it is not an important consideration at location B.  The patient side core-engines 

of BeCoS and BSBL-BO were implemented in a Xilinx Virtex 5 FPGA and used to calculate 

the power consumption. 

 

Structural Similarity 

The frequency content of EEG signals has already been identified as an important feature for 

neural signal processing.   The second important feature is the structural similarity of the 

reconstructed waveform with respect to the original signal [112]. A Structural Similarity (SSIM) 

index [93] is the standard metric for quantifying this.  However, it has been shown in [112] 

that even a slight translation, scaling or rotation of the reconstructed signals can greatly affect 

the SSIM value. [112] went further to propose a Complex-Wavelet SSIM (CW-SSIM) as a 

more robust metric for comparison. The CW-SSIM index has been chosen as the metric since 

the BeCoS approach scales and translates the signals. CW-SSIM is calculated using Eq (17). 

Ã(sx, sy) =
2| ∑ sx,isy,i

∗N
i=1 |+𝑗

2∑ |sx,i+ sy,i
∗ |+ 𝑗N

i=1

   (17) 

where sx and sy are the coefficients extracted from the same spatial locations of the same 

wavelength sub-bands of the two images being compared; s* is the complex conjugate of s. j is 

a small positive constant (stabilizer) 

 

E. Porting Key Electroceptive Features into BeCoS 

This section shows how BeCoS integrates the most relevant features of the electroception 

discussed in the section entitled “The Basics of Electroception”.  Some of these features were 

italized for emphasis in that section. The features have been identified and discussed below: 
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1. Same Type: The signature signal should be of the same type as the monitored signal. This 

requires the following: 

 The signal should be of the same length as the signal being monitored.  In the case of 

long term monitored signals, BeCoS requires the biosignal to be monitored in 

segments equal to the length of the signature signal 

 The signal should be a similar biosignal to the biosignal of interest.  As such, an EEG 

signal will be used for monitoring EEG signals 

 More importantly, there should be a good level of ‘impedance matching’ between the 

signature signal and the segments of the biosignal of interest.  This feature is further 

described in feature #4. 

 

2. Signal Sparsification: The signature signal of the electric fish significantly sparsifies the 

monitored signals. BeCoS also uses a similar signature signal to achieve sparsification without 

a need for the base or dictionary matrices shown in Eqs (4-7). The level of sparsity can be 

further increased through the design of a signature signal with very large gradients at specific 

points as determined by the designer.  

 

As shown in Eq (12), the modulated sparse signal, 𝐩, is computed by dividing the inter-signal 

gradient of the sensed signal by that of the signature signal.  As such, the designer can 

generate a very sparse signal, by choosing a signature signal, �̇� , with many large swing 

gradients (those that are very large compared to the corresponding gradient of the sensed signal, 

�̇� ).  

 

3. Support for Sample Rate Conversion: The design of a signature signal described in #2 can 

also be used for downsampling of the sensing process and for sampling rate conversion without 

the need for the measurement matrix used in standard CS techniques.  By noting the points in 



 

39 

 

the signature signal where there are very large gradients, the sensing protocol can avoid 

sampling those points since 𝐩, will always be close to zero at those points. 

 

For example the sampling rate can be halved by ensuring that the signature signal has very 

large swings at every other point or a third of the sampling rate can be used if two out of every 

three points have large swings.   

 

4. Impedance Matching: As mentioned previously, the weakly electric fish uses an impedance 

matching between the local and remote ends in order to ensure an efficient sensing process.  

As shown in Eq 18, this impedance has both ohmic (R) and reactive components (XC). In the 

‘Basics of Electroception’’ section we highlighted the fact that electroreception is not affected 

by shifts in frequency and it maintains the phase of the signature frequency. 

 

Z = R + XC    (18) 

 

This suggests that the impedance matching in electroception aims to maintain the ohmic value, 

while keeping the frequency dependent reactance at a minimum.  The transfer function of a 

system is a mathematical function relating the output or response of a system to the input or 

stimulus [113]. For systems that have the same impedance, the transfer function is equal to 1. 

This appears similar to a scenario where input and output EEG signals are matched.  In such a 

scenario the coherence is also equal to 1.  As such, for BeCoS we will use a coherence term to 

represent the ohmic resistance. 

 

The capacitive reactance, XC, for capacitance, C, at frequency, f, is computed [114] as shown 

in Eq (19): 
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XC =
1

2πfC
    (19) 

 

The capacitance, C, can be calculated [114] as shown in Eq (20) and Eq (21): 

C = I dV
dt

⁄     (20) 

C = εoεr
A

d
    (21) 

Where I is the current in amps, 
dV

dt
 is the voltage swing rate in Volts/second, εr is the dielectric 

constant, εo is the permittivity of free space (≈ 8.854×10
−12

 Farad/m). A is the overlap area 

between the two objects and d is the distance (in meters) between the two objects. 

 

The brain can be modeled as a constant current source [115] and in electroception the overlap 

area between the fish and the prey is relatively constant.  The dielectric constant and the 

permittivity of free space do not change.  As such only d and 
dV

dt
 may vary and these are the 

parameters that can be adjusted to alter the capacitance.  Both terms need to be low in order to 

keep C high. This is logical since the fish would prefer sensing prey located at a close distance 

to it.  The EEG signals do not provide any d parameter but the voltage swing rate can be 

calculated as shown in Eq 22: 

 

𝑆𝑤𝑖𝑛𝑔 =
1

t
∑ |xt − xt−1|
t
0   (22) 

where xt is the EEG signal at time, t 

 

The Swing Ratio (SR) is the ratio of the voltage swing of the system response (EEG signal 

being sensed) to the voltage swing of the stimulus (signature signal).  The impedance equation 

shown in Eq (18) can be re-written to indicate the parts for coherence and SR as shown in Eq 
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(23). BeCoS does not work with impedance per se, as such, another term will be used to 

describe this similarity- zygosity (ZBeCoS).  The name was inspired by a similar term used to 

describe the degree of identity in the genome of twins [116].  

 

ZBeCoS = R⏟
∝CXY

+   XC⏟
∝SR

     (23) 

 

ZBeCoS is dependent on the coherence and SR as shown in Eq (24): 

 

ZBeCoS ∝ (CXY , SR)    (24) 

 

From Eqs (23) and (24), an ideal optimized signature signal for BeCoS should have the 

following properties: 

1. Have a high level of coherence to the sensed signal 

2. Have a low swing ratio (ie the voltage swing of the signature signal should be high when 

compared to the voltage swing of the original EEG signal) 

The second property can be attained by making using a signature signal that follows a pattern 

similar to the pattern of the natural signature signal used by weakly electric fish- the sawtooth 

waveform pattern.  However, this signal still needs to be coherent with the sensed signal in 

order to meet the first requirement. 

 

According to [116] it is possible to maintain a high level of coherence between two signals 

with different amplitudes and/or phases as long as the phase difference tends to remain 

constant. In calculating coherence it is necessary to know how stable the phase between two 

waves is and how quickly it changes with time. In [117], the coherence of a high-order 

harmonic spectrum was controlled by adjusting the sawtooth shape parameter.   

Minimize 



 

42 

 

EEG signals reflect the personalized information about the unique anatomical and functional 

attributes of a patient’s brain, including personality traits and genetic information [118, 119, 

120, 121]. The signal coherence of EEG signals was used as a biometric in a recent study 

[107]. As such, the signature signal should have a high coherence when compared to a signal 

segment taken from the measured EEG signal.   

 

Based on the foregoing discussions a procedure for designing an ideal optimized signature 

signal is presented in the next section. 

 

Designing an Optimized Signature Signal 

In this section we describe the process for designing an ideal optimized signature signal that 

satisfies the primary requirement of high coherence and the secondary requirement of a large 

swing ratio as described in the previous section.  The process is shown in Fig 14. 

 

 
 

Figure 14 : Steps for generating an optimized signature signal 
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The following are the steps for generating an ideal optimized signature signal for BeCoS: 

 

1. The first option for getting a non-optimized signature signal involves the selection of a 

signal that is highly coherent with the signal to be sensed.  A segment of the sensed 

signal can be used as the seed signal. In this study the first epoch is used as the seed 

signal. 

2. The second option for a more optimized signature signal requires the addition of a 

sawtooth signal with a known voltage swing to the coherent signature signal used in 

the first option. This composite signal should still be coherent to the measured signal. 

3. A third option for an ideal optimized signal requires the addition of high valued input 

pulses to the summation of the seed signature signal and sawtooth signal.  The output 

of step 3, called ‘SS’, is then compared with the seed signal to determine the coherence.  

If the average coherence is high enough (≥0.9), then SS is chosen as the signature 

signal.  If the coherence is less than 0.9, steps ‘2’ and ‘3’ are iteratively modified 

until an ‘SS’ with the required coherence is attained. This gives an ideal optimized 

signature signal but the process has extra computational requirements. 

 

F. Results 

The EEG datasets were used to compare BSBL-BO and BeCoS based on the 5 metrics 

described in the previous section.  The tests were conducted on a Xilinx Virtex 5 FPGA and 

an Intel Pentium 4 system, with a 3.0GHz CPU and 2GB RAM. For the BSBL-BO experiments 

a 122 x 384 sparse binary sensing matrix, Φ, was used and a 244 x 244 inverse DCT matrix as 

the dictionary matrix, D. 
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Coherence 

The average coherence value for BeCoS and BSBL-BO were compared (Table 5).  The 

average coherence was also compared across a frequency range of 0-90Hz (Fig. 15). BeCoS 

had an average coherence of 0.949 across the 8 channels while BSBL-BO had an average of 

0.701. Also, BeCoS maintained a near optimum coherence between 2.1Hz and 84.38Hz.  On 

the other hand, BSBL-BO fluctuated across the spectrum with a peak of 0.996 at 0.7Hz and a 

trough of 0.497 at 90Hz.  

 

Table 5: Comparison of BSBL-BO and BeCoS Coherence Values 

BSBL-BO BeCoS % Increase 

0.701 0.949 35.38% 

 

Overall, BeCoS had 35.38% better average values.  BSBL-BO is an adaptive learning 

approach that exploits the intra-block correlation of the signals.  This is less linear than the 

BeCoS approach and increases the power of the noise in the reconstructed signal.  BeCoS 

generates a reconstructed signal that is linearly dependent on the original signal since the 

differential and integral operators used have a linear time invariant property in the Fourier 

domain.  
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Figure 15:  Coherence across the frequency spectrum 

 

Latency 

The latency refers to the time taken for sensing, processing, transmitting and reconstructing the 

neural signals.  In BSBL-BO it involves these stages as well as the learning stage as discussed 

earlier.  For BeCoS, it involves the steps shown in Eqs (12-13). The sensing, processing and 

reconstruction phases of BeCoS basically involve a few additions and multiplications.  For the 

BSBL-BO it involves additions on the accumulators that result from the sparse binary sensing 

matrix, the multiplications with the inverse DCT dictionary matrix and the learning process.  

 

With BeCoS we had an average of 0.117ms for processing each epoch, compared to 5.869ms 

that was used by BSBL-BO.  As such, BeCoS used just 1.99% of the processing time used by 

BSBL-BO.  The processing time we got was similar to the time reported in the reference 

BSBL-BO paper [93], where 105ms was used to process an epoch.  The epoch length used in 
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that paper was 384 data points for 32 channels.  This results in 0.273ms per data point or 

2.085ms per epoch.  That paper also used a 192x384 sparse binary matrix to sparsify the 

signal while we used a 122x244 sparse binary matrix for this work.  By factoring in this ratio 

of 2.477,  one can estimate that the process described in the reference paper would have taken 

about 5.165ms/epoch for the experimental setup used in this paper. Also, the system used in the 

reference paper had a 2.8GHz CPU and 6GB RAM while a system with a 3GHz CPU and a 

2GB RAM was used in this research. This may also explain why the result in the reference 

paper was slightly faster than the BSBL-BO processing results obtained in this research.  

 

Compression Ratio 

By representing the sensed signal with respect to a pre-specified signature signal, the BeCoS 

approach reduces a large portion of the original values to values that are close to zero. Values 

of the sensed signal, x, where |x|<0.99mV were taken to be sparse. This pseudo-sparsity 

reduces the dimensionality of the transmitted signal and increases the effective compression 

ratio (see Eq. 16). The comparison was based on the same optimal configuration for BSBL-BO 

used to attain a low-cost EEG system in [93] (compression ratio of 50%). As seen in Table 6, 

BeCoS achieved an average compression ratio of 76.73% or 53.26% better than BSBL-BO, 

even though the non-optimized signature signal was used for the analysis.  

 

Table 6: Comparison of BSBL-BO and BeCoS Compression Ratios 

BSBL-BO BeCoS % Increase 

50% 76.63% 53.26% 

 

 

Power and Hardware Resource Consumption 

Previous research [95] already shows that weakly electric fish use the electroceptive approach 
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to maximize the energy efficiency of their sensing process and we have also used it for the 

efficient sensing, processing and transmission of the neural signals. We implemented the core 

compression engines of BeCoS and BSBL-BO in hardware in order to get a realistic estimation 

of the power consumption at the patient-end of the telemonitoring system. 

 

The Simple Bus Architecture (SBA) [122] was used for both designs.  The SBA is lightweight 

computer architecture that implements a minimum essential subset of the open source 

Wishbone signals interface [123].  It consists of software tools and intellectual property (IP) 

cores that are interconnected by buses and it enables the implementation of a System on Chip 

(SoC). The availability of the essential blocks enable the system designer to concentrate on the 

core design and this helps to speed up the design process and makes it portable across different 

FPGA platforms. The master core is a special state machine that performs basic dataflow like a 

microprocessor without the high resource utilization that characterizes soft processor. 

 

The top level block diagrams for the BeCoS and BSBL-BO compression engines are shown in 

Fig 16 and 17 respectively. 

 

Figure 16:  Top level block diagram of the BeCoS compression engine 
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Figure 17:  Top level block diagram of the BSBL-BO compression engine 

The following blocks and signal names were used for the BeCoS engine (Fig 16): 

 SBA Controller: Master System Controller 

 SBA Decoder: SBA Address Decoder 

 DPSram: Dual Port Single Clock RAM 

 DataInf: Data Output Bus Interface 

 CLK_I: Main clock (1 bit) 

 RST_I: Active high reset (1 bit) 

 ADR0_I: Address output bus (8 bit) 

 DAT0_O: Data output bus (16 bit) 

 WE1_I: Write Enable (16 bit) 

 STB1_I: Strobe acknowledgement (1 bit) 

 ADR1_I: Address input bus (1 bit) 

 DAT1_I: Data input bus (8 bit) 

 INT-I: Interrupt (16 bit) 

 RAM 10  (0-255, for EEG data values) 

 RAM 00 (0-255 for output values) 

Similarly, the following blocks and signal names were used for the BSBL-BO engine (Fig 17): 

 SBA Controller: Master System Controller 

 SBA Decoder: SBA Address Decoder 

 DPSram: Dual Port Single Clock RAM 

 DataInf: Data Output Bus Interface 

 CLK_I: Main clock (1 bit) 

 RST_I: Active high reset (1 bit) 
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 ADR0_I: Address output bus (8 bit) 

 DAT0_O: Data output bus (16 bit) 

 WE1_I: Write Enable (16 bit) 

 STB1_I: Strobe acknowledgement (1 bit) 

 ADR1_I: Address input bus (1 bit) 

 DAT1_I: Data input bus (8 bit) 

 INT-I: Interrupt (16 bit) 

 RAM 10  (0-255, for EEG data values) 

 RAM 00 (0-127 for output values) 

 

A master clock of 160Hz was used. At each rising edge of the clock one EEG signal was sent 

as an input to the compression engine.  This process mimics the data acquisition process in a 

live PHM system where an EEG sensor captures signals at a given sampling rate. The epoch 

EEG data was stored in a RAM (RAM 10) with a resolution of 16bits.  The BeCoS engine 

stores 245 consecutive EEG signals in RAM 10 per epoch while the BSBL-BO engine stores 

244 EEG signals. Both systems used two banks of double port memories.  The first was for 

the input data whiled the second was for the output data. 

 

The BeCoS engine uses 3 internal buffers (IB1, IB2 and IBS). At each rising clock edge, an 

EEG signal is fed into the first internal buffer (IB1).  At the second rising edge, the content of 

IB1 is transferred to IB2 and the next EEG signal is fed into IB2. On the third cycle, the 

difference (IB2-IB1) is computed and stored in IBS (see Eq 11). The BSBL-BO engine has 244 

internal buffers because all 244 EEG values must be obtained in order to compute the output 

signals for each epoch. 

 

For BSBL-BO, at each rising edge of the clock a new consecutive EEG signal is stored in the 

internal buffers consecutively from IB1 to IB244. For BeCoS, only two consecutive signals are 

required to compute the corresponding output signal.  For example, the 1st and 2nd EEG 

signals are used to compute the 1st output, the 13th and 14th EEG signals are used to compute 
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the 13th output and the 244th output signal can be computed when the 244th and 245th EEG 

values are in the internal buffers. The buffers were implemented using Configurable Logic 

Blocks (CLBs). 

 

To compute the output signal, the BeCoS engine divides the value of the BS buffer with the 

corresponding signature signal as shown in Eq. 12. The signature signals were stored in a ROM 

table. The BSBL-BO output signals were computed using a sparse binary sensing matrix (Φ) as 

shown in Eq. 5. Each column of the sensing matrix contained just two non-zero entries to allow 

the use of accumulator registers, rather than multipliers. The resulting output signals were then 

generated based on the sensing matrix. The BeCoS engine has an output of 244 signals while 

the BSBL-BO has an output of 122.  As such, the BeCoS system has 244 output registers 

(OR) while the BSBL-BO approach has 122 output registers. 

 

Table 7: Comparison of the Power and FPGA Resource Utilization for the BSBL-BO and 

BeCoS Core Engines 

 FFs LUTs IOBs BRAMs Power 

Total No of FPGA 

Resources 

69,120 69,120 

 

640 

 

148 

 

- 

BSBL-BO 

(% Utilization) 

3,981 

(5.8%) 

1,743 

(2.52%) 

51 

(7.97%) 

2 

(1.35%) 

1.204W 

BeCoS 

(% Utilization) 

123 

(0.18%) 

881 

(1.27%) 

52 

(8.13%) 

3 

(2.03%) 

1.191W 

 

 

The hardware synthesis report is shown in Tab. 7 and it gives the resource utilization for both 

systems using a Xilinx Virtex 5 FPGA (XUPV5-LX110T).  The table shows the amount of 
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Flip Flops (FF), Look Up Tables (LUTs), Input Output Blocks (IOBs) and Block RAMs 

(BRAMs) used.  

 

The Value Change Dump (VCD) was used with the Xilinx Power Analyzer to calculate the 

power consumption of both systems.  The results are also shown in Table 7.  BeCoS used 

13mW less power than BSBL-BO to process one epoch of EEG signals at the patient’s end.  

To put this figure in better perspective, let us assume the system at the patient’s end is running 

on a Samsung Galaxy 4 phone with an Li-Ion battery rated at 2100mAh and 3.8V.  This 

battery would serve the BSBL-BO system for 8,837 hours and the BeCoS system for 

8,933hours- a difference of 96 hours or 4 days. 

 

Structural Similarity 

The average CW-SSIM values for both BSBL-BO and BeCoS are shown in Tab. 8. 

 

Table 8: Comparison of BSBL-BO and BeCoS CW-SSIM 

BSBL-BO BeCoS % Increase 

0.969 0.908 -6.295% 

 

Tab 8 shows that BeCoS has an average CW-SSIM decrease of 6.295%. As noted in the 

metrics section of structural similarity, the SSIM is highly altered by the scaling of the signal.  

Similarly, its enhancement (CW-SSIM) still gets affected by scaling and rotation, even though 

it is more robust that SSIM. There is a degree of scaling in the BeCoS approach as a result of 

the numerical integration during the reconstruction phase and this invariably lowers the CW-

SSIM. 

 

However, as seen in Figs 18-20, regardless of the scaling and translation, the structure of the 
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reconstructed signal using the BeCoS approach is still strikingly similar to the original EEG 

signal.  

 

Figure 18:  CW-SSIM for Ch7 [1:700] 

 

 

Figure 19:  CW-SSIM for Ch1 [3000:3650] 
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Figure 20:  CW-SSIM for Ch4 [6300:6900] 

 

Effects of Variations on SSIM and CW-SSIM 

To further explain the lower CW-SSIM value for BeCoS, consider a random sample shown in 

Tab 9 with columns for the original sample, its numerical differentiation, numerical integration, 

numerical integration plus the offset value and the variation. Numerical integration, as opposed 

to analytical integration, uses approximations and introduces a non-uniform variation when 

compared to the original signals. In order to use analytical approaches the exact equation of the 

signal must be known in advance and this is not possible for real time physiological signals.  

As such, a numerical integration method is the most feasible integration approach that can be 

used for such signals. 

 

Table 9: Effect of Numerical Methods on Signal Reconstruction 

Original Num Diff 

Num 

Int 

Num Int + 

Offset Variation 

40 1.2 0 40 0 

41.2 1 1.1 41.1 0.1 

42.2 1 2.1 42.1 0.1 

43.2 0.8 3 43 0.2 
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44 0.8 3.8 43.8 0.2 

44.8 0.6 4.5 44.5 0.3 

45.4 0.6 5.1 45.1 0.3 

46 0.5 5.65 45.65 0.35 

46.5 0.3 6.05 46.05 0.45 

46.8 0.3 6.35 46.35 0.45 

47.1 0.2 6.6 46.6 0.5 

47.3 0 6.7 46.7 0.6 

47.3 0 6.7 46.7 0.6 

47.3 -0.1 6.65 46.65 0.65 

47.2 -0.2 6.5 46.5 0.7 

47 -0.3 6.25 46.25 0.75 

46.7 -0.5 5.85 45.85 0.85 

46.2 -0.5 5.35 45.35 0.85 

45.7 -0.6 4.8 44.8 0.9 

45.1 -0.7 4.15 44.15 0.95 

44.4 -0.8 3.4 43.4 1 

43.6 -0.9 2.55 42.55 1.05 

42.7 -1 1.6 41.6 1.1 

41.7 -1.1 0.55 40.55 1.15 

40.6 -1.2 -0.6 39.4 1.2 

39.4 -1.3 -1.85 38.15 1.25 

38.1 -1.4 -3.2 36.8 1.3 

36.7 -1.5 -4.65 35.35 1.35 

35.2 -1.6 -6.2 33.8 1.4 

33.6 -1.7 -7.85 32.15 1.45 

31.9 -1.8 -9.6 30.4 1.5 

30.1 -1.9 -11.45 28.55 1.55 

28.2 -2 -13.4 26.6 1.6 

26.2 -2 -15.4 24.6 1.6 

24.2 -2.2 -17.5 22.5 1.7 

22 -2.3 -19.75 20.25 1.75 

19.7 -2.4 -22.1 17.9 1.8 

17.3 -2.5 -24.55 15.45 1.85 

14.8 -2.5 -27.05 12.95 1.85 

12.3 -2.7 -29.65 10.35 1.95 
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9.6 -2.8 -32.4 7.6 2 

6.8 -2.8 -35.2 4.8 2 

4 -3 -38.1 1.9 2.1 

1 -3.1 -41.15 -1.15 2.15 

-2.1 -3.1 -44.25 -4.25 2.15 

-5.2 -3.3 -47.45 -7.45 2.25 

-8.5 -3.3 -50.75 -10.75 2.25 

-11.8 -3.5 -54.15 -14.15 2.35 

-15.3 -3.5 -57.65 -17.65 2.35 

-18.8 -3.7 -61.25 -21.25 2.45 

 

Fig 21 shows the original sample and sample reconstructed by numerical integration as well as 

this reconstructed sample value plus an addition of the initial offset. 

 

 

Figure 21:   Effect of Numerical Methods on Signal Reconstruction 

 

The figure clearly shows that all three signals have a similar structure.  The variation is shown 

in Fig. 22.  A regression analysis was used to generate a Linear Regression Variation (LRV) 

model in order to estimate the equation of this variation and we obtained the following 
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equation:  

y=0.049011x+(-0.02478) 

 

 

Figure 22:  A Model of the Variation Generated by Numerical Methods 

We have used the data in channel 1 of the EEG signals used in this research to visualize the 

effect of variations on the SSIM and CW-SSIM values. The SSIM and CW-SSIM were 

calculated by comparing the data in channel 1 with the following samples: 

(i) Original sample (comparing it with itself, Or) 

(ii) Original sample minus 1mV (Or-1) 

(iii) Original sample plus 1mV (Or+1) 

(iv) Original sample minus 5mV (Or-5) 

(v) Original sample plus 5mV (Or+5) 

(vi) Original sample plus 10mV (Or+10) 

(vii) Original sample plus 20mV (Or+20) 

(viii) Original sample plus 50mV (Or+50) 

(ix) Original Sample plus Linear Regression Variation model (Or+LRV) 

(x) Original Sample plus Linear Regression Variation model, treating it one 

epoch at a time (Or+LRV, 1 epoch) 
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Figure 23:  The Effect of Variation on SSIM 

 

Figure 24:  The Effect of Variation on CW-SSIM 

 

As seen from Fig 23, any variation beyond 1mV significantly diminishes the SSIM values.  

The SSIM value for Or+LRV is almost zero but it gives a better result when it is treated epoch 

Or Or-1 Or+1 Or-5 Or+5 Or +10 Or+20 Or+50 Or+LRV

Or+LRV

(1

epoch)

SSIM 1 0.728 -0.5731 0.2595 -0.3475 -0.1635 -0.0789 -0.0309 -0.0015 0.8638
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by epoch. 

 

The CW-SSIM measurements are fairly stable for different variations. The degradation 

becomes more apparent for higher variations as well as for the model that uses LRV. Such a 

model is feasible in practice since PHM systems are likely to fall under the LRV model.  This 

is because the noise level experienced by the system can be affected by the location of the 

patient as well as the condition of the sensors. 

 

The CW-SSIM calculation in the BeCoS approach is similar to the LRV based model and this 

explains why the values are lower than the CW-SSIM values for the BSBL-BO approach even 

though the reconstructed signals look similar.  The CW-SSIM was used for the analysis in this 

research because it is currently regarded as one of the most robust approaches for measuring 

structural similarity.  However, in the future it may be necessary for researchers to develop a 

new type of structural similarity index that is more robust to variations such as LRV. 

 

A Combination of BeCoS and BSBL-BO for Personalized Health Monitoring 

The following points succinctly describe how BeCoS relates to traditional CS techniques used 

for the telemonitoring of biosignals: 
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1. BeCoS can be used as a lightweight approach for significantly sparsifying an 

otherwise non-sparse signal.  We obtained a compression ratio of at least 75% in 

each case. After this stage the sparse biosignal can be suited to traditional CS 

techniques 

2. BeCoS can be used as a stand alone technique as an alternative to conventional CS 

techniques used for the telemonitoring of 'costly-to-sparsify' biosignals.   

.  
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IV. R-READER: An Algorithm for Lightweight Detection of 

Fiducial Points in the Cardiovascular Domain 

A. Detection of R-peaks in ECG Signals 

The accurate identification of the R-peak of an electrocardiogram (ECG) cycle is the first step 

towards automated classification of the cycle. In this chapter we present a lightweight 

algorithm, known as R-READER: a Rapid-Ramp Effective Algorithm for Detection of ECG R-

peaks. It is based on an intuitive and effective identification of inflexion points in the ECG 

cycle through the calculation of adjacent slopes between the signals.  Traditional techniques 

require a number of expensive filtration stages in order to detect the R-peaks.   

 

The R-READER approach significantly reduces the amount of filters and takes advantage of 

the unique shape and fiducial features of the ECG signal to accurately identify the R-peaks.  It 

is compared with the Pan-Tompkins (P-T) algorithm - a popular lightweight algorithm used for 

the detection of R-peaks. The MIT-BIH Arrhythmia database was used for the analysis. 

. 

The Fiducial Points of an Electrocardiogram 

An ECG signal is a record of the electrical activity of the heart and it is the basic cardiologic 

test used to analyze the condition of a patient’s heart [124, 125].  It gives a graphic 

representation of the readings obtained from electrodes that are placed on the surface of the 

human skin and near the heart. [126].  The ECG signal is made up of a number of 

regions/fiducial points, namely the P-wave, Q-R-S complex and the T-wave as shown in Fig. 

25. It traces a morphology identified by P, Q, R, S and T peaks and troughs [127]. The QRS-

complex is the most distinguishing feature of the ECG and it serves as the basis for detection 
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and analysis.  The peak of this complex is known and the R-peak and it is the most important 

point in virtually every ECG algorithm.  The ECG signal has the most unique fiducial points 

when compared to other biosignals and R-READER takes advantage of this attribute. 

 

Figure 25:  A Typical ECG Signal Showing the Fiducial Points  

 

Automated R-peak Detection 

As stated earlier, personalized health monitoring has become an important approach to patient 

care and ECG monitoring is the most common feature of this approach. The R-peak is the most 

striking point in the QRS complex.  In general, the R-peak of an ECG cycle is that point in the 

cycle where the highest (or lowest) amplitude occurs.  Its detection is the most important step 

in the diagnosis of cardiac disorders and is the basis for virtually all ECG algorithms [128]. The 

heart rate variability (HRV) can say a lot about a person’s health.  For example, diabetes, 

arrhythmias, sleep apnea, congestive heart failure, neonatal sepsis and even Post-traumatic 

stress disorder (PTSD) can be inferred from the heart rate and heart rate variability (HRV), all 

of which can be computed when the locations of the R-peaks are known [129, 130, 131, 132, 

133]. 
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There are a number of automated methods for the detection of the R-peaks of the ECG signals 

already in literature.  A common approach for most existing methods involves the use of two 

stages, namely the preprocessor stage and the decision phase.  The preprocessor phase is used 

to improve the general quality of the ECG signal; a major part of which is the denoising of the 

signal.  After this is complete, the decision phase is activated for the selection of the per-cycle 

R-peak based on some given algorithm. 

 

A range of techniques currently being used for these phases are based on Derivatives & Digital 

Filters, Wavelet Transformation, Neural Networks and Genetic algorithms amongst others [134, 

135].  The Derivatives & Digital Filters approaches are the most common.  This approach is 

based on the fact that typical ECG signals have frequency components between the ranges of 

about 10Hz to 25Hz.  A filter stage is thus used to suppress components outside this range.  

The most well known algorithm in this approach is the algorithm proposed by Pan & Tompkins 

[136, 137].  Most research papers that focus on algorithms for the real-time detection of R-

peaks compare themselves to the Pan-Tompkins algorithm.  The paper has been cited 793 

times [138]. 

 

The P-T algorithm uses a set of filters to extract a noise free ECG signal before the detection of 

R-peaks and the QRS complex.  Prior to the detection phase, the P-T passes the ECG signal 

through low and high pass filters, followed by a differentiator, a squaring operator and a 

moving window integrator.  These stages are shown in Fig. 26. 
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Figure 26: Steps in the Pan & Tompkins Algorithm 

 

It also takes advantage of the fact that there is a steep slope in the region surrounding the QRS 

complex.  The use of thresholds, θ and θ2, make up a major part of the P-T algorithm.  These 

thresholds are determined after two learning phases and QRS complexes are only searched for 

in regions that exceed the thresholds; θ is the primary threshold of interest and θ2 (which is a 

fixed fraction of θ) is only used as a backup threshold if no values exceed the primary threshold 

after a given time interval. 

 

Noise and the ECG Signal 

 

It is common to have ECG records that include noise from many sources [139].  Such noises 

include noise from sources like muscle movements and powerline interference.   Muscle 

movement noise results from the patient’s movement, while power line interference is the 

50/60Hz noise that is due to the presence of power lines around the location of the patient.  

The fiducial points in a noise-contaminated ECG signal may be obscured to such a point that 

detection can become difficult. An ECG analyzer performs many tasks, but its task of dealing 

with the noise has been identified as the major problem faced by system designers [140]. 
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Traditional methods of dealing with noise involve the use of one or more types of filters- high 

pass low pass filters.  However, the use of such methods presents two challenges; the first is 

that it increases the computational complexity of the system, along with the hardware and 

software resources required to obtain a reliable result.  The second challenge is that the 

accuracy of the filtering depends on an accurate or near accurate knowledge of the type(s) of 

noise present in the ECG signal.  The coloration of the noise can play an important role in the 

accuracy of the results.  The ideal situation is for the system designer to know the type of 

noise(s) affecting the signal.  However this is not always feasible.  Also, the growing trend 

of ambulatory PHM of ECG signals further limits the designer’s knowledge of the noise 

experience by the system in such a situation. 

 

The R-READER approach has been designed to support lightweight and dependable analysis 

of ECG signals in the presence of different kinds of noise without the need to filter the signal 

prior to analysis. 

 

Overhead and Complexity of Filtering Techniques 

As mentioned earlier, the complexity of the preprocessing stage of the P-T algorithm 

introduces some overhead in the detection process.  These overheads fall under different 

categories, including overhead in terms of time and memory.  A total of four filtration steps 

are present in the P-T Algorithm, namely the low pass filter, high pass filter, differential filter 

and moving window integrator filter. The P-T algorithm uses approximate integer filter and this 

makes it suitable for lightweight real-time R-peak detection.  An integer filter is a special type 

of filter that has only integer coefficients [141].  

 

The P-T algorithm is widely acknowledged to be one of the ECG processing algorithms with 

the least degree of processing complexity.  It uses approximate integer filters.  This makes it 
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suitable for lightweight real-time R-peak detection and for use in PHM systems.  However, 

the overhead incurred in the filtration phases still accounts for a significant amount of 

processing overhead. 

 

Algorithms can be implemented in either software or hardware (usually with FPGAs), with the 

FPGAs generally considered to have better performance in terms of speed.  By using integer 

filters the P-T algorithm is suitable for implementation in hardware.  However, even with this 

advantage there is still a considerable penalty.   

 

For example, with a Xilinx Spartan®  xc3s5000 FPGA, an average delay of 16 samples is 

introduced in the low pass filter, 6 samples from the high pass filter, 2 samples from the 

derivative filter, 7 samples from the squaring and 16 samples from the moving window 

integrator [142].  This gives a total of 47 sample delays or a 235s delay at a sampling rate of 

200Hz. Again, this inhibits the goal of a lightweight real-time PHM system. 

 

Another penalty worth noting is the memory penalty.  It depends on the amount of previous 

samples required to make a decision about a fiducial point. The preprocessor stage of the P-T 

algorithm requires at least 32 previous samples in order to determine a fiducial point.  More 

often, due to possible delays in the processing stage, memory capacity in excess of this amount 

is required; [142] used 60 samples.  These samples are stored in the system’s RAM.  These 

overheads do not even include the additional overhead required to implement the various filters. 

 

MIT-BIH Arrhythmia Database 

The Massachusetts Institute of Technology- Beth Israel Hospital (MIT-BIH) Arrhythmia 

database [143] contains 48 two-channel ambulatory ECG recordings that last for 30minutes 

each.  They were sampled at 360 samples per second and have a resolution of 11 bits over a 
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10mV range.  Each of the records includes a detailed annotation by experts and this provides a 

vital guide during the analysis of the accuracy of ECG algorithms. Most of the research articles 

focused on ECG algorithm use this as the test database [144].  The best (least noisy) record- 

Record #100 and the worst (most noisy) record- Record #108, were used to analyze R-

READER and P-T algorithms. 

 

B. The R-READER Process 

The design of R-READER has been guided by the objectives of having a light-weight, fault 

(noise) tolerant, latency reducing and quasi-realtime ECG analyzer for rapid and dependable 

analysis even in resource constrained environments, such a mobile phones and personal digital 

assistants (PDAs).  Thus, R-READER has been designed to strike a balance between the 

complexity of the algorithm and the dependability of the analysis.  Many previous algorithms 

expend a lot of overhead on the preprocessor stages, especially the filtering of the signals.  As 

such, a prime motive for this work is the design of a technique that reduces or eliminates the 

need for signal filtering without sacrificing the accuracy of the results. 

 

R-READER is based on the characteristics of the slopes of adjacent ECG signals and the 

identification of inflection points in the signal.  As shown in Fig 25, the ECG signal is 

comprised of 3 major parts, the most prominent of which is the QRS complex, with the R-peak 

being the distinguishing feature of the complex. 

 

A close observation of an ECG signal shows that the absolute values of the ECG signals in the 

QRS complex have the greatest values when compared to the signals of the other regions. It 

gives a sloping surface between the interconnection levels, also known as a ramp, and this 

inspired our choice of the name for the algorithm.  Using these varying slopes as a basis, we 

have developed an algorithm that can rapidly detect the QRS-complex region, especially the 
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start-of-complex, R-peak and end-of-complex. An example of the selection of fiducial points 

for one of the cycles in record #100 is shown in Fig. 27. 

 

The slope, s, between any two signals, x, is given by Eq (25): 

s =
xn−xn−1

tn−tn−1
  (25) 

where x is the signal and t is the corresponding time 

 

The time between samples is given by the sampling period and this is the inverse of the 

sampling frequency.  In effect, every adjacent signal is separated by the same constant 

interval- the sampling period.  This makes it possible to simplify the equation by removing the 

denominator to get a modified slope, sm, for use in R-READER as shown in Eq (26). This 

approach reduces the complexity involved in implementing the algorithm.   

sm = 𝑥𝑛 − xn−1  (26) 

where x is the signal  

 

 

 

 

 

 

 

 

 

 

Figure 27:  R-READER’s Selection of Fiducial and R-peak points for Record #100 
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Each of the fiducial points of the ECG signal occurs at an inflexion point.  An inflexion point 

is a point on a graph where the slope changes sign.  This simple point enables us to streamline 

the algorithm to obtain an efficient and accurate algorithm devoid of unnecessary complexity.   

 

The steps are described below: 

(i) Find the modified slope, sm, between two adjacent signals xn and xn-1 

(ii) Detect the presence of inflexion points from the slopes; inflexion points exist if 

there is a sign change between the adjacent modified slope values, sm,n and sm,n-1 

(iii) Store the ECG signal xn corresponding to the presence of a positive modified 

slope sm,n+ as the candidate cycle-r-peak; also store its associated sample time, tn 

(iv) Store the average maximum R-peak, Rpmax for the cycles 11-20 (the first 10 

cycles are omitted to enable us obtain a Rpmax that reflects the overall ECG 

signal rather than the transients at startup) 

(v) Determined the peak-adjacency-interval-detector (p-a-i-d) as the average of the 

intervals between the first 10 R-peak values analyzed 

(vi) Subject the subsequent analysis to the following conditions: 

a. the absolute value candidate cycle-r-peak must be greater than the R-peak 

threshold, R-p-Th, where R-p-Th>0.6* Rpmax  

b. adjacency between candidate r-peaks must be at least 0.5 of the p-a-i-d, but 

not greater than 1.5 of the p-a-i-d  

c. recompute Rpmax and/or p-a-i-d if the preceding 10 detected values fall 

below 0.8 of the current Rpmax and/or p-a-i-d of after 500 detected R-peaks, 

whichever comes first 

(vii) For multiple inflexion points in the region of interest, the following 4-point 

sieving criteria is used: 
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a. choose the maximum value closest to the p-a-i-d interval signal from the 

last selected R-peak 

b. first priority is given to signals that are ±5samples from the p-a-i-d interval 

signal from the last selected R-peak 

c. second priority is given to signals that are ±5inflexion points from the p-a-i-

d interval signal from the last selected R-peak 

d. third priority is given to signals that are ±10inflexion points from the p-a-i-d 

interval signal from the last selected R-peak 

(viii) Compare the R-peak signal points to the R-peak points in the annotated result 

(ix) Determine the accuracy, sensitivity and positive predictivity 

 

The post-training steps in the R-READER 2.0 algorithm are depicted in the flowchart shown in 

Fig.28. 
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Figure 28: Flowchart of Steps in the R-READER Process 
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The R-READER Training Process, p-a-i-d and Rpmax 

A training process, also known as learning phase, is an important requirement in many 

adaptable algorithms.  It allows a designer to obtain an optimized result for any given scenario.  

The R-READER training process involves the implementation of the algorithm to detect the R-

peaks in the first 20 cycles.  For this phase, an initial Rpmax value of 0.6 is used. 

 

For the R-READER algorithm there are two key parameters upon which the decisions are 

based- namely the Rpmax and the p-a-i-d. The Rpmax is the median maximum R-peak for a given 

set of cycles being reviewed.  It gives a good estimate of the expected range of the R-peak in 

subsequent cycles and enables the selection of a threshold value as a fraction of the Rpmax.  An 

initial value is determined at the onset of the execution of the algorithm and is used for the 

remainder of the analysis.  However, R-READER is an adaptable algorithm, as such, a new 

calculation of Rpmax can be initiated by the system designer or automatically if the preceding 10 

R-peaks of the current analysis all fall below 0.8 of the current Rpmax or after 500 detected 

peaks, whichever comes first. 

 

The next important parameter is the peak-adjacency-interval-detector (or p-a-i-d).  This 

parameter is also very crucial as it helps the algorithm to eliminate potential R-peaks that occur 

too soon after a selected R-peak.  The basis of using this parameter stems from the fact that is 

physiologically impossible for a patient to encounter an R-peak within a given time window 

after a previous R-peak.  The p-a-i-d value takes precedence over the R-p-Th in the 

determination of the R-peak for a given cycle.  Again, the p-a-i-d value is obtained after the 

training process at the onset of the execution of the algorithm and a recalculation can be 

initiated automatically or by the system designer, similar to the case with Rpmax. 
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In both cases the training values from the first 10 cycles are discarded and the decisions are 

made based on the values obtained from cycles 11-20.  This is to rule out the effect of 

transient values that are possibly obtained during the start of the ECG readings in preference 

for values that are likely to better reflect the overall ECG signals. 

 

R-READER and Filtering Process 

A key goal of the various filtering steps used in P-T and related algorithms is the accentuation 

of the fiducial points.  Since all these fiducial points occur at inflexion points, R-READER 

focuses on locating all the existing fiducial points without filtering and these points are used as 

a basis for decision making in the R-READER process. 

 

At a sampling rate of 200Hz, each ECG sample point occurs 5ms after the preceding sampled 

point.  Noise, regardless of its coloration, occurs for a finite duration of the ECG signal and 

when it occurs it affects a group of succeeding samples, rather than just an individual sample.  

As such, it is still possible to accurately determine the relative inflexion points in an ECG 

signal even in the presence of noise. 

 

C. Performance Evaluation  

To assess the performance of R-READER, we have selected some records from the MIT-BIH 

Arrhythmia Database.  In particular, we have chosen the best (least noisy) record- #100 and 

the worst (most noisy) record- #108.  Both records run for approximately 30 minutes and 

include 650,000 samples, containing an average of over 2,000 cycles each.  The #100 is from 

a 69 year old male patient, while the #108 is from an 87 year old female patient. Record #108 

is widely acknowledged as being a very noisy signal [145]. 
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The R-READER is compared with the popular Pan Tompkins algorithm using the following 

metrics: 

 Average Accuracy 

 Positive Predictivity and 

 Sensitivity 

In line with convention, the accuracy has been determined as the proportion of the true 

positives (TP), which is the number of right R-peak locations detected within ±5 samples from 

the peak chosen by the annotators of the database [140].  The failed detections are the false 

positives (FP) and false negatives (FN).  The false positives refer to detections made by R-

READER that were not chosen by the annotators while the false negatives are the peaks that 

were not detected by R-READER but were identified by the annotators.  The accuracy can be 

calculated by Eq (27). 

Accuracy =  
1−Failed Detections

Total Beats Given in Annotation
   (27) 

The positive predictivity, +P, is given by Eq (28): 

 

+P =
TP

TP+FP
    (28) 

 

The sensitivity, Se, is given by Eq (29): 

 

Se =
TP

TP+FN
    (29) 

 

Tables 10 and 11 compare the R-peak positions chosen by R-READER for the first 20 cycles 

and the ones chosen by the annotators for records #100 and #108 respectively.  It also gives 

the deviation between the R-READER detected values and those detected by the annotators. 
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Table 10. R-Peak Points in R-READER and Annotation for Record #100 

 

Cycle # R-

READER 

R-peak 

Annotated 

R-peak 

Deviation 

1 78 77 1 

2 371 370 1 

3 664 662 2 

4 948 946 2 

5 1232 1231 1 

6 1516 1515 1 

7 1810 1809 1 

8 2046 2044 2 

9 2404 2402 2 

10 2707 2706 1 

11 2999 2998 1 

12 3284 3282 2 

13 3561 3560 1 

14 3864 3862 2 

15 4172 4170 2 

16 4467 4466 1 

17 4766 4764 2 

18 5062 5060 2 

19 5348 5346 2 

20 5635 5633 2 
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Table 11. R-Peak Points in R-READER and Annotation for Record #108 

 

Cycle # R-

READER 

R-peak 

Annotated 

R-peak 

Deviation 

1 23 23 0 

2 88 89 1 

3 442 442 0 

4 789 791 2 

5 1155 1156 1 

6 1493 1493 0 

7 1821 1822 1 

8 2157 2158 1 

9 2517 2518 1 

10 2889 2890 1 

11 3238 3238 0 

12 3593 3594 1 

13 3924 3926 2 

14 4105 4104 1 

15 4197 4198 1 

16 4602 4604 2 

17 4971 4972 1 

18 5350 5351 1 

19 5715 5716 1 

20 6115 6115 0 

 



 

76 

 

Table 12 compares the R-READER and P-T algorithms for records #100 and #108 in terms of 

true positives, false positives, false negatives, accuracy, positive predictivity and sensitivity.  

Graphical comparisons of the accuracy, positive predictivity and sensitivity are shown in Fig. 

27, Fig. 28 and Fig. 29 respectively. 

 

Table 12. Accuracy of the R-READER Algorithm 

Record#100 

Algorithm Total Number 

of ECG Cycles 

TP FP FN Accuracy +P Se 

P-T 2273 2273 0 0 100.00% 100.00% 100.00% 

R-READER 2273 2273 0 0 100.00% 100.00% 100.00% 

Record #108 

Algorithm Total Number 

of ECG Cycles 

TP FP FN Accuracy +P Se 

P-T 1763 1542 199 22 87.47% 88.57% 98.59% 

R-READER 1763 1724 31 8 97.79% 98.23% 99.54% 

Average Accuracy of Both Records 

Algorithm Accuracy +P Se 

P-T 93.74% 94.29% 99.30% 

R-READER 98.90% 99.12% 99.77% 
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Figure 29: Accuracy Comparison for the 2 Algorithms 

 

 

Figure 30: +P Comparison for the 2 Algorithms 
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Figure 31: Se Comparison for the 2 Algorithms 
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V. Conclusion and Future Work 

A. Conclusion 

In this thesis we have dealt with the design considerations for developing PHM systems.  In 

particular, we have focused on the need for lightweight processing as a means of reducing the 

complexity of such systems.  We noted the importance of system dependability in PHM 

systems and proposed some techniques that satisfy the need for lightweight processing as well 

as the need for system dependability. 

 

The Cardiovascular and Neurologic domains were chosen as the main domains of interest.  

The former was chosen because it accounts for a large proportion of current PHM systems.  

The latter was chosen because of the growing interest in the domain as a result of the steep rise 

in the number of people with neurologic disorders around the world. We proposed a lightweight 

technique for each of the domains. 

 

The Rapid-Ramp Effective Algorithm for Detection of ECG R-peaks (R-READER) algorithm 

was proposed for the cardiovascular domain.  The current lightweight techniques require a 

cascade of filters before the detection of R-peaks of an ECG signal can take place. The R-

READER is an intuitive technique that takes advantage of the unique shape of ECG signals to 

accurately detect the R-peaks without a need for the traditional filter approach. It was 

compared to the widely used Pan-Tompkins algorithm and it gave superior results in terms of 

accuracy, sensitivity and positive predictivity.  

 

We also proposed a Bio-inspired electroceptive Compressive System (BeCoS) for the 

lightweight processing of neural signals.  BeCoS was inspired by wave-type active 
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electroception used by weakly electric fish.  It included some key features of the 

electroceptive approach and was able to achieve the lightweight sensing, processing, 

transmission and reconstruction of neural signals. BeCoS was compared to the Block Sparse 

Bayesian Learning-Bound Optimization (BSBL-BO) technique- a popular approach for 

lightweight processing of neural signals.  Metrics like latency, coherence, level of 

compression, estimated power and structural similarity were used to compare both approaches.  

BeCoS gave superior results for most of the metrics. 

 

B. Future Work 

For future work we plan to develop algorithms for other PHM domains as well as algorithms 

that emphasize a need for adaptation to the unique characteristics of the patient, in addition to 

the current requirements for lightweight processing and system dependability. We intend to 

further profile and refine the R-READER by running it on embedded systems used for Holter-

based long term monitoring of ECG signals. 

 

The BeCoS approach has been used for the monitoring of neural signals in this thesis.  

However, the technique can be used telemetry of other biosignals as well, especially for signals 

that are difficult or expensive to sparsify.  The signature signal also has the potential to be 

used as an EEG-based biometric and we plan to explore this possibility in the near future. By 

using an appropriate disease signature signal, this approach has the potential to be used for the 

screening of blood for diseases based on the computed values for resistance and capacitance. 

 

Personalized health monitoring is still in its infancy and it has elicited a lot of interest.  

However, it is yet to be accorded the same level of priority and importance as the health 

monitoring based on medical instruments located at the hospital. The design of algorithms and 

techniques that support lightweight signal processing, system dependability and adaptation to 
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the patient's personal profile will improve the utility and importance of PHM systems.  
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Appendix A 

APPENDIX A. Summary of Studies included in the Review 

S/N AUTH

-ORS 

YEAR JOURNAL ARCHITECTURE APPLICATION ADAPTATION/ 

PERSONALIZA

TION 

STUDY DESIGN OUTCOME/ RESULTS 

1. Koehle

r et al. 
2-1 

2011 Circulation 

(Journal of the 

American 

Heart 

Association) 

12-lead ECG, BP, Weight; Dynamic encryption on cell phone; PDA 

(Central Device), Bluetooth (Communication) 

Impact of remote 

monitoring on 

Chronic Heart 

Failure 

 710 stable chronic heart 

failure patients; 17-month 

(duration); Low statistical 

power (limitation); Study 

evaluated effect of remote 

telemonitoring on 

mortality. 

Primary outcome: Rate of all 

cause mortality (death) was 

reduced to 8.4% as compared 

with 8.7% for normal care; 

 

Secondary outcome: 

Cardiovascular death and 

hospitalization per 100 person 

years of follow up reduced to 

14.7% as compared to 16.5% for 

normal care. 

2. Ricci 

et al  
2-2 

2009 Eurospace 

(Europe 

Society for 

Cardiology) 

Home monitoring, long distance telemetry, automatic transmission 

of pacemaker data on a daily basis; 

 

Implanted cardio device (ICD) with wireless telemetry via a GSM 

phone as encrypted sms; 

 

Data transmitted every night and critical conditions are reported to 

service center within 3 minutes; 

 

Error detection to distinguish between true arrhythmias and R-wave 

far field oversensing. 

Impact of home 

monitoring on 

Atrial Fibrillation 

(AF) 

Pacemaker and 

ICD programming 

was tailored to 

patient’s 

individual clinical 

profile 

166 patients for 2 years Remote monitoring led to AF 

detection and alert that occurred 

an average of 148days before 

scheduled follow up visit 

 

Limitation: It was an 

observational study with no 

clinical outcome 

 

Open issue: how to select 

appropriate alerts 

3. Guerri 

et al  
2-3 

2009 Multimedia 

Tools and 

Applications 

8-channel Surface EMG, Portable handheld prototype (Platform),  

 

connected to phone/PDA via WiFi; PDA: HP IPAQ HX4700, 

phone: Nokia E41; Includes online telemetry mode and offline 

mode (with storage on CF card) 

Use of mobile 

devices and 

wireless 

networking for 

assessment of 

muscular 

conditions 

Configured via a 

mobile device;  

 

Configuration was 

based on patient’s 

profile or system 

parameters like 

duration of 

exercise, sampling 

frequency and 

monitored muscle 

 

Config modes: 

Offline and online 

Duration: 55 seconds 

 

Phase 1: Feasibility and 

Reliability: 12 volunteers 

 

Phase 2: Usability 

Assessment: 

Questionnaires completed 

by 7 users 

Design of a portable device 

capable of advanced EMG 

measurements 

 

Can be used by both expert and 

non-expert users 

4. Kang 2006 IEEE Wrist worn device with 6 biosensors for: (i) Fall detection [2-axis Wrist-worn  Limitation: Low fidelity Error Range and Detection 
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et al. 2-

4 

Transactions 

on 

Instrumentatio

n and 

Measurement 

accelerometer, gyroscope and in-house posture sensor] (ii) 1-

channel ECG textile electrode (iii) Noninvasive BP [based on a 

wrist cuff] (iv) SPO2 (v) Respiratory Rate [based on Virtual sensing 

of r-r intervals of ECG] and (vi) Body Surface Temperature 

 

A cellular phone was used as the connection gateway; wireless 

connection used between wrist worn device and phone; CDMA was 

used for connection between the phone and medical service center 

 

Main algorithms were based on thresholding 

device for general 

health monitoring 

 

Anomalies were 

reported via sms 

of biosignals since most 

measurements were based 

on readings from the skin. 

Tests were based on 

simulated signals and 

human trials 

Rates: 

 

± 5mmHg (NIBP), 2%(SPO2), 

1%(ECG), 1.8% (Respiration 

Rate), 1.5% (Temperature), 

91.3% detection rate for 150 

simulated falls 

5. Tsanas 

et al 2-5 

2010 IEEE 

Transactions 

on Biomedical 

Engineering 

Virtual sensing based on speech tests from a microphone headset on 

an Intel AHTD Telemonitoring System for predicting Parkinson’s 

Disease (PD) 

 

Algorithm was based on thresholding. 

 

Speech signal processing was based on 16 dysphonia measures 

applied to 5923 sustained phonations. 

Accurate system 

for tracking the 

progression of 

Parkinson’s 

Disease  Rating 

Scale (UPDRS). 

 

Statististical 

mapping of a 

subset of speech 

features to 

UPDRS. 

 

It showed the 

potential of 

sustained vowel 

phonations in 

predicting average 

PD progression. 

 It was based on 6,000 

database recordings from 

42 PD patients. 

 

Based on objective (rather 

than subjective) 

assessment. 

 

Human trial was based on 

a 6 month study of 42 

idiopathic PD patients. 

 

 

This virtual sensing approach 

can estimate the result within 

about 7.5. UPDRS points 

difference from the clinicians' 

estimates using a simple, self 

administered non-invasive test. 

 

6. Dellac

a et al 
2-6 

2010 Physiological 

Measurement 

Pressure and flow sensors. 

 

Respiratory input impedance (Zrs) was measured after a 5Hz 

pressure stimulus from a loudspeaker was transmitted to the patient 

through a self-made mesh-type Pneumotachograph (PNT). 

 

Zrs was computed using the Least squares algorithm and 

transmitted over the Internet. 

 

Communication was based on GPRS, DSL or WiFi (depending on 

availability). 

 

Encryption was based on Public Key Algorithm. 

 

Realtime or scheduled transmission options were available. 

 

Reliable and standardized TCP/IP connection was established by 

using SSH. 

Forced Oscillation 

Technique (FOT) 

device for 

unsupervised 

monitoring to 

replace supervised 

spirometry.  

 

Useful for 

diagnosis and 

staging of 

obstructive 

diseases (like 

COPD and 

asthma) 

 5 healthy subjects, 36 

consecutive daily home 

measurements. 

 

Reduces the dimensions 

of current FOT device 

 

36 consecutive daily 

home measurements. 

 

Extensive tests on 7 

subjects. 

 

Limitation: Only 1 COPD 

patient was used in the 

tests. 

The portable FOT device can be 

used for unsupervised 

assessment of airway 

obstruction over prolonged 

periods.  The maximum error 

was 10%. 

 

 

7. Mesqu 2007 Review of Photosensor head and photodiodes (Sensors). Blood flow  Adding a virtual In vivo tests for 7-10 week old 
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ita J 

Jnr et 

al 2-7 

Scientific 

Instruments 

 

It was used to implement a virtual velocimeter based on digital 

cross correlation techniques. 

measurements 

that are less 

dependent on 

operator bias. 

 

Samples optical 

signals from 

microvessel and 

gives instant 

velocity. 

instrument module to an 

existing microcirculation 

hardware reduces operator 

bias and allows digital 

signal processing and 

storage. 

 

The manual system 

depended on the tuning of 

the system making it 

susceptible to operator 

bias. 

golden hamsters 

 

Pharmacological intervention: 

successful and accurate 

monitoring of blood flow 

velocity in one arteriole 

analyzed before and after the 

administration  of 

phenylphrine.  

8. Sticher

ling et 

al  2-9 

2009 Swiss Medical 

Weekly 

CIED; based on optivol sensor that measured intrathoracic 

impedance upon the accumulation of intrapulmonary fluid. 

 

GSM was used for remote monitoring. 

Remote 

monitoring of 

ICDs for early 

detection of 

disease and device 

anomaly. It was 

also used to 

number of patient 

visits to the 

hospital. 

 It was a survey.  

9. Wang 

et al  
2-10 

2010 IEEE Wireless 

Communicatio

ns 

It used a 3-lead ECG sensor with a transmission range of 100m. 

 

It used a low delay adaptive encryption scheme dependent on the 

condition of the wireless channel. 

Secure and 

resource aware 

body sensor 

network 

architecture for 

real-time health 

monitoring based 

on unequal 

resource 

allocations 

 

It used an on-

body healthnode 

data terminal to 

process and 

transmit sensor 

data. 

 The system allocated 

extra energy resources to 

protect the important 

portion of the transmitted 

signal. 

The tests were based on 

simulation and real time tests.  

This lowered energy 

consumption and gave better 

signal quality per energy used. 

Authors stated that shorter QRS 

windows can improve real-time 

encryption. 

10. Fanucc

i et al 
2-11 

2013 IEEE 

Transactions 

on 

Instrumentatio

n and 

Measurement 

7 Sensors: (i) 3-lead ECG (ii) SPO2 (iii) BP (iv) Weight (v) Chest 

impedance (vi) Respiration (vii) Posture 

 

Local-MVI communication: Bluetooth 

Remote-MVI communication: ADSL or mobile broadband. 

 

HTTPS used for security and encryption. 

 

A prototype was built and the Pan-Tompkins algorithm was used 

Flexible and 

highly 

configurable 

system for 

monitoring 

Chronic Health 

Failure (CHF). 

 

It provided alerts 

Configuration 

parameters: 

 

Alarm thresholds, 

transmission 

policy, selectable 

symptoms. 

 

It also supported 

One or few non-

continuous daily 

measurements were made. 

ECG simulators and Physionet 

Toolkit were used for analysis. 

 

Pre-prototype tests: 2 patients, 1 

month test 

 

Post-prototype tests: 30 patients 

with Chronic Heath Failure 

disease 
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for ECG analysis. 

 

 

for abnormal heart 

frequency, atrial 

fibrillation 

episodes, QRS 

complexes 

exceeding 120ms 

and signs of 

myocardial 

ischemia. 

remote 

configuration. 

 

Results: 

<3% activity misses (mostly in 

the 1st days). <5% false positive 

alarms, 95% patients found the 

system useful and 99% patients 

were satisfied with system. 

11. Lee et 

al 2-12 

2011 Telemedicine 

and e-Health 

The system used a Nintendo DS Game Console as the platform.  

However, the system can also use a PC or PDA. 

 

3-channel ECG, 3-axis accelerometer (±3g) , Tilting  (Sensors) 

 

1 ECG packet consists of 64 ECG signals 

 

ZigBee was used for the local-MVI communication while WiFi was 

used for the Remote-MVI communication.  The system also 

included a webserver.  

 

 

Mobile health 

ECG and gait 

monitoring 

system that 

obviates distance 

restrictions. 

  It used a 1 hour test to ensure 

appropriate wireless 

connectivity. 

 

The Health monitoring test 

lasted for over 24 hours without 

any interruption. 

 

Packet Loss: 

<5% for distances less than 20m, 

much higher and incremental 

loss beyond 20m 

 

For packet error rate (Pe): 

When Pe=0, no delay; Pe=0.2, 

25s delay and Pe=0.4, 157s 

delay (due to the need for 

retransmission) 

12. Dilma

ghani 

et al  
2-13 

2011 IEEE 

Transactions 

on Biomedical 

Circuits and 

Systems 

ECG (Sensor). 

 

Its Wireless Patient Portable Unit (Platform) had a webserver and 

connected to a central remote node via Internet access provided by a 

Wireless Access Point Unit (WAPU). 

System to monitor 

patients with 

chronic diseases 

in their homes 

WPPU can be 

configured for a 

variable gain 

between 500 and 

1000. 

The study avoided the use 

of a PC and PDA (to 

reduce cost). 

 

System objectives: 

Eliminate the need for a 

PC, eliminate the need for 

users to configure the 

system, support automatic 

transmission of signals, 

lower cost, increase ease 

of use. 

Same quality of service as PC 

based systems at a lower cost. 

13. Hii 

and 

Chung 
2-14 

2011 Sensors 

(Basel) 

ECG, Smartphone camera (Sensors). 

 

The system was based on 3 layers, namely: (i) Body Sensor Layer  

[ECG nodes on body] (ii) Personal Network Layer [Mobile phone] 

(iii) Global Network Layer  

 

Platform: Mobile Phone 

 

Local-MVI communication: ZigBee 

Mobile phone 

based real time 

ECG monitoring. 

 

It took advantage 

of the falling cost 

and rising 

complexity of 

mobile phones. 

  Successful  realtime 

monitoring on a testbed with  a 

human subject. 
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Remote-MVI communication: CDMA, GSM, 3G or WiFi 

 

Modes: Real-time (immediately viewable on phone) or Store-and-

forward (20 byte ECG data and summary reports transferred to the 

remote end).  One ECG data packet contained 10 ECG signals 

(phone screen could display 5 packets, equivalent to 5s of data). 

 

Algorithm: Pan-Tompkins (The analysis was for QRS peaks, QT 

and RR intervals) 

 

The camera was used for scanning the QR barcodes on medicine 

packs. 

 

A QR code 

scanner was used 

to determine 

patient adherence. 

14. Cleven 

et al 25 

2012 IEEE 

Transactions 

on Biomedical 

Engineering 

Capacitive pressure and temperature (Sensors). 

Measured intraarterterial pressure using an implant consisting of a 

sensor tip and transponder communicating with a readout station. 

 

Local-MVI communication: Inductive coupling. 

 

The pressure sensor was powered using wireless magnetic 

telemetry. 

Wireless BP 

measurement 

 A batteryless system that 

uses an implant into the 

Femoral artery.  The 

implant consists of a 

pressure sensor and 

telemetric unit and was 

placed under the skin. 

The trial used an anesthesized 

sheep and readings were 

compared to a reference catheter.  

The system had an accuracy of 

±1.0mmHg and a range of 30-

300mmHg. 

15. Pitts et 

al  2-16 

2013 Physiological 

Measurements 

Accelerometer (Sensor). 

 

The algorithm was based on peak and edge detection. 

 

The system provided virtual sensing of respiratory rate based on the 

longitudinal (Z) axis reading of the accelerometer placed on the 

patient’s clavicle. 

Simple low cost 

device for 

measuring 

respiratory rate 

and inferring 

disease if the rate 

falls outside the 

12-20 

breadth/minute 

rate of healthy 

adults. 

 Respiratory sensor based 

on clavicular motion 

 

A clavicular sensor was 

used since it gave signals 

with a greater amplitude 

and which were more 

consistent than thoracic 

sensors. 

 

The system was tested on 

8 volunteers. 

R2 values mean clavicular 

respiratory rate: 0.89 (lateral) 

and 0.98 (longitudinal), 

compared to 0.49 (thoracic). 

 

System was unaffected by 

bioelectrical or electrode 

problems. 

 

A 4-min breath-by-breadth test 

period was used. 

16. Anlike

r et al 
2-17 

2004 IEEE 

Transactions 

on Information 

Technology in 

Biomedicine 

Blood pressure, SPO2, 1/12-lead ECG, 2-axis accelerometer, pulse, 

heart rate, temperature (Sensors). 

 

Data was encrypted using techniques inherent in GSM/GPRS. 

 

Algorithm: Pan-Tompkins. 

Unobstrusive 

wrist-worn 

multiparametric 

monitoring 

system. 

Configuration was 

based on patient 

specific values: 

non 

aerobic/aerobic 

state 

(corresponding to 

level of user 

activity), age, 

gender, fitness 

and medical 

history. 

The study incorporated 

the patient’s profile in 

order to reduce false 

alarms. 

 

It measured pulse and 

SPO2 continuously.  BP 

and 30s of ECG were 

measured 3 times a day or 

at request of user. 

 

The user’s health 

condition/equipment state 

was grouped into the 

following zones based on 

the results: 

33 volunteers participated in a 

70mins test. 

 

Results: 

For BP, 85% had a difference of 

less than 5 beats when compared 

to standard instruments.  

 

The ECG results were poor as a 

result of noise but other readings 

were ok. 

 

70% of users found the system 

comfortable. 
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(i) Normal (ii) Deviant 

(iii)Risk (iv) High Risk 

(v) System error 

17. Chung 

et al  
2-18 

2008 Telemedicine 

and e-Health 

Microphone- an omnidirectional electrets condenser-type (Sensor). 

System used the measured signals for the virtual sensing of 

Obstructive Sleep Apnea Syndrome (OSAS) 

 

System supported both monitoring and therapeutic applications.  

The therapeutic application involved nerve stimulation using a low 

frequency transcutaneous electrical signal. 

 

The system included a local webserver. 

 

Algorithm: 

Absolute difference between input voltage and baseline and moving 

average filter with a window size of 20. 

A portable 

telemonitoring 

device to 

recognize sleep-

related breathing 

disorders in real-

time 

Configuration was 

based on the 

detection of a 

snoring pattern. 

The detection 

triggered a system 

configuration that 

stimulated the 

patient’s nerve in 

order to stop the 

snoring. 

5 regular snorers and 5 

OSAS patients tested the 

system. 

There was a positive predictivity 

of 94% and a snoring sensitivity 

of 94%. 

 

The results indicated an OSAS 

positive predictivity and 

sensitivity of 73.3% and 81.1% 

respectively. 

18. Chun 

et al  
2-19 

2005 Studies in 

Health 

Technology 

and 

Informatics 

Non-Invasive Blood Pressure [NIBP], SPO2, 1-channel ECG 

textrode electrode, Respiratory Rate [RR], Heart Rate [HR], Body 

surface temperature, Accelerometer, Posture (Sensors). 

 

RR and HR were virtual sensors based on ECG signals. 

 

Local-MVI communication: Wireless 

Remote-MVI communication: sms, cellular 

 

The expanded system (Integrated Home Telecare System) 

comprised the following sensors: 

12-channel ECG, Respiratory function, Blood glucose, NIBP, Body 

fat meter and Spirometer. 

Personal 

Wearable 

Wristworn 

Integrated Health 

Monitoring 

Device (WIHMD) 

System was 

configured based 

on patient’s 

diabetic history 

and postprandial 

time. 

 

The BP tests also 

considered the 

patient’s history. 

The primary system was 

based on the WIHMD. 

 

The secondary system had 

a number of non intrusive 

sensors used on the bed, 

toilet seat and chair. 

Capacitive sensors were 

used for the chair. 

 

10 volunteers tested the 

system and authors also 

used simulations. 

Simulatio

n 

Tests Results 

NIBP 100 ± 4 

mmHg 

SPO2 100 ±2% 

HR 100 ±0.9% 

RR 50 

peopl

e 

±1.8% 

Temp* 20 ±1.5 

Fall# 150 91.3%

# 

*: Tested in temperature 

controlled chamber 

 

#: Detection rate for simulated 

falls 

19. Yu et 

al 2-20 

2013 Telemedicine 

and e-Health 

Temperature, mobile phone camera and microphone (Sensors) 

 

System used a mobile phone as a miniaturized health exam toolkit. 

 

Electronic health records were sent to remote server as e-mails or 

mms messages. 

 

Local-MVI communication: Wireless 

Remote-MVI communication: Cellular 

 

Algorithms: Machine learning 

 

System carried out tests for about 12 parameters used in annual 

physical exams 

Mobile phone 

based system for 

convenient 

“annual physical 

exam”. 

 Eye tests were based on 

image sizes on phone and 

feedback from users. 

 

The system was trained as 

follows: 

3 deep breaths (for 

breadth sound), 1 minute 

data (for heart sound, 

temperature and ECG). 

 

There were 11 volunteers 

for the test. 

The entire test took just about 28 

minutes. 

20. Fong 2013 Sensors Platform: Android based phone Cloud-based Non- The system The measurements The results measured the 
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and 

Chung 

2-21 

(Basel)  

ECG, Heart Rate, Camera (Sensors) 

 

Data was shared over the Internet instantaneously using the 

embedded webserver. 

 

Local-MVI communication: Bluetooth communication between 

capacitive coupled ECG sensor and phone. 

 

Inter-MVI communication: WiFi 

 

HR was calculated using a virtual sensor based on ECG. 

contact ECG 

monitoring and a 

QR code based 

patient adherence 

scheme. 

supported a 

minimal level of 

adaptation based 

on QR code. 

required the patient to seat 

on a chair with capacitive 

sensors. 

website loading times as 

follows: 

1st view load time (2.833ms), 

repeat view time (0.124ms), the 

Document Complete  

parameter, which occurs after all 

the images content have been 

loaded (2.833s), the Fully 

Loaded parameter, which 

includes any activity triggered 

by the JavaScript (6.452s). 

21. Giansa

nti et 

al 2-22 

2013 Telemedicine 

and e-Health 

Sensors: Gastrocnemius Expansion Measurement Unit (GEMU), 

gyroscope, accelerometer, SECOSP (a step counter) 

 

Platform: Custom portable device 

 

Real-time simple 

portable kit for 

home-based gait 

analysis. 

 The portable kit works 

with a cascade of 

Instrumented Walkways 

(IWs).  It also uses 

walking aids. 

 

16 subjects tested the 

system. 

System has a high level of 

accuracy and costs 948EUR. 

22. Gomez 

et al 2-

23 

2008 IEEE 

Transactions 

on Information 

Technology in 

Biomedicine 

Realtime Continuous Glucose Monitoring (CGM) sensor. 

 

Platform: PDA (iPAQ hp2210) 

 

Local MVI: Bluetooth, Infrared or serial communication 

 

Remote MVI: Mobile GPRS for communication to the 

Telemedicine Central Server (TMCS). 

 

The system supports a therapeutic application- the control of an 

insulin pump. 

 The PDA was 

remotely 

programmed by 

the TCMS under 

the doctor’s 

supervision.  The 

insulin pump was 

configured and 

controlled 

remotely in 

response to the 

measured CGM 

values 

CGM with real-time 

programmable insulin 

pumps. 

 

4 system control 

strategies: 

(i) Patient control: Manual 

change supervised by 

doctor 

(ii) Doctor control: Come 

as suggestions that the 

patient should download 

and approve 

(iii) Remote loop control: 

Programmed by the 

TCMS under the doctor’s 

supervision.   

(iv) Personal loop control: 

Real-time control of the 

insulin pump based on 

glucose sensor data 

 

The patient has to issue e-

consents (digitally signed 

certificates) before 

personal data can be 

accessed. 

 

Only control strategies #1 and 

#2 were tested and the measured 

HbA1c values confirmed the 

effectiveness of the strategy 

 

System cost: 7,348 EUR 

(compared to 5,907 EUR for a 

CGM system based on a manual 

approach).   
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Feasibility testing phase:  

4 Type 1 diabetic patients 

for 6 months. 

 

Clinical testing phase:  

10 Type 1 patients for 8 

weeks. 

23. D’Arc

y et al  
2-24 

2011 IEEE 

Transactions 

on Biomedical 

Engineering 

EEG sensor. A headset for auditory stimulation. 

 

Local-MVI Communication: Bluetooth 

 

The algorithm was known as called Halifax Consciousness Scan 

(HCS). It was based on preprocessing, peak detection and score 

generation 

 

An approach for 

replacing the 

behavioral brain 

tests with one 

based on EEG 

signals. 

 

The test provides 

indicators for 5 

identifiable levels 

of neural 

processing: 

sensation, 

perception, 

attention, memory 

and language 

The specific 

parameters of the 

patient are 

compared to a 

normative 

database. 

The portable EEG device 

for scanning for 

consciousness awareness 

addressed 5 

challenges/areas: 

(i) Portability and noise 

resistance (ii) It has no 

need for advanced 

expertise or system 

training (iii) Addressed 

the spectrum of EEG-

cortical responses (iv) 

Compared results to a 

normative database (v) 

The range of results 

covered diagnosis, 

reliability, validity and 

progression  

The authors attempted to 

provide a solution at the 

interface between biomedical 

engineering and neuroscience. 

24. Chen 

et al  
2-25 

2008 Physiological 

Measurements 

A pressure sensor was embedded in a pillow for static and dynamic 

pressure measurements. 

 

Wavelet based algorithms were used. 

 

Virtual sensing of the pressure was used to reconstruct pulse related 

waveform information from D4 & D5 components of wavelet 

transformation.  Also, breadth related waveform was reconstructed 

from the A6 component. 

Web-based long 

term heart and 

breadth rate 

monitoring during 

sleep using a 

single sensor. 

 The raw pressure was 

measured under the neck-

neck occiput region. 

 

The system measures 

static pressure (based on 

weight of head) and 

dynamic pressure (based 

on fluctuations cased by 

breathing). 

 

Analysis was based on the 

dynamic pressure. 

 

1 patient was used to test 

the system over a period 

of 6 months 

The system detected 82.3% of 

sleep time. 

 

The system provided a cheap 1 

sensor alternative to replace the 

traditional $1,000 11-sensor 

polysomnography equipment 

25. Nemir

oskia 

et al  
2-26 

2014 Proceedings of 

the National 

Academy of 

Sciences, USA 

A portable system that includes a vibration meter and an audio jack.  

This system interfaces with a low end mobile phone (Nokia 1100 

series model 1112) and can also support 2G, 3G and 4G systems.   

 

The system uses a webserver to “geographically decouple” the 

measurement. 

It is an 

inexpensive 

device that 

couples most 

forms of 

electrochemical 

The system can 

switch between 

the following 

modes: 

(i) 2 or 3 electrode 

system.   

The system supports 

cyclic voltammetry, 

differential phase 

voltammetry, square wave 

voltammetry and 

potentiometry 

The system cost just $25. It is a 

simple system, much unlike 

complex microfluidic based 

system. Latency (transmit and 

receive) for the blood glucose 

application was just 2.2s. 
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Local-MVI communication: Standard audio cable. 

 

Remote-MVI communication: Cellular (based on a live voice link 

through VoIP Skype between the phone and remote system). 

 

The remote server decodes the Frequency Shift Keying (FSK) data 

and sends an acknowledgement to the phone as an sms to verify the 

measured value. 

analysis directly 

to the cloud.   

 

It uses a handheld 

device that works 

in a resource-

constrained 

environment. 

(ii) Amperometric 

(iii) 

Potentiometric 

 

The system can 

also be configured 

to accommodate 

new assays, 

sequences and 

standards  

 

It supports low-end 

phones and does not 

require apps that are 

usually required for 

Smartphone based 

systems. 

 

The proof of concept was 

demonstrated in 4 

application domains: 

(i) Blood glucose (ii) 

Trace heavy metals (iii) 

Sodium in urine and (iv) 

Test for malaria antigens 

 

The system results for the 4 

application domains were 

compared to results from a 

commercial bench-top analyzer 

and the following results were 

obtained: 

 

(i) No difference with respect to 

performance of the electronics. 

(ii) Blood glucose standard 

deviation: 5% (which is much 

better than most commercial 

glucometers). 

(iii) Heavy metals in water: 

Detection limit of 4µg/L, better 

than the recommended WHO 

level of 10µg/L 

(iii) Sodium in urine: Systematic 

error of 8%, which is within the 

certified range of ±14% 

(iv) Malaria: Limit of detection 

was 20ng/mL. 

26. Lee et 

al 2-27 

2010 Telemedicine 

and e-Health 

 

Sensors: Electrodermal Activity [EDA], Pulsewave [Condenser 

microphone]. 

 

The EDA sensor was made of conducting fabric lines (instead of 

AgCl). 

 

Platform: Portable arm-band computer 

 

Realtime processing  supported by a webserver. 

 

Local-MVI communication: Serial (RS-232). 

 

The algorithm was based on Fast Fourier Transform (FFT). 

A system to detect 

drowsiness based 

on a correlation 

between EDA 

signals and 

drowsiness. 

 The system investigated 

the correlation between 

skin impedance and 

drowsiness. 

 

The EDA signal was 

decomposed into 2 

signals: 

(i) Skin Impedance Level 

(SIL) and 

(ii) Skin Impedance 

Response (SIR) 

 

The experiment lasted for 

30mins. 

The detected states: 

- Aroused condition 

- Drowsiness 

- Sleeping 

 

The device was able to detect 

drowsiness before its onset. 
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