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ABSTRACT 

A Comprehensive Analysis on End-to-End Node Selection Probability 

on the Tor Network 
 

 Saurav Dahal 

 Advisor: Prof. Seokjoo Shin, Ph.D. 

 Department of Computer Engineering 

 Graduate School of Chosun University 

 

Tor is an open network that helps to defend against traffic analysis and thus 

achieves anonymity and resisting censorship online. So, it is a useful tool for those 

users who want to remain anonymous participating online. On the other hand, there 

are such users also who takes advantage of anonymous system and perform illegal 

activities. In order to frustrate such users, nowadays many researches have been 

carried out to attack Tor and to break the anonymity. To deanonymize the Tor, the 

attacker must be able to control both the guard node and exit node of a circuit.  

 

In this thesis, after classifying different types of node in TOR network the analysis 

on end-to-end node selection probability when an attacker adds different types of 

compromised nodes in the existing Tor network has been widely studied. Shadow 

simulator which is believed to show as similar environments as the real Tor 

network has been used for the experiment besides mathematical analysis. By 

extensive performance evaluation, it is concluded that when guard + exit flagged 

compromised nodes are added to Tor network, the selection probability of 

compromised nodes gets higher. 
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한 글 요 약 

Tor 네트워크에서 종단간 노드 선택 확률에 대한 분석 

 다할 사우라브 

 지도 교수: 신석주 

 컴퓨터공학과 

 대학원, 조선대학교 
 

Tor는 트래픽 분석에 의한 공격과 온라인 검열로부터 익명성을 확보할 수 있는 오픈 

네트워크이다. 따라서, 인터넷에 접속한 사용자가 익명성을 유지할 수 있도록 도와주는 

효과적인 응용계층 프로토콜로 정의될 수 있다. 이러한 익명성을 이용하여 인터넷 상에서 

불법적인 행위 (해킹, 마약거래, 돈세탁 등)를 하고자 하는 사용자들이 존재하며, Tor가 

악의적 목적으로 활용되는 것을 억제하기 위하여 익명성을 파괴하는 방향으로의 Tor에 대한 

공격 방법들이 연구되고 있다. Tor의 익명성을 파괴하기 위하여 공격자는 반드시 생성된 

서킷의 가드노드와 엑시트노드 동시에 제어할 수 있어야 한다. 

본 논문에서는 Tor 네트워크에서 사용되는 여러 형태의 노드들에 대한 분석으로부터 

공격자가 서로 다른 형태의 조작된(compromised) 노드들을 Tor 네트워크에 제공하였다고 

가정하였을 때의 종단 노드 선택 확률에 대한 분석 연구를 수행하였다. 수리적 분석에 

더하여 실제 Tor 네트워크 환경에 가장 유사하게 구현된 섀도우 시뮬레이터를 활용하여 성능 

분석을 수행하였다. 연구 결과로부터 조작된 가드+엑시트 노드가 Tor 네트워크에 추가된 

경우에 종단 노드 선택 확률이 가장 높았음을 확인하였다. 
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I. INTRODUCTION 

A. Introduction to Privacy Enhancing Technologies 

A privacy enhancing technology (PET) is a technology whose goal is to enhance 

the privacy of the user. That is, a technology that prevents the position on the 

nymity slider1 [33] from careening needlessly towards verinymity for its user’s 

transactions. These technologies are designed for use in the online world, and are 

employed in a variety of contexts including instant messaging, web-browsing, and 

electronic publishing. Goldberg et al. [28, 29, 30] present a quintennial series that 

examines the progression of PETs. They contend that the most widely successful 

PET in history is Transport Layer Security (TLS), which is used to encrypt and 

secure Internet communication. It has become an invaluable tool on the Internet, 

and is used for nearly all authentication, e-commerce, and server remote control 

panels. Another successful PET is Off-the-Record Messaging [31], a plugin for 

popular instant messaging programs that provides authentication, security, 

confidentiality, and deniability to conversations. Contributing to its success is both 

the widespread use of instant messaging for private conversations and the fact that 

it is provided as a standard component for Adium [32] and is used automatically 

when both parties support it; some users do not even realize that their 

conversations are being protected from eavesdroppers. This is the ideal way to give 

privacy to users. To be widely used, it must be transparent to use and trivial to 

configure. Anonymity in the real world depends on the number of users of a 

system.  Post office boxes allow the owner to receive mail anonymously since there 

are a lot of mail boxes in the system. If the owner was the only recipient of mail in 

                                                
1  It is a virtual one-dimensional slider that ranks the nymity of transactions along the axis of 
privacy, which clarifies the differences between levels of identity disclosure. The highest position, 
verinymity, means true name. 
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the system then it would afford him very little privacy. The pragmatic definition of 

privacy, in the electronic age, is based on this reality of anonymity. One is said to 

be anonymous if it is indistinguishable from a set, which is called the anonymity 

set. The definition considers the existence of an adversary who has the goal of 

identifying an anonymous user. A successful PET would result in the adversary 

being unable to determine which user (from the anonymity set) is the target for 

whom they are searching. More strongly, it would prevent the adversary from 

pairing any user of the system with their identity. The goal in PETs is to have the 

anonymity set equal to the set of users. This definition creates a corollary goal for 

any PETs that are developed. It is imperative that such technologies are popular 

and well-used as this will increase the anonymity set and thus strengthens the 

degree of anonymity afforded. 

B. The Nymity Slider 

Different transactions disclose identity to different degrees. In Goldberg’s Ph.D. 

thesis [33], he presented the nymity slider, which clarified the differences between 

levels of identity disclosure. It is a virtual one-dimensional slider that ranks the 

nymity of transactions along the axis of privacy. The highest position, 

“verinymity”, means true name. A verinymous transaction involves the disclosure 

of one’s true identity, or information linked uniquely to their true identity. 

Examples in real life include using one’s credit card, or showing government 

identification to prove one’s age. Below verinymity is “pseudonymity”, meaning 

false name. A pseudonym, or an alias, is a persistent front name behind which the 

true identity is hidden. In the real world, pseudonyms include author’s pen names, 

or nicknames used by bloggers. 

The important distinction between verinymity and pseudonymity is that one has 

control over the disclosure of their own identity—only the holder of the 
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pseudonym can choose to reveal it. Verinymity can be obfuscated, such as a Social 

Insurance Number (SIN) that uniquely corresponds to an identity. However, the 

lack of personal ownership over the mapping from one’s SIN to their identity 

makes it decidedly verinymous. 

The remaining positions on the slider are two varieties of anonymity, meaning 

without names: “linkable anonymity:” and “unlinkable anonymity”. Linkably 

anonymous transactions are transactions that can be linked together, however the 

linking does not correspond to a real identity or a pseudonym: they are simply 

correlated. An example of this is seen in retail outlets that use loyalty cards to offer 

a small discount. (Often these cards are trivial to acquire and offer immediate 

benefit.) Such cards require no registration and are not linked to any identity. They 

are valuable to retail outlets for collecting data about customer buying patterns so 

as to juxtapose items to encourage “impulse buying”. Finally, the lowest level on 

the nymity slider is unlinkable anonymity. This is true anonymity, where individual 

transactions are unlinkable to an external party or to each other. Using cash for a 

purchase, or providing the police with an anonymous tip over the telephone, are 

examples of unlinkably anonymous transactions. Importantly, the position on the 

nymity slider can move towards verinymity during a transaction much more readily 

than it can move towards anonymity. When one chooses to disclose an aspect of 

their identity during a transaction, such as using ID to prove their age of majority, 

then that transaction becomes verinymous even if the purchase is then done 

anonymously with cash. Similarly, an unlinkably anonymous transaction becomes 

linkable when the decision is made to use a loyalty card for a discount. 

C. Introduction to TOR Network 

The rapid growth of the Internet applications has made communication privacy an 

increasingly important security requirement. Although encryption aims at 
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preserving the contents and some modification of data, it is still possible for the 

adversaries to get significant information about the path carried on the network 

packets and the physical entities, such as the network addresses of the sender and 

the receiver of the message. One of the main problems is the exposure of the 

network address which might result in severe consequences: Adversaries can easily 

overhear all the messages and perform track analysis; even if the communication 

content is encrypted, routing information is still sent in the clear because routers 

need packets destinations in order to route them in the right direction. Thus an 

anonymous network should bear the properties such as receiver untraceability, 

sender untraceability and unlinkability. 

Several platforms were developed to help increasing anonymity in Internet such as 

Threshold Mixes [1], Timed mixes [2], Threshold and/or Timed Mixes [3], Pool 

Mixes [4], Stop-and-Go Mixes [5], Binomial Mixes [6], RGB Mixes [7]. But these 

networks have certain limitations such as high latency, since too many public-key 

encryption and decryption were used and they were message based anonymity 

networks such as e-mail. 

To overcome the limitations of other anonymity networks, TOR (The Onion 

Router) was introduced. Tor [8] is a distributed onion routing network deployed for 

fighting censorship and online privacy, supporting several hundreds of thousands 

of users daily [9, 10] and transferring roughly 8 GiB/s in aggregate [11]. TOR is 

designed to meet the following goals: 

 Deployability: must be inexpensive to implement (e.g. requiring kernel 

patches), can’t require non-anonymous parties like websites to run the 

software. 
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 Usability: a security requirement to hide users among users which should 

not require modification of applications, no prohibitive delays, and few 

configuration decisions, and easy implementation on all common OS 

platforms. 

 Flexibility: the protocol should be flexible and well specified for future 

research work. 

 Simple design: the protocols design and security must be user friendly. 

Different kinds of people use the Tor network for different reasons. Military and 

Law enforcement use it for sting operations so their IP addresses cannot be traced 

to known police or military addresses. Military field agents, while in the field, use 

it to prevent being tracked down for visiting military related websites. Some 

journalists use Tor to remain anonymous from governments who would shut them 

down. Non-governmental organizations (NGOs) use Tor to allow their workers to 

connect to their home website while they're in a foreign country, without notifying 

everybody nearby that they're working with that organization. Tor is also 

commonly used by individuals to maintain privacy and evade harsh firewalls, 

especially firewalls with strict government enforced censorship. 

Tor is composed of thousands of relays, volunteered by different volunteers all 

over the world. For anonymity, Tor passes the data stream through a tunnel circuit 

of three nodes. Data is encrypted using Onion Routing [12, 13], so that the relay 

cannot know the source and destination of any message. Any node in the circuit 

knows only about its one hop neighbors in the circuit. However, Tor is known to be 

insecure against end-to-end attacks (traffic confirmation attacks) i.e., an adversary 

that can observe a user’s traffic entering and exiting the anonymity network. This is 
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only possible if the adversary controls both the entry node and exit node in the 

circuit. 

D. Problem Statement 

Tor is a double edged sword. On its good aspect, it preserves privacy of the users. 

It has also helped people whose communication is censored by the government and 

the organizations. But along with the good side, it also possesses bad aspect. 

People use Tor to perform illegal activities over the internet such as drugs and 

ammunitions deals, hosting child pornography sites, black markets, threatening etc. 

These activities cause a serious problem in the security of the country. Hence 

deanonymization of Tor network becomes inevitable. Deanonymizing Tor network 

has two areas, one is the deanonymizing the Tor network itself and another is the 

deanonymizing of Tor hidden services2 [41]. To deanonymize Tor network, an 

adversary must be able to control both guard as well as exit node of a Tor circuit. 

Thus, it is desirable if a way could be found out such that an adversary can control 

both the guard as well as the exit node of any circuit in order to deanonymize the 

user.  

E. Research Contribution 

The main objective in this thesis is to know how to achieve an end-to-end selection 

of compromised node in a Tor circuit. In order to meet this goal, each of the 

available nodes of Tor network will be tested and a conclusion about the findings 

of the simulation results will be made. Therefore, the following things will be 

looked in this thesis [40]: 

‐ End-to-End Node selection Probability. 

                                                
2 Tor hidden services are the websites inside the Tor network. Their IP is hidden from the client. 
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‐ Guard Selection Probability. 

‐ Selection Probability in different locations. 

‐ Number of nodes required for different catch probability. 

F. Thesis Layout 

The rest of the thesis is organized as follows. First, in Chapter II, related works on 

anonymity networks and node selection analysis are presented. More detailed 

information on Tor network such as its components, flags, circuit creation etc. are 

presented in Chapter III. In Chapter IV, detail information on Shadow simulator is 

presented. In Chapter V, Performance evaluation of the simulation is done. Chapter 

VI concludes the thesis. 
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II. RELATED WORKS 

A. Anonymity Networks 

Anonymous communication can often be classified into two general categories: 

high-latency systems and low-latency systems. High-latency anonymity systems 

are able to provide strong anonymity, but are typically only applicable for non-

interactive applications that can tolerate delays of several hours or more, such as 

email. As expected, low-latency anonymity systems often provide better 

performance and are intended for real-time applications, particularly Web 

browsing. Consequently, some have referred to high-latency anonymity systems as 

message-based systems, and low-latency anonymity systems as connection-based 

systems [33]. In [1], Chaum proposed a classic mix which simply collects 

incoming encrypted messages until it has received n messages and after receiving n 

messages, the mix then decrypts all of them and forwards them to their next 

destination in a random order. Another type of anonymity network is defined in 

[2], where rather than collecting a fixed number of messages like a threshold mix, a 

timed mix instead collects messages for a fixed length of time t. After t seconds 

have elapsed, the mix decrypts all messages it has received and then forwards them 

to their next destination in a random order. A threshold-or-timed mix is proposed in 

[4] in which it collects messages until either it has received n messages or until t 

seconds have elapsed since the last time the mix was flushed, whichever occurs 

first. Similarly, a threshold-and-timed mix collects messages until t seconds have 

elapsed and it has collected at least n messages. Instead of flushing all messages 

collected during the previous round, Pool mixes [5] select a random subset of the 

collected messages to flush and then retain the rest in the mix for the next round. 

Kesdogan et al. proposed a Stop-and-Go mix (SG-mix), in which Instead of 

batching messages together, SG-mixes individually delay messages as they pass 
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through the mix. Another anonymity network is defined in [6], in which it flushes a 

random fraction of messages it has collected over previous rounds rather than 

output a deterministic number of messages given the internal state of the mix and 

its parameters. Danezis et al. proposed RGB mixes [7] for detecting when an 

attacker is conducting the attack, and minimizing its negative impact on the 

anonymity of legitimate messages. 

To overcome the high latency of mix-based systems, low-latency anonymity 

systems were introduced. One of such system is Anonymizer [34] which is based 

on the notion of a proxy. Proxies simply forward all incoming traffic (e.g., a TCP 

connection) immediately without any packet reordering. Thus it conceals the IP 

address of real user. PipeNet [35] was a low-latency anonymity system, in which it 

first selects a random sequence of servers in the network. Clients then set up a 

multiply encrypted tunnel by establishing a symmetric key with the first hop, 

tunneling through that encrypted connection and establishing another key with the 

second hop, and so on. Reiter et al. proposed Crowds [36] for anonymous web 

browsing. Users in the system are represented by processes called jondos. When 

the user’s browser first makes a Web request, his or her jondo establishes a random 

path through the network by first randomly picking another jondo (perhaps even 

itself) from the crowd and forwarding the request to it.  In [37], Berthold et al. 

proposed Java Anonymous Proxy (JAP) provide anonymity for interactive, real-

time Internet applications, like Web browsing. The system consists of the Java 

Anonymous Proxy (JAP) software that runs on a client’s computer and forwards 

client traffic into one of several available mix cascades. Freedman et al. proposed 

Tarzan [38], a low-latency anonymity system which is similar to Onion routing but 

uses UDP protocol. Rennhard et al. proposed MorphMix [39], a peer-to-peer low-

latency anonymity system in which all nodes in the network relay traffic for other 

nodes. Along with these, other low-latency anonymity networks are used and 
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developed in recent times such as VPN [42], Proxy, Telex [43], and The Invisible 

Internet Project (I2P) [44]. 

B. Node Selection Analysis 

Although different methods to attack TOR network have been already 

implemented, very less contribution to the field of analysis on end-to-end node 

selection probability has been made. 

Zhen Ling et al. published a paper [20] in which they mentioned about the catch 

probability as a part of their project. But they didn’t show the catch probability 

when an attacker inserts different types of nodes in the Tor network. They also 

failed to show the impact of compromised bandwidth and the impact of location of 

the compromised nodes in TOR network. 

Zhen Ling et al. performed an extensive analysis of TOR Bridge discovery [19]. 

They donated some non-flagged compromised routers in TOR network to discover 

the total number of bridges which are used to enter into the TOR network. 

Bauer et al. [21] showed that an adversary who controls only 6 malicious Tor 

routers can compromise over 46% of all clients' circuits in an experimental Tor 

network with 66 total routers. 

Edman et al. [22] identified the risk associated with a single autonomous system 

(AS), which observes both ends of an anonymous Tor connection are greater than 

previously thought. 
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III. TOR NETWORK 

A. Components of TOR 

Tor is a network of virtual tunnels that allows people and groups to improve their 

privacy and security on the Internet. It is an open-source project and provides 

anonymity service for TCP applications [9]. As shown in Fig. 1, there are four 

basic components of Tor. 

 

Fig. 1. Components of TOR Network. 

1) Alice (i.e., Client): These are the normal users who requests service from 

web server through Tor network. To anonymize the client data into Tor, the 

client runs local software called onion proxy (OP). 

2) Bob (i.e., Server): These are the web servers, located outside or inside the 

Tor network, which runs TCP applications such as a Web service. They 

respond to client’s request by sending web pages. 

3) Onion routers (ORs): Onion routers are special proxies that relay the 

application data between Alice and Bob. In Tor, transport-layer security 

Client 
(Alice) 

Entry 

Relay 

Exit 

Server 
(Bob) 
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(TLS) connections are used for the overlay link encryption between two 

onion routers. The application data is packed into equal-sized cells of 512 B 

carried through TLS connections. 

4) Directory Authorities (DA): They act like a database server of Tor network 

and hold all the authoritative information of all running onion routers such 

as public keys, bandwidth, nickname, uptime etc. of onion routers. Routers 

may act as directory caches to reduce the load on DAs. Directory caches 

download directory information of onion routers from authorities. A list of 

DAs is shipped with the Tor software, for a client to download the 

information of onion routers and build circuits through the Tor network. 

They are also responsible for assigning flags. 

Tor network consists of roughly 5000 ORs pushing over 8 GiB/s in aggregate 

[11]. In Tor network, each onion router (OR) runs as a normal user-level 

process without any special privileges. Each OR maintains a transport layer 

security (TLS) [27] connection to every other OR. Fig. 2 shows the Tor design 

process of how the Tor clients build the circuit path through the Tor network. 

Step 1, at the initial stage before the Tor client (Alice) build the circuit path, 

she contacts the directory server and download the lists of the entire Tor relays 

available in the overlay network. Step 2, from the relay lists, Alice randomly 

select the relays and build the circuit path that consists of three hops.  

Normally, once a client starts up OP, Tor tries to maintain at least a certain 

number of clean circuits (one that has not yet been used for any traffic) by 

default path length of three, so that new streams can be handled quickly. This 

path length can be varied by changing the configuration file of the Tor client. 

But, by increasing the path length, the throughput of a circuit becomes slower. 

Step 3, after several times the Tor client (Alice) visits another sites, she can 
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choose to use the same path created initially or build new circuit path to reach 

the desired destination. 

 

Fig. 2. TOR Design. 

Each Tor user locally runs software, which is called an onion proxy (OP) to fetch 

directories, establishes the circuit across the network, and handles the connection 

from the user applications. These onion proxies accept the TCP streams and 

multiplex them across the circuits. The onion router (OR) on the other side of the 

circuit connects to the requested destinations and relays data packets. Each onion 

router maintains a short-term onion key [27]. The onion key is used to decrypt 

requests from users to set up a circuit and negotiate ephemeral keys. The TLS 

conceals data on the connection using an asymmetric cryptography for the key 

exchange, a symmetric encryption for privacy, to prevent an attacker from 
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modifying data. Details of transporting data packets from the clients to the 

destination are further explained in section 2-E. 

B. TOR Streaming Cells 

All data in Tor are sent in fixed size cells of 512 bytes. The cells are either the 

control cells that are always interpreted by the node that receives them, or the relay 

cells, which carry end-to-end data. Fig. 2 and Fig. 3 illustrate the cell format used 

by Tor. 

For the control cell, the header includes a circuit identifier (circID) that specifies 

which circuit the cell refers to (many circuits can be multiplexed over the single 

TLS connection), and a command to describe what to do with the cell’s payload. 

The circuit identifiers are connection-specific; each circuit has a different circID on 

each OP/OR or OR/OR connection it traverses. The control cell commands (CMD) 

are padding (currently used for keep alive, but also usable for link padding); create 

or created are used to set up a new circuit, and destroy are to tear down a circuit. 

The relay cells have an additional header, which consists of the relay commands 

header at the front of the payload. The relay commands are: 1. Relay data for 

carrying data. 2. Relay begins to open the stream. 3. Relay end to close the stream 

cleanly. 4. Relay teardown to close a broken stream. 5. Relay connected, to notify 

the OP that relay begin of connection has succeeded. 6. Relay extends and relay 

extended (to extend the circuit by a hop and to acknowledge). 7. Relay truncate and 

relay truncated to tear down only part of the circuit and to acknowledge. 8. Relay 

sendme used for the congestion control. 9. Relay drop used to implement long-

range dummies. 

The recognized header field has 2 bytes which is always set zero in any 

unencrypted relay payload. The Digest header field is computed as the first four 
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bytes that have been destined for the hop of the circuit or originated from the hop 

of the circuit, seeded from the forward or backward respectively. When the 

recognized header field of a relay cell is zero, and the digest is correct, the cell is 

considered “recognized” for the purposes of decryption. 

The length field of a relay cell contains the number of bytes in the relay payload 

which contains real payload data. The remainder of the payload is padded with 

NULL bytes. “StreamID” header holds the stream identifier as many streams can 

be multiplexed over a circuit, and an end-to-end checksum for integrity checking, 

the length of the relay payload, and a relay command. “StreamIDs” are arbitrarily 

chosen by the OP. Relay cells that affect the entire circuit rather than a particular 

stream use the “StreamID” zero. When an OR receives a relay send me cell with 

“StreamID” zero, it increments its packaging window. This situation happens when 

OR is willing to deliver more cells. When new anonymous TCP connection are 

build, the OP chooses an open circuit to an exit that may be able to connect to the 

destination address. Selects an arbitrary “StreamIDs” not yet used on that circuit, 

and constructs the relay begin cell with a payload encoding the address and port of 

the destination host [25]. 

The “StreamID” is assigned, as when all node on receiving a relay cell looks up the 

corresponding circuit. Decrypts the relay header and payload with the session key 

for that circuit, and replaces the circuit ID of the header with the correspondence 

successor nodes. Then forwards the decrypted cell to the next OR [26]. 

The entire contents of the relay header and the relay cell payload are encrypted or 

decrypted together as the relay cell moves along the circuit, with using 128-bit 

AES cipher together in counter mode to generate a cipher stream [9]. To construct 

a relay cell addressed to a given ORs, the clients assign the digest, and then 

iteratively encrypt the cell payload (that is, the relay header and payload) with the 
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symmetric key of each hop up to the OR. Upon receiving a relay cell, the OR looks 

up the corresponding circuit, and decrypts the relay header and payload with the 

session key for the circuit. When the OR replies to the client with a relay cell, it 

encrypts the cell’s relay header and payload with the public key, which the OR 

initially shares with the client, and sends the cell toward the client along the circuit. 

2 1 509 

CircID Command Data 

Fig. 3. Tor Cell Format (Control cell) 

2 1 2 2 4 2 1 498 
Cir
cID 

Relay 
Cmd 

Recognize
d StreamID Digest Len Data 

Cmd Data 

 

Relay Header 

Fig. 4. Tor Cell Format (Relay cell) 

C. Status Flags (Types of Nodes) 

Relays have status flags assigned to them by DAs, which clients consider when 

choosing relays for a circuit. The type of flags assigned to the relays makes the 

type of nodes in Tor network. DA assigns GUARD flag to relays whose uptime is 

at least the median for familiar relays, and if their bandwidth is at least the 

minimum of 250 KiB/s and the median relay bandwidth. Clients choose and 

maintain three active guards and use them as the entry relay for all of their circuits 
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to reduce the chance of directly connecting to an adversary. Clients keep each 

guard for 30 to 60 days. DA assigns EXIT flag to relays who allow direct 

connections with external web servers. The ORs with Exit flag set individual exit 

policies specifying the IP address ranges and port ranges to which they are willing 

to connect. Clients use these policies to determine which relay to choose for the 

final position in each circuit they make. Guards and exits are weighted highly for 

the entry and exit position in a circuit, respectively, since all relays do not fulfill 

the requirements to obtain those flags. Additionally, DA assigns a relay with a 

STABLE flag if its weighted mean time before failure is at least the median for 

known active relays. Clients building streams to a port among the long-lived ports 

list must choose stable relays in each position of the circuit. Finally, clients not 

choose two relays from the same /16 subnet or family for the same circuit. A 

family is a set of relays that mutually indicate that they belong to a group together. 

The GUARD+EXIT flag is assigned to relays that have acquired EXIT flag in the 

beginning and have fulfilled the requirements of GUARD flag as well [14]. 

D. Tor Configuration File 

The Tor installs a text file called Torrc that contains configuration instructions for 

how the Tor program should behave [27]. Torrc file can be changed by using 

software called Vidalia. Fig. 5 shows the Torrc file that holds the configurations 

which specify the algorithm for building circuit path, such as the sets of lists for 

entry, middle and exit stable guard and fast relays to build the circuit path and 

perform download and upload for the clients. Every installation of Tor systems 

includes a server and communication protocol, used to control all aspects of 

client’s operation and can be done in Torrc file. However, there are several 

variables (e.g. DisablePredictedCircuits) which can only be set through control 

interface. With the Torrc interface, the client can modify the Tor’s configuration on 
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how the circuits can be build and perform other communication operations. The 

Torrc configuration file holds the instructions such as the control port 9051, the 

socks listen address 127.0.0.1, and unique Hash Control Password etc., for 

controlling the virtual circuit build through the Tor network. In addition, Torrc 

holds the SocksPort 9050 to provide a generic interface for TCP proxies and 

requests connection to another address and port to neighboring allocated relays. 

 

Fig. 5. Overview of client Torrc Configuration script file 

 

# The port on which Tor will listen for local connections from Tor 

ControlPort 9051 

SocksListenAddress 127.0.0.1 

SocksPort 9050 

# Try for at most NUM seconds when building circuits. If the circuit isn’t open 

in that time, then drop it. 

CircuitBuildTimeout (time values) 

#send a padding cell every N seconds to keep firewalls from closing the 

connections while Tor is not in use. 

KeepalivePeriod (time values) 

//Entry Nodes – {lists of entry stable guarding and fast relays nodes} (1st Hop) 

//StrictEntryNodes 

//TestVia {lists of middle stable guarding and fast relays nodes} (2nd Hop) 

//ExitNodes {lists of exit stable guarding and fast relays nodes} (3rd Hop) 

//StrictExitNodes 
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E. Circuit Creation and Data Transmission 

Before making a circuit, a client chooses three nodes as path for a circuit. To 

ensure the performance of circuits and load balancing, Tor adopts weighted 

bandwidth routing algorithms [14] for choosing these three nodes. Tor currently 

utilizes a set of trusted Bandwidth Authorities which are responsible for actively 

probing the Tor routers and estimating each router’s capacity [15]. Additional 

constraints are placed on router selection, including the use of entry guards [16] for 

the first hop to defend against the predecessor attack [17] and exit policies that 

specify the destination addresses and ports allowed by an exit router’s operator. 

After choosing three nodes, a client makes a circuit to the destination as follows: a 

client first set up a TLS connection with OR1 using the TLS protocol. Then, using 

this connection, Client sends a CELL_CREATE cell and uses the Diffie–Hellman 

(DH) handshake protocol to negotiate a symmetric key K = gxy with OR1. OR1 

responds with a CELL_CREATED cell upon succession [18]. In this way, a 1-hop 

circuit C1 is created. Now, Client extends this circuit to a 2-hop circuit by sending 

CELL_EXTEND. This command is wrapped up by CELL_CREATE in the first 

hop. The middle OR then responds with a CELL_EXTENDED cell. In the same 

way, client extends this circuit to 3-hop. After the circuit is set up between the 

client and OR3, client sends a RELAY_COMMAND_BEGIN cell to the exit OR, 

and the cell is encrypted as, {{{Begin <website, Port no.>}kf3}kf2}kf1, where the 

subscript refers to the key used for encryption of one onion skin. The three layers 

of encryption are removed one by one each time the cell traverses an OR through 

the circuit. When OR3 removes the last onion skin by decryption, it recognizes that 

the request intends to open a TCP stream to a port at the destination IP, which 

belongs to Bob. Therefore, OR3 acts as a proxy, sets up a TCP connection with 

Bob, and sends a RELAY_COMMAND_CONNECTED cell back to the client. 

Then, the client can download the file. 
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Fig. 6. Circuit Creation and Data Transmission. 
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F. Processing Cells at Onion Routers 

 

Fig. 7. Processing the cells at onion routers. 

Fig. 7 illustrates the procedure of processing cells at onion routers. It is noteworthy 

to mention that the cells mentioned below are all CELL_RELAY_DATA cells, 

which are used to carry end-to-end stream data between Alice and Bob. To begin 

with, the onion router receives the TCP data from the connection on the given port 

A. After the data is processed by TCP and TLS protocols, the data will be delivered 

into the TLS buffer of the connection. When there is pending data in the TLS 

buffer, the read event of this connection will be called to read and process the data. 

The connection read event will pull the data from the TLS buffer into the 

connection input buffer. Each connection input buffer is implemented as a linked 

list with small chunks. The data is fetched from the head of the list and added to the 

tail. After the data in the TLS buffer is pulled into the connection input buffer, the 

connection read event will process the cells from the connection input buffer one 
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by one. As stated earlier, the cell size is 512 B. Thus, 512-B data will be pulled out 

from the input buffer every time until the data remaining in the connection input 

buffer is smaller than 512 B. Since each onion router has a routing table that 

maintains the map from source connection and circuit ID to destination connection 

and circuit ID, the read event can determine that the transmission direction of the 

cell is either in the forward or backward direction. Then, the corresponding 

symmetric key is used to decrypt/encrypt the payload of the cell, replace the 

present circuit ID with the destination circuit ID, and append the cell to the 

destination circuit queue. If it is the first cell added to this circuit queue, the circuit 

will be made active by being added into a double-linked ring of circuits with 

queued cells waiting for a room to free up on the output buffer of the destination 

connection. Then, if there is no data waiting in the output buffer for the destination 

connection, the cell will be written into the output buffer directly, and then the 

write event of this circuit is added to the event queue. Subsequent incoming cells 

are queued in the circuit queue. 

When the write event of the circuit is called, the data in the output buffer is flushed 

to the TLS buffer of the destination connection. Then, the write event will pull as 

many cells as possible from the circuit queue of the currently active circuit to the 

output buffer and add the write event of this circuit to the event queue. The next 

write event can carry on flushing data to the output buffer and pull the cells to the 

output buffer. In other words, the cells queued in the circuit queue can be delivered 

to the network via port B by calling the write event twice. 

G. Bandwidth Weighted Node Selection 

For load balancing in Tor nodes, Tor adopts weighted bandwidth routing 

algorithms. First, from a set of exit routers, i.e. pure exit routers and EE routers, a 

client chooses an appropriate exit onion router OR3. The bandwidth of exit routers 
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is weighted as follows: Assume that B is the total bandwidth, BE is the total exit 

bandwidth, and BG is the total entry bandwidth. If BE < (B/3), i.e., the bandwidth of 

exit routers is scarce, the exit routers will not be considered for non-exit use. The 

bandwidth of EE routers are weighted by, WG = 1 – (B/3BG), where WG is the 

bandwidth weight of entry routers and BG > (B/3). 

If BG < (B/3), then WG = 0. The probability of selecting the ith exit router from the 

exit set is BiE/(Bexit + BEE * WG), where BEE is the total bandwidth of EE routers, 

Bexit is the total bandwidth of pure exit routers and BiE indicates the bandwidth of 

the ith exit router . Note that BE = Bexit + BEE. Second, the client chooses an 

appropriate entry onion router OR1 from the set of entry routers, including the pure 

entry routers and EE routers. To ensure sufficient entry bandwidth, if BG < (B/3), 

the entry routers will not be considered for non-entry use. Then, the probability of 

selecting the ith entry router from the entry set is BiG/(Bentry + BEE * WE), where WE 

= 1 – (B/3BE), where is the exit bandwidth weight and BiG is the ith bandwidth in 

the entry set. If BE < (B/3), then WE = 0. Eventually, the client chooses the middle 

from the rest of Tor routers [19]. 

Let us denote e1 as the number of compromised exit routers, e2 as number of 

compromised entry routers and e3 as number of compromised EE routers. Let b be 

the bandwidth assigned to each of the compromised router. Based on the above 

weighted bandwidth selection algorithm, the weight can be derived by: 

ாܹ = ቐ1 −
ܤ

3. ாܤ) + ாாܤ + (݁ଵ + ݁ଷ) ∗ ܾ)
∶ ாܹ > 0

																																																												0 ∶ ாܹ ≤ 0
 

ܹீ = ቐ1 −
ܤ

3. ீܤ) + ாாܤ + (݁ଶ + ݁ଷ) ∗ ܾ)
∶ ܹீ > 0

																																																												0 ∶ ܹீ ≤ 0
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Then, the catch probability (end-to-end node selection probability) can be 

calculated as follows: 

 

ܲ(݁) =
݁ଵ ∙ ܾ

ாܤ + ܹீ ∗ ாாܤ) + ݁ଷ ∙ ܾ) + ݁ଵ ∙ 	ܾ
	 ∙ 	

( ாܹ ∙ ݁ଷ + ݁ଶ) ∙ ܾ
ீܤ + ாܹ ∗ ாாܤ) + ݁ଷ ∙ ܾ) + ݁ଶ ∙ ܾ

 

+
ܹீ ∙ ݁ଷ ∙ ܾ

ாܤ + ܹீ ∗ ாாܤ) + ݁ଷ ∙ ܾ) + ݁ଵ ∙ 	ܾ
	 ∙ 	

( ாܹ ∙ (݁ଷ − 1) + ݁ଶ) ∙ ܾ
ீܤ + ாܹ ∗ ாாܤ) + (݁ଷ − 1) ∙ ܾ) + ݁ଶ ∙ ܾ

 

Probability (at least 1 time among n) = 1- (1 - P (e)) n, where n = number of circuits. 

H. Equation Based Results 

Table 1. Parameters of Live TOR Network 

 

Using the above equation and parameters of TABLE I., the catch probabilities for 

different number of circuits were calculated. Four different cases were considered. 

In first case, B
G 

> B/3 & B
E 

< B/3, was taken, in second case B
G 

< B/3 & B
E 

> B/3, 

in third case, B
G
 > B/3 & B

E 
> B/3 and finally B

G 
< B/3 & B

E 
< B/3.  For each case, 

different combinations of the compromised nodes were looked at, with the total 

bandwidth remaining same. Following graphs were obtained. 

Bandwidth of Guard routers (BG) = 3822 Total Bandwidth (B) = 7688 MB/s 

Bandwidth of Exit routers (BE) = 478 No. of exit router = 833 

Bandwidth of EE routers (BEE) = 2201 No. of entry router = 1750 

Bandwidth of N-EE routers (BN-EE) = 1187 Total router = 4569 
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For n=10 

 

Fig. 8. Catch Probability for n=10. 

For n=20 

 

Fig. 9. Catch Probability for n=20. 
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For n=40 

 

Fig. 10. Catch Probability for n=40. 

Fig. 8, 9 and 10 showed the results obtained by using mathematical equation. From 

all of the graphs, it can be observed that, if number of malicious EE routers are 

increased and number of other two routers are zero then catch probability is high. 

Also although the bandwidth is high, less number of malicious EE routers means 

less probability i.e.  If the number of malicious EE router is high and bandwidth is 

low the catch probability is high. 

Equation based result gives the ideal output. It only considers the number of 

compromised nodes and their bandwidth. It doesn’t consider the other parameters 

such as location of nodes, packet loss, jitter, delay etc. Hence, an environment is 

required which can consider all these parameters and calculate the selection 

probability as well as verify the math based result. One of such environments is 

Shadow simulator, designed to run Tor network.   
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IV. SHADOW SIMULATOR 

Shadow [23, 24] is a unique, open source discrete-event network simulator that 

runs real applications like Tor and distributed systems of thousands of nodes on a 

single machine. Shadow contains plugins, which are the libraries that are linked to 

real applications, to natively execute the application code. Scallion is a shadow 

plug-in that simulates the Tor anonymity network. It wraps the Tor source code to 

integrate Tor into shadow. An overview of Shadow’s design [23] is depicted in Fig. 

11. 

 

Fig. 11. Shadow’s architectural design. 
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Shadow dynamically loads plug-ins and instantiates virtual nodes as specified in a 

simulation script. Communication between Shadow and the plug-in is done through 

a well-defined callback interface implemented by the plug-in. When the 

appropriate callback is executed, the plug-in may instantiate and run its non-

blocking application(s). The application will cause events to be spooled to the 

scheduler by executing a system call that is intercepted by Shadow and redirected 

to a function in the node library. The interceptions allow integration of the 

application into the simulation environment without requiring modification of 

application code. Virtual nodes communicate with each other through a virtual 

network which spools packet and other network related events to the scheduler. 

Each virtual node stores only application-specific state and loads/unloads the state 

as necessary during simulation execution [25]. 

The working procedure of Shadow is shown in Fig. 12. 

 

Fig. 12. Shadow working procedure. 

Topology.xml file creates a network for downloading a file requested by a client 

through Tor network. The virtual nodes contain properties such as downstream 

bandwidth, upstream bandwidth and packet loss. The link between two virtual 

nodes has properties such as latency, jitter and packet loss. Shadow.config.xml file 
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simulation, all the results are stored in a log file called scallion.log. 
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V. PERFORMANCE EVALUATION 

A. Simulation Environment 

To maintain the privacy and anonymity of live Tor network, the simulation was 

performed in Shadow Simulator. 4 numbers of Directory Authorities, 116 Guard 

relays, 262 Middle relays, 76 Exit relays and 41 Guard+Exit relays were taken in 

the simulation. Similarly, there were 1800 clients and 500 servers and the total time 

of simulation was 60 virtual minutes. This simulation consumed around 61 GiB of 

RAM. Each experiment took about 5-6 hours to complete. The Table 2 below 

presents the total bandwidth (BW) per type of node. 

Table 2. Simulation Parameters 

Total BW per type of node 

Node BW (MB/S) % w.r.t Total BW 
Directory Authority 0.25 0.05% 

Guard 258.15 50.75% 
Exit 13.23 2.60% 

Guard + Exit(EE) 213.40 41.95% 
Middle 23.69 4.66 
Total 508.72 MB/S 

Compromised Nodes 400 78.63% 
 

During simulation, the total bandwidth, contributed by the compromised nodes, 

were kept to be same. For e.g., if a compromised node of 5 MB/S was taken, then 

80 numbers of compromised nodes were donated to make the total compromised 

bandwidth of 400 MB/S. Similarly, for 10 MB/S, total numbers of compromised 
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nodes taken were 40 to make total compromised bandwidth of 400 MB/S. 

Generally, two cases were considered: 1) Guard and Exit (G-E) pair 2) Guard-Exit 

(EE) exclusively. For the first case, X numbers of guard nodes and Y numbers of 

exit nodes were added. Again, for the second case, (X+Y) EE nodes were added in 

the existing Tor network, to make the condition equal.  

B. Performance Results and Discussion 

 For results, the bar graph of the bandwidth of a single compromised node vs end-

to-end node selection probability was plotted, such that the values of bandwidth in 

x-axis represents the bandwidth of each compromised nodes following that total 

number of compromised nodes * bandwidth = total bandwidth added by 

compromised nodes to existing Tor network. To calculate the selection probability, 

a Perl script was written which parses the result of the shadow simulator to give the 

selection probability. 

1. End-to-End Selection Probability 

For n=1 

 

Fig. 13. End-to-End Selection Probability when guard- exit pair and EE node are added to the 
Tor network for n=1. 
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Fig. 13 shows the bar graph of node selection probability that a client chooses 

compromised node in guard position as well as exit position during circuit creation. 

The figure shows two graphs showing selection probability for two cases which are 

G-E pair and EE exclusively. It is observed that adding EE nodes in the Tor 

network yields higher end-to-end selection probability of compromised nodes than 

the adding Guard and exit nodes separately. This is due to the bandwidth weights, 

which are described in section II-E, for different types of nodes. 

For n=10 

 

Fig. 14. End-to-End Selection Probability for n=10. 

Fig. 14, 15 and 16 shows the end-to-end selection probability for 10, 20 and 40 

number of circuits respectively. It is observed that increasing the number of circuits 

increases the selection probability. 
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For n=20 

 

Fig. 15. End-to-End Selection Probability for n=20. 

For n=40 
 

 

Fig. 16. End-to-End Selection Probability for n=40. 
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Fig. 17 shows the bar graph showing the probability of selection of compromised 

nodes in both guard and exit position, when EE nodes, placed in different 

geographical locations are added to the Tor network. It is observed that the 

selection probability doesn’t depend upon the location of the compromised nodes. 

In simulator, Director Authority (DA) does not measure the node Bandwidth. The 

bandwidths of the nodes are defined initially in the simulator, which appears on the 

consensus document. But in live Tor network, DA measures the BW of the node 

and if the distance between node and DA is longer, actual BW may not appear in 

the consensus. This affects the selection probability. 

 

Fig. 17. End-to-End Selection Probability when EE nodes, in different locations, are added to 
the Tor network. 
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2. Guard Selection Probability 

For n=1 

 

Fig. 18. Guard selection Probability when guard-exit pair and EE node are added to the Tor 
network for n=1. 

Fig. 18 shows the bar graph of node selection that a client chooses compromised 

node in guard position only while creating a circuit. The figure shows two graphs 

showing selection probability for two cases, which are G-E pair and EE 

exclusively. From the graph, it is seen that adding EE exclusively nodes only in the 

existing Tor network yields higher selection probability of compromised nodes in 

guard position than G and E nodes separately. The probability of guard node 

selection is important because during discovery of hidden service, the targeted 

hidden service must use our compromised guard during circuit creation to the 

client. 
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For n=10 

 
 

Fig. 19. Guard selection Probability for n=10. 

For n=20 

 

Fig. 20. Guard selection Probability when guard-exit pair and EE node are added to the Tor 
network for n=20. 
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Fig. 19 and 20 shows the guard selection probability for 10 and 20 numbers of 

circuits respectively. It is observed that increasing the number of circuits increases 

the selection probability. 

 

Fig. 21. Guard selection Probability when EE nodes, in different locations, are added to the 
Tor network. 

Fig. 21 shows the guard selection probability when EE exclusively nodes, in 

different geographical locations, are added to the Tor network. Unlike Fig. 15, it 

can be observed that the guard selection probability doesn’t depend on the 

geographical locations of the compromised nodes. 

From all of the figures, it is observed that inserting a single or very few numbers of 

compromised nodes having very high bandwidth yields less selection probability 

than inserting large number of nodes with smaller bandwidth. It is seen that if just 
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contributed, selection probability is low in comparison to adding more numbers of 

compromised nodes with a smaller bandwidth of 10 Mbytes/s to 40 Mbytes/s, 

provided that total bandwidth contributed by the compromised nodes to the 

existing Tor network remains equal. It can be also observed that if the attacker 

inserts EE exclusively node only, then the attacker can control more than 60% of 

the total entry traffic going through Tor network, which is a significant threat to the 

anonymity provided by Tor. 
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3. Prediction of number of nodes required for certain probability 

Table 3. Prediction for number of nodes 

Entry-Exit Pair 

  
Target end-to-end node selection, Ps (%) 

50% 80% 99% 

# of nodes 
required of 5 

MB/S 

n=1 308 492 609 

n=10 40 92 228 

n=20 22 47 129 

n=40 11 25 68 

     

  
Target end-to-end node selection, Ps (%) 

50% 80% 99% 

# of nodes 
required of 10 

MB/S 

n=1 133 213 264 

n=10 17 40 99 

n=20 9 21 56 

n=40 5 11 29 

     

  
Target end-to-end node selection, Ps (%) 

50% 80% 99% 

# of nodes 
required of 20 

MB/S 

n=1 63 100 124 

n=10 8 19 47 

n=20 5 10 27 

n=40 3 5 14 
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EE Node 

 
Target end-to-end node selection, Ps (%) 

50% 80% 99% 

# of nodes 
required of 

5 MB/S 

n=1 148 237 294 

n=10 20 45 110 

n=20 11 24 63 

n=40 5 12 33 

     

 
Target end-to-end node selection, Ps (%) 

50% 80% 99% 

# of nodes 
required of 

10 MB/S 

n=1 72 115 142 

n=10 10 22 53 

n=20 5 12 30 

n=40 3 6 16 

     

 
Target end-to-end node selection, Ps (%) 

50% 80% 99% 

# of nodes 
required of 

20 MB/S 

n=1 33 52 64 

n=10 5 10 24 

n=20 3 5 14 

n=40 2 3 8 
 

 

 

 



- 40 - 

 

4. Prediction of number of nodes required for certain probability 

If the target selection is desired as 90%, then following table shows the Percentage 

of BW required of all compromised nodes for end-to-end selection probability: 

Table 4. Prediction for bandwidth required 

Entry-Exit Pair 

 
5 10 20 100 

n=1 462.00% 390.00% 409.50% 572.00% 

n=10 126.00% 109.20% 102.38% 136.5% 

n=20 66.00% 57.2% 53.63% 78.50% 

n=40 33.00% 28.6% 26.81% 35.75% 

 

EE Node 

5 10 20 100 

n=1 210.89% 200.57% 173.62% 293.43% 

n=10 60.67% 58.50% 52.84% 78.00% 

n=20 31.78% 30.64% 27.68% 40.86% 

n=40 15.89% 15.32% 13.84% 20.42% 
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The above table shows the prediction for bandwidth required to achieve 90% 

selection probability for G-E pair and EE exclusively. The table data can be 

explained as follows: from the simulation, it is seen that if we insert a G-E pair 

node of 5 MB/S, with total compromised bandwidth of 400 MB/S, then only 0.13 

catch probability is obtained. So, to increase this catch probability up to 90%,  the 

total bandwidth of compromised 5 MB/S nodes should be increased by nearly 4.5 

times. It can be seen that, on increasing the bandwidth the total bandwidth required 

decreases but for higher bandwidth, the total compromised bandwidth increases. 

 

VI. CONCLUSIONS 

In this thesis, an analysis on catch probability i.e. the probability that a client 

chooses the compromised nodes while making a circuit in Tor network was 

presented. Tor is a low latency anonymous communication system that supports 

TCP application over the internet. From the Shadow based simulation, the thesis 

outlined that end-to-end node selection probability of EE nodes is higher than that 

of individual Guard and Exit nodes. It is also noteworthy that the selection 

probability of the node doesn’t depend upon the geographical location of the node. 

In terms of BW, ranging from 10Mbytes/s to 50Mbytes/s as per a compromised 

node’s BW could be a good choice for better selection probability. Along with the 

end-to-end selection probability, the guard node selection probability of the 

compromised nodes was also stated. Finally, a prediction for the number of nodes 

that are required for certain percentage of catch probability and prediction for the 

percentage of bandwidth required for obtaining 90% selection probability were 

evaluated. 
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