

2015년 2 월

석사학위 논문

이동 타겟 추적 및 얇은 막대 배치를 위한 N-R과 EKF방법을 이용한 로봇비젼제어기법 개발

조선대학교 대학원

기계공학과

홍성문

이동 타겟 추적 및 얇은 막대 배치를 위한 N-R과 EKF방법을 이용한 로봇비젼제어기법 개발

Development of robot vision control schemes using the N-R and EKF methods for the moving target tracking and slender bar placement tasks

2015년 2월 25일

조선대학교 대학원

기계공학과

홍성문

이동 타겟 추적 및 얇은 막대 배치를 위한 N-R과 EKF방법을 이용한 로봇비젼제어기법 개발

지도교수 장 완 식

이 논문을 석사학위신청 논문으로 제출함

2014년 10월

조선대학교 대학원

기계공학과

홍 성 문

홍성문의 석사학위논문을 인준함

- 위원장 조선대학교 교수 이규태 (인)
- 위 원 조선대학교 교수 장 완 식 (인)
- 위 원 조선대학교 교수 성윤경 (인)

2014년 11월

조선대학교 대학원

목 차

List of Photos	V
List of Tables	V
List of Figures	IX
Nomenclature	X IV
Abstract	x v

제1장서론

1.1	연구배경	•••••		1
1.2	연구목적	및	내용	5

제 2 장 비젼시스템 모델

2.1	기구학 모	델	 8
2.2	비젼시스텓	모델	 9

제 3 장 로봇 비젼알고리즘의 수학적 모델링

3.1 N-R방법	11
3.1.1 카메라 매개변수 모델	11
3.1.2 로봇 관절각 모델	13
3.2 EKF방법	15

3.2.1 카메라 매개변수 모델	16
가. 측정모델의 보정	16
나. 예측 모델	17
3.2.2 로봇 관절각 모델	17
가. 측정모델의 보정	18
나. 예측 모델	19
3.2.3 EKF방법의 초기 값 추정	20

제 4 장 로봇 비젼알고리즘의 제어기법

4.1 고정 타겟에 대한 제어기법	22
4.1.1 N-R방법의 일괄처리기법	22
가. 장애물이 없는 경우	22
나. 장애물이 출현하는 경우	26
4.1.2 EKF방법의 순환기법	32
가. 장애물이 없는 경우	32
나. 장애물이 출현하는 경우	36
4.2 이동 타겟에 대한 제어기법	41
4.2.1 N-R방법의 일괄처리기법	41
4.2.2 N-R방법의 데이터 이동기법	45
4.2.3 EKF방법의 순환기법	50

제 5 장 실험장치 및 실험방법

5.1 실험장치 구성 53

5.2 시험모형	54
5.3 실험방법	55
5.3.1 점 이동 타겟 추적	55
5.3.2 장애물 출현 시 고정된 얇은 막대 배치	56

제 6 장 실험 결과

6.1 점 이동 타겟	57
6.1.1 비젼 시스템 모델의 적합성 비교	57
가. N-R방법의 일괄처리기법 결과	58
나. N-R방법의 데이터 이동기법 결과	60
다. EKF의 순환기법 결과	62
6.1.2 점 이동 타겟 추적 결과	65
가. N-R방법의 일괄처리기법 결과	65
나. N-R방법의 데이터 이동기법 결과	71
다. EKF방법의 순환기법 결과	77
6.1.3 점 이동 타겟에 대한 실험 결과 비교	83
6.2 고정된 얇은 막대 배치	85
6.2.1 비젼 시스템 모델의 적합성 비교	85
가. N-R방법의 일괄처리기법 결과	85
나. EKF기법의 순환기법 결과	94
6.2.2 장애물이 없는 경우 고정된 얇은 막대 배치 결과]	102
가. N-R방법의 일괄처리기법 결과	102
나. EKF방법의 순환기법 결과	103
6.2.3 장애물 출현 시 고정된 얇은 막대 배치 결과	105

가. N-R방법의 일괄처리기법 결과	105
나. EKF방법의 순환기법 결과	115
6.2.4 고정된 얇은 막대 배치 실험 결과 비교	124
제 7 장 결 론	128
REFERENCES	131

List of Photos

Photo 1	Experimental	apparatus ·	 53
1 11010 1	LAPCIMENTAL	apparatus	00

List of Tables

Table	2-1	Link parameters of 4 axis robot
Table	4-1	For an example, vision data with no obstacle 23
Table	4-2	For an example, vision data with case 1 28
Table	4-3	For an example, vision data with no obstacle
Table	4-4	For an example, vision data with case 1
Table	4-5	For an example, vision data of moving target in the batch scheme
		of N-R method ····· 42
Table	4-6	For an example, vision data of moving target in the data moving
		scheme of N-R method
Table	6-1	For the moving target tracking, the estimated six parameters
		using the batch scheme of N-R method in each camera 58
Table	6-2	For the moving target tracking, the estimated six parameters
		using the data moving scheme of N-R method in each camera \cdots 60
Table	6-3	For the moving target tracking, the estimated six parameters
		using the recursive scheme of EKF method in each camera 63
Table	6-4	For the moving target tracking, comparison of the actual and
		estimated values in x-y-z coordinate using the batch scheme
		of N-R method

- Table 6-9For the fixed slender bar placement, the estimated six parametersusing the N-R method with case1 in each camera88
- Table 6-10For the fixed slender bar placement, the estimated six parametersusing the N-R method with case2 in each camera90
- Table 6-11For the fixed slender bar placement, the estimated six parametersusing the N-R method with case3 in each camera92
- Table 6-13For the fixed slender bar placement, the estimated six parametersusing the EKF method with case1 in each camera96
- Table 6-14For the fixed slender bar placement, the estimated six parametersusing the EKF method with case2 in each camera98
- Table 6-15For the fixed slender bar placement, the estimated six parametersusing the EKF method with case3 in each camera100

Table 6-16	For the fixed slender bar placement, the estimated joint angle
	using the N-R method with no obstacle 102
Table 6-17	For the fixed slender bar placement, comparison of the actual
	and estimated values in x-y-z coordinate using the N-R method
	with no obstacle 103
Table 6-18	For the fixed slender bar placement, the estimated joint angles
	using the EKF method with no obstacle 104
Table 6-19	For the fixed slender bar placement, comparison of the actual
	and estimated values in x-y-z coordinate using the EKF method
	with no obstacle 104
Table 6-20	For the fixed slender bar placement, comparison of the actual
	and estimated values in x-y-z coordinate using the N-R method
	with case 1 109
Table 6-21	For the fixed slender bar placement, comparison of the actual
	and estimated values in x-y-z coordinate using the N-R method
	with case 2 111
Table 6-22	For the fixed slender bar placement, comparison of the actual
	and estimated values in x-y-z coordinate using the N-R method
	with case 3 113
Table 6-23	For the fixed slender bar placement, comparison of the actual
	and estimated values in x-y-z coordinate using the EKF method
	with case 1 118
Table 6-24	For the fixed slender bar placement, comparison of the actual
	and estimated values in x-y-z coordinate using the EKF method
	with case 2 120

Table 6-25	For the fixed slender bar placement, comparison of the actual
	and estimated values in x-y-z coordinate using the EKF method
	with case 3 122

List of Figures

Fig. 2-1	Link parameters and link frame assignments of 4 axis robot	8		
Fig. 3-1	Schematic diagram of N-R Method 1	.1		
Fig. 3-2	Schematic diagram of EKF Method			
Fig. 3-3	Procedures of Monte-Carlo method			
Fig. 4-1	Data processing procedures of the batch scheme of N-R method			
	for the fixed slender bar placement with no obstacle 2	23		
Fig. 4-2	Batch control scheme of N-R method for the fixed slender bar			
	placement with no obstacle	24		
Fig. 4-3	Obstacle regions of N-R method	26		
Fig. 4-4	Data processing procedures of the batch scheme of N-R method			
	for the fixed slender bar placement with obstacles 2	27		
Fig. 4-5	Data processing procedures for numbering vision data using			
	the batch scheme with obstacles N-R method 2	27		
Fig. 4-6	Batch control scheme of N-R method for the fixed slender			
	bar placement with obstacles 2	29		
Fig. 4-7	Matching method of joint angles and cue positions	30		
Fig. 4-8	Data processing procedures of the recursive scheme of EKF method			
	for the fixed slender bar placement with no obstacle	32		

Fig. 4-9	Recursive control scheme of EKF method for the fixed slender bar			
	placement with no obstacle			
Fig. 4-10	Obstacle regions of EKF method			
Fig. 4-11	Data processing procedures of the recursive scheme of EKF method			
	for the fixed slender bar placement with obstacles			
Fig. 4-12	Recursive control scheme of EKF method for the fixed slender bar			
	placement with obstacles			
Fig. 4-13	Data processing procedures in obstacle regions using the recursive			
	scheme of EKF method			
Fig. 4-14	Data processing procedures of the batch scheme of N-R method			
	for the moving target tracking 41			
Fig. 4-15	Batch control scheme of EKF method for the moving target			
	tracking			
Fig. 4-16	Data processing procedures of the data moving scheme of N-R			
	method for the moving target tracking 45			
Fig. 4–17	Data moving control scheme of N-R method for the moving			
	target tracking			
Fig. 4-18	Reassignment of data array 48			
Fig. 4–19	Data processing procedure of the recursive scheme of EKF method			
	for the moving target tracking			
Fig. 4-20	Recursive control scheme of EKF method for the moving target			
	tracking			
Fig. 5-1	Experimental set-up			
Fig. 5-2	Test model of the point			
Fig. 5-3	Test model of the slender bar			
Fig. 5-4	Trajectory of the moving target			

Fig. 5-5	Robot trajectory for the fixed slender bar placement
Fig. 6-1	For the moving target tracking, comparison of the actual and
	estimated values of vision system model for each camera using
	the batch scheme of N-R method
Fig. 6-2	2 For the moving target tracking, comparison of the actual and
	estimated values of the vision system model for each camera using
	the data moving scheme of N-R method
Fig. 6-3	B For the moving target tracking, comparison of the actual and
	estimated values of the vision system model for each camera using
	the recursive scheme of EKF method
Fig. 6-4	For the moving target tracking, comparison of the actual and
	estimated values in joint coordinates for each camera using the
	batch scheme of N-R method
Fig. 6-5	For the moving target tracking, comparison of the actual and
	estimated values in joint coordinates for each camera using the data
	moving scheme 72
Fig. 6-6	For the moving target tracking, comparison of the actual and
	estimated values in joint coordinates for each camera using
	the recursive scheme of EKF method 78
Fig. 6-7	For the moving target tracking, comparison of position errors using
	the batch and data moving schemes of N-R method, and the
	recursive scheme of EKF method 83
Fig. 6-8	8 For the fixed slender bar placement, comparison of the actual and
	estimated values of the vision system model for each camera using
	the batch scheme of N-R method with no obstacle

- Fig. 6-15 For the fixed slender bar placement, comparison of the actual and estimated values of the vision system model for each camera using the recursive scheme of EKF method with case3 101

NOMENCLATURE

$_{i}^{i-1}T$	Transfer matrix from frame $\{i-1\}$ to frame $\{i\}$					
P^i	Position vector of the cue at the tool frame					
\overline{F}	Position vector of the cue at the robot base frame					
C_{k}	View parameter					
X_m	X component of estimation model					
Y_m	Y component of estimation model					
F_x	\widehat{X} component of position vector \overline{F}					
F_y	\widehat{Y} component of position vector \overline{F}					
F_z	\widehat{Z} component of position vector \overline{F}					
$J(C_k)$	Performance index in parameter C					
X_c^i	X component of vision data for acquired at step i					
Y_c^i	Y component of vision data for acquired at step i					
X_m^i	X component of estimation model for computed at step i					
Y^i_m	Y component of estimation model for computed at step i					
ΔC	Parameter correction vector					
A	Matrix of $2\ell \times 6$					
A^{T}	Transpose of matrix A					
$J\!\left(\boldsymbol{\theta}_{i}\right)$	Performance index in joint angle					
$\Delta \theta$	Joint angle correction vector					
R	Residual vector					
В	Matrix of $(2 \times q) \times 4$					
B^T	Transpose of matrix B					

ABSTRACT

Development of robot vision control schemes using the N-R and EKF methods for the moving target tracking and slender bar placement tasks

Hong, Sung Mun

Advisor : Prof. Jang, Wan Shik Ph.D. Department of Mechanical Engineering, Graduate School of Chosun University

This thesis presents the robot vision control schemes using batch and data moving schemes of Newton-Raphson (N-R) method, and the recursive scheme of Extended Kalman Filter (EKF) method for a moving target tracking, and slender bar placement in the uncertainty of circumstance. The vision system model used for this study involves the six camera parameters $(C_1 \sim C_6)$. $C_1 \sim C_4$ explains the uncertainty of camera's orientation and focal length, and $C_5 \sim C_6$ explains the unknown relative position between the camera and the robot. In order to develop the robot vision control scheme, the batch and moving data schemes of N-R, and a the recursive schemes of EKF are developed for the estimation of the six camera parameters. Then, based on the estimated six parameters using three cameras, control schemes of the robot's joint angles are developed for the moving targets tracking and slender bar placement using both N-R and EKF methods. Especially, for the placement of slender bar in the uncertainty of circumstance, the discontinuous trajectory caused by obstacles is divided into three obstacle regions, which are beginning region, middle region, and near target region. Each obstacle region involves of 10 obstacles. Then, the effects of number of obstacles using the proposed robot's vision control schemes are investigated in each obstacle region.

Finally, in order to evaluate its strengths and weaknesses of three robot vision control schemes. the proposed three robot's vision control schemes is demonstrated experimentally by performing the moving target tracking, and the slender bar placement in discontinuous trajectory by obstacle.

제1장서론

1.1 연구배경 및 필요성

현대사회에서 조립공장의 노동자를 대신한 산업용 로봇의 등장은 환영받고 있는 데 반해, 효율성과 경제성 등을 고려하면 로봇이 활용될 수 있는 환경은 제한될 수 밖에 없음에도 불구하고 로봇은 지속적으로 연구·개발되었고, 최근 들어서는 인간 과 일상생활을 함께 할 수 있는 휴머노이드 로봇 및 지능형 로봇에 대한 관심이 고조되고 있는데, 휴머노이드 로봇이 사람과 비슷한 모습과 동작을 구사해서 사람 에게 친숙한 형태로 만들어져서 가정, 공공장소 등의 일상생활에서 사람에게 거부 감 없이 서비스를 제공하는 로봇이라 한다면, 지능형 로봇은 여기에서 더 나아가 외형뿐만이 아니라 기능적으로도 사람과 유사하게 생각하고 사람과도 상호 작용을 할 수 있는 로봇으로 일반 사용자가 로봇을 직접 조작하거나 프로그래밍하지 않아 도 외부환경을 인식하고 스스로 상황을 판단하여 자율적으로 동작할 수 있는 로봇 을 의미한다.

이러한 지능형 로봇은 사람이 수행하기에 복잡하고 위험한 일을 대신하는 공업 용 로봇과 군사용 로봇을 포함하여 가사를 지원하는 가사 로봇, 사람들과 게임을 즐기고 간단한 상호작용을 제공하는 엔터테인먼트 로봇, 회사나 공공장소 내에서 안내나 서류전달 등을 대신해주는 업무지원 로봇으로 다양하게 개발되고 있으며, 지능형 로봇을 구현하기 위한 핵심기술로는 인공지능을 빼놓을 수 없는데, 인공지 능은 영상, 음성, 주위 환경 등 다양한 정보를 종합하여 판단하고 상황에 맞게 대 처할 수 있도록 하는 기술로, 이러한 기술은 지능형 로봇 개발에서 가장 어려운 부 분이며, 로봇의 현재 위치 추정, 상황에 대한 반응, 입력된 센서정보 파악 등에 활 용되고 있다. 특히, 비젼 센서의 정보를 통해 로봇 스스로 외부환경을 인식하고 상 황을 판단할 수 있도록 하는 로봇 비젼 연구는 지능형 로봇 분야의 핵심적인 기술 로써 그 중요성이 강조되면서 세계적으로 많은 연구가 활발히 진행되고 있다.

컴퓨터와 센서기술의 발전은 산업용 로봇이 더 정밀하고 다양한 작업을 할 수 있도록 연구되고 있는데, 수동적인 작업을 벗어나기 위한 프로그래밍 기술 외에 복 잡한 작업환경에 대처하기 위한 센서 결합기술이 필수적이다. 인간의 시각기능을 로봇분야에 적용하기 위해서 사용되는 비젼시스템은 로봇에게 지능을 부여하여 다

- 1 -

양하고 복잡한 작업조건을 판단하고 정확하게 처리하도록 하는 기술로, 1990년 대 부터 활발해진 로봇비젼에 대한 연구는 미국에서 시작되었고 거의 같은 시기에 일 본에서도 Tokyo 대학의 그룹을 중심으로 로봇의 시각기능으로서 주목할 만한 Realtime Vision에 대한 연구가 이루어졌으며, 같은 시기에 로봇의 시각에 대한 연 구가 활발해진 것은 Panoramic Vision이나 전방위 시각(Omni-directional vision)이 라고 불리는 연구 때문으로, OSAKA 대학을 중심으로 활발히 전개되어 워크숍으 로 발전되었는데, 실제 산업현장에서 비젼시스템을 결합한 로봇을 적용하는 데에는 2 가지의 문제점이 대두되고 있다.

첫 번째로는, 로봇과 비젼시스템 간의 효과적인 보정을 위해 3차원 공간에서 움 직이는 로봇의 위치를 2차원 카메라 좌표계로 매핑하기 위한 로봇 좌표계와 카메 라 좌표계 상호간의 관계에 대한 정보가 정확해야 한다는 것인데, 이 문제에 대한 대표적인 연구는 Kelly⁽¹⁾가 평면상의 카메라 이미지에서 특징점 오차를 사용하는 제어기반 알고리즘을 제시하였으며, Yoshihiro⁽²⁾등은 카메라와 로봇 사이의 상대적 인 위치변화가 있는 경우에도 보정이 필요하지 않는 퍼지논리를 사용하였으며, Bacakoglu⁽³⁾등은 카메라 내부 매개변수와 외부 매개변수를 결정하는 과정에 대한 최적화된 3단계 카메라 보정 알고리즘을 개발하였다. 또한, Tsai⁽⁴⁾는 정확하게 알려 진 물리적인 공간의 점들에 대해 매니퓰레이션을 하기 전에 카메라에 대한 보정과 이러한 점들의 3차원 직교좌표계를 2차원 영상평면좌표계로 일치시키기 위한 모델 에서 매개변수들을 추정하는 방법을 제시하였으며, Beardsley⁽⁵⁾등은 보정된 카메라 와 3차원 기하학적 구조를 기본으로 하는 기존의 연구방법과 달리 카메라에 대한 보정이 필요하지 않고 초점거리와 같은 카메라의 내부 매개변수가 도중에 자유로 이 변경될 수 있는 연구 방법을 제시하였다.

두 번째로는, CCD카메라에 의해서 촬영된 많은 양의 데이터를 저장하기 위한 메 모리의 확보와 처리속도의 저하인데, 1970년대 후반부터 이루어진 LSI(Large Scale Integrate)로 대표되는 대규모 기억소자의 꾸준한 개발로 인해 메모리 문제를 해결 하였으며, Microprocessor의 발달은 많은 양의 데이터와 복잡한 알고리즘에 의한 처리속도 저하에 대한 문제를 상당부분 해결하였다. 또한 이치화 기법이나 큐(cue) 를 사용하여 데이터의 양을 최소로 하며 작업의 조건과 특성을 명확히 함으로써 비젼시스템을 특정 작업에만 적합하도록 적용하고, 획득되어지는 데이터의 양을 최 소로 줄이는 등의 물리적인 작업환경을 통해 데이터 처리시간을 줄이는 방법들이 ^(6,7) 연구되었으며, 연구된 다양한 제어기법 중 수치 해석적으로 분석하기 위해서

N-R방법과 EKF방법에 대한 연구가 활발히 진행되고 있는데,

첫 번째로, 반복기법인 N-R방법을 사용한 여러 가지 제어기법이 연구되었는데, Skaar⁽⁸⁾등이 2개 이상의 카메라를 이용한 공간상 로봇 구동 알고리즘을 연구하였 으며, Wedepohl⁽⁹⁾등은 주파수의 변환 매트릭스를 평가하는데 사용하였고, Shahamiri⁽¹⁰⁾는 Newton 방법을 사용하여 궤적이 단수 또는 단수지역을 피하도록 온라인으로 궤적이 수정되는 방법과 간단한 시각 장애물의 회피를 위한 바이어스 방법을 제안하였고, Yang⁽¹¹⁾등은 6축 평형로봇에 N-R방법을 적용하여 정기구학에 대한 해석을 하였다. Makoto⁽¹²⁾등은 단일 변수 Newton- Raphson방법이 전통적인 방법보다 더 정확하고 빠르다는 것을 증명하고, 태양전지 어레이의 가동점을 얻기 위해 비선형 방정식에 Newton-Raphson법을 적용하였고, 배민지⁽¹³⁾등은 도파관 안 테나 복사평판 설계이론으로 Elliott이 제안한 수식을 기반으로 슬롯 파라메터를 계 산하는 프로그램을 작성하고, 비선형방정식의 해를 구하기 위해 Newton Raphson 방법을 사용하였다.

두 번째로, 최근 들어 화상처리기법에 많이 사용되는 순환기법인 EKF방법을 사 용한 연구들로, Kalman^(14,15)이 선형 필터링 및 예측 문제에 대한 새로운 제시를 하 였으며, Kerr⁽¹⁶⁾는 레이더에서 목표의 추적에 사용하였고, Shademan⁽¹⁷⁾등은 비견기 반 위치제어에 EKF를 사용하였고, Lippiello⁽¹⁸⁾등은 이동물체의 위치와 방위에 대한 비견시스템을 이용한 실시간 추정값을 향상시키기 위해 적응EKF(Adaptive EKF) 방법을 사용하였으며, Chen⁽¹⁹⁾은 EKF를 이용하여 휴머노이드 로봇비젼 시스템에서 사용할 수 있는 카메라 교정방법을 제시하였다. Ling Chen⁽²⁰⁾등은 EKF를 이용하여 이동로봇의 위치를 연구하고 위치인식을 위한 레이저 범위 정보와 주행거리 측정 법을 융합시키기 위해 EKF를 사용하였고, Gabriele Ligorio⁽²¹⁾등은 단안 비젼시스 템에서 기준점을 기준으로 자체운동에 상대적인 관성측정 유니트(IMU)와 카메라센 서의 움직임의 자세추측을 위해 2개의 EKF를 개발하였으며, Hamzah Ahmad⁽²²⁾등 은 이동로봇 위치측정에서 몇몇 특정값들을 잃어버림에도 불구하고 좋은 추정을 유지하기 위해 EKF의 이론적인 분석을 제안하였고, Neda Parnian⁽²³⁾등은 다중 카 메라 비져시스템과 관성항법장치의 통합을 위해 개선된 EKF에 대해 연구하였으며. Shengli Zhou⁽²⁴⁾등은 관성센서와 비젼센서의 융합을 통해 실시간 자체운동의 정확 도를 향상시키기고 Hand-Writing 모션추적에서 관성센서와 비젼센서의 융합을 위 해 EKF를 사용하였다.

본 연구에서는, 각각의 장단점을 가지고 있는 N-R방법과 EKF방법을 사용하여

Collection @ chosun

제시된 비젼시스템을 적용한 로봇 비젼제어 알고리즘을 개발하였다.

첫 번째로, 오직 위치만을 고려한 점이동 타겟추정을 위한 실험에서는 N-R방법 에 근거한 일괄처리기법과 데이터 이동기법 및 EKF방법을 적용한 3개의 비젼 제 어기법을 개발하고 장단점을 비교 및 평가하여 효율성을 알아보고자 한다.

두 번째로, 위치와 방위를 고려하는 고정된 얇은 막대 추정실험은 불확실한 작업 환경에서 N-R방법의 일괄처리기법과 EKF방법을 적용한 로봇 비젼 제어기법을 비 교하여 상황에 맞는 제어기법의 효과적인 선택과 실험결과를 통해 위치 정밀도와 데이터 처리시간을 향상 시키고자 한다.

1.2 연구목적 및 내용

상황이 시시각각 변하는 복잡한 작업환경에서 인력으로 작업하기 어려운 상황에 효율적인 작업을 위한 시스템에 대한 많은 연구가 진행되어지고 있으며, 로봇에 사 람의 오감 중 하나인 시각을 적용하려는 연구가 활발하다. 그러나 비젼시스템을 제 어기법에 적용하기 위해선 많은 문제들이 발생하는데, 우선적으로 물체 형상을 인 식하기 위한 데이터의 양에 따른 처리속도와 작업 동선에서 기타 상황에 따른 데 이터 획득 실패 시 발생하는 문제들의 해결이 필요하다.

본 연구에서는 위의 문제점들을 해결하고자 카메라 방위와 초점거리의 불확실성 뿐만 아니라, 알려지지 않은 카메라와 로봇 사이의 상대적인 위치를 설명해주는 6 개의 매개변수를 포함한 비젼시스템 모델을 다양한 제어 기법에 적용하여 로봇 비 젼제어 알고리즘을 개발하여 상황에 맞게 사용자가 선택할 수 있는 폭을 넓히고자 한다. 여기서, 좀 더 정밀도를 높이기 위해 카메라의 위치선정을 로봇 말단부에 부 착된 타겟이 임의의 운동궤적을 따라 이동하는 구간이 본 연구에 사용된 3대의 카 메라 각각의 이미지 평면상에서 벗어나지 않으면서 화면에 가득 차도록 배치하고 물체형상 전체를 인식하지 않고 큐를 사용하여 데이터의 양을 최소화 시키고자 하 였다.

이리하여 문제점들을 최소화한 제 2장의 비젼시스템을 요즘 들어 활발히 연구되 어지고 있는 제 3장의 N-R방법과 EKF방법을 적용하는 수학적 모델링을 기초로 하여 제 4장에서 고정 타겟에 대한 로봇 비젼알고리즘의 제어기법과 점 이동 타겟 추적에 대한 제어기법을 개발하고자 한다. 고정 타겟에 대한 제어기법은 장애물이 없는 경우와 장애물이 출현하는 경우에 N-R방법의 일괄처리기법과 EKF방법의 순 환기법을 각각 사용하였고, 이동 타겟에서는 N-R방법의 일괄처리기법, 데이터 이 동기법과 EKF방법의 순환기법을 이용하여 로봇 비젼알고리즘의 제어기법을 개발 하였다.

개발된 제어기법을 사용하여 제 6장에서 각 제어기법의 비젼시스템 모델의 적합 성을 비교하고 점 이동 타겟 추적 실험에 N-R방법의 일괄처리기법, 데이터 이동기 법과 EKF방법의 순환기법을 적용하여 데이터의 양이 처리 시간에 미치는 영향을 비교하고, 고정된 얇은 막대 배치 실험에는 N-R방법의 일괄처리기법과 EKF방법 의 순환기법을 이용하여 장애물이 없는 경우와 장애물이 출현하는 경우 정밀도와

처리시간에 미치는 영향을 알아보고자 한다.

일반적으로 고정 타켓에 대한 실험이 선행되어야 하지만 본 여구에서는 방위를 고려하지 않고 위치만을 고려하는 1cue를 사용하는 점 이동 타겟에 대한 실험을 먼저 수행하고 나서 방위까지 모두 고려해야하는 2cue를 사용하는 얇은 막대 배치 실험을 진행하였다.

이에 대한 주요 연구내용은 다음과 같다.

(1) 비젼시스템 모델

- (2) 로봇 비젼알고리즘의 수학적 모델링
 - ① N-R방법
 - ② EKF방법
- (3) 로봇 비젼알고리즘의 제어기법
 - ① 고정 타겟
 - 장애물이 없는 경우 N-R방법의 일괄처리기법
 - 장애물 출현 시 N-R방법의 일괄처리기법
 - 장애물이 없는 경우 EKF방법의 순환기법
 - 장애물 출현 시 EKF방법의 순환기법
 - ② 이동 타겟
 - N-R방법의 일괄처리기법
 - N-R방법의 데이터 이동기법
 - EKF방법의 순환기법

(4) 실험장치 구성 및 방법

- (5) 실험결과
 - ① 점 이동 타겟 추적
 - N-R방법의 일괄처리기법을 이용한 점 이동 타겟 추적
 - N-R방법의 데이터 이동기법을 이용한 점 이동 타겟 추적

- EKF방법의 순환기법을 이용한 점 이동 타겟 추적

② 고정된 얇은 막대 배치

- 장애물이 없는 경우 N-R방법의 일괄처리기법을 이용한 고정된 얇은 막대 배치
- 장애물 출현 시 N-R방법의 일괄처리기법을 이용한 고정된 얇은 막대 배치
- 장애물이 없는 경우 EKF방법의 순환기법을 이용한 고정된 얇은 막대 배치
- 장애물 출현 시 EKF방법의 순환기법을 이용한 고정된 얇은 막대 배치

제 2 장 비젼시스템 모델

2.1 기구학 모델

로봇의 기구학은 로봇에 대한 관절각이 주어졌을 때, 로봇 베이스 좌표계에 대한 로봇의 위치 벡터를 구하는 것이다.

Fig. 2-1은 본 연구의 점 이동 타겟 추적실험에 사용한 4축 스카라 타입 로봇의 링크 인자와 관절 좌표계의 설정을 보여주며, Table 2-1은 로봇의 4개의 관절에 대 한 Denavit- Hartenberg(D-H) 링크인자⁽²⁵⁾를 보여준다.

Table 2-1 Link parameters of 4 axis robot

Avia	α_{i-1}	a_{i-1}	d_i	θ_{i}
AXIS	(degree)	(mm)	(mm)	(degree)
1	0	0	387	θ_1
2	0	400	0	θ_2
3	180	250	d_3	0
4	-180	0	0	θ_3

Fig. 2-1 Link parameters and link frame assignments of 4 axis robot

Table 2-1의 링크인자를 사용하여 계산된 로봇기구학모델의 성분 별 위치는 식(1) 과 식(2)에 나타내었다^(25,26).

$$\begin{aligned} F_{x}^{i,j} &= \cos\left(\theta_{1}^{i} + \theta_{2}^{i} + \theta_{4}^{i}\right)P_{x}^{j} - \sin\left(\theta_{1}^{i} + \theta_{2}^{i} + \theta_{4}^{i}\right)P_{y}^{j} \\ &+ a_{2}\cos\left(\theta_{1}^{i} + \theta_{2}^{i}\right) + a_{1}\cos\theta_{1}^{i} \\ F_{y}^{i,j} &= \sin\left(\theta_{1}^{i} + \theta_{2}^{i} + \theta_{4}^{i}\right)P_{x}^{j} + \cos\left(\theta_{1}^{i} + \theta_{2}^{i} + \theta_{4}^{i}\right)P_{y}^{j} \\ &+ a_{2}\sin\left(\theta_{1}^{i} + \theta_{2}^{i}\right) + a_{1}\sin\theta_{1}^{i} \\ F_{z}^{i,j} &= P_{z}^{j} + d_{1} - d_{3}^{i} - d_{4} \end{aligned}$$
(1)

여기서, *i*는 로봇의 운동궤적에서의 이동단계 수이며, *a*₁, *a*₂, *d*₁, *d*₄는 D-H 링크인 자를 나타내며, $\theta_1^i, \theta_2^i, d_3^i, \theta_4^i$ 는 *i*이동단계에서의 로봇 관절각, j는 cue의 수를 나타낸 다. 또한, 마지막 관절 좌표계의 원점에 부착된 시험모형의 끝점 P에 대한 cue들의 위치벡터(P_x^j, P_y^j, P_z^j)는 다음과 같다.

여기서,

- 점 (1cue) $P = (P_x, P_y, P_z) = (0, 0, -96)$
- 얇은 막대(2cue) $P^1 = (P_x^1, P_y^1, P_z^1) = (15, -18.5, -96)$ $P^2 = (P_x^2, P_y^2, P_z^2) = (-15, 18.5, -96)$ (2)

2.2 비젼시스템 모델

본 연구에서 제안된 비젼시스템 모델은 6개의 카메라 매개변수($C_1 \sim C_6$)를 포함하 고 있다. 여기서, $C_1 \sim C_4$ 는 카메라의 초점거리 및 방향의 불확실성을 설명하는 카 메라 내부 매개변수이며, C_5 과 C_6 은 카메라와 로봇사이의 상대위치에 대한 불확실 성을 설명하는 카메라 외부 매개변수이다. 이에 대한 비젼시스템 모델은 다음 식 (3)에 나타내었다^(25,26).

$$\begin{bmatrix} X_{m}^{i,j} \\ Y_{m}^{i,j} \\ Y_{m}^{i,j} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ & & & \\ C_{21} & C_{22} & C_{23} \end{bmatrix} \begin{bmatrix} F_{x}^{i,j} \\ F_{y}^{i,j} \\ F_{z}^{i,j} \end{bmatrix} + \begin{bmatrix} C_{5} \\ C_{6} \end{bmatrix}$$
(3)

여기서,

$$C_{11} = C_1^2 + C_2^2 - C_3^2 - C_4^2 , \quad C_{12} = 2(C_2C_3 + C_1C_4) ,$$

$$C_{13} = 2(C_2C_4 - C_1C_3) , \quad C_{21} = 2(C_2C_3 - C_1C_4) ,$$

$$C_{22} = C_1^2 - C_2^2 + C_3^2 - C_4^2 , \quad C_{23} = 2(C_3C_4 + C_1C_2) ,$$
(4)

 $X_m^{i,j}$ 과 $Y_m^{i,j}$ 는 i이동단계에서 로봇 끝점 P^j 에 대한 2차원 카메라 좌표를 나타낸 다. 여기서, j(=1,2)는 큐의 개수이다. 또한 $F_x^{i,j}, F_y^{i,j}, F_z^{i,j}$ 는 2.1절의 식(1)과 식(2) 와 같이 큐에 대한 성분별 위치값을 나타낸다.

제 3 장 로봇 비젼알고리즘의 수학적 모델링

본 연구의 로봇 비젼 제어 알고리즘은 2.1절의 성분별 위치 벡터를 이용하여 2.2 절의 비젼시스템 모델에 포함된 각 카메라에 대한 6개의 카메라 매개변수를 추정 하며, 추정된 매개변수를 이용하여 점 이동 타겟에 대한 로봇의 관절각을 추정하는 것이다. 본 논문에서는 N-R방법과 EKF방법을 각각 적용한 2가지 로봇비젼 제어 알고리즘을 개발하고자 하며, 3.1절에는 N-R방법을 이용한 로봇비젼 제어 알고리 즘, 3.2절에는 EKF방법을 이용한 로봇비젼 제어알고리즘을 각각 설명한다.

3.1 N-R방법

본 연구에 사용된 N-R방법은 카메라 매개변수 추정 기법과 로봇 관절각 추정 기 법에 사용된다. 이에 대한 전체적인 흐름은 Fig. 3-1에서 보여주고 있다.

Fig. 3-1 Schematic diagram of N-R Method

3.1.1 카메라 매개변수 모델

로봇이 점 이동 타겟이 주어진 운동 궤적을 따라 이동 할 때 각 이동 단계에서 로봇 끝점 P^{j} 에 대한 비젼 데이터와 로봇 관절각이 얻어진다면, 6개의 매개변수를

- 11 -

추정하기 위해 각 카메라에 대하여 식(5)과 같이 성능지수를 정의한다.

$$J(C_k) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left[X_m^{i,j} - X_c^{i,j} \right]^2 + \left[Y_m^{i,j} - Y_c^{i,j} \right]^2$$
(5)

여기서, $k(=1,2,\dots,6)$ 는 매개변수의 개수, i는 로봇 운동궤적에서의 이동단계 수 를 나타내며, j는 로봇의 말단부에 부착된 큐의 개수이다. $X_c^{i,j}$, $Y_c^{i,j}$ 는 로봇의 각 이동 단계에서 카메라를 통해 얻어진 로봇 끝점 P^j 에 대한 실제 비젼데이터 값들 이다. $X_m^{i,j}$, $Y_m^{i,j}$ 은 2.2절의 비젼시스템 모델에서 매개변수 $C_1 \sim C_6$ 을 포함한 비젼시 스템 모델 값을 나타낸다.

식(5)를 N-R 방법을 적용하여 최소화 시키면 식(6)과 같이 나타낸다^(27,28).

$C_{k,l+1} = C_{k,l} + \Delta C$ $= C_{k,l} + (A^T W A)^{-1} A^T W R$

여기서, *l*은 계산과정에서 반복된 횟수이며, *W*는 일반적으로 단위행렬을 사용하는 가중행렬이다. 또한, *A*는 $(2n \times j) \times 6$ 의 크기를 가지는 자코비안 행렬로 식(7)과 같이 주어지며,

$$A = \begin{bmatrix} \frac{\partial X_m^{1,1}}{\partial C_1} & \frac{\partial X_m^{1,1}}{\partial C_2} & \frac{\partial X_m^{1,1}}{\partial C_3} & \frac{\partial X_m^{1,1}}{\partial C_4} & \frac{\partial X_m^{1,1}}{\partial C_5} & \frac{\partial X_m^{1,1}}{\partial C_6} \\ \frac{\partial Y_m^{1,1}}{\partial C_1} & \frac{\partial Y_m^{1,1}}{\partial C_2} & \frac{\partial Y_m^{1,1}}{\partial C_3} & \frac{\partial Y_m^{1,1}}{\partial C_4} & \frac{\partial Y_m^{1,1}}{\partial C_5} & \frac{\partial Y_m^{1,1}}{\partial C_6} \\ \frac{\partial X_m^{1,2}}{\partial C_1} & \frac{\partial X_m^{1,2}}{\partial C_2} & \frac{\partial X_m^{1,2}}{\partial C_3} & \frac{\partial X_m^{1,2}}{\partial C_4} & \frac{\partial X_m^{1,2}}{\partial C_5} & \frac{\partial X_m^{1,2}}{\partial C_6} \\ \frac{\partial Y_m^{1,2}}{\partial C_1} & \frac{\partial Y_m^{1,2}}{\partial C_2} & \frac{\partial Y_m^{1,2}}{\partial C_3} & \frac{\partial Y_m^{1,2}}{\partial C_4} & \frac{\partial Y_m^{1,2}}{\partial C_5} & \frac{\partial Y_m^{1,2}}{\partial C_6} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial X_m^{i,j}}{\partial C_1} & \frac{\partial X_m^{i,j}}{\partial C_2} & \frac{\partial X_m^{i,j}}{\partial C_3} & \frac{\partial X_m^{i,j}}{\partial C_4} & \frac{\partial X_m^{i,j}}{\partial C_5} & \frac{\partial X_m^{i,j}}{\partial C_6} \\ \frac{\partial Y_m^{i,j}}{\partial C_1} & \frac{\partial Y_m^{i,j}}{\partial C_2} & \frac{\partial Y_m^{i,j}}{\partial C_3} & \frac{\partial Y_m^{i,j}}{\partial C_4} & \frac{\partial Y_m^{i,j}}{\partial C_5} & \frac{\partial Y_m^{i,j}}{\partial C_6} \\ \frac{\partial Y_m^{i,j}}{\partial C_1} & \frac{\partial Y_m^{i,j}}{\partial C_2} & \frac{\partial Y_m^{i,j}}{\partial C_3} & \frac{\partial Y_m^{i,j}}{\partial C_4} & \frac{\partial Y_m^{i,j}}{\partial C_5} & \frac{\partial Y_m^{i,j}}{\partial C_6} \\ \frac{\partial Y_m^{i,j}}{\partial C_1} & \frac{\partial Y_m^{i,j}}{\partial C_2} & \frac{\partial Y_m^{i,j}}{\partial C_3} & \frac{\partial Y_m^{i,j}}{\partial C_4} & \frac{\partial Y_m^{i,j}}{\partial C_5} & \frac{\partial Y_m^{i,j}}{\partial C_6} \\ \end{array}$$

(7)

(6)

R은 $(2n \times j) \times 1$ 요소를 가지는 유수벡터로 식(8)과 같이 주어진다.

$$R = \begin{bmatrix} X_m^{1,1} - X_c^{1,1} \\ Y_m^{1,1} - Y_c^{1,1} \\ X_m^{1,2} - X_c^{1,2} \\ Y_m^{1,2} - Y_c^{1,2} \\ \vdots \\ X_m^{i,j} - X_c^{i,j} \\ Y_m^{i,j} - Y_c^{i,j} \end{bmatrix}$$
(8)

식(6)의 △*C*가 0에 근접할 때까지 반복적인 계산이 이루어지며, 유수벡터 *R*이 허용오차를 만족하였을 때 최종적으로 3대 카메라에 대한 6개의 카메라 매개변수 가 추정된다.

3.1.2 로봇 관절각 모델

3.1.1절에서 각각의 3대 카메라에 대한 6개의 카메라 매개변수가 추정되면, 이를 이용하여 타겟에 대한 로봇 관절각θ_i(i=1~4)을 추정하기 위해 다음 식(9)과 같이 성능지수를 정의하였다.

$$J(\theta_{i}) = \sum_{q=1}^{\infty} \sum_{j=1}^{\infty} \left[X_{m}^{q,j}(F_{x}^{j}(\theta_{i}), F_{y}^{j}(\theta_{i}), F_{z}^{j}(\theta_{i})) - X_{c}^{q,j} \right]^{2} + \left[Y_{m}^{q,j}(F_{x}^{j}(\theta_{i}), F_{y}^{j}(\theta_{i}), F_{z}^{j}(\theta_{i})) - Y_{c}^{q,j} \right]^{2}$$
(9)

여기서, q는 카메라의 개수, k는 매개변수의 수를 나타낸다. 또한, $X_c^{q,j}$ 와 $Y_c^{q,j}$ 는 타겟에 대한 q번째 카메라에서 j번째 큐의 카메라 좌표값을 나타내며, $X_m^{q,j}$ 와 $Y_m^{q,j}$ 는 는 추정된 카메라 매개변수 $C_1 \sim C_6$ 에 근거한 q번째 카메라에서 끝점 P^j 의 추정된 비젼시스템 모델값이다.

식(9)를 N-R방법으로 최소화시키면 식(10)과 같다^(27,28).

$$\theta_{i,l+1} = \theta_{i,l} + \Delta \theta$$
$$= \theta_{i,l} + (B^T W B)^{-1} B^T W R$$
(10)

여기서, *l*은 계산과정 중 반복된 횟수이며, *W*는 가중행렬로서 본 연구에서는 단 위행렬을 사용하였다. 또한, *B*는 $(2 \times q \times j) \times 4$ 의 크기를 가지는 자코비안 행렬로 식(11)과 같이 주어지며,

$$B = \begin{bmatrix} \frac{\partial X_m^{1,1}}{\partial \theta_1} & \frac{\partial X_m^{1,1}}{\partial \theta_2} & \frac{\partial X_m^{1,1}}{\partial d_3} & \frac{\partial X_m^{1,1}}{\partial \theta_4} \\ \frac{\partial Y_m^{1,1}}{\partial \theta_1} & \frac{\partial Y_m^{1,1}}{\partial \theta_2} & \frac{\partial Y_m^{1,1}}{\partial d_3} & \frac{\partial Y_m^{1,1}}{\partial \theta_4} \\ \frac{\partial X_m^{1,2}}{\partial \theta_1} & \frac{\partial X_m^{1,2}}{\partial \theta_2} & \frac{\partial X_m^{1,2}}{\partial d_3} & \frac{\partial X_m^{1,2}}{\partial \theta_4} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial Y_m^{1,2}}{\partial \theta_1} & \frac{\partial Y_m^{1,2}}{\partial \theta_2} & \frac{\partial Y_m^{1,2}}{\partial d_3} & \frac{\partial Y_m^{1,2}}{\partial \theta_4} \\ \frac{\partial Y_m^{1,2}}{\partial \theta_1} & \frac{\partial X_m^{q,j}}{\partial \theta_2} & \frac{\partial X_m^{q,j}}{\partial d_3} & \frac{\partial X_m^{q,j}}{\partial \theta_4} \\ \frac{\partial Y_m^{q,j}}{\partial \theta_1} & \frac{\partial X_m^{q,j}}{\partial \theta_2} & \frac{\partial X_m^{q,j}}{\partial d_3} & \frac{\partial X_m^{q,j}}{\partial \theta_4} \\ \frac{\partial Y_m^{q,j}}{\partial \theta_1} & \frac{\partial Y_m^{q,j}}{\partial \theta_2} & \frac{\partial Y_m^{q,j}}{\partial d_3} & \frac{\partial Y_m^{q,j}}{\partial \theta_4} \end{bmatrix}$$
(11)

R은 (2×q×j)×1의 크기를 가지는 유수벡터로 식(12)과 같이 주어진다.

$$R = \begin{bmatrix} X_{m}^{1,1} - X_{t}^{1,1} \\ Y_{m}^{1,1} - Y_{t}^{1,1} \\ X_{m}^{1,2} - X_{t}^{1,2} \\ Y_{m}^{1,2} - Y_{t}^{1,2} \\ \vdots \\ X_{m}^{q,j} - X_{t}^{q,j} \\ Y_{m}^{q,j} - Y_{t}^{q,j} \end{bmatrix}$$
(12)

식(10)의 △θ는 3.1.1절의 카메라 매개변수 추정 기법과 마찬가지로 0에 근접할 때까지 반복적인 계산을 하며, 유수벡터 R이 허용오차를 만족하였을 때 최종적으 로 타겟에 대한 로봇 관절각($\theta_1, \theta_2, d_3, \theta_4$)이 추정된다.

3.2 EKF방법

Fig. 3-2는 본 연구에 사용된 EKF 방법의 전체적인 흐름을 보여주며, EKF 방법 의 칼만 이득값 K_k 를 구하기 위해 사용된 방정식의 자코비안 H_k 는 측정데이터를 정확히 전달하거나 확대하기 위하여 사용된다. 또한, Fig. 3-2에서 보여준 EKF방 법의 측정모델 보강과 예측모델을 사용하여 각 카메라에 대한 매개변수와 타겟에 대한 로봇 관절각을 추정한다.

Fig. 3-2 Schematic diagram of EKF Method

3.2.1 카메라 매개변수 모델

비젼시스템 모델에 포함된 불확실한 6개 카메라 매개변수를 EKF방법을 이용하여 추정하기 위해서는 Fig. 3-2의 A에서 보여준 비선형 함수인 *f*와 *h*를 정의하는 것 이 필요하다.

예측 모델에 대한 함수 f는 다음과 같이 정의한다.

$$f(x_k, u_k) = \begin{bmatrix} C_1 & C_2 & C_3 & C_4 & C_5 & C_6 \end{bmatrix}^T$$
(13)

또한, 측정 모델에 대한 함수h는 2.2절에 주어진 비젼시스템 모델을 사용하여 다 음과 같이 정의한다.

$$h(x_k^-, 0) = \begin{bmatrix} h_x^{i,j} \\ h_y^{i,j} \end{bmatrix} = \begin{bmatrix} X_m^{i,j} \\ Y_m^{i,j} \end{bmatrix}$$
$$= \begin{bmatrix} (C_1^2 + C_2^2 - C_3^2 - C_4^2) F_x^{i,j} + 2(C_2C_3 + C_1C_4) F_y^{i,j} + 2(C_2C_4 - C_1C_3) F_z^{i,j} + C_5 \\ 2(C_2C_3 - C_1C_4) F_x^{i,j} + (C_1^2 - C_2^2 + C_3^2 - C_4^2) F_y^{i,j} + 2(C_3C_4 - C_1C_2) F_z^{i,j} + C_6 \end{bmatrix}$$
(14)

여기서, *i*는 로봇이 이동한 단계를 나타내며, *j*(=1,2)는 로봇 말단부에 부착된 큐의 개수이다. 이렇게 정의된 *f*함수와 *h*함수를 이용하여 6개의 카메라 매개변수 를 추정한다.

가. 측정모델의 보정

측정모델의 보강 방정식은 칼만 이득값 K_k , 각각의 카메라에 대한 매개변수 x_k 및 오차 공분산 P_k 로 크게 3개로 구성된다.

$$K_{k} = P_{k}^{-} H_{k}^{T} (H_{k} P_{k}^{-} H_{k}^{T} + V_{k} R_{k} V_{k}^{T})^{-1}$$
(15)

 $x_k = x_k^- + K_k(z_k - h(x_k^-, 0))$ (16)

$$P_{k} = (1 - K_{k}H_{k})P_{k}^{-}$$
(17)

(19)

여기서,

$$H_{k} = \frac{\partial h}{\partial x} = \frac{\partial h^{i,j}}{\partial C_{1-6}}$$

$$= \begin{bmatrix} \frac{\partial h_{x}^{i,1}}{\partial C_{1}} & \frac{\partial h_{x}^{i,1}}{\partial C_{2}} & \frac{\partial h_{x}^{i,1}}{\partial C_{3}} & \frac{\partial h_{x}^{i,1}}{\partial C_{4}} & \frac{\partial h_{x}^{i,1}}{\partial C_{5}} & \frac{\partial h_{x}^{i,1}}{\partial C_{6}} \\ \frac{\partial h_{y}^{i,1}}{\partial C_{1}} & \frac{\partial h_{y}^{i,1}}{\partial C_{2}} & \frac{\partial h_{y}^{i,1}}{\partial C_{3}} & \frac{\partial h_{y}^{i,1}}{\partial C_{4}} & \frac{\partial h_{y}^{i,1}}{\partial C_{5}} & \frac{\partial h_{y}^{i,1}}{\partial C_{6}} \\ \frac{\partial h_{x}^{i,2}}{\partial C_{1}} & \frac{\partial h_{x}^{i,2}}{\partial C_{2}} & \frac{\partial h_{x}^{i,2}}{\partial C_{3}} & \frac{\partial h_{x}^{i,2}}{\partial C_{4}} & \frac{\partial h_{x}^{i,2}}{\partial C_{5}} & \frac{\partial h_{x}^{i,2}}{\partial C_{6}} \\ \frac{\partial h_{y}^{i,2}}{\partial C_{1}} & \frac{\partial h_{y}^{i,2}}{\partial C_{2}} & \frac{\partial h_{y}^{i,2}}{\partial C_{3}} & \frac{\partial h_{y}^{i,2}}{\partial C_{4}} & \frac{\partial h_{y}^{i,2}}{\partial C_{5}} & \frac{\partial h_{y}^{i,2}}{\partial C_{6}} \\ \frac{\partial h_{y}^{i,2}}{\partial C_{1}} & \frac{\partial h_{y}^{i,2}}{\partial C_{2}} & \frac{\partial h_{y}^{i,2}}{\partial C_{3}} & \frac{\partial h_{y}^{i,2}}{\partial C_{4}} & \frac{\partial h_{y}^{i,2}}{\partial C_{5}} & \frac{\partial h_{y}^{i,2}}{\partial C_{6}} \end{bmatrix}$$

$$(18)$$

또한, 식(17)의 측정모델의 잡음에 의한 영향 성분 $V_k R_k V_k^T$ 는 단위행렬을 사용하 였으며, 식(21)의 $X_c^{i,j}$ 와 $Y_c^{i,j}$ 는 로봇이 이동하는 동안 각 단계에서 j번째 큐에 대 한 카메라에서 측정된 비젼 데이터 x성분과 y성분을 나타낸다.

나. 예측 모델

공정모델의 예측 방정식은 잡음에 의한 영향성분을 모두 단위행렬을 사용하였으므 로 매개변수 예측 $x_{k+1}^- = x_k$ 와 오차 공분산값 $P_{k+1}^- = P_k$ 로 정의되어 다음 단계의 초기값으로 정의된다.

3.2.2 로봇 관절각 모델

3.2.1절에서 추정된 3대의 카메라 매개변수($C_1 ~ C_6$)를 사용하여 로봇의 4개 관절 각($\theta_1, \theta_2, d_3, \theta_4$)을 Fig. 3-2의 B에서 보여준 EKF방법으로 추정한다. 관절각 추정을 위해 비젼시스템 모델식 (3)과 (4)를 변형하면 다음과 같다.

$$\begin{aligned} X_{c}^{q,j} &= (C_{1}^{2} + C_{2}^{2} - C_{3}^{2} - C_{4}^{2})F_{x}^{q,j}(\theta_{i}) + 2(C_{2}C_{3} + C_{1}C_{4})F_{y}^{q,j}(\theta_{i}) \\ &+ 2(C_{2}C_{4} - C_{1}C_{3})F_{z}^{q,j}(\theta_{i}) + C_{5}^{q} \\ Y_{c}^{q,j} &= 2(C_{2}C_{3} - C_{1}C_{4})F_{x}^{q,j}(\theta_{i}) + (C_{1}^{2} - C_{2}^{2} + C_{3}^{2} - C_{4}^{2})F_{y}^{q,j}(\theta_{i}) \\ &+ 2(C_{3}C_{4} - C_{1}C_{2})F_{z}^{q,j}(\theta_{i}) + C_{6}^{q} \end{aligned}$$
(20)

여기서, q(=1~3)는 사용된 카메라 개수이고, X^{q,j}와 Y^{q,j}는 로봇이 이동하는 동 안 q번째 카메라에서 큐에 대한 측정된 비젼 데이터의 x성분과 y성분을 나타내며, $\theta_i(=\theta_1, \theta_2, d_3, \theta_4)$ 는 로봇을 구동하기 위해 추정되어야 할 알려지지 않은 로봇 관절 각이다.

3.2.1절에서 EKF방법의 카메라 매개변수 추정과 같이 관절각을 추정하기 위해서는 Fig. 3-2 B에서 보여준 공정 및 측정모델에 대한 방정식 식(13), 식(14)의 함수 *f* 와 *h*를 정의하는 것이 필요하며, 식(13)에 주어진 공정 모델에 대한 함수 *f*는 다음 식(21)과 같이 정의한다.

$$f(\boldsymbol{x}_k, \boldsymbol{u}_k) = \begin{bmatrix} \boldsymbol{\theta}_1 & \boldsymbol{\theta}_2 & \boldsymbol{d}_3 & \boldsymbol{\theta}_4 \end{bmatrix}^T$$
(21)

또한, 식(14)에 주어진 측정 모델에 대한 함수 *h*는 식(22)에 주어진 식을 이용하 여 다음과 같이 정의한다.

$$h(x_{k}, 0) = \begin{bmatrix} h_{x}^{q,1} \\ h_{y}^{q,1} \\ h_{x}^{q,2} \\ h_{y}^{q,2} \end{bmatrix} = \begin{bmatrix} X_{C_{t}}^{q,1} \\ Y_{C_{t}}^{q,1} \\ X_{C_{t}}^{q,2} \\ Y_{C_{t}}^{q,2} \end{bmatrix}$$
(22)

가. 측정모델의 보정

측정모델의 보강 방정식은 칼만 이득값 K_k ,사용한 카메라의 매개변수 x_k 및 오차 공분산 P_k 등 크게 3개로 구성된다.

$$K_{k} = P_{k}^{-} H_{k}^{T} (H_{k} P_{k}^{-} H_{k}^{T} + V_{k} R_{k} V_{k}^{T})^{-1}$$

$$x_{k} = x_{k}^{-} + K_{k} (z_{k} - h(x_{k}^{-}, 0))$$

$$P_{k} = (1 - K_{k} H_{k}) P_{k}^{-}$$
(23)
(24)
(25)

여기서,

$$H_{k} = \frac{\partial h}{\partial x} = \frac{\partial h^{q,j}}{\partial \theta_{i}} = \begin{bmatrix} \frac{\partial h_{x}^{q,1}}{\partial \theta_{1}} & \frac{\partial h_{x}^{q,1}}{\partial \theta_{2}} & \frac{\partial h_{x}^{q,1}}{\partial d_{3}} & \frac{\partial h_{x}^{q,2}}{\partial \theta_{4}} \\ \frac{\partial h_{y}^{q,1}}{\partial \theta_{1}} & \frac{\partial h_{y}^{q,1}}{\partial \theta_{2}} & \frac{\partial h_{y}^{q,1}}{\partial d_{3}} & \frac{\partial h_{y}^{q,2}}{\partial \theta_{4}} \\ \frac{\partial h_{x}^{q,2}}{\partial \theta_{1}} & \frac{\partial h_{x}^{q,2}}{\partial \theta_{2}} & \frac{\partial h_{x}^{q,2}}{\partial d_{3}} & \frac{\partial h_{y}^{q,2}}{\partial \theta_{4}} \\ \frac{\partial h_{y}^{q,2}}{\partial \theta_{1}} & \frac{\partial h_{y}^{q,2}}{\partial \theta_{2}} & \frac{\partial h_{y}^{q,2}}{\partial d_{3}} & \frac{\partial h_{y}^{q,2}}{\partial \theta_{4}} \\ \end{bmatrix}$$
(26)

$$Z_k = \begin{bmatrix} X_c^{i,1} & Y_c^{i,1} & X_c^{i,2} & Y_c^{i,2} \end{bmatrix}^T$$

(27)

또한, q는 사용한 카메라 개수를 나타내며, 측정모델의 잡음에 의한 영향 성분 $V_k R_k V_k^T$ 는 동등한 가중치를 주는 단위행렬로 정의하였다.

나. 예측 모델

공정모델의 예측 방정식은 잡음에 의한 영향성분을 모두 단위행렬을 사용하였으므 로 매개변수 예측 $x_{k+1}^- = x_k$ 와 오차 공분산값 $P_{k+1}^- = P_k$ 로 정의되어 다음 단계의 초기값으로 정의된다.

3.2.3 EKF방법의 초기값 추정

EKF방법을 카메라 매개변수 및 로봇 관절각 추정기법에 적용하고자 할 때, 초기 상태 변수와 초기 오차 공분산을 효과적으로 계산하는 것이 매우 중요하다. 이리하 여 본 연구에서는 EKF방법에 필요한 초기값의 정확한 계산을 위해 Monte-Carlo 방법을 이용한다. 이에 대한 절차는 Fig. 3-3에서 보여준다.

- 20 -

여기서, 본 논문의 제어 알고리즘을 적용하는데 있어서 초기 구동 단계는 10단계 로 설정하였다. 위 EKF방법의 초기값 추정을 위해 사용한 Monte-Carlo방법은 일 괄처리(Batch)방법을 적용하는데, 컴퓨터 시뮬레이션 결과 초기 상태변수인 카메라 매개변수 C값과 관절각 θ값을 계산하는데 최소 5단계 데이터가 필요하였다. 이리 하여 오차공분산 행렬을 계산하기 위해 Sstep은 6번째 단계, 초기구동의 마지막 단 계인 Estep은 10번째 단계로 설정하고, 이 단계는 타겟으로 이용하였다. 그리하여 계산되어진 카메라 매개변수 초기값 *C_p*, 로봇 관절각 초기값 θ_p, 초기 오차 공분산 행렬 *P_e*, *P_θ*는 3.2.1절과 3.2.2절의 EKF방법의 초기값으로 사용된다.

제 4 장 로봇 비젼알고리즘의 제어기법

앞 절에서 제시된 로봇 비젼시스템의 수학적 모델링에 대한 효율성을 보이기 위 해 방위와 위치를 모두 고려하는 얇은 막대를 이용한 고정 타겟 추정실험과 위치 만을 고려하는 점 이동 타겟 추정 실험에 적용하여 서로 비교 및 평가하였다.

4.1 고정 타겟에 대한 제어기법

얇은 막대 고정 타겟에는 반복적인 기법을 사용하는 N-R방법과 순환적 기법을 사용하는 EKF방법을 적용한 제어 기법을 개발하였다.

4.1.1 N-R방법의 일괄처리기법

N-R방법의 일괄처리기법을 이용한 얇은 막대 고정 타겟 추정실험은 로봇이 운 동궤적을 따라 이동하는 동안 장애물이 발생하지 않았다는 가정 하에 비젼데이터 를 처리하는 방법이 기본이 되고 로봇 이동 도중에 장애물이 3가지 구역으로 나뉘 어 출현하였을 경우 비젼데이터를 획득하지 못해도 이미 획득 된 비젼데이터를 처 리 하는 과정을 설명한다.

가. 장애물이 없는 경우

(1) 비젼데이터 획득 및 처리

Fig. 4-1에서는 고정 타켓에 대한 N-R방법의 일괄처리기법에 대한 데이터 처리 방법을 보여주고 있다. N-R방법은 정밀도에 초기값이 큰 영향을 미치지는 않으나 EKF방법과 비교를 위해 초기 단계를 설정하고 얇은 막대 고정 타켓을 향해 로봇 이 운동궤적을 따라 이동하는 동안 카메라 3대를 이용하여 비젼데이터를 측정한다. 측정된 비젼데이터를 이용하여 고정된 타켓을 추정하기 위해서 N-R방법의 일괄 처리기법은 로봇이 이동하는 첫 번째 데이터부터 타켓 이전까지의 모든 데이터를

용하여 계산한다.

Fig. 4-1 Data processing procedures of the batch scheme of N-R method for the fixed slender bar placement with no obstacle

Table. 4-1은 장애물이 없는 일반적인 상태에서 얇은 막대에 대한 비젼데이터가 축적되어지는 표를 예시로 보여주고 있다. 장애물이 발생하지 않았기 때문에 한 단 계 당 cue 2개의 데이터가 차례로 축적되어 41개의 단계 동안 총 82개의 데이터를 획득한다.

Data No.	Position	Cue	X	У
1	1	1	х	У
2	1	2	х	У
3	2	1	х	У
4	2	2	х	У
:	÷	÷	÷	÷
79	40	1	х	У
80	40	2	х	У
81	41	1	X	У
82	41	2	х	У

Table 4-1 For an example, vision data with no obstacle

(2) 제어기법

Fig. 4-2에서는 로봇이 고정된 타겟까지 이동하는 동안 장애물이 발생하지 않았 다는 가정 하에 N-R방법의 일괄처리기법을 적용한 고정된 얇은 막대 배치 작업을 위한 제어기법의 흐름을 보여주고 있다.

Fig. 4-2 Batch control scheme of N-R method for the fixed slender bar placement with no obstacle

① 단계 1

앞 절의 (1) 비젼데이터 획득 및 처리에서 설명하였던 것처럼 로봇이 설정된 로 봇 운동 궤적을 따라 고정된 얇은 막대 타겟을 향해 이동하는 동안 지정된 step에 서 3대의 카메라 각각의 비젼데이터를 획득한다.

② 단계 2

단계1에서 획득된 비젼데이터와 초기 값을 3.1.1절에서 설명한 매개변수 추정 모 델에 의하여 각 카메라에 대한 매개변수를 추정한다.

③ 단계 3

추정된 각 카메라에 대한 매개변수와 얇은 막대 고정 타겟에 대한 비젼데이터를 로봇 관절각 추정 모델에 적용하여 얇은 막대 고정 타겟에 대한 로봇의 관절각을 추정한다.

④ 단계 4

추정된 관절각과 실제 관절각을 비교하기 위해 오차값을 계산한다.

⑤ 단계 5

장애물이 없는 경우의 오차 값을 기본으로 하여 장애물 출현 시 고정된 얇은 막 대 배치 실험의 결과가 타당한지를 판단한다.

나. 장애물이 출현하는 경우

(1) 비젼데이터 획득 및 처리

로봇이 타겟까지 이동하는 동안 장애물이 출현 하였을 경우 비젼데이터 처리 방 법을 Fig. 4-3과 Fig. 4-4에서 보여주고 있다. Fig. 4-3에서 보여주는 것처럼 장애 물 구간을 크게 Case 1번 타겟 근처, Case 2번 운동궤적의 중간 영역, Case 3번 운동궤적 시작 영역 3구간으로 나누고 각 구간에서 장애물이 하나씩 증가하여 10 개 단계 동안 장애물이 출현하도록 설정하여 총 30번의 실험을 진행하였다. Fig. 4-4는 일정 간격 z개 동안 장애물이 출현 하였을 때 N-R방법의 일괄처리기법을 이용하여 고정 타겟 추정 시 사용하는 비젼데이터의 범위를 나타내고 있다.

(c) Case 3; Beginning obstacles region

Fig. 4–3 Obstacle regions of N–R method

- 26 -

Fig. 4-4 Data processing procedures of the batch scheme of N-R method for the fixed slender bar placement with obstacles

Fig. 4-5에서는 장애물이 출현했을 경우 비젼데이터를 새로 넘버링 하고, 로봇이 이동하는 동안 장애물을 제외한 전체 데이터의 개수를 확인하는 알고리즘을 보여 주고 있다. 여기서 nd는 Data number, po는 Position, cu는 큐 번호, xi와 yi는 비 젼데이터를 의미한다.

Fig. 4-5 Data processing procedures for numbering vision data using the batch scheme with obstacles N-R method

Table. 4-2는 Fig. 4-5를 통해 장애물이 출현하는 상황 중 타겟 근처 10단계 동 안 비젼데이터를 획득하지 못하였을 경우 축척되는 예시를 표로 보여주고 있다. 한 단계 당 cue i(2개)개의 데이터가 차례로 축적되어 n개의 단계 동안 장애물 출현 z 개(10개)를 제외한 총 (n-2)×i개의 데이터를 획득한다.

Data No.	Position	Cue	х	У
1	1	1	х	У
2	1	2	х	У
3	2	1	х	У
4	2	2	х	У
:	:	:	:	:
59	30	1	Х	У
60	30	2	X	У
61	41	1	х	У
62	41	2	Х	У

Table 4-2 For an example, vision data with case 1

(2) 제어기법

장애물 출현 시 N-R방법의 일괄처리기법을 적용한 고정된 얇은 막대 배치 작업 의 순서도를 Fig. 4-6에서 보여주고 있다.

Fig. 4-6 Batch control scheme of N-R method for the fixed slender bar placement with obstacles

① 단계 1

얇은 막대 고정 타겟을 향해 로봇이 이동하는 동안 각 카메라에 대해서 측정된 비젼데이터를 배열에 맞게 업로드 시킨다.

② 단계 2

앞 절의 (1)비젼데이터 획득 및 처리 부분에서 설명 하였듯이 로봇이 이동하는 동안 측정되어진 카메라 비젼데이터를 Data number, Position, Cue number, x-y좌 표를 순서대로 저장하고 저장된 비젼데이터의 총 데이터 개수를 확인하여 다음 계 산에 필요한 데이터의 개수를 정한다.

③ 단계 3

Fig. 4-7에 보여준 알고리즘을 통해 로봇 정기구학 계산을 위해 큐의 Position값 에 해당하는 관절각을 매칭시킨다.

Fig. 4–7 Matching method of joint angles and cue positions

④ 단계 4

매칭된 데이터를 토대로 3.1.1에서 설명한 매개변수 추정모델에 적용하여 C매개 변수를 계산하다.

⑤ 단계 5

계산된 C매개변수와 타겟 비젼데이터를 로봇 관절각 추정모델에 적용하여 얇은 막대 고정 타겟의 관절각을 추정한다.

⑥ 단계 6

관절각 추정 모델에서 추정된 관절각 값과 실제 관절각 값을 비교하여 계산된 결과값을 저장한다.

⑦ 단계 7

한 장애물 구간 당 장애물 개수가 하나씩 증가하면서 10번의 실험을 반복하여 진행한다.

4.1.2 EKF방법의 순환기법

방위와 위치를 고려하는 2cue를 이용한 얇은 막대 고정타겟에 EKF방법의 순환 기법을 적용하여 로봇이 이동하는 동안 장애물이 발생하지 않았다는 가정 하에 비 젼데이터를 처리하는 실험과 로봇 이동 도중에 장애물이 발생하여 비젼데이터를 획득하지 못하는 경우에 데이터를 처리 하는 과정을 설명한다.

가. 장애물이 없는 경우

(1) 비젼데이터 획득 및 처리

순환적 기법을 사용하는 EKF방법은 Fig. 4-8에서 보여주는 것과 같이 초기 단 계를 이용해 첫 번째 단계의 초기값을 계산한다. 그 계산된 초기값을 이용하여 첫 번째 로봇 이동 단계의 비젼데이터를 이용하여 고정된 타겟 n을 추정한다. 다음 두 번째는 이전단계에서 추정된 값을 초기값으로 사용하여 고정된 타겟 n을 추정하고, 타겟 이전의 마지막 데이터까지 위 과정을 되풀이하며 위치를 보정해 나간다.

Fig. 4-8 Data processing procedures of the recursive scheme of EKF method for the fixed slender bar placement with no obstacle

EKF방법의 순환기법을 적용한 고정된 얇은 막대 추정 시 장애물이 발생하지 않 았을 경우에 각 카메라에 비젼데이터는 Table 4-3과 같이 획득되어진다. 로봇이 고정된 타겟을 향해 이동하는 동안 40단계로 비젼데이터를 획득한 결과 총 데이터 의 개수는 80개를 획득하고 타겟인 41단계의 비젼데이터 2개가 추가로 축척된다.

Data No.	Position	Cue	х	У
1	1	1	X	У
2	1	2	X	У
3	2	1	X	У
4	2	2	X	У
÷	÷	÷	÷	÷
79	40	1	X	У
80	40	2	X	У
81	41	1	x	У
82	41	2	x	У

Table 4-3 For an example, vision data with no obstacle

(2) 제어기법

Fig. 4-9는 장애물이 없는 경우 EKF방법의 순환기법을 이용한 고정된 얇은 막 대 배치 작업에 대한 순서도를 보여주고 있다.

Fig. 4-9 Recursive control scheme of EKF method for the fixed slender bar placement with no obstacle

① 단계 1

Monte-carlo 방법을 통하여 각각의 카메라에 대한 매개변수의 오차공분산 행렬 과 관절각 오차 공분산 행렬 및 초기 매개변수와 초기 관절각 값을 구한다.

② 단계 2

구해진 초기 값들을 EKF방법을 적용시킨 매개변수 추정모델에 대입하여 11번째 단계에 대한 매개변수를 추정한다.

③ 단계 3

추정된 매개변수와 고정된 타겟의 비젼데이터를 EKF방법을 적용시킨 로봇 관절 각 추정모델에 대입하여 타겟에 대한 관절각을 추정한다.

④ 단계 4

단계 4와 단계 5에서 추정된 값들은 Prediction Update 단계를 거쳐 다음 step의 초기 값으로 사용된다. 다만, 본 논문에서는 Prediction Update에 단위행렬을 사용 하였기 때문에 추정된 값들 그대로 초기 값으로 사용된다.

⑤ 단계 5

단계 4 ~ 단계 6을 반복하여 최종 step 관절각을 추정하고, 실제 관절각 값과 비 교하여 오차를 나타낸다.

나. 장애물 출현하는 경우

(1)비젼데이터 획득 및 처리

순환적 기법을 사용하는 EKF방법을 적용한 고정된 얇은 막대 추정 실험 시 N-R방법과 마찬가지로 로봇이 타겟까지 이동하는 동안 장애물이 출현 하였을 경 우 비젼데이터 처리 방법을 Fig. 4-10과 Fig. 4-11에서 보여주고 있다. Fig. 4-10에 서 보여주는 것처럼 장애물 구간을 크게 Case 1번 타겟 근처, Case 2번 운동궤적 의 중간 영역, Case 3번 운동궤적 시작 영역 3구간으로 나누고 각 구간에서 장애물 이 하나씩 증가하여 10개 단계 동안 장애물이 출현하도록 설정하였다. Fig. 4-11은 일정 간격 z개 동안 장애물이 출현 하였을 때 EKF방법을 이용하여 고정 타겟 추 정 시 사용하는 비젼데이터의 범위를 나타내고 있다.

(c) Case 3; Beginning obstacles region

Fig. 4-10 Obstacle regions of EKF method

- 36 -

Fig. 4–11 Data processing procedures of the recursive scheme of EKF method for the fixed slender bar placement with obstacles

Table 4-4에서는 타겟 근처에서 10개의 단계 동안 장애물이 발생하였을 경우에 얻어진 비젼데이터의 예시 표를 통해 보여주고 있다. data number는 중간에 장애 물이 발생하여도 순서대로 체크되지만 30 단계에서 마지막 타겟인 41 단계 사이에 는 데이터가 축적되지 않았다. 그리하여 41번째 1큐의 data number는 61번으로 넘 버링하였다.

Data No.	Position	Cue	Х	У
1	1	1	Х	У
2	1	2	Х	У
3	2	1	Х	У
4	2	2	Х	У
•	•	•	•	:
19	10	1	Х	У
20	10	2	Х	У
21	11	1	Х	У
22	11	2	Х	У
23	12	1	Х	У
24	12	2	Х	У
:	:	:	:	÷
59	30	1	Х	У
60	30	2	Х	У
61	41	1	Х	У
62	41	2	Х	У

Table 4-4 For an example, vision data with case 1

(2) 제어기법

Fig. 4-12에서는 장애물 출현 시 EKF방법의 순환기법을 이용한 고정된 얇은 막 대 배치 작업에 대한 순서도를 보여주고 있다.

Fig. 4-12 Recursive control scheme of EKF method for the fixed slender bar placement with obstacles

① 단계 1

로봇이 설정된 로봇 운동 궤적을 따라 고정된 얇은 막대 목표물을 향해 이동하 는 동안 3대의 카메라에서 각각의 비젼데이터를 획득한다. 자세한 내용은 앞에 (1) 비젼데이터 획득 및 처리 부분에서 설명하였다.

② 단계 2

정확한 초기 값 계산을 위해 3.2.3에서 설명한 Monte-Carlo기법을 이용하여 초기 값을 계산한다.

③ 단계 3

Fig. 4-13에서와 같이 If문을 사용하여 장애물이 발생하였을 경우에는 계산에 참 여하지 않고 다음 단계로 넘어간다. casss는 장애물이 증가할 때마다 1씩 증가하 고, scas는 장애물 구간을 결정하는 변수이다. 예로 타겟 근처일 때 scas=40이고, 장애물이 하나이면 39<iii<=40일 경우에는 계산을 하지 않고 다음 단계로 넘어간 다. 장애물이 두 개이면 38<iii<=40이므로 2단계 동안 계산에 참여하지 않는다. 반 복하여 10개의 장애물을 건너뛰면 다음 장애물 구간이 시작된다.

Fig. 4-13 Data processing procedures in obstacle regions using the recursive scheme of EKF method

④ 단계 4

단계 2에서 계산한 초기값과 단계 3에서 출현한 장애물을 제외하고 얻어진 비젼 데이터를 3.2.1의 매개변수 추정 모델과 3.2.2의 관절각 추정모델을 통하여 장애물 이 발생하지 않은 구간에 한하여 초기 데이터를 가지고 매개변수를 추정하고 추정 되어진 매개변수와 타겟 비젼데이터를 사용하여 로봇 관절각을 추정한다.

⑤ 단계 5

계산되어진 매개변수와 로봇 관절각은 다음단계 위치 추정을 위해 초기값으로 지정되어 사용한다.

⑥ 단계 6

추정된 관절각과 실제 관절각을 비교하여 오차값을 계산한다.

4.2 이동 타겟에 대한 제어기법

위치만을 고려하는 점 이동 타겟에 대하여 N-R방법의 일괄처리기법, 데이터 이 동기법과 EKF방법의 순환기법을 적용한 비젼제어기법을 개발하였다.

4.2.1 N-R방법의 일괄처리기법

가. 비젼데이터 획득 및 처리

Fig. 4-14에서 보여준 것과 같이 N-R방법의 일괄처리기법에서는 초기 m단계를 비젼데이터로 사용하여 1번째 타겟을 추정한다. 2번째 타겟을 추정할 때는 1번째 타겟이 비젼데이터로 추가되어 m+1개를 이용하여 계산한다. 이 후 계산도 마찬가 지로 계산된 타겟 값이 다음 단계의 타겟을 추정하는데 사용하는 비젼데이터로 사용한다.

Fig. 4-14 Data processing procedures of the batch scheme of N-R method for the moving target tracking

본 논문에서 사용하는 비젼데이터는 Table 4-5에서 10개는 초기 단계이고, 12번부 터 41번까지 총 30개의 타겟을 나타내고 있다. 초기단계에서 11번 데이터를 타겟으 로 잡고 계산할 때에는 Data number 1번부터 10번까지의 비젼데이터를 사용하고, 첫 번째 타겟인 12번을 추정할 때는 1번부터 11번까지의 비젼데이터를 사용하여 추정한다.

타겟이 넘어갈 때마다 비젼데이터의 개수는 하나씩 늘어가면서 마지막 41번째인 30번 타겟을 추정할 때는 Data number 1번부터 40번까지의 비젼데이터를 이용하 여 계산한다.

Table 4-5 For an example, vision data of moving target in the batch scheme of N-R method

Data No.	Position	Cue	х	У
1	1	1	X	У
2	2	1	х	У
:	÷	÷	÷	:
9	9	1	Х	У
10	10	1	X	У
11	11	1	X	У
12	12	1	х	У
÷	÷	÷	÷	÷
40	40	1	X	У
41	41	1	X	У

나. 제어기법

Fig. 4-15에서는 점 이동 타겟에 대한 N-R방법의 일괄처리기법에 대한 흐름을 나타내고 있다.

Fig. 4-15 Batch control scheme of EKF method for the moving target tracking

① 단계 1

EKF방법과 비교를 위해 설정한 초기 단계 동안 로봇이 운동하는 궤적을 지정된 step내에서 비젼데이터를 획득한다.

② 단계 2

여러 실험을 통해 얻어진 초기 값을 매개변수 추정 기법에 적용하여 첫 번째 타 겟에 대한 매개변수를 계산한다.

③ 단계 3

계산된 매개변수와 타겟에 대한 비젼데이터 값을 이용하여 로봇 관절각 추정기 법으로 관절각을 추정한다.

④ 단계 4

첫 번째 타겟에 관하여 구해진 매개변수와 로봇 관절각을 다음 타겟을 추정하는 데 필요한 초기 값으로 지정한다.

⑤ 단계 5

위 과정을 반복 계산하여 마지막 타겟에 대한 관절각을 추정하고, 구해진 관절각 들과 실제 관절각들의 오차를 계산한다.

⑥ 단계 6

실험결과를 토대로 데이터 이동기법과 EKF기법을 통해 얻어진 결과를 서로 비 교 평가한다.

4.2.2 N-R방법의 데이터 이동기법

Newton-Raphson방법을 이용한 데이터 이동기법의 경우 반복적 기법인 N-R방 법을 기초로 하지만 동시에 순환적 기법인 EKF방법에서 데이터의 양을 줄이는 방 향으로 실험하기 때문에 고정 타겟에 적용하기에는 의미가 없다고 판단되었다. 그 래서 이동타겟에 대한 실험에 데이터 이동기법을 적용하였기 때문에 이전 타겟의 비견데이터가 다음 타겟 추정 시 비젼데이터로 추가되므로 장애물이 발생 하였을 경우에는 실험을 할 수가 없다고 판단되어 장애물이 발생하지 않는다는 가정 하에 진행하였다.

가. 비젼데이터 획득 및 처리

Fig. 4-16에서 보여준 것과 같이 N-R방법의 데이터 이동기법은 EKF방법의 순 환기법과 비교를 위한 초기 m단계를 설정하여 첫 번째 타겟을 추정한다. 이후 2번 째 타겟을 계산하기 위해서 계산에 필요한 비젼데이터 개수를 P개로 제한하여 실 험을 진행한다. 여기서, 로봇 관절각 추정 모델에서 필요로 하는 최소 비젼데이터 의 개수를 채우지 못하였을 경우 계산 과정에서 오류가 발생하였다.

Fig. 4–16 Data processing procedures of the data moving scheme of N-R method for the moving target tracking

본 논문에서는 Table 4-6에서 10개는 초기 단계이고, 12번부터 41번까지 총 30개 의 타겟을 나타내고 있다. 초기단계에서는 11번째 데이터를 타겟으로 잡고 계산할 때에는 data number 1번부터 10번까지의 비견데이터를 사용하여 초기값을 계산한 다.

타겟으로 지정한 12번째 데이터 즉, 첫 번째 타겟 계산 시에는 Fig.4-16에서 지 정한 P개를 본 논문에서는 10로 지정하였기 때문에 2번부터 11번까지의 비젼데이 터를 사용하여 추정한다. 마지막 41번째인 30번 타겟을 추정할 때는 Data number 31번부터 40번까지의 비젼데이터를 이용하여 계산한다.

Table 4-6 For an example, vision data of moving target in the data moving scheme of N-R method

Data No.	Position	Cue	Х	У
1	1	1	Х	У
2	2	1	Х	У
÷	÷	÷	÷	
9	9	1	Х	У
10	10	1	Х	У
11	11	1	Х	У
12	12	1	Х	У
÷	÷	:	÷	
40	40	1	X	У
41	41	1	Х	У

나. 제어기법

Fig. 4-17에서는 점 이동 타겟에 대한 N-R방법의 데이터 이동기법 처리과정을 나타내고 있다.

① 단계 1

N-R방법의 데이터 이동기법에 필요한 초기 값과 변수들을 지정한다.

② 단계 2

첫 번째 타겟 계산 시에는 타겟 이전의 비젼데이터를 모두사용하기에 moit+1과 moitt=moit-1에서 moitt를 0으로 지정하였다. 이후 2번째 타겟부터 계산에 필요한 데이터의 시작 범위를 지정하기 위해 단계 6에서 moit=moit+ad를 사용하여 원하는 값을 배치한다.

③ 단계 3

Fig. 4-18에서 보여준 것과 같이 매개변수를 계산하기 위해 필요한 비젼데이터의 2배열 상태를 1배열 상태로 지정한다. 첫 번째 타겟에서는 moitt값이 0이기 때문에 초기단계의 첫 번째 비젼데이터부터 모두 사용하고 2번째 타겟부터는 타겟이전의 비젼데이터의 범위를 임의로 정한 데이터개수를 사용하기 위하여 시작 범위를 moitt만큼 증가시켜 오래된 데이터는 삭제한다. 여기서, ad 변수를 이용하여 계산에 서 필요로 하는 비젼데이터의 양을 조절한다.

Fig. 4-18 Reassignment of data array

④ 단계 4

지정된 비젼데이터를 이용하여 3.1.1절에 설명한 매개변수 추정모델에 대입하여 매개변수를 추정한다.

⑤ 단계 5

추정된 매개변수와 타켓 비젼데이터를 이용하여 3.1.2절에서 설명한 로봇 관절각 추정모델에 대입하여 관절각을 추정한다.

⑥ 단계 6

첫 번째 타겟은 다른 기법들과 비교를 위해 계산에 필요한 데이터의 개수를 10 개로 제한하였다. 두 번째 타겟부터는 일정하게 지정한 데이터의 개수를 사용하기 위하여 변수 ad 값을 이용하여 타겟과 먼 오래된 데이터를 삭제하였다. 만약 ad 값 을 2로 지정하였을 경우 moit = moit(1) + ad(2) = 3이 되어 단계 2에서 moit = moit(3) + 1 = 4를 moitt = moit(4) - 1 = 3로 계산되어 단계 3에 사용된다. 그리 하여 i+3번째 비젼데이터부터 사용하게 된다. i가 1일 경우 4번째 데이터부터 11번 째 데이터까지 총 8개의 비젼데이터를 이용하여 계산을 하는 것이다. 변수 ad 값이 0일 경우 10개의 데이터, 1일 경우 9개의 데이터, ... 사용자가 원하는 개수를 지정 하여 실험을 한다.

⑦ 단계 7

스텝이 증가하면서 추정모델을 통해 추정된 매개변수와 관절각을 다음 타겟의 초기 값으로 지정한다.

⑧ 단계 8

3번째 타겟부터는 임의로 지정한 데이터의 개수를 유지시키면서 마지막 타겟까 지 관절각을 추정하고 각 step에 관절각들을 실제 관절각과 비교하여 오차 값을 계 산한다.

4.2.3 EKF방법의 순환기법

가. 데이터 획득 및 처리

EKF방법의 순환기법을 적용한 점 이동 타겟 추적 실험은 Fig. 4-19와 같이 초 기단계와 이동 타겟 단계로 나뉘어 있다. 초기단계에서 EKF방법을 위한 초기 값을 계산하고 첫 번째 타겟을 계산한다. 계산된 추정 값은 다음 타겟을 계산하기 위한 초기 값으로 사용되고, 마지막 타겟까지 순환적으로 추정해 나간다.

Fig. 4-19 Data processing procedure of the recursive scheme of EKF method for the moving target tracking

Table 4-6과 같이 10개는 초기 단계이고, 12번부터 41번까지 총 30개의 타겟을 나타내고 있다. 초기단계에서는 11번째 데이터를 타겟으로 잡고 계산할 때에는 data number 1번부터 10번까지의 비젼데이터를 사용하여 초기 값을 Mote-carlo 방 법으로 계산한다.

타겟으로 지정한 12번째 데이터 즉, 첫 번째 타겟 계산 시에는 초기 단계에서 계 산한 초기 값을 이용하고, 13번째 데이터인 두 번째 타겟부터는 첫 번째 타겟이 비 전데이터로 사용하여 계산을 한다.

나. 제어기법

Fig. 4-20은 EKF방법의 순환기법을 적용한 점 이동 타겟 추적 제어기법의 순서 를 단계별로 보여주고 있다.

Fig. 4–20 Recursive control scheme of EKF method for the moving target tracking

① 단계 1

로봇이 설정된 EKF방법의 로봇 운동 궤적에서 초기 점 목표물까지 이동하는 동 안 3대의 카메라에서 비젼 데이터를 획득한다.

② 단계 2

정확한 초기 값을 계산하기 위해 Monte-Carlo방법을 적용하여 EKF방법에 사용 할 초기 오차 공분산들을 계산한다.

③ 단계 3

단계 2에서 계산된 초기 매개변수들과 오차 공분산들을 EKF를 적용한 매개변수 추정모델에 대입하여 매개변수를 추정한다.

④ 단계 4

단계 3에서 추정된 카메라 매개변수와 타겟에 대한 비젼데이터를 EKF기법을 적 용한 로봇 관절각 추정모델에 대입하여 관절각을 추정한다.

⑤ 단계 5

단계 3과 단계 4의 Process model은 단위행렬을 사용하였으므로 추정된 매개변 수와 관절각은 다음 타겟의 계산을 위한 비젼데이터로 이용한다.

⑥ 단계 6

마지막 타겟에 대한 추정된 관절각 값과 실제 관절각을 비교하여 오차를 계산한 다.

제 5 장 실험장치 및 실험방법

5.1 실험장치 구성

본 연구에 사용된 실험장치의 구성은 Photo 1과 Fig. 5-1과 같이, 3대의 카메라를 포함한 640×480해상도를 갖는 비견시스템, 4축 스카라 타입 로봇과 시험모형을 포 함하는 로봇 시스템, PC 시스템으로 구성되었다.

Photo 1 Experimental apparatus

5.2 시험모형

본 연구에서는 점 이동 타켓 실험을 위한 위치만을 고려하는 1cue 시험 모형과 얇은 막대 고정 타켓 실험을 위한 방위와 위치를 모두 고려해야하는 2cue 시험 모 형을 제작하였다. Fig. 5-3은 로봇의 끝점에 1개의 LED를 플라스틱 봉 끝에 조합 한 점 시험모형이고, Fig. 5-4는 2개의 LED를 플라스틱 봉 양 끝에 부착하여 만든 얇은 막대 시험모형을 보여 주고 있다. 물체 형상 전체를 사용하지 않고 cue를 이 용하는 것은 비젼데이터의 양을 최소화시킴으로 인해 처리 속도를 향상 시키고자 하였다.

Fig. 5-2 Test model of the point

Fig. 5-3 Test model of the slender bar

5.3 실험방법

위치만을 고려하는 점 이동 타겟 추정과 위치와 방위를 모두 고려해야 하는 얇은 막대 고정 타겟 추정에 대한 실험을 진행하였다. 여기서, 모든 결과값에 대하여 허 용오차범위는 ±1mm를 기준으로 미만일 경우 안정적인 결과를 나타내고 있다고 판 단한다고 정의하였다.

5.3.1 점 이동 타겟 추정

Fig. 5-4는 사용된 로봇 운동궤적을 보여준다. 두 개의 로봇비젼 제어기법을 이 동 타겟 추적에 적용하기 위한 로봇 운동궤적은 10개의 초기 구동 단계와 20개의 이동 타겟으로 설정 되어 있다. 본 실험은 점 이동 타겟을 추적하는 과정을 수행하 였으므로 오직 로봇 끝점 P의 위치만을 고려하고 방위는 고려하지 않았다. 선행된 두 개의 연구결과⁽²⁶⁾에 의해 좀 더 향상된 실험결과를 얻기 위해 로봇으로부터 2.0m~2.5m거리에 3대의 카메라를 작업방향에 집중되도록 배치하였다.

실험에 앞서 정확한 값을 측정하기 위하여 초기화 단계를 통해 정확한 초기값을 얻어야 한다. 그러나 C값을 계산하기 위한 초기 단계에서 로봇 운동궤적이 짧을 경우 카메라 매핑 도중에 오류가 발생하였다. 컴퓨터 시뮬레이션 통해서 초기 구동 단계에서 로봇 운동 구간이 최소 26mm~30mm 이상이 되어야 안정적인 것을 확인 하여 본 논문에서는 10단계에 거쳐 초기화 단계를 구성하였다.

Fig. 5-4 Trajectory of the moving target

- 55 -

5.3.2 장애물 출현 시 고정된 얇은 막대 배치

장애물 출현 시 2cue를 이용한 고정된 얇은 막대 배치 실험에 관한 로봇 운동 궤 적을 Fig. 5-5과 Table 5-1에서 보여 주고 있다. 실험 관점을 타겟 근처에 장애물 이 발생 하였을 경우에 중점을 두고 있으므로 Obstacles region Near target을 타 겟 근처로 지정하였고, 로봇 운동궤적의 중간에는 Intermediate obstacles region, 운동궤적 시작 부분에는 Beginning obstacles region으로 지정하였다. 단, 장애물 출현 시 얇은 막대 고정 타겟 추정은 장애물이 없는 경우를 기본으로 비교하여 결 과의 안정성을 판단하고 있다.

Fig. 5-5의 진행 방향에 따라 각 영역별로 장애물이 타겟 근처 1개 단계 동안 발생했을 경우부터 타겟과 멀어지면서 1개 단계씩 증가하여 총 10개 단계 동안 발 생하였을 경우까지 총 10번의 실험을 하여 총 N-R방법의 일괄처리기법 30번, EKF방법의 순환기법 30번의 실험에 걸쳐 서로 비교하였다.

Fig. 5–5 Robot trajectory for the fixed slender bar placement

Collection @ chosun

제 6 장 실험 결과

첫 번째 1cue를 사용하여 위치만을 고려하는 점 이동 타겟 추정 실험은 N-R방법 의 일괄처리기법, 데이터이동기법과 EKF방법의 순환기법을 로봇 비젼 제어기법에 적용한 실험결과를 서로 비교하였다. 두 번째 2cue를 사용하여 위치와 방위를 모두 고려해야하는 장애물 출현 시 얇은 막대 고정 타겟 추정 실험 결과는 장애물 영역 을 3가지로 나누어 N-R방법의 일괄처리기법과 EKF방법의 순환기법을 적용한 로 봇 비젼제어기법을 사용하여 장애물이 작업에 미치는 영향을 비교하였다.

6.1 점 이동 타겟

본 연구에서 매개변수 추정을 위한 N-R방법의 일괄처리 기법, 데이터이동기법과 EKF방법의 순환기법을 비젼시스템 모델에 적용하여, 사용된 3대의 카메라에 대한 실제 비젼데이터 값과 추정된 비젼시스템 모델 값을 6.1.1절에서 비교하였다. 또한, 6.1.2절에서는 추정된 카메라 매개변수들을 사용하여 N-R방법의 일괄처리 기법, 데 이터이동기법과 EKF방법의 순환기법을 통해 추정된 점 이동 타곗에 대한 관절각 의 위치 정밀도와 데이터 처리시간을 비교하였다.

6.1.1 비젼 시스템 모델의 적합성 비교

N-R방법과 EKF방법을 각각 사용하여 각 이동타켓 추적단계에서 카메라 매개변 수를 이용하여 추정된 비젼 시스템 모델 값과 매개변수를 추정하는데 사용한 각 이동단계에서의 실제 획득된 비젼 데이터를 비교하여 제안된 비젼 시스템 모델의 적합성을 보이고자 한다.

3대 카메라 각각에 대한 실제 비젼 데이터와 비젼 시스템 모델의 추정 값 사이의 오차는 식(30)과 같이 r.m.s.⁽²⁹⁾을 정의하여 사용하였다.

$$e_{r.m.s} = \sqrt{\frac{\sum_{i=1}^{n} \left\{ \left(e_x^i\right)^2 + \left(e_y^i\right)^2 \right\}}{n}}$$
(30)

여기서, e_x^i , e_y^i $(i=1,2,\cdots,30)$ 는 큐에 대한 실제 비젼 데이터와 비젼 시스템 모델

- 57 -

의 추정 값 사이의 x 및 y축 오차 값, n은 로봇이 이동 타겟이 이동하는 동안 비 전데이터가 얻어진 단계 수이다.

가. N-R방법의 일괄처리기법 결과

위치만을 고려하는 점 이동 타겟 추정 시 일괄처리 기법을 적용하여 총 30개의 이동 타겟에 대하여 실험한 결과는 다음과 같다. 제 3장의 식(6)을 이용하여 30개 타겟에 대해 계산 하였지만, Table 6-1에서는 30개의 이동 타겟 중 3등분 되는 지 점의 10번째 타겟, 20번째 타겟 그리고 마지막 30번째 타겟을 추려 표기하였다.

Table 6-1의 매개변수를 식(3)에 적용하여 각 카메라에 대한 추정된 비젼 시스 템 모델 값과 로봇이 운동궤적을 따라 점 이동 타겟의 마지막 타겟까지 초기 구동 단계를 제외한 이동하는 동안 3대의 카메라에서 획득된 실제 비젼 데이터를 비교 하여 Fig. 6-1에서 보여주고 있다.

Camera	C-value	Target 10	Target 20	Target 30
number				
	C1	0.6385	0.6538	0.6695
	C2	0.4658	0.4845	0.5037
Camera	C3	0.7781	0.7654	0.7566
No.1	C4	0.8685	0.8573	0.8476
	C5	559.923	507.096	458.4774
	C6	186.0731	182.8489	176.9807
	C1	0.5281	0.5431	0.5567
	C2	0.3569	0.3642	0.3792
Camera	C3	0.8906	0.8715	0.8578
No.2	C4	0.9937	0.9885	0.9801
	C5	963.0636	918.8589	872.2028
	C6	260.8648	281.2602	284.346
	C1	0.4097	0.4231	0.4416
	C2	0.3195	0.3285	0.3453
Camera	C3	0.9967	0.9776	0.9556
No.3	C4	1.08	1.0706	1.0585
	C5	1294.3162	1243.8611	1177.9047
	C6	242.7607	258.7598	272.0877

Table 6-1 For the moving target tracking, the estimated six parameters using the batch scheme of N-R method in each camera

Fig. 6-1 For the moving target tracking, comparison of the actual and estimated values of vision system model for each camera using the batch scheme of N-R method

Fig. 6-1에서 보여준 것처럼 각 카메라에서 오차범위 cameral에서 ±0.129pixel, camera2에서 ±0.339pixel, camera3에서 ±0.198pixel 정도의 근사함을 확인하여 비젼 시스템 모델에 적합함을 알 수 있었다. 여기서, □는 각 카메라에 대한 실제 비젼 데이터를 나타내며, ×는 각 카메라에 대한 추정된 비젼 시스템 모델 값이다.

나. N-R방법의 데이터 이동기법 결과

Fig. 6-2 (a)에서 보여준 A는 10번째 타겟 추정 시 사용한 10개의 비젼데이터, B 는 20번째 타겟 추정 시 사용한 10개의 비젼데이터, C는 30번째 타겟 추정 시 사 용한 10개의 비젼데이터를 카메라 1에 대해서 나타내고 있다. Fig. 6-2의 (b)와 (c) 에 나타난 카메라 2번과 3번도 1번과 마찬가지로 보여주고 있다.

Table 6-2 For the moving target tracking, the estimated six parameters using the data moving scheme of N-R method in each camera

Camera number	C-value	Target 10	Target 20	Target 30
	C1	0.6169	0.6825	0.5686
	C2	-0.6556	-0.8122	-0.6641
Camera	C3	-0.5608	-0.6679	-0.7256
No.1	C4	0.9748	0.9015	0.853
	C5	417.7892	170.6797	410.45
	C6	750.1223	581.1782	430.417
	C1	0.6832	0.6303	0.7252
	C2	0.4925	0.4389	0.5606
Camera	C3	0.7563	0.7842	0.8251
No.2	C4	0.9759	1.0189	0.9954
	C5	551.8292	720.6921	526.3288
	C6	382.535	394.276	298.8398
	C1	0.4871	0.4122	0.5166
	C2	0.4002	0.3069	0.4302
Camera	C3	0.9305	0.9664	0.9541
No.3	C4	1.0397	1.0816	1.01
	C5	1049.2203	1267.9639	997.7743
	C6	268.7035	288.3189	221.8342

Fig. 6-2 For the moving target tracking, comparison of the actual and estimated values of the vision system model for each camera using the data moving scheme of N-R method

Fig. 6-2는 추정하기 위해 이동하는 동안 3대의 카메라에서 획득된 실제 비젼 데 이터와 각 카메라에 대한 Table 6-2에서 나타낸 매개변수를 식(3)에 적용하여 추 정된 비젼 시스템 모델 값을 비교하여 보여주고 있다. 여기서, □, △, ○는 순서대 로 10번째, 20번째, 30번째 타겟 추정을 위해 이동하는 동안 각 카메라에 대한 실 제 비젼데이터를 나타내며, ×는 각 카메라에 대한 추정된 비젼 시스템 모델을 나타 낸다.

각 카메라에서 식 (30)을 통해 전체 이동 타겟에 대한 오차는 cameral에서 ±0.0957pixel, camera2에서 ±0.0812pixel, camera3에서 ±0.0504pixel 정도로 근사함 을 보여주며, 비젼시스템 모델에 적합함을 알 수 있다.

다. EKF방법의 순환기법 결과

N-R방법과 마찬가지로 총 30개의 이동 타겟 중 이동궤적의 3등분 지점인 10번 째 타겟, 20번째 타겟 그리고 마지막 30번째 타겟에 대한 식(3)을 통해 계산되어진 각 카메라 매개변수C를 Table 6-3에서 보여주고 있다.

Table 6-3의 매개변수를 식(16)을 통해 각 타겟에 대한 추정된 비젼 시스템 모 델 값과 로봇이 점 이동 타겟을 추정하기 위해 3대의 카메라에서 획득된 실제 비 젼 데이터를 비교하였다. 여기서, □는 각 카메라에 대한 실제 비젼데이터를 나타 내며, ×는 각 카메라에 대한 추정된 비젼 시스템 모델이며, 초기 값들을 계산하는 초기 구동 단계를 제외한 EKF방법을 적용한 부분에 대해서만 실제 비젼데이터와 비교하여 나타내었다.

각 카메라에서 식 (30)을 통해 전체 이동 타겟에 대한 오차는 cameral에서 ±0.292pixel, camera2에서 ±0.339pixel, camera3에서 ±0.198pixel 정도로 근사함을 보여주며, 비젼시스템 모델에 적합함을 알 수 있다.

: 30 446
446
446
932
166
217
577
791
489
217
563
233
938
719
080
785
507
451
837
092

Table 6-3 For the moving target tracking, the estimated six parameters using the recursive scheme of EKF method in each camera

Fig. 6-3 For the moving target tracking, comparison of the actual and estimated values of the vision system model for each camera using the recursive scheme of EKF method

6.1.2 점 이동 타겟 추적 결과

점 이동 타켓에 대한 N-R에 근거한 일괄처리기법, 데이터 이동기법 두 가지 기법 과 EKF방법을 적용하여 추정된 이동 타켓 위치 값과 실제 타켓 위치 값을 비교한 오차 값은 식(31)과 같이 r.m.s.⁽²⁹⁾로 정의하였다. 특히, 공간상에서 이동 타켓에 대 한 실제 위치 값은 로봇제어기로부터 얻어진 엔코더 값, 추정된 위치 값은 관절각 추정기법에 의해 계산된 관절각을 식(1)과 식(2)의 4축 스카라 타입 로봇의 정기구 학 모델에 적용하여 계산하였다.

$$e_{r.m.s} = \sqrt{\frac{\left\{ \left(e_x^i\right)^2 + \left(e_y^i\right)^2 + \left(e_z^i\right)^2\right\}}{3}}$$
(31)

여기서, e_x^i , e_y^i , e_z^i $(i = 1, 2, \dots, 30)$ 는 각 이동 타겟에 대한 x성분 오차, y성분오차, z성분 오차를 나타낸다.

가. N-R방법의 일괄처리기법 결과

로봇이 일괄처리기법을 사용하여 점 이동 타겟 추정 실험을 수행 하였다. Table 6-1의 매개변수를 4.2.1절 Fig. 4-15에서 보여준 반복적인 기법을 사용하는 N-R방 법의 일괄처리기법을 이용한 로봇 관절각 추정 기법에 대입하여 추정된 로봇 관절 각 값은 Fig. 6-4에서 보여주고 있다.

Fig. 6-4에서 보여준 것과 같이 실제관절각과 측정된 관절각 값을 비교한 결과, 오차범위는 θ₁= -0.199~0.291 (degree), θ₂= -0.526~0.387 (degree), d₃= -0.153~0.175 (mm), θ₄= 0 (degree)로, 각 관절각은 아주 작은 오차 범위 내에 존 재한다. 특히, 본 연구는 하나의 cue를 부착하여 방위는 고려하지 않고 위치만을 고려하는 점 이동 타겟 추정 작업을 수행하였으므로, 스카라 형태의 로봇 특성상 방위를 결정하는 θ₄값은 Fig. 6-4(d)에서 보여주는 것 같이 일정한 값을 보여준다.

Fig. 6-4 For the moving target tracking, comparison of the actual and estimated values in joint coordinates for each camera using the batch scheme of N-R method

Fig.6-4의 추정된 로봇 관절각 값을 2.1절의 식(1) 정기구학 모델에 적용하여 로 봇 위치 값과 실제 관절각 값을 비교하여 Table 6-4에서 나타내고 있다.

Table 6-4에서 보여준 것 같이, 식(31) r.m.s 오차 계산식에 ⑧의 추정된 관절각 값과 ④의 실제 관절각 값을 대입하여 ⓪의 r.m,s 오차 값이 계산되었다. 총 30개 의 이동타겟을 추정하는 동안 r.m.s 평균 오차 값은 ±0.236mm로 안정적인 결과를 얻었으며, 데이터 처리시간은 첫 번째부터 마지막 타겟까지 총 422ms이 걸려 타겟 하나당 평균 14ms 정도를 소요하였다.

위와 같이, r.m,s 오차 값을 자세히 살펴보면 이동 타겟의 수가 적은 초반에는 대체적으로 오차 값이 낮게 나타나고 미세한 차이이긴 하지만 이동 타겟의 수가 많아지면 오차 값이 상승되어 가고 있는 것을 알 수 있다.

Table 6-4 For the moving target tracking, comparison of the actual and estimated values in x-y-z coordinate using the batch scheme of N-R method

Target number	Coordinate value	Actual	BEstimated ©Error (mm)		Dr.m.s (mm)	©Time (ms)
	F_x	635.180	635.501	0.321		
1	F_y	95.838	96.208	0.37	0.284	32
	F_z	114.684	114.726	0.042		
	F_x	633.857	633.823	-0.034		
2	F_y	98.190	98.147	-0.043	0.032	32
	F_z	114.288	114.296	0.008		
	F_x	632.472	631.838	-0.634		
3	F_y	100.520	100.175	-0.345	0.426	47
	F_z	113.892	113.739	-0.153		
	F_x	631.025	630.897	-0.128		
4	F_y	102.827	102.797	-0.03	0.078	63
	F_z	113.496	113.467	-0.029		
	F_x	629.516	629.452	-0.064		
5	F_y	105.111	104.932	-0.179	0.111	79
	F_z	113.100	113.077	-0.023		
	F_x	627.945	627.574	-0.371		
6	F_y	107.370	107.081	-0.289	0.274	79
	F_z	112.704	112.640	-0.064		
	F_x	626.313	626.193	-0.12		
7	F_y	109.603	109.302	-0.301	0.187	94
	F_z	112.308	112.301	-0.007		
	F_x	624.620	624.702	0.082		
8	F_y	111.810	111.709	-0.101	0.079	110
	F_z	111.912	111.955	0.043		
	F_x	622.867	622.829	-0.038		
9	F_y	113.990	113.892	-0.098	0.062	125
	F_z	111.516	111.541	0.025		
	F_x	621.054	620.968	-0.086		141
10	F_y	116.141	115.868	-0.273	0.169	
	F_z	111.120	111.184	0.064		

Target number	Coordinate value	Actual	BEstimated CError (mm)		Dr.m.s (mm)	©Time (ms)
	F_x	619.182	618.730	-0.452		
11	F_y	118.264	117.782	-0.482	0.381	141
	F_z	110.724	110.694	-0.03		
	F_x	617.250	617.358	0.108		
12	F_y	120.356	120.274	-0.082	0.085	157
	F_z	110.328	110.387	0.059		
	F_x	615.260	615.802	0.542		
13	F_y	122.418	122.727	0.309	0.366	172
	F_z	109.932	110.042	0.11		
	F_x	613.212	613.442	0.23		
14	F_y	124.448	124.435	-0.013	0.133	188
	F_z	109.536	109.538	0.002		
	F_x	611.106	611.158	0.052		
15	F_y	126.446	126.235	-0.211	0.126	204
	F_z	109.140	109.143	0.003		
	F_x	608.944	609.211	0.267		
16	F_y	128.411	128.520	0.109	0.169	219
	F_z	108.744	108.797	0.053		
	F_x	606.725	606.574	-0.151		
17	F_y	130.342	129.940	-0.402	0.248	235
	F_z	108.348	108.348	0		
	F_x	604.450	604.315	-0.135		
18	F_y	132.238	131.899	-0.339	0.210	250
	F_z	107.952	107.949	-0.003		
	F_x	602.119	602.115	-0.004		
19	F_y	134.099	133.795	-0.304	0.175	266
	F_z	107.556	107.554	-0.002		
	F_x	599.734	599.877	0.143		
20	F_y	135.923	135.689	-0.234	0.161	282
	F_z	107.160	107.207	0.047		

Target number	Coordinate value	Actual	®Estimated	©Error (mm)	Dr.m.s (mm)	©Time (ms)
	F_x	597.294	597.589	0.295		
21	F_y	137.710	137.649	-0.061	0.175	282
	F_z	106.764	106.804	0.04		
	F_x	594.801	595.298	0.497		
22	F_y	139.459	139.509	0.05	0.295	297
	F_z	106.368	106.473	0.105		
	F_x	592.255	592.235	-0.02		
23	F_y	141.170	140.612	-0.558	0.322	313
	F_z	105.972	105.974	0.002		
	F_x	589.656	589.938	0.282		
24	F_y	142.841	142.628	-0.213	0.208	329
	F_z	105.576	105.646	0.07		
	F_x	587.006	586.917	-0.089		
25	F_y	144.472	143.806	-0.666	0.388	344
	F_z	105.180	105.163	-0.017		
	F_x	584.304	584.667	0.363		360
26	F_y	146.062	145.787	-0.275	0.268	
	F_z	104.784	104.879	0.095		
	F_x	581.552	582.366	0.814		
27	F_y	147.611	147.712	0.101	0.481	391
	F_z	104.388	104.533	0.145		
	F_x	578.750	579.168	0.418		
28	F_y	149.117	148.903	-0.214	0.274	391
	F_z	103.992	104.065	0.073		
	F_x	575.899	576.211	0.312		
29	F_y	150.580	149.989	-0.591	0.387	407
	F_{z}	103.596	103.639	0.043		
	F_x	573.000	573.891	0.891		
30	F_y	152.000	151.970	-0.03	0.525	422
	F_z	103.200	103.375	0.175		

나. N-R방법의 데이터 이동기법 결과

로봇이 데이터 이동기법을 사용하여 점 이동 타겟 추정 실험을 수행 하였을 때, N-R방법에 근거하였기 때문에 일괄처리기법과 마찬가지로 Table 6-2의 매개변수 를 4.2.2절 Fig. 4-17에서 보여준 N-R방법의 데이터 이동 기법을 이용한 로봇 관절 각 추정 기법에 대입하여 추정된 로봇 관절각 값은 Fig. 6-5에서 보여주고 있다.

Fig. 6-5에서 보여준 것과 같이 실제관절각과 측정된 관절각 값을 비교한 결과, 오차범위는 θ₁= -0.218~0.233 (degree), θ₂= -0.527~0.395 (degree), d₃= -0.157~0.086 (mm), θ₄= 0 (degree)로, 각 관절각은 아주 작은 오차 범위 내에 존 재한다. 특히, 본 연구는 하나의 cue를 부착하여 방위는 고려하지 않고 위치만을 고려하는 점 이동 타겟 추정 작업을 수행하였으므로, 스카라 형태의 로봇 특성상 방위를 결정하는 θ₄ 값은 Fig. 6-5(d)에서 보여주는 것 같이 일정한 값을 보여준다.

Fig. 6–5 For the moving target tracking, comparison of the actual and estimated values in joint coordinates for each camera using the data moving scheme

Fig.6-5의 추정된 로봇 관절각 값을 2.1절의 식(1) 정기구학 모델에 적용하여 로 봇 위치 값과 실제 관절각 값을 비교하여 Table 6-5에서 나타내고 있다.

Table 6-4에서 보여준 것 같이, 식(31) r.m.s 오차 계산식에 ⑧의 추정된 관절각 값과 ④의 실제 관절각 값을 대입하여 ⓪의 r.m,s 오차 값이 계산되었다. 총 30개 의 이동 타겟을 추정하는 동안 r.m.s 평균 오차 값은 ±0.168mm로 안정적인 결과를 얻었으며, 데이터 처리시간은 첫 번째부터 마지막 타겟까지 총 187ms이 걸려 타겟 하나당 평균 6ms 정도를 소요하였다.

위와 같이, N-R방법의 데이터 이동기법은 본 연구에서 이동 타겟의 수가 많아져 도 오차 값은 일정한 값을 유지하고 데이터 처리시간도 상당히 좋은 결과를 보여 준다.

Table 6-5 For the moving target tracking, comparison of the actual and estimated values in x-y-z coordinate using the data moving scheme of N-R method

Target number	Coordinate value	Actual	Actual BEstimated		Dr.m.s (mm)	©Time (ms)
	F_	635 180	635 529	0.349		15
1	F_{x}	95.838	96 247	0.010	0.312	
1	F_{z}	114 684	114 728	0.044	0.012	10
	F_{π}	633.857	633.823	-0.034		
2	F_{u}	98.190	98.207	0.017	0.023	15
_	F_z	114.288	114.297	0.009		
	F_{x}	632.472	632.002	-0.470		
3	F_y	100.520	100.367	-0.153	0.300	15
	F_z	113.892	113.735	-0.157		
	F_x	631.025	631.044	0.019		15
4	F_{y}	102.827	102.940	0.113	0.066	
	F_z	113.496	113.481	-0.015		
	F_x	629.516	629.607	0.091		
5	F_y	105.111	105.024	-0.087	0.073	31
	F_z	113.100	113.101	0.001		
	F_x	627.945	627.798	-0.147		
6	F_y	107.370	107.209	-0.161	0.126	47
	F_z	112.704	112.705	0.001		
	F_x	626.313	626.477	0.164		
7	F_y	109.603	109.478	-0.125	0.123	47
	F_z	112.308	112.362	0.054		
	F_x	624.620	624.907	0.287		
8	F_y	111.810	111.909	0.099	0.180	47
	F_z	111.912	111.989	0.077		
	F_x	622.867	622.980	0.113		
9	F_y	113.990	114.161	0.171	0.122	47
	F_z	111.516	111.566	0.050		
	F_x	621.054	621.054	0.000		
10	F_y	116.141	116.163	0.022	0.051	78
	F_z	111.120	111.206	0.086		

Target	Coordinate	Actual ®Estimated		©Error	Dr.m.s	(E) Time
number	value	AActual	Bestimated	(mm)	(mm)	(ms)
	F_x	619.182	619.092	-0.090		78
11	F_{y}	118.264	118.322	0.058	0.063	
	F_z	110.724	110.706	-0.018		
	F_x	617.250	617.442	0.192		
12	F_y	120.356	120.504	0.148	0.140	78
	F_z	110.328	110.325	-0.003		
	F_x	615.260	615.754	0.494		
13	F_y	122.418	122.839	0.421	0.376	78
	F_z	109.932	109.986	0.054		
	F_x	613.212	613.474	0.262		
14	F_y	124.448	124.591	0.143	0.172	93
	F_z	109.536	109.530	-0.006		
	F_x	611.106	611.232	0.126		
15	F_y	126.446	126.473	0.027	0.082	93
	F_z	109.140	109.199	0.059		
	F_x	608.944	608.954	0.010		93
16	F_y	128.411	128.496	0.085	0.058	
	F_z	108.744	108.690	-0.054		
	F_x	606.725	605.980	-0.745		
17	F_y	130.342	129.757	-0.585	0.547	109
	F_z	108.348	108.308	-0.040		
	F_x	604.450	604.247	-0.203		
18	F_y	132.238	132.136	-0.102	0.132	125
	F_z	107.952	107.977	0.025		
	F_x	602.119	602.267	0.148		
19	F_y	134.099	134.153	0.054	0.098	125
	F_z	107.556	107.621	0.065		
	F_x	599.734	599.956	0.222		
20	F_y	135.923	136.026	0.103	0.143	125
	F_z	107.160	107.199	0.039		

Target	Coordinate	(A)Actual (B)Estimated		©Error	Dr.m.s	(E)Time
number	value	Actual	DEstimated	(mm)	(mm)	(ms)
	F_x	597.294	597.614	0.320		125
21	F_y	137.710	137.952	0.242	0.233	
	F_z	106.764	106.801	0.037		
	F_x	594.801	595.068	0.267		
22	F_y	139.459	139.628	0.169	0.183	140
	F_z	106.368	106.372	0.004		
	F_x	592.255	592.032	-0.223		
23	F_y	141.170	140.870	-0.300	0.217	156
	F_z	105.972	105.931	-0.041		
	F_x	589.656	589.552	-0.104		156
24	F_y	142.841	142.858	0.017	0.063	
	F_z	105.576	105.602	0.026		
	F_x	587.006	586.458	-0.548		
25	F_y	144.472	144.126	-0.346	0.381	156
	F_z	105.180	105.059	-0.121		
	F_x	584.304	584.501	0.197		
26	F_y	146.062	146.189	0.127	0.135	156
	F_z	104.784	104.789	0.005		
	F_x	581.552	582.064	0.512		
27	F_y	147.611	147.954	0.343	0.356	172
	F_z	104.388	104.404	0.016		
	F_x	578.750	578.671	-0.079		
28	F_y	149.117	149.132	0.015	0.047	187
	F_z	103.992	103.982	-0.010		
	F_x	575.899	575.920	0.021		
29	F_y	150.580	150.364	-0.216	0.127	187
	F_z	103.596	103.628	0.032		
	F_x	573.000	573.160	0.160		
30	F_y	152.000	152.120	0.120	0.117	187
	F_z	103.200	103.230	0.030		

다. EKF방법의 순환기법 결과

순환적 기법을 사용하는 EKF방법을 적용하여 점 이동 타겟 추정 실험 결과는 다음과 같다. Fig. 6-6에서 보여준 결과는 Table 6-3의 매개변수를 4.2.3절 Fig. 4-20에서 보여준 EKF방법의 순환기법을 이용한 로봇 관절각 추정모델에 대입하여 추정된 관절각 모델 값과 실제 관절각 값을 비교하여 나타내고 있다.

Fig. 6-6에서 보여준 것과 같이 실제 관절각 값과 측정된 관절각 값을 비교한 결과, 오차범위는 θ₁= -0.295~0.358 (degree), θ₂= -0.585~0.696 (degree), d₃= -0.123~0.134 (mm), θ₄= 0 (degree)로, 각 관절각은 아주 작은 오차 범위 내에 존재한다. 여기서, θ₂의 값이 초기에는 조금 불안정하게 나타나고 있으나, 다른 값들에서 보정하기 때문에 이동 타겟 수가 증가 할수록 실제 값과 근사하게 접근함을 보이고 있다.

Fig. 6-6 For the moving target tracking, comparison of the actual and estimated values in joint coordinates for each camera using the recursive scheme of EKF method

Fig. 6-6의 추정된 로봇 관절각 값을 2.1절의 식(1) 정기구학 모델에 적용하여 로 봇 위치 값과 실제 위치 값을 비교하여 Table 6-6에서 나타내고 있다.

Table 6-4에서 보여준 것 같이, 식(31) r.m.s 오차 계산식에 ⑧의 추정된 관절각 값과 ④의 실제 관절각 값을 대입하여 ⓪의 r.m,s 오차 값이 계산되었다. 총 30개 의 이동 타겟을 추정하는 동안 r.m.s 평균 오차 값은 ±0.334mm로 안정적인 결과를 얻었으며, 데이터 처리시간은 첫 번째부터 마지막 타겟까지 총 109ms가 걸려 타겟 하나당 평균 처리시간 3.6ms의 결과를 얻었다.

위와 같이, EKF방법의 순환기법을 이용하여 r.m.s 평균 오차 값과 데이터 처리 시간은 본 연구에서 만족할만한 결과를 보여준다.

Table	6-6	For	the	moving	target	tracki	ng,	comparis	son	of	the	actual	and
		estir	nateo	d values	s in	x-y-z	со	ordinate	usi	ing	the	recur	sive
		sche	eme o	of EKF r	nethod								

Target number	Coordinate value	Actual	l BEstimated CE (m		Dr.m.s (mm)	©Time (ms)
	F_x	635.180	635.699	0.519		
1	F_y	95.838	96.252	0.414	0.385	0
	F_z	114.684	114.749	0.065		
	F_x	633.857	633.499	-0.358		
2	F_y	98.190	97.832	-0.358	0.293	0
	F_z	114.288	114.307	0.019		
	F_x	632.472	631.680	-0.792		
3	F_y	100.520	100.120	-0.4	0.518	0
	F_z	113.892	113.769	-0.123		
	F_x	631.025	631.242	0.217		
4	F_y	102.827	102.743	-0.084	0.141	16
	F_z	113.496	113.569	0.073		
	F_x	629.516	629.480	-0.036		
5	F_y	105.111	104.689	-0.422	0.245	16
	F_z	113.100	113.126	0.026		
	F_x	627.945	627.344	-0.601		
6	F_y	107.370	107.042	-0.328	0.396	16
	F_z	112.704	112.663	-0.041		
	F_x	626.313	626.357	0.044		
7	F_y	109.603	109.096	-0.507	0.295	16
	F_z	112.308	112.351	0.043		
	F_x	624.620	624.597	-0.023		
8	F_y	111.810	111.815	0.005	0.036	16
	F_z	111.912	111.970	0.058		
	F_x	622.867	622.497	-0.37		
9	F_y	113.990	113.809	-0.181	0.238	16
	F_z	111.516	111.518	0.002		
	F_x	621.054	620.775	-0.279		
10	F_y	116.141	115.631	-0.51	0.337	16
	F_z	111.120	111.168	0.048		

Target	Coordinate			©Error	Dr.m.s	©Time
number	value	Actual	BEstimated	(mm)	(mm)	(ms)
	F_x	619.182	618.527	-0.655		31
11	F_{y}	118.264	117.487	-0.777	0.587	
	F_z	110.724	110.663	-0.061		
	F_x	617.250	617.493	0.243		
12	F_y	120.356	120.486	0.13	0.165	31
	F_z	110.328	110.409	0.081		
	F_x	615.260	615.552	0.292		
13	F_y	122.418	122.884	0.466	0.322	47
	F_z	109.932	110.024	0.092		
	F_x	613.212	612.730	-0.482		
14	F_y	124.448	123.802	-0.646	0.467	47
	F_z	109.536	109.478	-0.058		
	F_x	611.106	610.597	-0.509		
15	F_y	126.446	126.141	-0.305	0.343	47
	F_z	109.140	109.141	0.001		
	F_x	608.944	609.012	0.068		
16	F_y	128.411	128.337	-0.074	0.069	47
	F_z	108.744	108.808	0.064		
	F_x	606.725	605.995	-0.73		
17	F_y	130.342	129.461	-0.881	0.661	47
	F_z	108.348	108.320	-0.028		
	F_x	604.450	604.134	-0.316		
18	F_y	132.238	131.865	-0.373	0.282	78
	F_z	107.952	107.955	0.003		
	F_x	602.119	601.834	-0.285		
19	F_y	134.099	133.913	-0.186	0.197	78
	F_z	107.556	107.561	0.005		
	F_x	599.734	599.507	-0.227		
20	F_y	135.923	135.729	-0.194	0.175	78
	F_z	107.160	107.210	0.05		

Target	Coordinate			©Error	Dr.m.s	(E)Time
number	value	Actual	BEstimated	(mm)	(mm)	(ms)
21	F_x	597.294	597.228	-0.066		78
	F_u	137.710	137.395	-0.315	0.186	
	F_z	106.764	106.781	0.017		
22	F_x	594.801	594.752	-0.049		78
	F_y	139.459	139.107	-0.352	0.210	
	F_z	106.368	106.443	0.075		
23	F_x	592.255	591.513	-0.742		78
	F_y	141.170	139.801	-1.369	0.899	
	F_z	105.972	105.912	-0.06		
	F_x	589.656	589.593	-0.063	0.059	78
24	F_y	142.841	142.796	-0.045		
	F_z	105.576	105.643	0.067		
25	F_x	587.006	586.276	-0.73	0.805	94
	F_y	144.472	143.285	-1.187		
	F_z	105.180	105.122	-0.058		
26	F_x	584.304	584.342	0.038		94
	F_y	146.062	146.095	0.033	0.064	
	F_z	104.784	104.883	0.099		
27	F_x	581.552	581.795	0.243		109
	F_y	147.610	147.550	-0.06	0.152	
	F_z	104.388	104.469	0.081		
28	F_x	578.750	578.209	-0.541		109
	F_y	149.117	148.118	-0.999	0.656	
	F_z	103.992	103.980	-0.012		
29	F_x	575.899	575.339	-0.56		109
	F_y	150.580	149.621	-0.959	0.641	
	F_z	103.596	103.579	-0.017		
30	F_x	573.000	573.321	0.321		
	F_y	152.000	152.012	0.012	0.201	109
	F_z	103.200	103.334	0.134		

6.1.3 점 이동 타겟에 대한 실험 결과 비교

점 이동 타겟 추정 시 N-R방법에 근거한 일괄처리기법, 데이터 이동기법과 EKF기법 총 3개 기법을 사용하여 실험을 수행한 결과는 다음과 같다. 3개 제어기 법의 각각 이동 타겟 전체 오차 값을 비교하기 위해 Fig. 6-7에 타겟에 대한 오차 값을 그래프로 나타내었다. 인접한 타겟과의 오차 변화를 비교하며, EKF방법의 순 환기법은 N-R방법의 일괄처리기법, 데이터 이동기법과 비교하면 순환기법의 특성 상 다소 불안정한 상태를 보이고 있다. N-R방법의 일괄처리기법과 데이터 이동기 법을 비교하며, 이동 타겟의 수가 늘어갈수록 오차 값이 상승하는 반면, 데이터 이 동기법은 이동 타겟의 수가 늘어가도 오차 값이 안정적으로 나타나고 있다.

Fig. 6-7 For the moving target tracking, comparison of position errors using the batch and data moving schemes of N-R method, and the recursive scheme of EKF method

Collection @ chosun

Table 6-7에서는 Fig. 6-7의 이동 타켓 30개의 r.m.s 평균 오차 값은 N-R방법의 일괄처리기법 ±0.236mm, 데이터 이동기법 168mm과 EKF방법의 순환기법 ±0.334mm의 결과를 보이고, 데이터 처리시간에서는 일괄처리기법 422ms, 데이터 이동기법 187ms, EKF방법의 순환기법 109ms의 결과를 나타내고 있다. 타켓 하나 당 평균 데이터 처리시간으로 보면 일괄처리기법 14ms, 데이터이동기법 6ms, EKF 방법의 순환기법 3.6ms이다.

Table 6-7 For the moving target tracking, comparison of errors and processing thime using the batch and data moving schemes of N-R method, and the recursive scheme of EKF method

Scheme	Total processing time(ms)	Average time(ms)	Average error(mm) (r.m.s)
Batch scheme of N-R method	422	14	0.236
Data moving scheme of N-R method	187	6	0.168
Recursive scheme of EKF method	109	3.6	0.334

위 결과를 바탕으로 분석해보면 상대적으로 N-R방법의 일괄처리기법은 평균오 차 값이 좋으나 데이터 처리시간이 오래 걸리고, EKF방법의 순환기법은 데이터처 리시간은 빠르나 정밀도는 다소 불안정했다. 반면, N-R방법의 데이터 이동기법은 정밀도 값의 변화 폭도 적고, 데이터 처리시간도 빨랐다. 그리고 일괄처리기법에서 이동 타겟의 수가 증가할수록 오차 값이 상승하는 흐름도 N-R방법의 데이터 이동 기법에서는 보이지 않았다.

작업환경에서 시간에 구속되지 않고 정확한 값을 얻고자 할 때는 N-R방법에 근 거한 로봇 제어기법을 선택하는 것이 좋으며, 정밀도보다 데이터 처리시간을 중요 시 할 경우에는 EKF방법을 선택하는 것이 옳다고 판단된다.

6.2 고정된 얇은 막대 배치

얇은 막대를 고정된 타겟 지점에 배치작업은 N-R방법의 일괄처리기법과 EKF방 법의 순환기법을 사용하여 장애물이 없는 경우와 장애물이 출현하는 경우로 구분 하였다. 장애물 출현시 장애물 영역을 타겟 근처 영역, 운동궤적의 중간 영역, 운동 궤적의 시작 영역등 3개 영역으로 구분하고, 각 영역에서 장애물이 1개 단계에서 10개 단계까지 출현하도록 배치하여 실험을 행하였다.

6.2.1 비젼 시스템 모델의 적합성 비교

N-R방법과 EKF방법을 사용하여 장애물 출현 시 고정된 얇은 막대 배치 작업을 위해 이동하는 동안 카메라 매개변수를 이용하여 추정된 비젼 시스템 모델 값과 매개변수를 추정하는데 사용한 실제 획득된 비젼 데이터를 비교하여 제안된 비젼 시스템 모델의 적합성을 보이고자 한다. 3대 카메라 각각에 대한 실제 비젼 데이터 와 비젼 시스템 모델의 추정 값 사이의 오차는 식(32)와 같이 r.m.s.⁽²⁹⁾를 정의하여 사용하였다.

$$e_{r\cdot m\cdot s}^{j} = \sqrt{\frac{\sum_{i=1}^{n} \left\{ \left(e_{x}^{i,j} \right)^{2} + \left(e_{y}^{i,j} \right)^{2} \right\}}{n}} \quad , \quad e_{avg} = \frac{e_{r\cdot m\cdot s}^{1} + e_{r\cdot m\cdot s}^{2}}{2} \tag{32}$$

여기서, $e_x^{i,j}$, $e_y^{i,j}(i=1,2,\dots,n)$ 는 큐(j=1,2)에 대한 실제 비젼 데이터와 비젼 시 스템 모델의 추정 값 사이의 $x \ \downarrow y$ 축 오차값, n은 로봇이 이동 타겟이 이동하는 동안 비젼 데이터가 얻어진 단계 수이다.

가. N-R방법의 일괄처리기법 결과

(1) 장애물이 없는 경우

장애물 출현 시 얇은 막대 고정 타겟 추정 실험의 비교 대상으로 사용하기 위해

- 85 -

장애물이 존재하지 않는 경우 N-R기법을 이용한 얇은 막대 고정 타겟에 대한 실 험을 수행하였다.

각 카메라에 대한 Table 6-8에서 나타낸 매개변수를 식(3)에 적용하여 추정된 비젼 시스템 모델 값과 추정하기 위해 이동하는 동안 3대의 카메라에서 획득된 실 제 비젼 데이터를 비교하여 Fig. 6-8에서 보여주고 있다. 여기서, □는 타겟 추정을 위해 이동하는 동안 각 카메라에 대한 실제 비젼데이터를 나타내며, ×는 각 카메라 에 대한 추정된 비젼 시스템 모델을 나타낸다.

각 카메라에서 식 (32)를 통해 전체 이동 타겟에 대한 오차는 cameral에서 ±0.0957pixel, camera2에서 ±0.0812pixel, camera3에서 ±0.0504pixel 정도로 근사함 을 보여주며, 비젼시스템 모델에 적합함을 알 수 있다.

Table 6-8 For the fixed slender bar placement, the estimated six parameters using the N-R method with no obstacle in each camera

Obstacles region	C-value	Camera No.1	Camera No.2	Camera No.3
	C1	0.664	0.258	0.448
	C2	0.509	0.156	0.396
No obstacle	C3	0.980	1.009	1.012
region	C4	1.131	1.270	1.188
	C5	722.754	1582.067	1115.839
	C6	-20.139	100.340	-46.377

Fig. 6-8 For the fixed slender bar placement, comparison of the actual and estimated values of the vision system model for each camera using the batch scheme of N-R method with no obstacle

(2) 장애물이 출현하는 경우

①Case 1; Obstacles region near target

장애물 출현 시 N-R기법을 이용한 얇은 막대 고정 타곗 추정 실험 중 타곗 근 처에서 장애물이 출현 경우이다. 여기서, 장애물이 하나가 출현 하였을 때부터 10 개가 출현 하였을 경우까지 총 10번의 실험을 진행하였지만 아래 Fig. 6-9에서 장 애물 10이 출현 한경우의 비젼데이터의 흐름을 보여주고 있다.

각 카메라에 대한 Table 6-9에서 나타낸 매개변수를 식(3)에 적용하여 추정된 비젼 시스템 모델 값과 추정하기 위해 이동하는 동안 3대의 카메라에서 획득된 실 제 비젼 데이터를 비교하여 Fig. 6-9에서 보여주고 있다. 여기서, □는 타겟 추정을 위해 이동하는 동안 각 카메라에 대한 실제 비젼데이터를 나타내며, ×는 각 카메라 에 대한 추정된 비젼 시스템 모델을 나타낸다. 각 카메라에서 식 (32)를 통해 전체 이동 타겟에 대한 오차는 ±1pixel 미만으로 비젼시스템 모델에 적합함을 알 수 있 다.

Table 6-9 For the fixed slender bar placement, the estimated six parameters using the N-R method with case1 in each camera

Obstacles region	C-value	Camera No.1	Camera No.2	Camera No.3
	C1	0.652	0.252	0.437
	C2	0.500	0.153	0.388
Obstacles region	C3	0.984	1.009	1.015
near target	C4	1.132	1.263	1.186
	C5	751.002	1579.705	1134.577
	C6	-26.229	93.433	-53.951

Fig. 6-9 For the fixed slender bar placement, comparison of the actual and estimated values of the vision system model for each camera using the batch scheme of N-R method with case1

②Case 2; Intermediate obstacles region

장애물 출현 시 N-R기법을 이용한 얇은 막대 고정 타겟 추정 실험 중 이동 궤 적 중간에 출현하는 경우이다. 여기서, 장애물이 하나가 출현 하였을 때부터 10개 가 출현 하였을 경우까지 총 10번의 실험을 진행하였지만 아래 Fig. 6-10에서는 장 애물 10이 출현 한경우의 비젼데이터의 흐름을 보여주고 있다.

각 카메라에 대한 Table 6-10에서 나타낸 매개변수를 식(3)에 적용하여 추정된 비젼 시스템 모델 값과 추정하기 위해 이동하는 동안 3대의 카메라에서 획득된 실 제 비젼 데이터를 비교하여 Fig. 6-10에서 보여주고 있다. 여기서, □는 타겟 추정 을 위해 이동하는 동안 각 카메라에 대한 실제 비젼데이터를 나타내며, ×는 각 카 메라에 대한 추정된 비젼 시스템 모델을 나타낸다. 각 카메라에서 식 (32)를 통해 전체 이동 타겟에 대한 오차는 ±1pixel 미만으로 비젼시스템 모델에 적합함을 알 수 있다.

Obstacles region	C-value	Camera No.1	Camera No.2	Camera No.3
	C1	0.664	0.260	0.449
	C2	0.510	0.158	0.398
Intermediate obstacles	C3	0.982	1.006	1.012
region	C4	1.131	1.269	1.188
	C5	723.624	1573.002	1110.692
	C6	-24.592	103.544	-47.895

Table 6-10 For the fixed slender bar placement, the estimated six parameters using the N-R method with case2 in each camera

Fig. 6-10 For the fixed slender bar placement, comparison of the actual and estimated values of the vision system model for each camera using the batch scheme of N-R method with case2

③Case 3; Beginning obstacles region

장애물 출현 시 N-R기법을 이용한 얇은 막대 고정 타겟 추정 실험 중 초기단계 이후 이동궤적 초반에 장애물이 출현하는 경우이다. 여기서, 장애물이 하나가 출현 하였을 때부터 10개가 출현 하였을 경우까지 총 10번의 실험을 진행하였지만 아래 Fig. 6-11에서는 장애물 10이 출현 한경우의 비젼데이터의 흐름을 보여주고 있다. 각 카메라에 대한 Table 6-11에서 나타낸 매개변수를 식(3)에 적용하여 추정된 비젼 시스템 모델 값과 추정하기 위해 이동하는 동안 3대의 카메라에서 획득된 실 제 비젼 데이터를 비교하여 Fig. 6-11에서 보여주고 있다. 여기서, □는 타겟 추정 을 위해 이동하는 동안 각 카메라에 대한 실제 비젼데이터를 나타내며, ×는 각 카 메라에 대한 추정된 비젼 시스템 모델을 나타낸다. 각 카메라에서 식 (32)를 통해 전체 이동 타겟에 대한 오차는 ±1pixel 미만으로 비젼시스템 모델에 적합함을 알 수 있다.

Obstacles region	C-value	Camera No.1	Camera No.2	Camera No.3
	C1	0.666	0.256	0.448
	C2	0.509	0.153	0.395
Beginning obstacles	C3	0.977	1.012	1.011
region	C4	1.131	1.271	1.188
	C5	717.115	1591.027	1115.657
	C6	-15.508	99.398	-42.804

Table 6-11 For the fixed slender bar placement, the estimated six parameters using the N-R method with case3 in each camera

Fig. 6-11 For the fixed slender bar placement, comparison of the actual and estimated values of the vision system model for each camera using the batch scheme of N-R method with case3

나. EKF방법의 순환기법 결과

(1) 장애물이 없는 경우

장애물 출현 시 얇은 막대 고정 타겟 추정 실험의 비교 대상으로 사용하기 위해 장애물이 존재하지 않는 경우 EKF기법을 이용한 얇은 막대 고정 타겟에 대한 실 험을 수행하였다.

각 카메라에 대한 Table 6-12에서 나타낸 매개변수를 식(3)에 적용하여 추정된 비젼 시스템 모델 값과 추정하기 위해 이동하는 동안 3대의 카메라에서 획득된 실 제 비젼 데이터를 비교하여 Fig. 6-12에서 보여주고 있다. 여기서, □는 타겟 추정 을 위해 이동하는 동안 각 카메라에 대한 실제 비젼데이터를 나타내며, ×는 각 카 메라에 대한 추정된 비젼 시스템 모델을 나타낸다. 각 카메라에서 식 (32)를 통해 전체 이동 타겟에 대한 오차는 ±1pixel 미만으로 비젼시스템 모델에 적합함을 알 수 있다.

Obstacles region	C-value	C-value Camera No.1 Camera No.2		Camera No.3
	C1	0.647	0.280	0.433
	C2	0.443	0.178	0.354
No obstacle	C3	0.997	1.033	1.035
region	C4	1.069	1.272	1.154
	C5	802.895	1577.435	1175.190
	C6	-45.139	77.446	-70.996

Table 6-12 For the fixed slender bar placement, the estimated six parameters using the EKF method with no obstacle in each camera

Fig. 6-12 For the fixed slender bar placement, comparison of the actual and estimated values of the vision system model for each camera using the recursive scheme of EKF method with no obstacle

(2) 장애물이 출현하는 경우

① Case 1; Obstacle region Near target

장애물 출현 시 EKF방법의 순환기법을 이용한 얇은 막대 고정 타겟 추정 실험 중 타겟 근처에서 장애물이 출현하는 경우이다. 여기서, 장애물이 하나가 출현 하 였을 때부터 10개가 출현 하였을 경우까지 총 10번의 실험을 진행하였지만 아래 Fig. 6-13에서는 장애물 10이 출현 한경우의 비젼데이터의 흐름을 보여주고 있다. 각 카메라에 대한 Table 6-13에서 나타낸 매개변수를 식(3)에 적용하여 추정된 비젼 시스템 모델 값과 추정하기 위해 이동하는 동안 3대의 카메라에서 획득된 실 제 비젼 데이터를 비교하여 Fig. 6-13에서 보여주고 있다. 여기서, □는 타겟 추정 을 위해 이동하는 동안 각 카메라에 대한 실제 비젼데이터를 나타내며, ×는 각 카

메라에 대한 추정된 비젼 시스템 모델을 나타낸다. 각 카메라에서 식 (32)를 통해 전체 이동 타겟에 대한 오차는 ±1pixel 미만으로 비젼시스템 모델에 적합함을 알 수 있다.

Table 6–13 For the fixed slender bar placement, the estimated six parameters using the EKF method with casel in each camera

Obstacles region	C-value Camera No.1		Camera No.2	Camera No.3	
	C1	0.642	0.271	0.430	
	C2	0.460	0.172	0.367	
Obstacles region near	C3	1.000	1.028	1.033	
target	C4	1.094	1.267	1.172	
	C5	802.894	1577.434	1175.191	
	C6	-45.139	77.446	-70.996	

Fig. 6-13 For the fixed slender bar placement, comparison of the actual and estimated values of the vision system model for each camera using the recursive scheme of EKF method with case1

2) Case 2; Intermediate obstacles region

장애물 출현 시 EKF기법을 이용한 얇은 막대 고정 타겟 추정 실험 중 로봇이 이동하는 궤적 중간에 장애물이 출현하는 경우이다. 여기서, 장애물이 하나가 출현 하였을 때부터 10개가 출현 하였을 경우까지 총 10번의 실험을 진행하였지만 아래 Fig. 6-14에서는 장애물 10이 출현 한경우의 비젼데이터의 흐름을 보여주고 있다. 각 카메라에 대한 Table 6-14에서 나타낸 매개변수를 식(3)에 적용하여 추정된 비젼 시스템 모델 값과 추정하기 위해 이동하는 동안 3대의 카메라에서 획득된 실 제 비젼 데이터를 비교하여 Fig. 6-14에서 보여주고 있다. 여기서, □는 타겟 추정 을 위해 이동하는 동안 각 카메라에 대한 실제 비젼데이터를 나타내며, ×는 각 카 메라에 대한 추정된 비젼 시스템 모델을 나타낸다. 각 카메라에서 식 (32)를 통해 전체 이동 타겟에 대한 오차는 ±1pixel 미만으로 비젼시스템 모델에 적합함을 알 수 있다.

Obstacles region	C-value Camera No.1 C		Camera No.2	Camera No.3	
	C1	0.647	0.280	0.433	
	C2	0.443	0.178	0.354	
Middle obstacles	C3	0.997	1.033	1.035	
region	C4	1.069	1.272	1.154	
	C5	802.898	1577.445	1175.181	
	C6	-45.139	77.447	-70.996	

Table 6-14 For the fixed slender bar placement, the estimated six parameters using the EKF method with case2 in each camera

Fig. 6-14 For the fixed slender bar placement, comparison of the actual and estimated values of the vision system model for each camera using the recursive scheme of EKF method with case2

③ Case 3; Beginning obstacles region

장애물 출현 시 EKF기법을 이용한 얇은 막대 고정 타겟 추정 실험 중 초기단계 이후 로봇이동 궤적 시작부분에서 장애물이 출현하는 경우이다. 여기서, 장애물이 하나가 출현 하였을 때부터 10개가 출현 하였을 경우까지 총 10번의 실험을 진행 하였지만 아래 Fig. 6-15에서는 장애물 10이 출현 한경우의 비젼데이터의 흐름을 보여주고 있다.

각 카메라에 대한 Table 6-15에서 나타낸 매개변수를 식(3)에 적용하여 추정된 비젼 시스템 모델 값과 추정하기 위해 이동하는 동안 3대의 카메라에서 획득된 실 제 비젼 데이터를 비교하여 Fig. 6-15에서 보여주고 있다. 여기서, □는 타겟 추정 을 위해 이동하는 동안 각 카메라에 대한 실제 비젼데이터를 나타내며, ×는 각 카 메라에 대한 추정된 비젼 시스템 모델을 나타낸다. 각 카메라에서 식 (32)를 통해 전체 이동 타겟에 대한 오차는 ±1pixel 미만으로 비젼시스템 모델에 적합함을 알 수 있다.

Obstacles region	C-value	Camera No,1	Camera No,2	Camera No,3
	C1	0.650	0.271	0.432
	C2	0.447	0.166	0.354
Beginning obstacles	C3	0.997	1.034	1.035
region	C4	1.071	1.272	1.153
	C5	796.636	1597.318	1176.373
	C6	-44.791	78.403	-71.057

Table 6–15 For the fixed slender bar placement, the estimated six parameters using the EKF method with case3 in each camera

Fig. 6-15 For the fixed slender bar placement, comparison of the actual and estimated values of the vision system model for each camera using the recursive scheme of EKF method with case3

6.2.2 장애물이 없는 경우 고정된 얇은 막대 배치 결과

N-R과 EKF방법에 의한 장애물 출현 시 고정된 얇은 막대 배치 실험 결과 추정 된 타겟 위치 값과 실제 타겟 위치 값을 비교한 오차 값은 식(33)과 같이 r.m.s.⁽²⁹⁾ 로 정의하였다. 특히, 공간상에서 고정 타겟에 대한 실제 위치 값은 로봇제어기로 부터 얻어진 엔코더 값, 추정된 위치값은 관절각 추정기법에 의해 계산된 관절각을 식(1)과 식(2)의 4축 스카라 타입 로봇의 정기구학 모델에 적용하여 계산하였다.

$$e_{r.m.s}^{j} = \sqrt{\frac{\left\{ \left(e_{x}^{j}\right)^{2} + \left(e_{y}^{j}\right)^{2} + \left(e_{z}^{j}\right)^{2} \right\}}{3}} \quad , \qquad e_{avg} = \frac{e_{r.m.s}^{1} + e_{r.m.s}^{2}}{2} \tag{33}$$

여기서, e_x^j , e_y^j , e_z^j 는 각 큐(j=1,2)에 대한 x성분 오차, y성분오차, z성분 오차를 나타낸다.

가. N-R방법의 일괄처리기법 결과

로봇이 N-R기법을 사용하여 고정된 얇은 막대 배치 실험을 수행 하였을 때, Table 6-8의 매개변수를 4.1.1절 Fig. 4-2에서 보여준 반복적인 기법의 N-R방법을 이용한 로봇 관절각 추정 기법에 대입하여 추정된 로봇 관절각 값은 Table 6-16에 서 보여주고 있다.

Table 6-16에서 보여준 것과 같이 실제관절각과 측정된 관절각 값을 비교한 결과, 오차는 θ₁= 0.385 (degree), θ₂= -1.132 (degree), d₃= -0.25 (mm), θ₄= -0.757 (degree)로, 각 관절각은 아주 작은 오차 범위 내에 존재한다.

Table 6-16 For the fixed slender bar placement, the estimated joint angle using the N-R method with no obstacle

	θ_1	θ_2	d_3	θ_4
Estimated 15.172 20.724		20.724	128.750	3.945
Actual	15.557	19.592	128.500	3.188

Table 6-16의 추정된 로봇 관절각 값을 2.1절의 식(1) 정기구학 모델에 적용하여

로봇 위치 값과 실제 위치 값을 비교하여 Table 6-17에서 나타내고 있다.

Table 6-17에서 보여준 것 같이, 식(33) r.m.s 오차 계산식에 ⑧의 추정된 관절각 값과 ④의 실제 관절각 값을 대입하여 계산된 ⓪의 r.m,s 오차 값은 ±0.785mm로 안정적인 결과를 얻었으며, 데이터 처리시간은 N-R기법의 특성상 타겟 이전의 모 든 데이터를 한 번의 계산하기 때문에 프로그램에서 측정할 수 있는 최소 단위인 1ms미만의 값이 측정되고 있다.

Table 6-17 For the fixed slender bar placement, comparison of the actual and estimated values in x-y-z coordinate using the N-R method with no obstacle

Cue No.	Coordinate value	(À) Actual	B Estimated	© Error (mm)	D r.m.s (mm)	E Average (mm)	(F) Time (ms)
	F_x	613.001	611.949	-1.052			
1	1 F_y	245.998	246.669	0.671	0.734	0.734	
F_z	F_{z}	160.000	159.750	-0.250			_^_
	F_x	566.519	565.210	-1.309		0.765	й
2	F_y	256.412	255.859	-0.553	0.833		
	F_z	160.000	159.750	-0.250			

(주) ☆ : 1ms이하로 사용하는 프로그램에서 측정할 수 없는 시간으로 나타남

나. EKF방법의 순환기법 결과

순환적 기법을 사용하는 EKF방법을 적용하여 얇은 막대 고정 타겟 추정 실험 결과는 다음과 같다. Table 6-18에서 보여준 결과는 Table 6-12의 매개변수를 4.1.2절 Fig. 4-9의 EKF방법을 이용한 로봇 관절각 추정모델에 대입하여 추정된 관절각 모델 값과 실제 관절각 값을 비교하여 나타내고 있다.

Table 6-18에서 보여준 것과 같이 실제 관절각 값과 측정된 관절각 값을 비교한 결과, 오차는 θ_1 = -0.01 (degree), θ_2 = -0.021 (degree), d_3 = -0.112 (mm), θ_4 =

-0.079 (degree)로, 각 관절각은 아주 작은 오차 범위 내에 존재한다.

Table 6-18 For the fixed slender bar placement, the estimated joint angles using the EKF method with no obstacle

	θ_1		d_3	$ heta_4$
Estimated 15.567 19.613		19.613	128.612	3.267
Actual	15.557	19.592	128.500	3.188

Table 6-18의 추정된 로봇 관절각 값을 2.1절의 식(1) 정기구학 모델에 적용하여 로봇 위치 값과 실제 위치 값을 비교하여 Table 6-19에서 나타내고 있다.

Table 6-19에서 보여준 것 같이, 식(31) r.m.s 오차 계산식에 ⑧의 추정된 관절각 값과 ④의 실제 관절각 값을 대입하여 ①의 r.m,s 오차 값이 계산되었다. ⓒ에 보여 진 것처럼 2개의 cue에 대한 평균 오차 값은 ±0.137mm로 안정적인 결과를 얻었으 며, 데이터 처리시간은 359ms이 소요되었다.

Table 6-19 For the fixed slender bar placement, comparison of the actual and estimated values in x-y-z coordinate using the EKF method with no obstacle

Cue No.	Coordinate value	(A) Actual	B Estimated	© Error (mm)	D r.m.s (mm)	E Average (mm)	(F) Time (ms)
	F_x	613.001	612.913	-0.088			359ms
1	F_y	245.998	246.224	0.226	0.154		
	F_z	160.000	159.888	-0.112		0 1 2 7	
	F_x	566.519	566.411	-0.108		0.137	
2	F_y	256.412	256.548	0.136	0.119		
	F_z	160.000	159.888	-0.112			

6.2.3 장애물 출현 시 고정된 얇은 막대 배치 결과

N-R과 EKF방법에 의한 장애물 출현 시 고정된 얇은 막대 배치 실험 결과 추정 된 타겟 위치 값과 실제 타겟 위치 값을 비교한 오차 값은 식(34)와 같이 r.m.s.로 정의하였다. 특히, 공간상에서 고정 타겟에 대한 실제 위치 값은 로봇제어기로부터 얻어진 엔코더 값, 추정된 위치값은 관절각 추정기법에 의해 계산된 관절각을 식 (1)과 식(2)의 4축 스카라 타입 로봇의 정기구학 모델에 적용하여 계산하였다.

$$e_{r.m.s}^{j} = \sqrt{\frac{\left\{ \left(e_{x}^{j}\right)^{2} + \left(e_{y}^{j}\right)^{2} + \left(e_{z}^{j}\right)^{2} \right\}}{3}} \quad , \qquad e_{avg} = \frac{e_{r.m.s}^{1} + e_{r.m.s}^{2}}{2} \tag{34}$$

여기서, e_x^j , e_y^j , e_z^j 는 각 큐(j=1,2)에 대한 x성분 오차, y성분오차, z성분 오차를 나타낸다.

가. N-R방법의 일괄처리기법 결과

장애물 출현 시 로봇이 N-R기법을 사용하여 고정된 얇은 막대 배치 실험을 수 행 하였을 때, 타겟 근처에 장애물 10개가 출현 하였을 경우 추정되었던 매개변수 처럼 각 장애물 영역에서 장애물이 하나 출현하였을 때부터 10개 출현 할 때까지 추정된 매개변수들을 4.1.1절 Fig. 4-6의 반복적인 기법을 사용하는 N-R방법을 이 용한 로봇 관절각 추정 기법에 대입하여 추정된 로봇 관절각 값들은 Fig. 6-16~ Fig. 6-18에서 보여주고 있으며, X축은 장애물 개수를 보여주고 Y축은 그에 상응 하는 각 관절각 값들 나타낸다. 여기서, Fig. 6-16은 타겟 근처 영역(case 1), Fig. 6-17은 중간 영역(case 2), Fig. 6-18은 시작 영역(case 3)에서 장애물개수 증가에 따른 각 관절각의 변화를 보여준다.

Collection @ chosun

Fig. 6-16 For the fixed slender bar placement, comparison of the actual and estimated values in joint coordinates using the batch scheme of N-R method in case 1

Fig. 6-17 For the fixed slender bar placement, comparison of the actual and estimated values in joint coordinates using the batch scheme of N-R method in case 2

Fig. 6-18 For the fixed slender bar placement, comparison of the actual and estimated values in joint coordinates using the batch scheme of N-R method in case 3

Fig. 6-16의 추정된 로봇 관절각 값 중 타겟 근처에서 장애물이 발생하였을 때의 관절각 값을 2.1절의 식(1) 정기구학 모델에 적용하여 로봇 위치 값과 실제 위치 값을 비교하여 Table 6-20에서 나타내고 있다. Table 6-20에서 보여준 것 같이, 식 (38) r.m.s 오차 계산식에 围의 추정된 관절각 값과 ④의 실제 관절각 값을 대입하 여 계산된 围의 r.m,s 오차 평균값은 장애물 개수가 증가 할수록 ±0.834mm에서 ±1.261mm로 증가되었다. 허용 오차 범위를 ±1mm미만 기준으로 하면, 4개의 장애 물이 발생하였을 때까지만 안정적인 결과를 얻었다고 볼 수 있다. 데이터 처리시간 은 프로그램에서 측정할 수 있는 최소 단위인 1ms미만의 값이 측정되고 있다.

Table 6-20 For the fixed slender bar placement, comparison of the actual and estimated values in x-y-z coordinate using the N-R method with case 1

Number of obstacles	Target No.	Coordinate value	(A) Actual	(B) Estimated	© Error (mm)	D r.m.s (mm)	E Average (mm)	(F) Time (ms)
		F_x	611.875	613.001	1.126		781	
	1	F_y	246.699	245.998	-0.701	0.781		
1		F_z	159.731	160	0.269		0.024	_A_
1		F_x	565.126	566.519	1.393		0.834	X
	2	F_y	255.841	256.412	0.571	0.883		
		F_z	159.731	160	0.269			
		F_x	611.804	613.001	1.197			
	1	F_y	246.738	245.998	-0.740	0.829	0.879	\$
0		F_z	159.714	160	0.286			
	2	F_x	565.047	566.519	1.472			
		F_y	255.838	256.412	0.574	0.927		
		F_z	159.714	160	0.286			
	1	F_x	611.738	613.001	1.263	0.875	0.004	
		F_y	246.778	245.998	-0.780			
2		F_z	159.695	160	0.305			
5		F_x	564.972	566.519	1.547		0.924	X
	2	F_y	255.831	256.412	0.581	0.970		
		F_z	159.695	160	0.305			
		F_x	611.66	613.001	1.341			
	1	F_y	246.815	245.998	-0.817	0.926		
1		F_z	159.676	160	0.324		0.074	-A-r
4		F_x	564.885	566.519	1.634		0.974	X
	2	F_y	255.82	256.412	0.592	1.021		
		F_z	159.676	160	0.324	1		

		F_x	611.575	613.001	1.426			
	1	F_y	246.838	245.998	-0.840	0.976		
-		F_z	159.652	160	0.348		1.000	
5		F_x	564.792	566.519	1.727		1.028	¥
	2	F_y	255.798	256.412	0.614	1.077		
		F_z	159.652	160	0.348			
		F_x	611.504	613.001	1.497			
	1	F_y	246.879	245.998	-0.881	1.025		
C		F_z	159.632	160	0.368		1.070	
6		F_x	564.711	566.519	1.808		1.076	¥
	2	F_y	255.788	256.412	0.624	1.125		
		F_z	159.632	160	0.368			
		F_x	611.443	613.001	1.558			
	1	F_y	246.94	245.998	-0.942	1.074		
7		F_z	159.617	160	0.383		1 1 1 0	٨
1		F_x	564.64	566.519	1.879		1.119	¥
	2	F_y	255.798	256.412	0.614	1.162		
		F_z	159.617	160	0.383			
		F_x	611.369	613.001	1.632			
	1	F_y	246.979	245.998	-0.981	1.124		
0		F_z	159.596	160	0.404		1 1 0	_A_
8		F_x	564.557	566.519	1.962		1.108	¥
	2	F_y	255.793	256.412	0.619	1.210		
		F_z	159.596	160	0.404			
		F_x	611.293	613.001	1.708			
	1	F_y	247.012	245.998	-1.014	1.172		
0		F_z	159.577	160	0.423		1.917	-A
9		F_x	564.474	566.519	2.045		1.217	X
	2	F_y	255.782	256.412	0.630	1.259		
		F_z	159.577	160	0.423			
		F_x	611.227	613.001	1.774			
	1	F_y	247.052	245.998	-1.054	1.218		
10		F_z	159.557	160	0.443		1 961	
10		F_x	564.4	566.519	2.119		1.201	X
	2	F_y	255.781	256.412	0.631	1.302		
		F_z	159.557	160	0.443			
(주) 寸	े : 1ms	이하로 사용	용하는 프로	그램에서	측정할 =	수 없는	시간으로	나타남

Fig. 6-17의 추정된 로봇 관절각 값 중 운동궤적 중간에 장애물이 출현 하였을 경 우의 관절각 값을 2.1절의 식(1) 정기구학 모델에 적용하여 로봇 위치 값과 실제 위치 값을 비교하여 Table 6-21에서 나타내고 있다. Table 6-21에서 보여준 것 같 이, 식(38) r.m.s오차 계산식에 îB의 추정된 관절각 값과 ④의 실제 관절각 값을 대 입하여 계산된 ⓒ의 r.m,s오차 평균값은 장애물 개수가 증가해도 평균 ±0.778mm전 후로 장애물의 영향을 거의 받지 않는 결과를 나타냈다. 데이터 처리시간은 프로그 램에서 측정할 수 있는 최소 단위인 1ms미만의 값이 측정되고 있다.

Table 6-21 For the fixed slender bar placement, comparison of the actual and estimated values in x-y-z coordinate using the N-R method with case 2

Number of obstacles	Target No.	Coordinate value	(A) Actual	(B) Estimated	© Error (mm)	D r.ms (mm)	(mm) (E) Average	(F) Time (ms)
		F_{r}	611.945	613.001	1.056	(1111)	(1111)	(111)
	1	F_{y}	246.672	245.998	-0.674	0.738		☆
		F_z	159.75	160	0.250		. =	
1		F_x	565.205	566.519	1.314		0.788	
	2	F_y	255.858	256.412	0.554	0.835		
		F_z	159.75	160	0.250			
		F_x	611.941	613.001	1.060			${\approx}$
	1	F_y	246.663	245.998	-0.665	0.737		
2		F_z	159.75	160	0.250		0.790	
	2	F_x	565.201	566.519	1.318			
		F_y	255.847	256.412	0.565	0.840		
		F_z	159.75	160	0.250			
	1	F_x	611.939	613.001	1.062	0.735		
		F_y	246.653	245.998	-0.655			
0		F_z	159.751	160	0.249]	0.701	_^_
3		F_x	565.198	566.519	1.321		0.791	X
	2	F_y	255.836	256.412	0.576	0.844		
		F_z	159.751	160	0.249			
		F_x	611.941	613.001	1.060			
4 –	1	F_y	246.648	245.998	-0.650	0.732		
		F_z	159.752	160	0.248		0.700	54-5
		F_x	565.201	566.519	1.318		0.790	公
	2	F_y	255.834	256.412	0.578	3 0.843 3		
		F_z	159.752	160	0.248			

		F_x	611.945	613.001	1.056			
	1	F_y	246.641	245.998	-0.643	0.728		
-		F_z	159.755	160	0.245		0.707	
5		F_x	565.205	566.519	1.314		0.787	17
	2	F_y	255.829	256.412	0.583	0.842		
		F_z	159.755	160	0.245			
		F_x	611.947	613.001	1.054			
	11	F_y	246.632	245.998	-0.634	0.728		
C		F_z	159.756	160	0.244		0.796	_^_
0		F_x	565.207	566.519	1.312		0.780	X
	12	F_y	255.817	256.412	0.595	0.842		
		F_z	159.756	160	0.244			
		F_x	611.959	613.001	1.042			
	13	F_y	246.624	245.998	-0.626	0.715		
7		F_z	159.76	160	0.240		0.770	~~
1		F_x	565.22	566.519	1.299		0.779	22
	14	F_y	255.811	256.412	0.601	0.838		
		F_z	159.76	160	0.240			
		F_x	611.974	613.001	1.027			
	15	F_y	246.614	245.998	-0.616	0.704		
8		F_z	159.765	160	0.235		0.760	~~~
0		F_x	565.237	566.519	1.282		0.705	22
	16	F_y	255.812	256.412	0.600	0.828		
		F_z	159.765	160	0.235			
		F_x	611.993	613.001	1.008			
	17	F_y	246.602	245.998	-0.604	0.691		
0		F_z	159.771	160	0.229		0.757	~~~
9		F_x	565.258	566.519	1.261		0.757	×
	18	F_y	255.813	256.412	0.599	0.817		
		F_z	159.771	160	0.229			
		F_x	612.01	613.001	0.991			
	19	F_y	246.584	245.998	-0.586	0.677		
10		F_z	159.776	160	0.224		0.744	~~
10		F_x	565.278	566.519	1.241		0.744	X
	20	F_y	255.812	256.412	0.600	0.806	06	
		F_z	159.776	160	0.224			
(주) 🕁	· 1mc0]하로 사용	하는 프리	그랜에서 🚽	측정학 수	: 없는	시간으로	나타난

Fig. 6-18의 추정된 로봇 관절각 값 중 운동궤적 시작부분에서 장애물이 출현 하 였을 경우의 관절각 값을 2.1절의 식(1) 정기구학 모델에 적용하여 로봇 위치 값과 실제 위치 값을 비교하여 Table 6-22에서 나타내고 있다. Table 6-22에서 보여준 것 같이, 식(38) r.m.s오차 계산식에 围의 추정된 관절각 값과 ④의 실제 관절각 값 을 대입하여 계산된 围의 r.m,s오차 평균값은 장애물 개수가 증가해도 평균 ±0.740mm전 후로 장애물의 영향을 거의 받지 않는 결과를 나타냈다. 데이터 처리 시간은 N-R기법의 특성상 타겟 이전의 모든 데이터를 한 번의 계산하기 때문에 프로그램에서 측정할 수 있는 최소 단위인 1ms미만의 값이 측정되고 있다.

Table 6-22 For the fixed slender bar placement, comparison of the actual and estimated values in x-y-z coordinate using the N-R method with case 3

Number of obstacles	Target No.	Coordinate value	(A) Actual	B Estimated	© Error (mm)	D r.m.s (mm)	E Average (mm)	(F) Time (ms)
		F_x	611.963	613.001	1.038			
	1	F_y	246.664	245.998	-0.666	0.726		${\leftrightarrow}$
1		F_z	159.753	160	0.247		0.770	
1		F_x	565.226	566.519	1.293		0.776	
	2	F_y	255.864	256.412	0.548	0.823		
		F_z	159.753	160	0.247			
		F_x	611.977	613.001	1.024			
	1	F_y	246.659	245.998	-0.661	0.718		
0		F_z	159.757	160	0.243		0.767	${\propto}$
	2	F_x	565.241	566.519	1.278			
		F_y	255.868	256.412	0.544	0.814		
		F_z	159.757	160	0.243			
	1	F_x	611.985	613.001	1.016	0.710		
		F_y	246.649	245.998	-0.651			
2		F_z	159.76	160	0.240		0.761	
3		F_x	565.252	566.519	1.267		0.761	X
	2	F_y	255.868	256.412	0.544	0.808		
		F_{z}	159.76	160	0.240			
		F_x	611.994	613.001	1.007			
4 —	1	F_y	246.639	245.998	-0.641	0.703		
		F_z	159.762	160	0.238		0.752	_^_
		F_x	565.264	566.519	1.255		- 0.753	*
	2	F_y	255.875	256.412	0.537	0.800		
		F_z	159.762	160	0.238			

		F_x	612.006	613.001	0.995			
	1	F_y	246.631	245.998	-0.633	0.694		
_		F_z	159.765	160	0.235		0.744	
5		F_x	565.279	566.519	1.240		0.744	12
	2	F_y	255.883	256.412	0.529	0.790		
		F_z	159.765	160	0.235			
		F_x	612.016	613.001	0.985			
	11	F_y	246.624	245.998	-0.626	0.687		
G		F_z	159.768	160	0.232		0.727	_A_
0		F_x	565.291	566.519	1.228		0.737	¥
	12	F_y	255.886	256.412	0.526	0.783		
		F_z	159.768	160	0.232			
		F_x	612.027	613.001	0.974			
	13	F_y	246.617	245.998	-0.619	0.679		
7		F_z	159.771	160	0.229		0.729	~
1		F_x	565.305	566.519	1.214		0.720	X
	14	F_y	255.896	256.412	0.516	0.773		
		F_z	159.771	160	0.229			
		F_x	612.036	613.001	0.965			
	15	F_y	246.611	245.998	-0.613	0.673		
0		F_z	159.773	160	0.227		0.720	-A-
0		F_x	565.318	566.519	1.201		0.720	×
	16	F_y	255.906	256.412	0.506	0.764		
		F_z	159.773	160	0.227			
		F_x	612.044	613.001	0.957			
	17	F_y	246.606	245.998	-0.608	0.667		
0		F_z	159.775	160	0.225		0.712	~~
9		F_x	565.328	566.519	1.191		0.715	M
	18	F_y	255.915	256.412	0.497	0.756		
		F_z	159.775	160	0.225			
		F_x	612.052	613.001	0.949			
	19	F_y	246.601	245.998	-0.603	0.662		
10		F_z	159.777	160	0.223		0.706	-A-
10		F_x	565.34	566.519	1.179		0.700	×
	20	F_y	255.926	256.412	0.486	0.748		
		F_z	159.777	160	0.223			
(주) 5	☆:1ms	이하로 사용	용하는 프로	그램에서	측정할 =	수 없는	시간으로	나타님

나. EKF방법의 순환기법 결과

장애물 출현 시 EKF방법의 순환기법을 사용하여 로봇을 이용한 고정된 얇은 막 대 배치 실험을 수행하였다. 각 장애물 영역에서 장애물이 1개 출현하였을 때부터 10개 출현 할 때까지 추정된 매개변수들을 4.1.2절 Fig. 4-12의 EKF방법의 순환기 법을 이용한 로봇 관절각 추정 기법에 대입하여 장애물 개수 증가에 따른 추정된 로봇 관절각 값들이 Fig. 6-19~Fig. 6-21에서 보여주고 있다.

Fig. 6-19 For the fixed slender bar placement, comparison of the actual and estimated values in joint coordinates using the recursive scheme of EKF method in case 1

Fig. 6-20 For the fixed slender bar placement, comparison of the actual and estimated values in joint coordinates using the recursive scheme of EKF method in case 2

Fig. 6-21 For the fixed slender bar placement, comparison of the actual and estimated values in joint coordinates using the recursive scheme of EKF method in case 3

Fig. 6-19의 추정된 로봇 관절각 값 중 타겟 근처에서 장애물이 발생하였을 때의 관절각 값을 2.1절의 식(1) 정기구학 모델에 적용하여 로봇 위치 값과 실제 위치 값을 비교하여 Table 6-23에서 나타내고 있다. Table 6-23에서 보여준 것 같이, 식 (38) r.m.s오차 계산식에 혐의 추정된 관절각 값과 ④의 실제 관절각 값을 대입하 여 계산된 ⓒ의 r.m,s오차 평균값은 장애물 개수가 증가 할수록 ±0.252mm에서 ±1.222mm로 증가되었다. 허용 오차 범위를 ±1mm미만을 기준으로 하면, 8개의 장 애물이 발생하였을 때까지만 안정적인 결과를 얻었고 데이터 처리시간은 장애물개 수가 증가할수록 344ms에서 234ms까지 시간이 빨라지고 있는 것을 볼 수 있다.

Number of obstacles	Target No.	Coordinate value	(A) Actual	(B) Estimated	© Error (mm)	D r.m.s (mm)	E Average (mm)	(F) Time (ms)
		F_x	613.001	612.932	-0.069			
	1	F_y	245.998	246.514	0.516	0.321		
1		F_z	160	159.804	-0.196]	0.050	344
1		F_x	566.519	566.354	-0.165		0,202	544
	2	F_y	256.412	256.488	0.076	0.155		
		F_z	160	159.804	-0.196]		
		F_x	613.001	612.747	-0.254			
	1	F_y	245.998	246.7	0.702	0.466		
2		F_{z}	160	159.694	-0.306		0.202	328
2	2	F_x	566.519	566.16	-0.359		0.392	
		F_y	256.412	256.632	0.220	0.301		
		F_z	160	159.694	-0.306]		
	1	F_x	613.001	613.121	0.120	0.254		
		F_y	245.998	246.853	0.855			010
2		F_{z}	160	159.653	-0.347		0.499	
3		F_x	566.519	566.526	0.007		0.420	512
	2	F_y	256.412	256.748	0.336	0.279		
		F_{z}	160	159.653	-0.347			
		F_x	613.001	613.214	0.213			
	1	F_y	245.998	247.396	1.398	0.840		
4 —		F_z	160	159.66	-0.340		0.672	212
		F_x	566.519	566.581	0.062		0.073	515
	2	F_y	256.412	257.107	0.695	0.448	.448	
	2	F_z	160	159.66	-0.340			

values in x-y-z coordinate using the EKF method with case 1

Table 6-23 For the fixed slender bar placement, comparison of the actual and estimated

		F_x	613.001	613.051	0.050			
	1	F_y	245.998	247.505	1.507	0.910		
-		F_z	160	159.538	-0.462		0.700	001
5		F_x	566.519	566.453	-0.066		0.780	281
	2	F_y	256.412	257.386	0.974	0.624		
		F_z	160	159.538	-0.462			
		F_x	613.001	612.885	-0.116			
	11	F_y	245.998	247.327	1.329	0.848		
6		F_z	160	159.385	-0.615		0.605	901
0		F_x	566.519	566.232	-0.287		0.095	201
	12	F_y	256.412	256.944	0.532	0.498		
		F_z	160	159.385	-0.615			
		F_x	613.001	613.122	0.121			
	13	F_y	245.998	248.052	2.054	1.225	0.972	282
7		F_z	160	159.48	-0.520			
14		F_x	566.519	566.404	-0.115			
	14	F_y	256.412	257.352	0.940	0.624		
		F_z	160	159.48	-0.520			
		F_x	613.001	613.034	0.033			
	15	F_y	245.998	247.827	1.829	1.119		
0		F_z	160	159.359	-0.641		0.896	250
0		F_x	566.519	566.33	-0.189		0.890	
	16	F_y	256.412	257.194	0.782	0.594		
		F_z	160	159.359	-0.641			
		F_x	613.001	613.027	0.026			
	17	F_y	245.998	248.273	2.275	1.364		
Q		F_z	160	159.361	-0.639		1.076	250
5		F_x	566.519	566.267	-0.252		1.070	2.50
	18	F_y	256.412	257.354	0.942	0.673		
		F_{z}	160	159.361	-0.639			
		F_x	613.001	613.351	0.350			
10	19	F_y	245.998	248.601	2.603	1.558		
		F_z	160	159.38	-0.620		1 999	224
10		F_x	566.519	566.566	0.047		1.444	204
	20	F_y	256.412	257.552	1.140	0 0.750		
	20	F_z	160	159.38	-0.620			

Fig. 6-20의 추정된 로봇 관절각 값 중 운동 궤적 중간에서 장애물이 발생하였을 때의 관절각 값을 2.1절의 식(1) 정기구학 모델에 적용하여 로봇 위치 값과 실제 위치 값을 비교하여 Table 6-24에서 나타내고 있다. Table 6-24에서 보여준 것 같 이, 식(34) r.m.s오차 계산식에 圈의 추정된 관절각 값과 ④의 실제 관절각 값을 대 입하여 계산된 ⓒ의 r.m,s오차 평균값은 오차 평균값은 장애물 개수가 증가해도 평 균 ±0.165mm전 후로 장애물의 영향을 거의 받지 않는 결과를 나타냈다. 데이터 처 리시간은 장애물개수가 증가할수록 처리하는 데이터의 양이 줄어들기 때문에 344ms에서 235ms까지 시간이 빨라지고 있는 것을 볼 수 있다.

Table 6-24 For the fixed slender bar placement, comparison of the actual and estimated values in x-y-z coordinate using the EKF method with case 2

Number of obstacles	Target No.	Coordinate value	(A) Actual	(B) Estimated	© Error (mm)	D r.ms (mm)	E Average (mm)	(F) Time (ms)
		F_x	613.001	612.888	-0.113			
	1	F_y	245.998	246.136	0.138	0.124		244
1		F_z	160.000	159.881	-0.119		0.110	
1		F_x	566.519	566.385	-0.134		0.116	544
	2	F_y	256.412	256.457	0.045	0.107		
		F_z	160.000	159.881	-0.119			
		F_x	613.001	612.858	-0.143			
	1	F_y	245.998	246.264	0.266	0.186		
0		F_z	160.000	159.886	-0.114		0.174	220
2		F_x	566.519	566.361	-0.158		0.174	328
	2	F_y	256.412	256.610	0.198	0.161		
		F_z	160.000	159.886	-0.114			
	1	F_x	613.001	612.888	-0.113	0.204	0.100	
		F_y	245.998	246.317	0.319			
2		F_z	160.000	159.894	-0.106			210
3		F_x	566.519	566.393	-0.126		0.192	512
	2	F_y	256.412	256.673	0.261	0.178		
		F_{z}	160.000	159.894	-0.106			
		F_x	613.001	612.875	-0.126			
4 -	1	F_y	245.998	246.230	0.232	0.165		
		F_z	160.000	159.891	-0.109		0.172	212
		F_x	566.519	566.401	-0.118		0.172	616
	2	F_y	256.412	256.677	0.265	5 0.179 9		
	4	F_z	160.000	159.891	-0.109			

		F_x	613.001	612.907	-0.094			
	1	F_y	245.998	246.311	0.313	0.198		
-		F_z	160.000	159.894	-0.106		0.174	207
Э		F_x	566.519	566.399	-0.120		0.174	297
	2	F_y	256.412	256.605	0.193	0.145		
		F_z	160.000	159.894	-0.106			
		F_x	613.001	612.902	-0.099			
	11	F_y	245.998	246.300	0.302	0.194		
6		F_z	160.000	159.888	-0.112		0.172	901
0		F_x	566.519	566.396	-0.123			201
	12	F_y	256.412	256.601	0.189	0.146		
		F_z	160.000	159.888	-0.112			
		F_x	613.001	612.893	-0.108			
	13	F_y	245.998	246.189	0.191	0.143		
7		F_z	160.000	159.886	-0.114		0.132	266
14		F_x	566.519	566.396	-0.123		0.132	
	14	F_y	256.412	256.534	0.122	0.120		
		F_z	160.000	159.886	-0.114			
		F_x	613.001	612.882	-0.119			
	15	F_y	245.998	246.289	0.291	0.193		
0		F_z	160.000	159.886	-0.114		0.170	96E
0		F_x	566.519	566.372	-0.147		0.170	200
	16	F_y	256.412	256.576	0.164	0.143		
		F_z	160.000	159.886	-0.114			
		F_x	613.001	612.885	-0.116			
	17	F_y	245.998	246.274	0.276	0.184		
0		F_z	160.000	159.889	-0.111		0.167	250
9		F_x	566.519	566.384	-0.135		0.107	2.50
	18	F_y	256.412	256.600	0.188	0.149		
		F_z	160.000	159.889	-0.111			
		F_x	613.001	612.899	-0.102			
	19	F_y	245.998	246.319	0.321	0.204		
10		F_z	160.000	159.893	-0.107		0 194	225
10		F_x	566.519	566.396	-0.123		0.104	200
	20	F_y	256.412	256.639	0.227	7 0.162		
	20	F_z	160.000	159.893	-0.107			
					-		-	-

Collection @ chosun

Fig. 6-21의 추정된 로봇 관절각 값 중 운동 궤적 시작부분에서 장애물이 발생하 였을 때의 관절각 값을 2.1절의 식(1) 정기구학 모델에 적용하여 로봇 위치 값과 실제 위치 값을 비교하여 Table 6-25에서 나타내고 있다. Table 6-25에서 보여준 것 같이, 식(34) r.m.s오차 계산식에 围의 추정된 관절각 값과 ④의 실제 관절각 값 을 대입하여 계산된 Ē의 r.m,s오차 평균값은 오차 평균값은 장애물 개수가 증가해 도 평균 ±0.158mm전 후로 장애물의 영향을 거의 받지 않는 결과를 나타냈다. 데이 터 처리시간은 장애물개수가 증가할수록 처리하는 데이터의 양이 줄어들기 때문에 328ms에서 235ms까지 시간이 빨라지고 있는 것을 볼 수 있다.

Table	6-25	For	the	fixed	slender	bar	placement,	comparison	of	the	actual	and
		estin	nated	values	s in x-y-	-z co	ordinate usi	ing the EKF	met	hod	with cas	е З

Number of obstacles	Target No.	Coordinate value	(A) Actual	B Estimated	© Error (mm)	D r.m.s (mm)	E Average (mm)	(F) Time (ms)
		F_x	613.001	612.830	-0.171			
	1	F_y	245.998	246.267	0.269	0.197		328
		F_z	160.000	159.879	-0.121			
1		F_x	566.519	566.328	-0.191		0.183	
	2	F_y	256.412	256.592	0.180	0.167		
		F_z	160.000	159.879	-0.121			
		F_x	613.001	612.891	-0.110			
	1	F_y	245.998	246.251	0.253	0.171		
0		F_z	160.000	159.889	-0.111		0.157	328
2		F_x	566.519	566.393	-0.126			
	2	F_y	256.412	256.592	0.180	0.142		
		F_z	160.000	159.889	-0.111			
	1	F_x	613.001	612.936	-0.065	0.162		
		F_y	245.998	246.248	0.250			
3		F_{z}	160.000	159.892	-0.108		0.138	308
5		F_x	566.519	566.426	-0.093		0.136	320
	2	F_y	256.412	256.533	0.121	0.108		
		F_{z}	160.000	159.892	-0.108			
		F_x	613.001	612.943	-0.058			
4 —	1	F_y	245.998	246.385	0.387	0.232		
		F_z	160.000	159.906	-0.094		0.210	297
		F_x	566.519	566.441	-0.078		0.210	491
	2	F_y	256.412	256.709	0.297	0.186		
		F_z	160.000	159.906	-0.094			

		F_x	613.001	612.906	-0.095			
	1	F_y	245.998	246.256	0.258	0.170		
_		F_z	160.000	159.892	-0.108		0.157	007
5		F_x	566.519	566.409	-0.110		0.157	297
	2	F_y	256.412	256.602	0.190	0.141		
		F_z	160.000	159.892	-0.108			
		F_x	613.001	612.924	-0.077			
	11	F_y	245.998	246.130	0.132	0.110		
6		F_z	160.000	159.885	-0.115		0.101	901
0		F_x	566.519	566.421	-0.098			201
	12	F_y	256.412	256.447	0.035	0.090		
		F_z	160.000	159.885	-0.115			
		F_x	613.001	612.861	-0.140			
	13	F_y	245.998	246.260	0.262	0.184	0.167	266
7		F_z	160.000	159.883	-0.117			
14	F_x	566.519	566.355	-0.164		0.107	200	
	14	F_y	256.412	256.568	0.156	0.147		
		F_z	160.000	159.883	-0.117			
		F_x	613.001	612.929	-0.072			
	15	F_y	245.998	246.279	0.281	0.178		
0		F_z	160.000	159.894	-0.106		0.155	265
0		F_x	566.519	566.422	-0.097		0.155	200
	16	F_y	256.412	256.577	0.165	0.127		
		F_z	160.000	159.894	-0.106			
		F_x	613.001	612.889	-0.112			
	17	F_y	245.998	246.218	0.220	0.156		
0		F_z	160.000	159.887	-0.113		0.1.41	250
9		F_x	566.519	566.386	-0.133		0.141	230
	18	F_y	256.412	256.535	0.123	0.124		
		F_z	160.000	159.887	-0.113			
		F_x	613.001	612.849	-0.152			
1	19	F_y	245.998	246.254	0.256	0.185		
10		F_z	160.000	159.881	-0.119		0.167	225
10		F_x	566.519	566.341	-0.178		0.107	235
	20	F_y	256.412	256.552	0.140	0 0.148		
		F_z	160.000	159.881	-0.119			

6.2.4 고정된 얇은 막대 배치 실험 결과 비교

고정된 얇은 막대 배치 실험 시 N-R방법의 일괄처리기법과 EKF방법의 순환기 법을 사용하여 실험한 결과는 다음과 같다.

(1)N-R방법의 일괄처리기법의 경우

①장애물이 없는 경우 오차 값은 ±0.785mm이고 데이터 처리시간은 반복적인 기 법의 특성상 고정 타겟의 경우 타겟 이전의 모든 데이터를 한 번에 계산하기 때문 에 프로그램의 최소 측정시간인 1ms이하로 측정되었다.

②장애물이 없는 경우를 기준으로 장애물이 발생한 경우의 각 영역에서 오차 값을 비교하면, 운동궤적의 시작 영역에서 평균 오차 값이 ±0.778mm이고 중간 영역에서는 ±0.740mm로 2개 영역에서는 큰 영향이 미치지 않은 것으로 나타났다.

③반면에, 장애물이 타겟 근처에 있을 경우에는 Fig. 6-22 (a)에서 보여준 것 같 이, 장애물의 개수에 따라 그 결과가 변화되고 있다. 이 영역에서 장애물의 개수가 4개까지는 허용오차 ±1mm미만인 ±0.974mm의 값을 보였지만 5개부터는 ±1mm이 상의 결과로 장애물이 10개가 출현하였을 경우는 장애물이 없는 경우에 비해 오차 값이 ±0.476mm정도 차이가 났다.

④3개 영역에서 데이터 처리시간은 반복적 기법의 특성상 타겟 이전의 모든 비젼 데이터를 이용하여 한 번에 계산하기 때문에 프로그램에서 측정할 수 있는 최소 단위 1ms이하로 측정되었다.

(2)EKF방법의 순환기법의 경우

①장애물이 없는 경우 오차 값은 ±0.137mm이고 데이터 처리시간은 359ms가 소 요되었다.

②장애물이 없는 경우를 기준으로 장애물이 발생한 경우의 각 영역에서 운동궤적 의 시작 영역에서 평균 오차 값은 ±0.158mm이고, 중간 영역에서 평균 오차 값은 ±0.165mm로 2개 영역에서는 큰 영향이 미치지 않은 것으로 나타났다.

③반면에, 타겟 근처에 장애물이 출현 했을 경우에는 Fig. 6-22 (a)에서 보여준 것 과 같이 장애물 개수가 1개일 경우 ±0.252mm에서 장애물개수가 10개일 경우 ±1.222mm로 큰 상승폭을 보였다. 본 연구에서 지정한 허용오차 범위 ±1mm 미만

으로 보면 오차 값이 ±0.896mm인 장애물이 8개가 출현 하는 경우까지 시스템은 안정하였다. 장애물이 없는 경우와 장애물이 10개 출현 한 경우의 오차 값 차이는 ±0.97mm로 크게 상승하였다.

④3개 영역에서 데이터 처리시간은 장애물이 1개일 경우 평균 375ms에서 장애물 이 10개일 경우 평균 250ms로 장애물이 많아질수록 시간은 짧게 걸렸다. 순환적 기법인 EKF방법의 경우 장애물이 많아질수록 위치 보정하는 단계의 수가 줄어든 만큼 데이터 처리시간이 짧아졌다.

(c) Beginning obstacles region

Fig. 6-22 For the fixed slender bar placement, comparison of position errors using the batch scheme of N-R method and the recursive scheme of EKF method in three cases

(3)결과비교

고정 타겟 추정 시 결과 값에 영향을 미치는 타겟 근처에 장애물이 출현 하였을 경우를 N-R방법의 일괄처리 기법과 EKF방법의 순환기법을 비교해 보면 다음과 같다.

Table 6-26에서 보면 장애물 개수가 하나씩 증가하면 오차 값은 N-R방법의 일 괄처리 기법은 ±0.834~±1.261mm (±0.427mm) 상승하였고, EKF방법의 순환기법은 ±0.252~±1.222mm (±0.97mm)만큼 상승하는 결과를 나타내고 있다.

N-R방법의 일괄처리기법은 장애물개수가 5개부터 허용오차 범위를 넘었지만, 장 애물 1개와 10개가 미치는 영향의 차이는 높지 않았다. EKF방법의 순환기법은 장 애물 개수가 9개부터 허용오차 범위를 넘었지만, 장애물 1개와 10개가 미치는 영향 은 N-R방법의 일괄처리기법보다 더 많은 차이를 보이고 있다.

Table	6-26	For	the	fixed	slender	bar	placen	nent,	comp	arison	of	erro	ors	and
		proc	essir	ng tim	e using	the 1	batch s	schem	e of l	N-R n	neth	od, a	and	the
		recursive scheme of EKF method												

Number of chotcolog	N-R		EKF			
Number of obstacles	error(mm)	time(ms)	error	time(ms)		
1	0.833606	\$	0.252022	344		
2	0.879439	\$	0.391919	328		
3	0.923686	\$	0.428015	312		
4	0.974315	\$	0.672996	313		
5	1.028047	${\searrow}$	0.780205	281		
6	1.075812	${\sim}$	0.695112	281		
7	1.118883	${\searrow}$	0.972205	282		
8	1.167764	${\bigtriangledown}$	0.895730	250		
9	1.216589	\$	1.075770	250		
10	1.261006	\$	1.222454	234		

(주) ☆ : 1ms이하로 사용하는 프로그램에서 측정할 수 없는 시간으로 나타남

- 127 -

Collection @ chosun

제 7 장 결론

본 논문은 비젼시스템을 이용하여 점 이동 타겟 추적과 장애물 출현 시 얇은 막 대를 고정된 타겟에 배치하기 위해 로봇 비젼 제어기법을 개발하였다. 점 이동 타 겟 추정에 N-R방법의 일괄처리기법 및 데이터이동기법과 EKF방법의 순환기법등 3개의 제어기법을 개발하였으며, 장애물 출현 시 얇은 막대 배치작업에 N-R방법의 일괄처리기법과 EKF방법의 순환기법등 2개의 제어기법을 개발하여 실험에 적용하 여 얻은 결론은 다음과 같다.

(가) 점 이동 타겟 추적

점 이동 타겟을 추적하는 연구는 30개의 이동 타겟을 배치하여 로봇이 각 이동 타 겟을 추적하는 제어기법을 N-R방법의 일괄처리기법 및 데이터이동기법과 EKF방 법의 순환기법등을 사용하여 개발하고, 3대의 카메라를 사용하여 실험에 적용하였 다

(1) N-R방법의 일괄처리기법 : 로봇이 연속적인 점 이동 타켓을 추적하는 동안 추정하고자 하는 현재 타켓 이전까지 각 카메라에서 획득한 모든 데이터를 일괄적 으로 사용하여 처리하는 기법으로, 실험을 통해 r.m.s 평균 오차 값은 ±0.236mm, 평균 데이터 처리시간은 14ms 결과를 얻었다. 시험결과를 분석한 결과, 반복기법인 N-R방법의 일괄처리기법은 타켓 이전의 모든 데이터를 처리하여 타켓을 추정하므 로 초반 오차 값은 상당히 좋은 결과를 보였다. 그러나 이동 타켓이 증가 할수록 처리해야하는 데이터의 개수가 증가함에 따라 데이터 처리 시간이 증가하면서, 오 차 값도 상승하는 현상을 보이고 있다.

(2) N-R방법의 데이터 이동기법 : 로봇이 연속적인 점 이동 타켓을 추적하는 동 안 추정하고자하는 현재 타켓 이전의 각각의 카메라에서 획득한 가장 최근의 일정 한 데이터를 사용하는 기법으로, 본 연구에서는 10단계의 데이터를 사용하였다. 실 험을 통해 r.m.s 평균 오차 값은 ±168mm, 평균 데이터 처리시간은 6ms 결과를 얻 었다. N-R방법의 데이터 이동기법은 일괄처리기법과 같이 반복기법을 사용하지만 획득된 데이터 중 오래된 데이터를 삭제하고 타켓 근처의 최근 데이터를 일정 개 수만 사용하기 때문에 안정적인 정밀도를 바탕으로 데이터 처리시간도 줄일 수가

있었다.

(3) EKF방법의 순환기법 : EKF방법은 N-R방법과 다르게 순환적인 기법으로 추 정하고자하는 현재 타겟 이전의 한 단계에 대한 비젼데이터를 사용하여 타겟을 추 정하므로 정확한 초기 값을 필요로 한다. 본 연구에서는 Monte-Carlo방법으로 초 기 값을 계산하여 실험한 결과 r.m.s 평균오차 값은 ±0.334mm, 평균 데이터 처리 시간은 3.6ms이다. 정확한 초기 값을 필요로 하는 순환적 기법을 사용하는 EKF방 법은 앞서 다른 기법으로 초기 값을 계사하여 사용하는 번거로움이 있지만, 이후 처리하는 데이터의 개수를 타겟 이전의 한 단계만을 이용하기 때문에 데이터처리 시간을 최소화 하였다.

(4) 결론적으로 작업환경에서 사용자가 시간의 제약을 받지 않고 정밀한 작업을 수행하고자 하면 N-R방법의 일괄처리 기법이나 데이터 이동기법을 선택하고, 정밀 도는 떨어지지만 빠른 시간 내에 작업을 수행해야 할 경우에는 EKF방법을 이용하 여 작업 수행 하는 것이 좋다고 판단된다.

(나) 얇은 막대 배치작업

얇은 막대를 고정된 타겟 지점에 배치작업은 N-R방법의 일괄처리기법과 EKF방 법의 순환기법을 사용하여 장애물이 없는 경우와 장애물이 출현하는 경우로 구분 하였다. 장애물 출현 시 장애물 영역을 타겟 근처 영역, 운동궤적의 중간 영역, 운 동궤적의 시작 영역 등 3개 영역으로 구분하고, 각 영역에서 장애물이 1개 단계에 서 10개 단계까지 출현하도록 배치하여 실험을 행하였다.

(1) N-R방법의 일괄처리기법 : 데이터 처리시간은 반복적 기법의 특성상 타겟 이전의 모든 데이터를 이용하여 한 번에 추정하기 때문에 데이터처리시간이 프로 그램에서 측정할 수 있는 최소 단위 1ms이하로 측정되고 있다. 각 장애물 영역에 서 위치에 대한 오차범위는 장애물이 없는 경우 오차 값은 ±0.785mm, 타겟 근처의 경우 오차 값은 ±0.834~±1.261mm, 운동궤적 중간의 경우 오차 값은 ±0.788~±0.744mm, 운동궤적 시작부분의 경우 오차 값 : ±0.776~±0.705mm이다.

(2) EKF방법의 순환기법 : 순환적 기법인 EKF방법의 경우 장애물이 많아질수록 위치 보정하는 단계의 수가 줄어든 만큼 데이터 처리 시간이 짧아졌다. 각 장애물 영역에서 위치에 대한 오차범위는 장애물이 없는 경우 오차 값은 ±0.137mm, 타겟 근처의 경우 오차 값은 ±0.252~±1.222mm, 운동궤적 중간의 경우 오차 값은

±0.116~±0.184mm, 운동궤적 시작부분의 경우 오차 값은 ±0.183~±0.167mm 이다. (3) 2개의 제어기법의 결과를 비교하면, 첫 번째, 운동궤적의 중간영역과 시작영

역에서는 N-R방법과 EKF방법을 이용한 얇은 막대 배치 실험 결과 장애물이 없는 경우와 거의 유사한 결과를 얻었다. 그 이유는 로봇이 타겟으로 이동하는 동안 새 로운 비견데이터를 획득하여 위치를 보정해주기 때문이다.

두 번째, 타겟 근처 영역에서 장애물이 발생하였을 경우는 보정해 나갈 수 있는 새로운 비젼데이터를 획득할 수 없으므로 운동궤적의 시작영역 및 중간영역의 경 우와는 다른 결과를 얻었다. 이 경우 N-R방법은 장애물이 한 개 있을 경우 ±0.834mm, 10개인 경우 ±1.261mm로 ±0.427mm 상승하였으나, EKF방법은 ±0.252mm에서 ±1.222mm로 ±0.97mm 상승하였다.

(4) 결론적으로 타겟 근처 영역에서 장애물이 발생하였을 경우에는 허용오차를 ±1mm 이내로 할 경우 N-R방법의 일괄처리기법에서는 장애물이 몇 4개(이 영역의 40%)존재, EKF방법의 순환기법의 경우 장애물이 몇 8개(영역의 80%)가 존재할 경 우 이 기법을 사용 할 수 있다. 또한 데이터 처리시간을 비교하면 N-R방법의 일괄 처리기법은 고정된 하나의 타겟에 대해 로봇이 이동하는 동안 얻어진 모든 비견데 이터를 한 번에 처리하기 때문에 처리시간이 1ms이하로 빠르고, EKF방법의 순환 기법은 로봇이 이동하는 각 지점마다 고정된 타겟 값을 여러 번 추정하기 때문에 데이터 처리시간이 344ms으로 N-R방법보다 더 느리게 나타난다.

(5) 이리하여 장애물이 놓여 있는 범위와 오차 값을 기준으로하면 EKF방법의 순 환기법이 N-R방법의 일괄처리기법보다 더 효율적이고, 처리시간을 기준으로하면 N-R방법의 일괄처리기법이 EKF방법의 순환기법보다 더 효율적이다.

본 논문은 점 이동 타겟 추적과 장애물 출현 시 얇은 막대 배치 작업을 수행하 기 위해 제시된 3개의 로봇 비젼제어기법을 개발하여 실험을 통해 제시된 제어기 법의 효율성을 보여주었다. 향후, 이 결과를 토대로 작업환경이 급변하는 산업 현 장에서 사용자가 상황에 맞는 제어기법을 선택 할 수 있도록 제시하였다.

REFERENCES

- (1) R. Kelly, R. Carelli, O. Nasisis, B. Kuchen, and F.Reyes, "Stable Visual servoing of camera-inhand robotics systems", IEEE/ASME Trsns. on Mechatronics, Vol. 5, no. 1, pp.39–48, Mar. 2000
- (2) Yoshihiro, TODA., Yasuo, KONISHI., Hiroyuki, ISHIGAKI. "Positioning-Control of Robot Manipulator Using Visual Sensor," Int. Conference on Control, Automation, Robotics and Vision, pp.894~898, December. 1996.
- (3) Bacakoglu, H., Kamel, M., "An Optimized Two-Step Camera Calibration Method", Proceedings of the 1997 IEEE International Conference on Robotics and Automation, pp.1347~1352, April 1997.
- (4) Tsai, R.Y., "Synopsis of recent progress on camera calibration for 3D machine vision", The Robotics Review, Cambridge: MIT Press., pp.146~ 159, 1989.
- (5) Beardsley, P.A., Zisserman, A. and Murray, D.W. "Sequential Updating of Projective and Affine Structure from Motion," International Journal of Computer Vision, Vol. 23, No. 3, pp.235~259, 1997.
- (6) Berthold, K. P. H., "Robot vision", Cambridge, Massachusetts, The MIT Press., pp.46~48, 1986.
- (7) Peter, A. S., "Control of eye and arm movements using active, attentional vision", Applications of AI, machine vision and robotics., pp.1471~1491, 1993.
- (8) Skaar, S. B., Brockman, W. H., Jang, W. S., "Three-dimensional camera space manipulation", International Journal of Robotics Research, Vol. 9, No. 4, pp.22~39, 1997.
- (9) Wedepohl, L. M., Nguyen, H. V., Irwin, G. D., "Frequency-Dependent Transformation Matrices for Untransposed Transmission Line using Newton-Raphson method", IEEE Transactions on Power Systems Vol. 11, No. 3, 1538–1546, 1996.

- (10) Shahamiri, M., Jagersand, M., "Uncalibrated Visual Servoing using a Biased Newton method for On-line Singularity Detection and Avoidance", IEEE/RSJ International Conference., pp.3953~3958, 2005.
- (11) Yang, C., Huang, Q., Ogbobe, P. O., Han, J., "Forward Kinematics Analysis of Parallel Robots Using global Newton-Raphson Method", Proceedings of 2009 Second ICICTA., pp.407~410, 2009.
- (12) Makoto U., Koizumi H., "A Calculation Method of Photo voltaic Array's Operational Point for MPPT Evaluation Based on One Variable Newton-Raphson Method", Sustainable Energy Technologies (ICSET), IEEE Third International Conference pp.451~456, 2012.
- (13) 배민지., "Extraction of Slot Parameters for Waveguide Antennas Using the Newton Raphson Method(Newton Raphson Method를 이용한 도파관 안테나 슬롯 파라메터 추출)" 한국정보기술학회지 Vol. 12, No. 5, pp.33~41, 2014.
- (14) Kalman, R. E., "A New Approach to Linear Filtering and Prediction Problems", J. basic Rng. Trans. ASEM., pp.35~45, 1960.
- (15) Kalman, R. E., "New Method In Wiener Filtering Theory", John Wiley&Sons Inc., New York., pp.35~45, 1963.
- (16) Kerr, H. T., "Streamlining Measurement Iteration for EKF Target Tracking", IEEE Transactions on Aerospace and Electronic Systems, Vol. 27, NO. 2, pp.408⁻⁴²¹, 1991.
- (17) Shademan, A. and Janabi-Sharifi, F., "Sensitivity Analysis of EKF and Iterated EKF Pose Estimation for Position-Based Visual Servoing," IEEE Conference on Control Applications Toronto, Canada, August 28–31, pp.755~760, 2005.
- (18) Lippiello, V., Siciliano, B., Villani, L., "Adaptive extended Kalman filtering for visual motion estimation of 3D objects", Control Engineering Practice 15 pp.123~134, 2007.
- (19) Chen, G., Xia, Z., Ming, X., Lining, S., Ji, J., Du, Z., "Camera Calibration based on Extended Kalman Filter using Robot's Arm Motion", IEEE/ASME International Conference on Advanced Intelligent Mechatronics pp.1839~1844, 2009.

- (20) Chen L., Huosheng Hu, Klaus McDonald-Maier, "EKF Based Mobile Robot Localization", 2013 Fourth International Conference on Emerging Security Technologies, pp. 149–154, 2013.
- (21) Ligorio, G., Angelo, M. S., "Extended Kalman Filter-Based Methods for Pose Estimation Using Visual, Inertial and Magnetic Sensors: Comparative Analysis and Performance Evaluation" Sensors., Vol. 13, pp.1919~1941, 2013.
- (22) Ahmad, H., Namerikawa, T., "Extended Kalman filter-based mobile robot localization with intermittent measurements", Systems Science & Control Engineering, An Open Access Journal., Vol. 1, No, 1, pp.113~126, 2013.
- (23) Parnian, N., Golnaraghi, F., "Integration of a Multi-Camera Vision System and Strapdown Inertial Navigation System (SDINS) with a Modified Kalman Filter", Sensors, pp.5378~5394, 2010.
- (24) Zhou, S., Fei, F., Zhang, G., Liu Y., Li, W. J., "Hand-Writing Motion Tracking with Vision-Inertial Sensor Fusion: Calibration and Error Correction", Sensors., pp.15641~15657, 2014.
- (25) John, J. C., "Introduction to Robotics mechanics and control", 2nd ed., U.S.A: Addison-Wesley., pp.84. 1989.
- (26) K. U. Min, W. S. Jang, "An Experimental Study on the Optimal Arrangement of Cameras used for the Robot's Vision Control Scheme", KSMTE, Vol. 19, No. 1, pp.15~25, 2010.
- (27) W. S. Jang, K. S. Kim, K. Y. Kim, and H. C. Ahn, "An Experimental Study on the Optimal number of Cameras used for Vision Control System", KSMTE, Vol. 13, No. 2, pp. 94~103, 2004.
- (28) Junkins , J. L., "An Introduction to Optimal Estimation of Dynamical Systems", Sijthoff and Noordhoff, Alphen Aan Den Rijn, pp. 29~33, 1978.
- (29) David, F., Robert, P., Roger, P., "Statistic", Canada: W.W.Norton, pp.58~59, 1978.

