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ABSTRACT 

A Feasibility Test of MPI Applications over Microkernel for Many 

Cores 

  

 Irvanda Kurnadi Virdaus 

 Advisor: Prof. Moonsoo Kang, Ph.D. 

 Department of Computer Engineering 

 Graduate School of Chosun University 

 

The multi-core architecture term appears due to the limitation of the single-core 

architecture which the improvement of clock frequency is difficult to be gained. A 

multi-core processor is typically made by two or four independent processor cores 

in a single chip which are connected through an on-chip bus. Because of the 

number of cores are increasing from 4 to 8, 16, and so on, a many-core term is 

appeared. Therefore a system which uses many-core architecture is supposed to be 

highly parallel. A parallel program makes a task into threads or processes which it 

should be spread across multiple cores. In microkernel-based systems, the 

communication of each process is assisted by Inter Process Communication (IPC). 

The message-passing allows the processes to communicate with each other using 

IPC. The parallel programming that uses message passing standard is called 

Message Passing Interface (MPI). 

In this thesis, MPI library is ported to the L4Linux on top of L4/Fiasco microkernel 

over many-core architecture. The MPICH is chosen to be used as the MPI library 

routines. The performance comparisons from three different scenarios have been 

done to check the feasibility of MPI application on microkernel OS. From the 

benchmarking application, we observed how MPI library takes influence in the 
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communication between processes which occurs in the many-core system. The 

performance improvement is shown by the matrix multiplication test program that 

proves the feasibility of MPI on microkernel OS over many-core system. 
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한 글 요 약 

매니코어용 마이크로 커널 상의 MPI 응용프로그램 성능 평가 

 쿠르니아디 비르다우스 이르반다 

 지도 교수: 강문수 

 컴퓨터공학과 

 대학원, 조선대학교 

 

 

본 논문은 매니 코어 시스템 상에서 마이크로 커널을 사용하는 환경에서 매니 코어의 성능을 

효율적으로 사용하기 위해 MPI (Message Passing Interface) 기반의 병렬 응용 프로그램을 

수행하기 위한 시스템을 구축하고, 그 성능을 평가하였다. 프로그램 연산 성능을 더욱 

향상시키기 위해 근래의 CPU는 단일 코어가 아닌, 4, 8, 16, 32개의 복수의 코어를 내부에 

장착하여 한번에 하나의 프로그램만 실행할 수 있는 것이 아니라 매니 코어의 개수만큼 

동시에 복수 개의 프로그램을 실행할 수 있다. 그러나 이러한 하드웨어적인 특성에도 

불구하고 이러한 자원을 효율적으로 사용하여 병렬 연산을 수행할 수 있는 병렬 연산 플랫폼 

또는 병렬 프로그래밍 기법이 thread 기반의 단순한 형태로 머물러 있다. 또 멀티 코어 

시스템에서 일반적으로 사용되는 리눅스와 같은 모노리틱 커널은 하드웨어와 운영체제의 

각 기능을 하나로 묶어 빠른 성능을 보이지만, 운영체제 일부의 부분에 문제가 발생할 경우, 

시스템 전체가 멈추는 불안정성을 내포하고 있다. 마이크로 커널은 하드웨어를 운영하는 

최소의 부분만을 운영체제가 관리하고, 기존의 운영체제에 포함되어 있는 메모리관리, 

네트워크 관리 등이 사용자 프로세스화 되어 있어 일부의 문제점이 전체의 문제점으로 
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확장되는 것을 최소화할 수 있어 수행속도에서는 모노리틱 커널에 비해 다소 떨어지나 

안전성에서 모노리틱 커널에 비해 우수한 것으로 알려져 있다. 안정적이며 효율적인 병렬 

연산 시스템을 구축하기 위해 본 논문은 병렬 연산에서 가장 많이 사용되는 병렬 연산 

플랫폼인 MPI를 마이크로 커널을 사용하는 멀티코어 시스템용으로 구축하고, 모노리틱 

커널을 사용하는 멀티코어 시스템과 성능을 비교 분석하였다. 벤치 마크, 병렬 행렬 연산, 

이미지 병렬 처리 응용 프로그램들의 수행 속도를 측정하여 성능 비교 결과, 기존의 

모노리틱 커널 멀티 코어 시스템에 비해 수행 속도가 다소 떨어지는 점을 확인할 수 

있었으나 그 정도가 미미함을 관찰할 수 있었다. 그러나 전체 시스템의 안정성이 크게 

증가됨으로 전체적인 시스템의 신뢰도는 마이크로 커널 멀티 코어 시스템이 우수함을 

확인하였다. 또, 싱글호스트 내에서 매니 코어들간의 MPI 통신은 수행 성능의 제약이 MPI 

프로세스들 간의 공유메모리 접근 방법에 크게 영향을 받는다는 것을 확인할 수 있었다. 
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I. INTRODUCTION 

Many-core processor system is something that is developed to overcome the 

limitation of single-core which is hard to improve the clock frequencies. Many-

core processor system arise from the multi-core term which refers to the processor 

which is typically made by two until eight independent processor cores in single 

chip connected through an on-chip bus. The many-core term just exceed beyond 

the number of cores in multi-core system.  

A. Problem Statement 

Even though the development of single processor has rapidly increased, but the 

way of serial computing perform is quite slow in term of improvement. Moreover 

the large amounts of memory are not accessible by a single processor. Therefore, 

the multi-core system is introduced to implement the parallel computing to 

overcome the limitation of single-core and serial computing.  

Parallel computing is a form of computation in which many calculations are carried 

out simultaneously, operating on the principle that large problems can often be 

divided into smaller instructions, which are then solved concurrently. There are 

several reasons why use parallel computing, such as save time, solve larger 

problems, provide concurrency, use of non-local resources, and overcome the serial 

computing limitation. By using parallelization in many-core processor system, the 

memory access resources become more expensive. 



- 2 - 

 

B. Research Objectives 

In parallel computing, there are several concepts of parallel programming models 

which are related to the topic in this thesis. There are shared memory model 

(without threads), shared memory model (with threads), and distributed memory 

model. Differences between shared memory model and distributed memory model 

will be discussed in the next chapter. However, the using of parallelization in 

many-core processor system cause the memory access resource becomes 

expensive. Hence, the distribution memory model of parallel programming can 

overcome this issue by implementing the message passing interface (MPI).  

The microkernel OS is chosen to be implemented along with MPI library over 

many-core processor system because it has the important role of IPC. This IPC is 

used to pass message between CPUs. The other reason of using the microkernel OS 

is the scalability of microkernel which can be implemented into tiny embedded 

system. 

The objective of this thesis is quite applicative in term of contribution. MPI library 

will be ported to microkernel OS in order to run the MPI-based image processing 

application. This application will be observed and measured to be compared with 

the performance obtained in other system. 

C. Thesis Layout 

The rest of the thesis is organized as follows. First, in Chapter II, we give a brief 

explanation about background concepts including many-cores system, parallel 

computing, Message Passing Interface (MPI), Microkernel, and the L4 microkernel 

family. In Chapter III, we give a brief explanation about various implementation of 

MPI in several systems. In Chapter IV, the implementation of MPI on Fiasco.OC is 
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explained. In Chapter V, the performance evaluation is evaluated and discussed. 

Finally, the conclusions of the thesis are given in Section VI. 
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II. BACKGROUND CONCEPT 

This section will provide background information about the architectural design of 

many-core processor system, the model of parallel programming, and the L4 

family of Microkernel Operating System. 

The predictions of transistor growth have been discussed since a long time ago and 

yet we have to face the fact that the use of transistors in a single chip processor is 

hardly optimize do to the improvement of frequency in a single chip. One of the 

famous laws is Moore’s Law which states the number of transistors doubling 

approximately every two years. Figure 1 shows how the clock frequency remains 

fairly constant since 2010. 

 

Figure 1. The growth of clock frequency every year 
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The increasing number of transistor in a single chip is getting riskier to be realized. 

The increasing value of clock frequency will generate a lot heat in return. Instead 

of increasing the clock frequency, the concept of getting faster processor shifted to 

create the multiple cores in a single processor that we call nowadays as multi-core 

system. The concept of multi-core system is also developing rapidly to a huge 

number of cores in a single processor, which we call as a many-core system. 

A. Many-Core System 

A multi-core processor is a single computing component with two or more 

independent actual central processing units (called "cores"), which are the units 

that read and execute program instructions. The instructions are ordinary CPU 

instructions such as add, move data, and branch, but the multiple cores can run 

multiple instructions at the same time, increasing overall speed for programs 

amenable to parallel computing. Manufacturers typically integrate the cores onto a 

single integrated circuit die (known as a chip multiprocessor or CMP), or onto 

multiple dies in a single chip package. 

Because of the number of cores is rising coupled from 2 or 4 to 8, 16, or many 

more, the term many-core created. A many-core system, despite the similarity with 

multi-core system, introduced new challenges. The current paradigm that we have 

on Operating Systems realized because of the characteristic of single-core; 

multiplex the CPU. However, in a many-core system we will have much more than 

one core and possibly multiplexing CPU is not necessary. Therefore the advent of 

new paradigm is needed. 

B. Parallel Computing 

Traditionally, computer software has been written for serial computation. The way 

of serial computing execute the program is by constructed and implemented as a 
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serial stream of instructions. These instructions are executed on a central 

processing unit on one computer. Only one instruction may execute at a time after 

that instruction is finished, and then the next is executed. Parallel computing, on 

the other hand, uses multiple processing elements simultaneously to solve a 

problem. This is accomplished by breaking the problem into independent parts so 

that each processing element can execute its part of the algorithm simultaneously 

with the others. The processing elements can be diverse and include resources such 

as a single computer with multiple processors, several networked computers, 

specialized hardware, or any combination of the above. 

The concept of parallelism is appeared to solve development problem in increasing 

the clock frequency in single-core system. Therefore the concept of parallelism 

arises concurrently with the development of multi-core system. A multi-core 

processor is a processor that includes multiple execution units ("cores") on the 

same chip. These processors differ from superscalar processors, which can issue 

multiple instructions per cycle from one instruction stream (thread); in contrast, a 

multi-core processor can issue multiple instructions per cycle from multiple 

instruction streams. The term of many-core system is used to describe the multi-

core system in High Performance Computing platform that contains more than 8 to 

16 cores for each processor (single chip). 

C. Message Passing Interface (MPI) 

Message Passing Interface (MPI) is a standardized and portable message-passing 

system designed by a group of researchers from academia and industry to function 

on a wide variety of parallel computers. The standard defines the syntax and 

semantics of a core of library routines useful to a wide range of users writing 

portable message-passing programs in Fortran or the C programming language. 

There are several well-tested and efficient implementations of MPI, including some 
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that are free or in the public domain. These fostered the development of a parallel 

software industry, and there encouraged development of portable and scalable 

large-scale parallel applications.  

In the beginning of the 1990s, a great variety of message-passing platforms for 

high performance computing existed. The message-passing model had already 

proofed its usefulness for high performance computing. It was in 1992 when at the 

Workshop on Standards for Message-Passing in a Distributed Memory 

Environment the developers of the most widespread message-passing platforms 

met to identify essential features for a standard message-passing interface. This 

first version of the standard consisted of mechanisms for point-to-point 

communication (send/receive), collective communication (broadcast, scatter, 

reduce, etc.), user defined data types; groups, contexts and communicators to ease 

writing portable parallel libraries, process topologies to aid mapping of processes 

to hardware benefiting locality, environment management (mainly for error 

handling and MPI-application attributes), a profiling interface and language 

bindings for C and Fortran. 

To start MPI applications, it is necessary to setup a running environment, start 

processes on a specified processor of a node and to setup basic control channels 

among the process manager and the spawned processes. This is handled by process 

managers. MPICH uses the Process Management Interface (PMI) as a wire-

protocol. It enables processes, which were started by the process manager, to send 

control messages in a standardized way. In a POSIX environment the process 

manager will inherit unidirectional pipes and a bidirectional PMI command socket 

into the newly fork( )ed process. The unidirectional pipes redirect stdout and stderr 

to the process manager for labeling (rank@node> my msg). The PMI command 

descriptor is then either made known using the PMI_FD environment variable or 

acquired by connecting to a hostname:port-tuple passed in the PMI_PORT 



- 8 - 

 

environment variable. PMI control commands include set/get for a key value store, 

barrier synchronization, dynamic process management, general information about 

the processes (e.g. rank or number of processes) and the initialize/finalize 

commands. 

D. Microkernel 

Microkernel is one kind of kernel; which in computing, the kernel is a computer 

program that manages input/output requests from software and translates them into 

data processing instructions for the central processing unit and other electronic 

components of a computer. The kernel is a fundamental part of a modern 

computer's operating system. 

In computer science, a microkernel (also known as μ-kernel or Samuel kernel) is 

the near-minimum amount of software that can provide the mechanisms needed to 

implement an operating system (OS). These mechanisms include low-level address 

space management, thread management, and inter-process communication (IPC). If 

the hardware provides multiple rings or CPU modes, the microkernel is the only 

software executing at the most privileged level (generally referred to as supervisor 

or kernel mode). Traditional operating system functions, such as device drivers, 

protocol stacks and files systems, are removed from the microkernel to run in user 

space. In source code size, microkernels tend to be under 10,000 lines of code, as a 

general rule. MINIX's kernel, for example has fewer than 6,000 lines of code. 

When a computer program (in this case called a process) makes requests of the 

kernel, the request is called a system call. Various kernel designs differ in how they 

manage system calls (time-sharing) and resources. For example, a monolithic 

kernel executes all the operating system instructions in the same address space to 

improve the performance of the system. A microkernel runs most of the operating 



- 9 - 

 

system's background process in user space, to make the operating system more 

modular and, therefore, easier to maintain. This comparison of monolithic kernel 

and microkernel is shown in figure 2. 

 

Figure 2. Monolitic kernel vs microkernel 

The advantages of microkernel are it is more robust, more reliable and it can 

provide real time operating systems for users. However, the monolithic kernel 

architecture is more powerful and superior compared to the microkernel and this 

make an obvious advantage for monolithic kernel. This comparison was 

demonstrated to show the poor performance of the earlier example of the 

microkernel such as Mach and Chorus OS. Nevertheless, the latest generation of 

microkernel has successfully shown the improvement to reduce the performance 

gap between these architectures. 
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E. The L4 Microkernel Family 

L4 is a family of second-generation microkernels, generally used to implement 

Unix-like operating systems, but also used in a variety of other systems. 

1. L4/Fiasco 

The L4 microkernel is one of the prominent microkernels in the research and 

academic community. It was created by Jochen Liedtke, which is the successor of 

the L3 microkernel, to address the poor performance of the earlier microkernels. L3 

proved that microkernels can be fast, if performance critical aspects are optimized. 

In practice improving performance means that IPC among microkernel servers 

must either be avoided or fast. The L3 microkernel showed that IPC can be heavily 

optimized to achieve performance improvements by a factor of 22 compared with 

the Mach microkernel. He overcame the inaccurate concepts of Mach and 

simplified the concepts. The main concept of L4 is that a microkernel does no real 

work as it only provides inevitable mechanisms and no policies implemented. 

L4 and L3 both retained scheduling in the kernel for performance reasons. Virtual 

memory management is separated between the kernel (for CPU exception 

handling) and a user-level pager that maps pages according to the policy 

implemented by the region manager. All IPC in kernel is synchronous. The original 

L4 application programmers interface (API) knew only 7 “syscalls” in total: IPC 

(for data transfer, interrupt handling, timeouts and mapping or granting pages), 

unmapping of flexpages from other tasks, task creation, thread creation and 

execution, thread scheduler to set the priority, time-slice or preempter of a thread, 

thread switching for yielding the calling thread or running another, and id_nearest 

returns the first IPC peer on the path to destination. 
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Fiasco, in its current version named Fiasco.OC (Fiasco Object Capability) is a 

descendant of L4. This kernel, written in C, C++, and Assembly, introduced an 

object-oriented API where kernel objects correspond to user-level objects. Five 

main kernel objects exist: task, thread, IPC-Gate, Factory, and IRQ. Other kernel 

objects are the Scheduler (set priority, CPU or timeslice), Icu (access to the 

Interrupt controller) and Vlog that implements a rudimentary console. All 

capabilities can be mapped or granted into tasks as well as unmapped from tasks. 

2. L4Re 

The L4 Runtime Environment (L4Re) is the user-land for the Fiasco.OC kernel. 

Together L4Re and Fiasco.OC constitute an object-capability system. Every IPC-

Gate belongs to a user-level object. L4Re has four main user-level objects: 

Dataspaces are abstract memory (e.g. RAM, disk, memory-mapped I/O regions) 

and can also be shared among tasks (e.g. shared-memory). The Memory Allocator 

makes anonymous memory available using data-spaces. A Region Manager 

handles the address space of a task. This is achieved by assigning a Dataspace to 

virtual memory and thereby making it visible to the task. It is implemented in the 

task using a map of (memory region, data-space manager) tuples. When a page-

fault occurs, the kernel issues a page-fault IPC to the Dataspace Manager (e.g. a 

user-level pager) that is responsible for this virtual memory region. Namespace 

objects are used to associate names with capabilities. Namespaces can be nested 

and are used to implement access control mechanisms. Access to user-level objects 

is announced by linking user-level object capabilities into the Namespace of the 

application. Another advantage of this approach is the possibility to substitute user-

level objects that share a compatible interface without any changes to the 

application. 
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Fiasco.OC is not a full Operating System. There is neither a device driver nor the 

file system. Therefore Fiasco.OC needs this L4Re to handle the runtime 

environment by adding services as user-level components. The component diagram 

of L4Re is shown in figure 3. 

 

Figure 3. L4 runtime environment  

3. L4Linux 

L4Linux were ported to Linux kernel by treating it like another port of Linux to a 

new architecture. Currently, L4Linux has been updated to the Linux Kernel 3.8. 

The design overview for the L4Linux is depicted in the following figure 4. 

L4Linux can be run side by side with other real-time operating systems on top of 

L4/Fiasco. The real time operating system’s proper operation will not be violated 

as L4Linux is run on user mode and cannot override the operation of L4/Fiasco. 
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Figure 4. General design of L4Linux 

By having L4Linux ported to L4/Fiaso, developers are spoiled with the abundant 

legacy applications of Linux. Real-time OS can be used to video or audio 

applications. By running it in different OS and on top of L4/Fiasco, it is assured 

that the application operations will not be interrupted. 
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III. RELATED WORKS 

A. MPICH on Fiasco.OC 

MPI standard which is used is MPICH has been tried to be ported and run on top of 

Fiasco.OC/L4Re. Fiasco.OC is a microkernel of the L4 family developed at the OS 

chair of TU Dresden. The L4Re refers to The L4 Runtime environment which 

constitutes the most basic part of its user-land. Michael Jahn’s works are to show 

that MPI applications can be compiled on top of Fiasco.OC/L4Re and port a simple 

process manager to launch the MPI processes. 

The contribution of this work lies in the porting the MPI library to Fiasco.OC. The 

spanwer library to spawn a process and endpoint library to maintain a channel were 

ported to support the gforker process manager to imitate the fork( ) process. 

Several benchmark tests have been done by the author for point-to-point operation 

and collective operation by using several applications such as SkaMPI and Perftest. 

By considering many limitation existing in his development, most of the 

functionalities of MPICH can run properly over Fiasco.OC/L4Re. 

B. The PARAS Mikcrokernel 

Parallel Machine 9000 (PARAM 9000) was a supercomputer at the Center for 

Development of Advanced Computing in Bangalore, India. The hardware is 

allowed to configure nodes as either compute or service nodes. While compute 

nodes were dedicated to execute workloads such as MPI exclusively, service nodes 

additionally provided filesystems and networking. All service nodes were operated 

with Sun Solaris. Compute nodes had two possible OS personalities. Sun Solaris 

was used in the cluster personality, where compute nodes were connected by LAN 
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and provided a feature rich environment to users. PARAS was used in the 

Massively Parallel Processing (MPP) personality. This personality offered a highly 

optimized communication subsystem as well as Parallel Virtual Machine (PVM) 

and MPI for parallel programming. PARAS implemented threads and task creation, 

regions (virtual memory), ports, and messages inside the kernel. On top of that 

system services to provide names to ports, filesystems, and process control were 

implemented. Additionally a partition manager was running on any of the compute 

nodes to maintain information and manage resources for all nodes in the partition. 

The service partition, consisting of service nodes, was responsible for placing tasks 

on the compute partition and service I/O request. 

C. IBM Blue Gene – The Compute Node Kernel (CNK) 

Blue Gene is a modular supercomputing platform that can scale up to 20 

petaflops2. Common to all Blue Gene systems is the architecture that subdivides 

nodes by function. Similar to the PARAM 9000 approach, there are compute nodes 

and I/O nodes. Both node types can be grouped into variably sized sets of nodes, 

also known as blocks, partitions or partition sets (psets). The hardware ensures 

electric isolation of the communication network among the configurable blocks. 

The Blue Gene series uses a torus network for peer-to-peer communication, a 

collective network, and an interrupt network for fast barriers [BKM+10, Ch. I]. 

While I/O nodes run Linux, compute nodes are operated by a custom operating 

system kernel, the Compute Node Kernel (CNK). This kernel is extremely simple 

(5000 lines of code) and cannot run more than one process. 
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IV. MPI on L4LINUX OVER FIASCO.OC 

MICROKERNEL 

The goal of porting MPI library in L4linux over L4/Fiasco.OC microkernel is to 

show that the MPI-based application which is made by using parallel programming 

concept should perform better to overcome challenge in many-core systems. 

Therefore, the main task is to build the MPI library on L4/Fiasco as well as port it 

to L4Linux and design a scenario to test whether this parallel programming can 

optimize the performance of many-core systems on Microkernel Operating System. 

A. Design 

There are two design scenarios to port the MPI library on L4/Fiasco, by porting the 

library to L4Re and by porting library to L4linux. These two scenarios are different 

in term of application. The library as well as MPI-based application is free to be 

implemented in L4Re directly. However, the implementation in L4Re is different 

with Operating System term. Even though, we do not see this because L4Re 

provides the interface that is similar to Linux (e.g., a POSIX C library, a virtual file 

system, etc.). Therefore, we have to adapt any kind of load balancing, process 

distribution, etc. to use the respective Fiasco and L4Re services. Therefore we have 

the second scenario to port the MPI library over L4Linux as virtualization. The 

concept of the second scenario is to run the application over the L4Linux, which 

this L4Linux is also a kind of L4 application. Those, the system call from the 

applications are not sent to the Fiasco Kernel but rather to the L4Linux kernel. The 

combination of the L4Linux kernel and our MPI-based application running on top 

of it is what we call a virtual machine (VM). We believe the virtualization may 
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make sure that everything works as expected. This term can be illustrated with 

figure 5. 

 

 

 

 

Figure 5. Design porting MPI library on 2 different scenarios 

For the first scenario, we need to port the MPI library and compile the application 

on L4Re directly. There are two components of L4Re that should be designed; 

which are the user-level libraries and initial task loader, which is shown in figure 6. 

The design of porting the MPI library follows the instruction provided by Jahn. 

There are three main libraries that should be ported to L4Re; which those libraries 

are MPICH library, endpoint library, and spawner library. The last part that should 

be ported is the process manager, which has function to initialize the program, by 

linking the existing libraries that has been ported before. Then this process 

manager later can be invoke by initial task loader. 
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Figure 6. L4Re components for porting MPI Library 

For the second scenario, we need to port MPI library and compile the MPI-based 

application on top of L4Linux. The virtualization over L4/fiasco will make sure 

everything to be done as expected. To port the MPI library on top of L4Linux is to 

build the library and compile the application on Linux kernel. After that put the 

related library and compiled application inside bootable L4Linux ramdisk.  

B. Implementation 

1. L4Re 

There are three steps of launching the MPI-based program; see figure 7. The first 

one is creating and launching the process. This is done by the process manager 

which acts as loader. In order to imitate the fork( )/execve( ) mechanism for 

process creation and binary execution, the libspawner is needed. The second step is 

installing control channel for MPI application. Libendpoint can handle this step by 
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maintaining the pipes for process creation and messages labelling. And after those 

two steps are established, then each process should calls the MPI_Init( ) function of 

libmpich to begin the initialization. The other libraries are also implemented to 

support the application. Then to port any library to L4Re, we can see figure 8. 

 

Figure 7. The implementation of porting MPI library in L4Re 
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Figure 8. Flowchart to port libraries to  L4Re 

This procedure to port the library is also able to be applied in building any 

application. Hence, all of the library that is needed to be ported should follow this 

procedure. The compiler that is used by L4Re is uClibc which is different with the 

Linux compiler which use gcc. Therefore, some adjustments are needed to be able 

to compile the desired library in L4Re. The porting process will be explained for 

detail in appendix part. 

2. L4Linux 
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storage. Since the original storage has really small capacity that surely won’t fit to 

our library, then we have to create our custom storage that the capacity should be 

bigger than the current capacity. Once this process finished, the L4Linux is ready 

to be run. 

The last part of implementation part is to make sure the kernel configuration in 

Fiasco.OC and L4Linux kernel. The configuration should match each other, 

because technically the L4Linux is also an application of L4Re which the L4Re 

need the Fiasco.OC to manage the hardware resources. Therefore the 

communication between the application and L4Linux kernel doesn’t mean the 

isolated communication without involving the L4/Fiasco microkernel.. 
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V. PERFORMANCE EVALUATION 

A. Simulation Environment 

For the performance evaluation of the MPI on the microkernel, we are using 

QEMU x86 architectures. This QEMU can execute the guest code directly on the 

CPU. Therefore it can achieve near native performances. Since we are observing 

the behavior of many-core system, we use the AMD 32 cores system to run our 

experiment. The complete simulation parameters are summarized in table 1. 

Table 1. Simulation parameters for AMD 32 cores 

Description Value 

Simulation Tool QEMU 0.14 

L4Re Version February 2014 release 

L4Linux Kernel Version  Linux 3.7 

Host  

Machine AMD Opteron  

Host CPU Architecture x86 64 Bit 

Number of Cores 32 

Memory 132 GB 

Guest  
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Machine X86 

CPU Architecture i386 

Number of Cores 32 

 

 

Figure 9. Simulation environment using QEMU 

Figure 9 shows the relation between the host machine and guest machine. Those 

simulation environments are stated for L4Linux experiment. However, we have 

ported the MPI-library on L4Re. Therefore to check whether the ported version of 

MPI library in L4Re can run properly, we should test it. The simulation parameter 

follows the x86 architecture. 

The L4Linux scenario can be classified into 3 kinds. The experiment of benchmark 

program will be done using MPBench benchmarking tool. This benchmark 

scenario is done to show the feasibility of MPI functions. The second scenario will 

be done using matrix multiplication application which is parallelized with MPI 
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library. The third scenario will be done using image processing application. The 

detail of experiment scenario and parameters are shown in table 2.  

Table 2. Experiment scenarios and parameters 

Scenario Parameter Value 

Scenario 1 

Benchmark tool 

Number of cores 32 

Number of processes 32 

Other MPBench parameters Default 

Scenario 2 

Matrix multiplication 

Number of cores 32 

Number of processes 2, 4, 8, 12 

Linux’s RAM 132 GB 

Linux architecture 64 bit 

L4Linux RAM 1.2 GB 

L4Linux architecture 32 bit 

Scenario 3 

Image processing 

Number of cores 32 

Number of processes 1, 2, 4, 8 

Linux’s RAM 132 GB 

Linux architecture 64 bit 

L4Linux RAM 1.2 GB 

L4Linux architecture 32 bit 

 

B. Benchmark and Test Programs 

Our benchmarking program is MPBench. It is a program to measure the 

performance of some critical MPI functions. This benchmarking tool run the test to 

check several functions, such as send/receive function, broadcast function, reduce 

function, and all-to-all function. The first test program is about matrix 

multiplication. The second program is about image processing program which is 

called Sobel-step program. It consists of wrapper to mpi communication and image 

processing program. Since our goal is to measure the performance of using mpi on 
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many-core system, then the parameter comparison should be processing time. This 

complex program is supposed to be run on the L4Linux on top of L4/Fiasco 

microkernel.  

In image processing application test, we have several images to be observed. Those 

kinds of images can be seen in figure 10. 

    

 (a) (b) 

   

 (c) (d) 

Figure 10. Observation images for testing image processing application: (a) francois.tif, 

(b)flag.tif, (c)marbles.tif and (d) text.tif  
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C. Simulation Results and Analysis 

1. MPBech 

The first figure shows the MPI bandwidth in unidirectional MPI. Figure 11 shows 

the performance of L4Linux in running the MPI function. The bandwidth of the 

message passing in this experiment seems to be correct because it is keep rising as 

the increasing of the message size. Because of the implementation of MPI in single 

machine, the message size affects the performance. The bandwidth reaches the 

saturation point at 1MB of message size. While the bandwidth keep decreasing 

after reaching 33MB. Figure 12 shows broadcast function in MPI. This result is 

quite similar with the bandwidth result and the analysis is also quite similar as well. 

Figure 13 shows the all-to-all MPI function. This kind of experiment test the 

feasibility of each process to sends to every other process. The graph shows that 

each process can complete send and receive to each other between 33kb until 40 

MB. And the last, figure 14 shows the roundtrip message for each various message 

size. The number of transaction for each second seems to be decrease as the 

increasing of the message size. This graph shows that this MPI roundtrip function 

seems to be run correctly. 
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Figure 11. Performance of MPI bandwidth 

 

 

Figure 12. Performance of MPI broadcast 
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Figure 13. Performance of MPI all-to-all 

 

Figure 14. Performance of MPI send-receive roundtrip 
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2. Matrix Multiplication 

Figure 15 shows the processing time of matrix multiplication application over 

Linux and L4/fiasco (L4linux). From the figure, we derive some information about 

how the number of processes takes effect to the processing time. In this 

experiment, the implementation of MPI in L4Linux seems to be better in the less 

number of processes. While the processing time in big number of process remains 

constant. In Linux, the performance seems to be steady and the speed up is always 

increase as the number of processes. Based on this experiment result, we can say 

that the consistency of MPI in big number of processes in L4/fiasco still can’t be 

guaranteed. However, the improvement of using the MPI on L4/fiasco has been 

achieved. If we look the table 3, we can see the speed up over 2 processes. The 

speed up of this experiment is quite high. This is represented by the first speed up 

gain more than twice of the 2 process. So it means we achieve the speed up beyond 

our expectation.  

 

Figure 15. Processing time of matrix multiplication application over Linux and L4Linux in 

various number of processes 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 4 8 12

P
ro

ce
ss

in
g 

ti
m

e
 (

s)
 

Number of process 

Processing time vs  
Number of processes 

Linux

L4/Fiasco



- 30 - 

 

Table 3. Speed up in various numbers of processes 

Processes Speed Up 

2 1 

4 2.95 

8 6.49 

12 9.35 

 

However, the improvement of large number of processes can’t be shown in 

L4Linux result. If we compare it with the Linux result, the performance in Linux 

seems to be better. We believe this occurs because we run the application in 

different OS architecture which the Linux system uses 64 bit, while the L4Linux 

system uses 32 bit. As we know that the memory management in both architectures 

is slightly different. We can’t use the large number of memory in 32 bit 

architecture. To get the fair result, the experiment should be done in the same 

architecture. However, the 64 bit L4Linux is not ready yet to be used. Therefore we 

use the 32 bit of L4Linux instead of 64 bit L4Linux.  

In L4Linux, with the large number of processes, the cores that is used is also as 

many as the number of processes. Therefore, in large number of processes, each 

core will use a large amount of shared memory to process each process. Because of 

the amount of memory in L4linux is limited, we can’t avoid the performance 

degradation in a large number of processes. However, our result still shows the 

better performance in term of parallelism on the microkernel system. 
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3. Image Processing Application 

Figure 16 shows the processing time of image processing application over Linux 

with different images. We can see that all of the images experience the 

performance degradation as the increasing number of processes. This result is 

contradicting with our concept that by increasing the number of processes, the 

processing time should be decrease or there is an improvement in the performance. 

Before we discuss about this anomaly, we need to analyze the performance in 

L4Linux. Generally, the performance is quite the same in term of degradation of 

performance. But there is something important in figure 18, that the computation of 

the francois.tif image can only be measure until 4 processes. It happens because the 

structure of image is quite complex, so it affects the amount of computation and 

processes. The memory can’t handle the amount of processes in processing 

francois.tif. It means the experiment is memory dependent. It seems to be as our 

expectation that in complex computation, the single machine could be met a 

complication in doing that task with a limited memory in single machine.  

 

Figure 16. Processing time of image processing application over Linux with different images 
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Figure 17. Processing time of image processing application over Linux with different images 

However, the performance degradation should not be caused by the limitation of 

memory in single machine. Then, why in this experiment, the increasing number of 

processes can’t guarantee the improvement of performance? There are several 

assumptions about this anomaly. First we have to look inside of the application. 

The image application that we used is consisting of hybrid implementation which is 

dominated by OpenMP implementation. OpenMP is kind of thread parallel 

programming which is using shared memory. Implementing OpenMP itself has 

improved the performance of the application (compared to the serial 

programming). However, the addition of the MPI as the message passing gave the 

system a harder workload as the increasing of message overhead. So, by the 

amount of overhead of MPI message, the increasing number of processes will not 

give any improvement for this scenario. Eventually, the image processing 

application is not suitable for this kind of experiment scenario. 

  

0

2

4

6

8

10

12

14

1 2 4 8

P
ro

ce
ss

in
g 

ti
m

e
 (

s)
 

Number of processes 

Processing time vs # of Processes 
in L4/fiasco 

Flag.tif

Marbles.tif

Text.tif

Francois.tif



- 33 - 

 

VI. CONCLUSIONS 

The MPI library has been ported to measure or test the feasibility of MPI on 

L4linux over L4/fiasco microkernel for many-cores system. Several applications 

have been tested to show the feasibility of MPI on L4/Fiasco. The MPBench 

benchmarking experiment result shows that the functionality of MPI library was 

running properly. The improvement of performance is shown by the matrix 

multiplication application. As the increasing number of processes, the processing 

time is heavily decreased. The speed up of the performance also meets beyond our 

expectation that for each multiple of 2, the speed up gain more than twice or almost 

three times.  

Unfortunately, the experiment of image processing could not meet our expectation 

that by increasing the number of processes, the performance becomes worse. 

However, this degradation of performance should not affect our conclusion that the 

MPI improves the performance of the many-core system. We agree that the 

experiment of image processing is not suitable for MPI on a single machine 

environment.  

In conclusion, we can say that the MPI is feasible to be performed on top of 

L4Linux on L4/Fiasco microkernel for many-core system. 
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