2014年8月
博士學位論文

Synthesis and Conformational

Study of Non－classical

Nucleoside Phosphonic Acid

Analogues as Antiviral Agents

朝鮮大學校 大學院
薬學科
申 光 煥

Synthesis and Conformational

Study of Non－classical

Nucleoside Phosphonic Acid

Analogues as Antiviral Agents

$$
\begin{gathered}
\text { 항바이러스제로서 비전형적 뉴크레오사이드 포스폰산의 } \\
\text { 합성 및 구조에 대한 연구 }
\end{gathered}
$$

2014年 8月 25日

朝鮮大學校 大學院
藥 學 科
申 光 煥

Synthesis and Conformational Study of Non－classical
 Nucleoside Phosphonic Acid

 Analogues as Antiviral Agents

 Analogues as Antiviral Agents}

指導敎授 洪俊喜

이 論文을 藥學博士學位申請論文으로 提出함．
2014年4月

朝鮮大學校 大學院
薬 學 科
申 光 煥

申 光 煥의 博士學位論文을 認准함

委員長 朝 鮮大學校 数 授 禹銀蘭 即

委 員 朝 鮮大學校 教 授 杨鋥載 印
委 員 朝 鮮大學校 教 授 金恩爱 印
委 員 釜山大學校 教 授 文형룡 印
委 員 朝鲜大學校 教 授 洪俊憙 印

2014年6月

朝鮮大學校 大學院
©)Collection @ chosun

Contents

List of Figures
List of Schemes
List of Tables
ABBREVIATION viii
국문초록 xi
I . INTRODUCTION 1
II. RESULTS AND DISCUSSION. 22
III. CONCLUSION 82
IV. EXPERIMENTAL SECTION• 83
V. REFERENCES 197
VI. ABSTRACT 215

List of Figures

Figure 1. HIV lifecycle 2
Figure 2. General structure of a nucleotide and structures of a naturalpyrimidine nucleotide and nucleoside 5
Figure 3. Structures of the currently FDA - approved anti-HIV
NRTIs 6
Figure 4. Novel nucleoside and nucleotide analogue RT inhibitors 8
Figure 5. Structures of some threosyl phosphonic acid nucleosides aspotent anviral agents.. 18
Figure 6. Structures of some fluorinated nucleoside as potent antiviralagents... 20Figure 7. NOE differences between the proximal hydrogens of 15 a and15b24
Figure 8. Superimpose model of PMDTA and 23 28
Figure 9. NOE differences between the proximal hydrogens of 50a and
50b 33
Figure 10. Superimpose model of PMDTA and 56 36
Figure 11. NOE differences between the proximal hydrogens of 75 a
Figure 12. NOE differences between the proximal hydrogens of 95a
Figure 13. Superimpose model of PMDTA and 101 51

Figure 14. NOE differences between the proximal hydrogens of 111a

Figure 15. Superimpose model of PMDTA and 120 59
Figure 16. NOE differences between the proximal hydrogens of 144 a and 144b.. 62

Figure 17. Superimpose of nucleoside analogue 158, as anti-HIV

Figure 18. Superimpose of monophosphonate of 8 and $179 \cdots \cdots \cdots \cdots .74$
Figure 19. NOE relationships between the proximal hydrogens of 185a

Figure 20. Suerimpose of monophosphonate of 5 and $194 \cdots \cdots \cdots \cdots \cdots \cdot 81$

List of Schemes

Scheme 1. Kinases involved in the activation of pyrimidine analoguesin HIV infected cells10
Scheme 2. Successive ping-pong steps for the activation of diphosp- horylated derivatives by NDPK using ATP as the phosphoryl donor 11
Scheme 3. Synthesis of 4'-hydroxyl-5'-deoxythreosyl phosphonic acid adenine analogues 23
Scheme 4. Synthesis of 4'-hydroxyl-5'-deoxythreosyl phosphonic acid guanine analogues 25
Scheme 5. Synthesis of cyclopentene intermediate 40 29
Scheme 6. Synthesis of carbocyclic adenine nucleoside analogue4430
Scheme 7. Synthesis of threosyl-4'-methyl-5'-deoxyphosphonate adenine analogue 32
Scheme 8. Synthesis of threosyl-4'-methyl-5'-deoxyphosphonate guanine analogue 34
Scheme 9. Synthesis of 2-spirocyclopropyl furanose glycosyl donor 38
Scheme 10. Synthesis of 2'-spirocyclopropyl-5'-deoxyphosphonicacid adenine analogues•40
Scheme 11. Synthesis of 2'-spirocyclopropyl-5'-deoxyphosphonic acid guanine analogues ... 42

Scheme 12. Synthesis of 2^{\prime}-modified threosyl-4'-deoxyphosphonic acid adenine analogues45
Scheme 13. Synthesis of 2^{\prime}-modified threosyl-4'-deoxyphosphonic acid guanine analogues 48
Scheme 14. Synthesis of threosyl-2'-fluoro-3'-vinylidene 6- chloropurine analogue 52
Scheme 15. Synthesis of threosyl-2'-fluoro-5'-deoxyphosphonic acid adenine analogues 54
Scheme 16. Synthesis of threosyl-2'-fluoro-3'-vinylidene fluoro-6-chloropurine analogoue55
Scheme 17. Synthesis of threosyl-2'-fluoro-5'-deoxyphosphonic acid guanine analogues 56
Scheme 18. Synthesis of target bis (SATE) prodrug of adenine analogue 132 57
Scheme 19. Synthesis of difluoro cyclopentene intermediate 60
Scheme 20. Synthesis of $6^{\prime}, 6^{\prime}$-difluoro cyclopentenyl adenine phosp-honic acid 14963
Scheme 21. Synthesis of $6^{\prime}, 6^{\prime}$-difluoro cyclopentenyl guanine phosp-honic acid 15564
Scheme 22. Synthesis of target bis (SATE) prodrug of adenine analogue 157 65

Scheme 23. Synthesis of difluorinated cyclopentanol intermediate
\qquad
Scheme 24. Synthesis of $6^{\prime}, 6^{\prime}-$ difluorinated carbocyclic-5'-deoxyphosphonic acid adenine analogues............................... 69

Scheme 25. Synthesis of $6^{\prime}, 6^{\prime}$-difluorinated carbocyclic-5'-deoxyphosphonic acid guanine analogues 71

Scheme 26. Synthesis of cyclopentandiol intermediate 185 74
Scheme 27. Synthesis of difluorinated cyclopentanol intermediate
\qquad
Scheme 28. Synthesis of $2^{\prime}, 2^{\prime}$-difluoro cyclopentanyl adenine phosphonic acid 194.. 77

Scheme 29. Synthesis of $2^{\prime}, 2^{\prime}$-difluoro cyclopentanyl guanine phosphonic acid 199... 78

List of Tables

Table 1. The antiviral activities of the synthesized compounds 19, 23,
\qquad
Table 2. The antiviral activities of the synthesized compounds 53,56 ,

Table 3. Median effective $\left(\mathrm{EC}_{50}\right)$ and inhitory $\left(\mathrm{IC}_{50}\right)$ concentration of synthesized compounds $78,81,85$ and $88 \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots 43$

Table 4. The antiviral activities of the synthesized compounds 98,

Table 5. Median effective (EC_{50}) and inhitory (IC_{50}) concentration of synthesized nucleoside analogues $117,120,127,130$ and 132 58

Table 6. Median effective $\left(\mathrm{EC}_{50}\right)$ and inhitory $\left(\mathrm{IC}_{50}\right)$ concentration of synthesized nucleoside analogues $148,149,154,155$ and 157 $\cdot 65$

Table 7. The antiviral activities of the synthesized compounds 169 ,
\qquad
Table 8. The antiviral activities of the synthesized compounds 193 , 194, 198a, 198b and 199.. 79

ABBREVIATION

AIDS: Acquired immunodeficiency syndrome
HIV: Human immunodeficiency virus
HSV: Herpes simplex virus
HBV: Hepatitis B virus
HCV: Hepatitis C virus
VZV: Varicella zoster virus
FDA: Food and Drug Adiminaistration
EMA: European Medicines Agency
NRTIs: Nucleosides Reverse Transcriptase Inhibitors
NNRTIs: Non-Nucleoside Reverse Transcriptase Inhibitors
PIs: Protease Inhibitors
CRIs: co-receptor inhibitors
INIs: Integrase Inhibitors
FIs: Fusion inhibitors
RT: Reverse transcriptase
DNA: Deoxyribonucleic acid
RNA: Ribonucleic acid
ATP: Adenosine triphosphate
AZT: $3^{\prime}-$ azido $-2^{\prime}, 3^{\prime}-$ dideoxy thymidine
d4T: 2', 3'-didehydro-2', 3^{\prime}-dideoxythymidine
3TC: 2', 3^{\prime}-dideoxy-3'-thiacytidine

TK 1: Thymidine kinase 1
TMK: Thymidylate kinase
NDPK: Nucleoside Diphosphonate Kinase
DNKs: Deoxyribonucleoside kinases
Dck: Deoxycytidine kinase
TK 2: Thymidine kinase 2
dGK: Deoxyguanosine kinase
NMP: Nucleoside monophosphonate
NDP: Diphosphonate acceptor
dNPs: 2'-deoxynucleoside 5'-triphosphates
CMV: Cytomegalovirus
bis-SATE: bis $-S$ - acyl thioethyl esters
TNA: Threose nucleic acids
GS-9148: [5-(6-Aminopurin-9-yl)-4-fluoro-2,5-dihydrofuran-2-yloxy-methyl] phosphonic acid

TAMs: Thymidine analogue mutations
EC_{50}; EC_{50} values are for 50% inhibition of virus production as indicated by supernatant RT levels
EC_{90}; EC_{90} values are for 90% inhibition of virus production as indicated by supernatant RT levels
$\mathrm{IC}_{50}: \mathrm{IC}_{50}$ values indicate 50% inhibition of cell growth
ddNs: 2',3'-dideoxynucleosides
DIBALH: Diisobutyldimethylaluminim hydride

TMSOTf: tert-butyldimetylsilyl trifluoromethane sulfonate
DCE: Dichloroethane
NOE: Nuclear Overhauser effect
TMSBr: Bromotrimethylsilane
PBM: Peripheral blood mononuclear
MOI: Multiplicity of infection
DFT: Density functional theory
PMBCl: p-methoxy benzyl chloride
TBDMSCl: t-Butyldimethylsilyl chloride
DMS: Dimethylsulfide
DDQ: 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
PCC: Pyridinium chlorochromate
RCM: Ring - closing metathesis
DIAD: Diisopropyl azodicarboxylate
TBAF: Tetrabutylammonium fluoride
PMEA: 9-[2-(Phosphonomethoxy) ethyl] adenine
DMF: N,N-Dimethylformamide
THF: Tetrahydronfuran
DEAD: Dithyl azodicarboxylate
NMO: N-methyl morpholine N-oxide
ND: Not determined

국문초록

항바이러스제로서 비전형적 뉴크레오사이드 포스폰산의 합성 및 구조에 대한 연구

신 광 환
지 도 교 수: 홍 준 희
약 학 과
조선대학교 대학원

AIDS가 발견된 이후로, 선택적으로 HIV의 복제를 억제할 수 있는 화합물을 찾기위해 많은 노력을 해왔다. 새롭고 효능이 좋은 HIV 억제제를 발견하기 위한 하나의 논리적인 접근법은 phosphonate의 일부가 변환한 phosphonic acid 유사체의 모형을 포함한다. 효소의 인산화를 통한 뉴클레오사이드 monophosphonates을 모방한 화학적인 효소의 안정적인 phosphonate 유사체들은 HIV를 억제하는 더 효과적인 항바이러스 약품을 발견할 수 있게했다.

Kinases와 핵산의 결합에 의한 phosphonate는 (결론적으로 연쇄종결반응을 이끄는) 뉴클레오사이드의 근원적인 항바이러스활성의 결핍은 일반적으로 바이러스성 키나아제 세포들의 결핍된 기질의 특성에 따른 결과이다. 반면에, Phosphorylate된 알킬화 핵산 염기의 강한 항 바이러스활성은 diphosphonates과 핵산의 변형된 뉴클레오사이드의 다루기 힘든 결합에서 세포내 인산화반응의 결과로 간주된다. 또한, 핵산에서 phosphonate 뉴클레오사이드의 효소결합은 일반적인 뉴클레오타이드에 대한 경우가 아니면 거의 돌이킬 수 없다.
phosphonate는 인-탄소 결합이 가수분해에 민감하지 않기 때문에 대사적으로 안정하여, phosphonate 대응물에 대해 특정한 이점을 가진다. 산소원자의 특정한 부분인 뉴클레오사이드 유사체의 인원자로부터 얻어지는 β-위치는 항바이러스 활성에 결정적인 역할을 한다. 이런 산소원자를 가진 활성화된 항바이러스성 활성은 목표효소로 가는 phosphonate 유사체들의 활성화된 결합능력에 따른 결과이다. 앞에서 언급된 β-위치가 탄소 원자일 경우에도 결정적인 역할을 한다고 증명되고 있다. 이런 항바이러스 활성을 위한 원자들은 목표효소로 가는 phosphonate 유사체들의 활성화된 결합능력에 따른 결과로 본다.

이 논문에서 우리는 더효과적인 HIV 억제 치료법을 찾기위한 뉴클레오사이드 phosphonate 유사체들의 새로운 물질을 합성하는 것과 뉴클레오사이드에서 뉴클레오사이드 kinases를 가진 효소결합에서 더 선호하는 배열을 탐색하기 위한 유사체를 합성하는 것을 목표로 하였다.

합성한 화학물들을 HIV-1에 대하여 항바이러스 활성을 측정 하였고 그중에서도 $23\left(\mathrm{EC}_{50}=10.2 \mu \mathrm{M}\right), 81\left(\mathrm{EC}_{50}=7.9 \mu \mathrm{M}\right), 120\left(\mathrm{EC}_{50}=\right.$ $2.2 \mu \mathrm{M}), 157\left(\mathrm{EC}_{50}=10.8 \mu \mathrm{M}\right)$ 화합물이 가장 좋은 활성을 나타냈다.

Keywords: Anti-HIV agents; 5'-Deoxyphosphonic acid; 5'Norcarbocyclic acid Threosyl nucleoside phosphonic acid; Sprionucleoside; Conformation analysis; Mistunobu reaction; Vorbruggen reaction.

I . INTRODUCTION

Since the beginning of the acquired immunodeficiency syndrome (AIDS) pandemic nearly 50 million people have been infected with human immunodeficiency virus (HIV) and over 16 million have died from AIDS. Combination anti-HIV chemotherapy has dramatically reduced mortality rates and increased life expectancy of infected individuals. ${ }^{1,2}$ Acquired immunodeficiency syndrome (AIDS) ${ }^{3,4}$ is a lethal disease caused by human immunodeficiency virus. The major modes of viral transmission have been through infected sexual partners and intravenous drug users. HIV can also be spread from mother to child, either before or during birth. The most effectivemeans of virus transfer is through virus-infected cells, which can pass HIV by cell-to-cell contact from lymphocytes to epithelial cells or cell-to-cell fusion.

There are two types of HIV: HIV-1 and HIV-2. The most is caused by HIV-1. HIV-2 is endemic to western Africa and it is not unusual in certain. Like HIV-1, HIV-2 can give rise to the same spectrum of disease caused by immune destruction, but infection course is believed to be more protracted and not be transmitted so readily as HIV-1, HIV-2 differs in genome structure by 55% from HIV-1, primarily in its envelope genes.

HIV Life Cycle and Anti-HIV Drugs
The HIV life cycle encompasses several crucial steps, starting from the attachment of the virus to the host cell membrane and finishing with the release of progeny virions from the cell, as summarized in (Figure 1). The HIV life cycle commences by a specific interaction

Figure 1. HIV Replication lifecycle. Reprimission from U.S. Department of Health and Human Services • National Institutes of Health (http://www.niaid.nih.gov/Pages/default.aspx)
between the virion glycoprotein gp120 on the outer membrane and the CD4 receptor on the host cell surface. This reaction results in a conformational change allowing the interaction of gp120 with the chemokine coreceptor CXCR4 or CCR5. This is then followed by further conformational changes that expose a fusogenic peptide, which anchors into the host cell membrane. Once the viral envelope and cell
membrane have fused, the virion is decapsidated releasing the viral RNA into the host cell's cytoplasm.

Through the reverse transcription, the viral RNA is transcribed to viral double-stranded DNA. This process is catalyzed by an RNAdependent DNA polymerase, also known as reverse transcriptase, which is encoded by the viral genome. The viral DNA is then integrated into the host chromosome, and after transcription (facilitated by regulatory proteins Tat and Rev, which are themselves viral gene products) and translation into viral proteins using the cells' machinery, the assembly of the Gag and Gag-Pol polyproteins occurs near the cell membrane. ${ }^{5,6}$ During viral assembly, two copies of single-stranded viral RNA are incorporated into the virion, which then buds off from the cell, taking with it part of the host cell membrane. Soon after budding, viral protease cleaves the Gag-Pol poly protein to generate a mature, functional virion. ${ }^{6}$

Nowadays around 60 antiviral drugs have been approved by US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) ${ }^{7}$. Among them, compounds targeting proteases as well as viral nucleic acid replication and transcription are the largest group. Half of the approved drugs are against $\mathrm{HIV}^{8,9,10}$. The common categories used to classify the anti-HIV drugs are the following: ${ }^{7,8}$

- Nucleosides Reverse Transcriptase Inhibitors (NRTIs)
- Non-Nucleoside Reverse Transcriptase Inhibitors
(NNRTIs)
- Protease Inhibitors (PIs)
- co-receptor inhibitors (CRIs)
- Integrase Inhibitors (INIs)
- fusion inhibitors (FIs)

HIV therapy is based on a combination of these agents, ${ }^{11,12,13}$ but the first used NRTI compound, Zidovudine $(A Z T)^{14}$ is still a cornerstone of HIV treatment. ${ }^{15}$ However, the use of these drugs has been relatively limited by their toxicity, ${ }^{16}$ drug resistance development, ${ }^{17}$ and more worryingly, the fact that some newly HIVinfected patients carry viruses that are already resistant to the currently approved AIDS treatments. ${ }^{18}$ These issues along with drugrelated side effects as well as, in some cases, poor tolerability of these drugs make it apparent that new anti-HIV drugs with acceptable toxicity and resistance profiles and, more importantly, new anti-HIV agents with novel mechanisms of action are clearly needed.

Nucleosides Reverse Transcriptase Inhibitors
Nucleotides are the structural units of nucleic acids. Each nucleotide consists of three subunits: one or more phosphate groups : a sugar moiety which can be either ribose (RNA) or deoxyribose (DNA); and a pyrimidine or purine base (Figure 2) Nucleosides differ from nucleotides in that they lack the phosphate group(s).

Nucleoside

Nucleotide

Figure 2. General structure of a nucleotide and structures of a natural pyrimidine nucleoside and nucleotide

Nucleosides are fundamental building blocks of biological systems that are widely used as therapeutic agents to treat cancer, fungal, bacterial, and viral infections. ${ }^{19}$ Treatment of many other widespread diseases caused by viruses is mainly based on nucleoside analogues. ${ }^{20,21}$ Indeed, nucleosides are the active ingredient of one third of the antiviral drugs approved by the FDA, becoming thus of great importance among the compounds with antiviral activity. ${ }^{20,22-24}$ Additionally, a number of new nucleoside analogues are in various stages of clinical development to be approved as antiviral drugs. ${ }^{8,25-27}$

The first anti-HIV drug that was ever approved for the treatment of AIDS was the nucleoside reverse transcriptase inhibitor $3^{\prime}-$ azido$2^{\prime}, 3^{\prime}$-dideoxy thymidine, ${ }^{28}$ which is a nucleoside analogue that produces its activity by inhibiting the functioning of the HIV reverse transcriptase. Since then, there has been extensive research into identifying nucleoside-based compounds with good inhibitory activities of HIV reverse transcriptase. As a result, several nucleoside analogues, mainly $2^{\prime}, 3^{\prime}$-dideoxynucleosides, have been identified and
approved for treating HIV patients. Indeed, as well as AZT, there are currently seven more NRTIs approved for use in the clinics: d4T ($2^{\prime}, 3^{\prime}$-didehydro- $2^{\prime}, 3^{\prime}$-dideoxythymidine), ${ }^{29}$ ddC ($2^{\prime}, 3^{\prime}$-dide oxycyti dine), ${ }^{29}$ ddI $\left(2^{\prime}, 3^{\prime}-\right.$ dideoxyinosine $),{ }^{30} \mathrm{ABC}[(1 \mathrm{~S}, 4 \mathrm{R})-4-[2-$ amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1methanol], ${ }^{31}$ FTC $\left[(-)-2^{\prime}, 3^{\prime}\right.$-dideoxy-5-fluoro-3'-thiacytidine], ${ }^{32}$ $3 \mathrm{TC}\left[(-)-2^{\prime}, 3^{\prime}-\right.$ dideoxy -3^{\prime}-thiacytidine $],{ }^{33}$ and $\operatorname{TDF}(\{[(2 R)-1-$ (6-amino-9H-purin-9-yl) propan-2-yl]oxy\} methyl) phosphonic acid^{34} (Figure 3). These agents are generally designed via three different ways:

- Modifications in the sugar moiety
- Modifications in the nucleic base moiety
- Modifications in both the sugar and base moieties

AZT

ABC

d4T

FTC

ddC

ddl

3TC

TDF

Figure 3. Structures of the currently FDA-approved anti-HIV drugs

NRTIs produce their anti-HIV effects by inhibiting the activity of the HIV reverse transcriptase. ${ }^{35}$ In order for these agents to produce such effects, they have to be phosphorylated consecutively by cellular kinases to their triphosphate derivatives. ${ }^{35,36}$ As all NRTIs follow the same mechanism of inhibition of HIV reverse transcriptase, only the mechanism of action of ddC is included here as a representative for this class of drugs. ${ }^{37}$ Compound ddC is phosphorylated by deoxycytidine kinase, deoxycytidine monophosphate kinase, and nucleoside diphosphate kinase to form the monophosphate, diphosphate, and the active triphosphate derivative of ddC, respectively. This active moiety is then incorporated into the growing DNA by cellular DNA polymerases. The incorporation of ddC into the growing DNA results in terminating the elongation of the growing DNA double strand. This is mainly due to the fact that ddC and generally all NRTIs lack the 3^{\prime}-hydroxyl group; therefore, they prevent the incorporation of the incoming nucleotide.

In addition, there are other nucleoside RT inhibitors at different stages of drug development. These drugs have been designed and developed to improve safety and efficacy profiles and to minimize drug resistance. Among them, three cytidine analogues have entered phase I and II clinical trials (Figure 4). Apricitabine [(-)-2'-deoxy-3'-oxa-4'-thiocytidine; AVX754; SPD754; (-)-dOTC] is active against HIV resistant to AZT, 3TC and other nucleoside RT

Apricitabine

Elvucitabine

4' -Ed4T

FLT

2'-deoxy-4'-C-ethyl-2-fluoroadenosine

GS-9131

GS-9148

Figure 4. Novel nucleoside and nucleotide analogue RT inhibitors
inhibitors ${ }^{38-42}$ but pharmacokinetic studies have shown that its intracellular levels are significantly reduced when combined with 3TC. Elvucitabine $\quad\left(\beta \quad-\mathrm{L}-2^{\prime}, 3^{\prime}-\right.$ didehydro-2', $3^{\prime}-$ dideoxy-5-fluorocytidine; $\beta-\mathrm{L}-\mathrm{Fd} 4 \mathrm{C} ; \mathrm{ACH}-126,443)^{43}$ and racivir $\left[(\pm)-\beta-2^{\prime}, 3^{\prime}-\right.$ dideoxy-5-fluoro-3'-thiacytidine; (\pm)-FTC] ${ }^{39}$ show good pharmacokinetic profiles, although bone marrow suppression has been observed at doses above $100 \mathrm{mg} / \mathrm{day}$. Alovudine ($\beta-\mathrm{D}-3^{\prime}-$ deoxy -3'-fluorothymidine; MIV-310; FLT) is a pyrimidine nucleoside analogue related to AZT and d 4 T , with potent activity against
nucleoside RT inhibitor-resistant strains of HIV-1, including AZTresistant isolates ${ }^{45}$. Thymidine analogues such as $1-(\beta-D-$ dioxolane)thymidine (DOT) ${ }^{46,47}$, or the $2^{\prime}, 3^{\prime}$-didehydro- 3^{\prime}-deoxy -4^{\prime}-ethynylthymidine $\left(4^{\prime}-\mathrm{Ed} 4 \mathrm{~T}\right)^{48-50}$ and $2^{\prime}-$ or $3^{\prime}-$ fluorocarbocyclic nucleosides ${ }^{51}$ are also novel inhibitors in preclinical development. One of the most promising derivatives ($2^{\prime}-$ deoxy $-4^{\prime}-\mathrm{C}$-ethynyl-2fluoroadenosine) has shown high potency against drug-resistant HIV - 1 variants in cell culture assays, and low toxicity in mice. ${ }^{52,53}$ In comparison with the approved nucleoside RT inhibitors, novel drugs should be more resilient to mutations that are commonly found in viruses derived from subjects failing multi nucleoside therapy. Among the nucleoside phosphonate analogues, GS-9148 ([5-(6-aminopurin-9-yl)-4-fluoro-2,5-dihydrofuran-2-yloxy-methyl] phosphonic acid) appears as the most promising candidate, showing high potency on multiple subtypes of HIV-1 clinical isolates, as well as against HIV-1 variants containing drug-resistance mutations such as K65R, L74V or M184V. ${ }^{54}$

Mechanism of Action of Nucleoside Analogues in HIV Infected Cells

In cells infected by HIV, the three successive phosphoryl transfers on antiviral agents such as AZT or d 4 T are carried out by human kinases, ${ }^{55,56}$ More specifically, the activation process of dT analogues is performed by following enzymes: thymidine kinase 1 (TK 1), Thymidylate kinase (TMK), and nucleoside diphosphonate kinase
(NDPK), which mediate the formation of the mono-, di-, and triphosphorylated anabolites, respectively. (Scheme 1) ${ }^{56}$

Scheme 1. Kinases involved in the activation of pyrimidine analogues in HIV infected cells

$$
d T \xrightarrow{\text { TK1 }} d T M P \xrightarrow{\text { TMK }} \text { dTDP } \xrightarrow{\text { NDPK }} \text { dTTP }
$$

TK1 is a cytosolic enzyme, key in human nucleotide metabolism since it catalyses the first phosphorylation step of deoxyribonucleosides in the salvage pathway. Three other deoxyribonucleoside kinases (dNKs), namely deoxycytidine kinase (dCK, sytosolic), thymidine kinase 2 (TK2, mitochondrial) and deoxyguanosine kinase (dGK, mitochondrial) are also responsible for catalyzing this first phosphoryl transfer. In particular, pyrimidine compounds such as dT and dU are phosphorylated by TK1 and TK2, although some studies pointed out that TK2 contributes little to the cellular metabolism. ${ }^{57}$ TK1 is well known to activate antiviral prodrugs like AZT and $\mathrm{d} 4 \mathrm{~T},{ }^{55,58}$ despite it has a narrow substrate acceptance.

TMK belongs to the nucleoside monophosphonate (NMP) kinase family and it is responsible for catalyzing the reversible phosphoryl transfer to dTMP, using ATP as its preferred phosphoryl donor. Moreover, it is also known to participate in the activation of some anti-HIV prodrug (e.g. AZT and d4T). ${ }^{56}$ The NMP kinase family is
completed by three other enzymes, which named according to their preferred natural substrate: adenylate kinase, guanylate kinase and uridylatecytidylate kinase. All these enzymes share a similar fold despite having a low primary structure identity.

NDPK catalyses the third phosphoryl transfer from a nucleoside triphosphonate to a diphosphonate acceptor (NDP) via an unusual mechanism. While in most kinase the donor and acceptor bind at two distinct sites and normally in a non-ordered manner, in NDPK both donor and acceptor share the same bingding site. Therefore, whereas normally the phosphoryl transfer is directly done from the donor from the donor to the acceptor, NDPK is known to catalyze the reaction via ping-pong mechanism, that is, the first product is released from the enzyme before the second substrate combines (Scheme 2) . ${ }^{59,60}$

Scheme 2. Successive ping-pong steps for the activation of dipho-sphorylated derivatives by NDPK using ATP as the phosphoryl donor

E	+	ATP	E-P	+	ADP
E-P	+	NDP	E	+	NTP

NDPK binds first the donor, then phosphorylates a catalytic histidine residue and finally transfer the phosphoryl group from the His to the dephosphorylated substrate, so that the transfer takes place through two successive steps that imply the formation of
covalent enzyme-phosphate ($\mathrm{E}-\mathrm{P}$) intermediate. This mechanism is assumed to be the same for all pyrimidine and purine NDPK substrates. ${ }^{61}$ Remarkably, NDPK is abundant in most living organisms and it is assumed to be the main source of the four triphosphorylated deoxynucleosides substrates of DNA polymerase. This enzyme is known to present large substrate promiscuity. Indeed, the nature of the base hardly affects the catalytic efficiency and the binding site can also accommodate non-natural bases. The activity of NDPK drops dramatically on analogues that lack the $3^{\prime}-\mathrm{OH}$ as a result of the catalytic mechanism itself. ${ }^{62}$ The $3^{\prime}-\mathrm{OH}$ group of the sugar is responsible for donating a hydrogen bond to the oxygen atom bridging the $\beta-$ and $\gamma-$ phosphonates. ${ }^{61,63,64}$ This oxygen acquires a negative charge when the γ-phosphonate is transferred to the catalytic His that is stabilized by the newly formed hydrogen bond, which accelerates the transfer by at least four orders of magnitude. ${ }^{62,64}$ Since the catalysis is assisted by the substrate, and more precisely by the $3^{\prime}-\mathrm{OH}$ of the furanose, substrates lacking this moiety such as AZT or d4T are phosphorylated less efficiently by NDPK, despite they being in the same way as dT does. ${ }^{65}$ Once the nucleosides have been activated, they must interact with HIV-1 RT to interfere in the replication of the viral nucleic acid. HIV-1 RT is known to have two enzymatic roles, DNA polymerase and ribonuclease (RNase H) activities, but antiviral agents are only aimed at the first one.

Moreover, it can employ either RNA or DNA template: primer, and then the dNTP that has to be bound to the $3^{\prime}-$ primer terminus. A nucleophilic attack of the $3^{\prime}-\mathrm{OH}$ of the primer terminus to the $\alpha-$ phosphorus of the incoming dNTP leads to its incorporation into the DNA growing chain, accompanied by a prrophosphate release. AntiHIV agents are insert into the viral DNA via this mechanism, interrupting then the replication process.

Phosphonated Nucleoside Strategy for Antiviral

One of the mechanisms by which resistance to chain-terminating NRTIs might arise is through removal of the chain-terminating residue, a kind of repair reaction involving pyrophosphorolysis, which can be regarded as the opposite of the reverse transcriptase reaction. ${ }^{66}$ It is worth noting that the three consecutive intracellular phosphorylation reactions required for the activation of NRTIs represent a problematic step for many nucleoside analogues. Nucleoside analogues, where extensive modifications have been made to a heterocyclic base and/or sugar moiety to avoid the disadvantages due primarily to enzymatic degradation, constitute a highly successful group of anticancer ${ }^{67}$ and antiviral drugs. ${ }^{68}$ Several classes of nucleoside analogues have been designed and synthesized to increase the resistance to enzymatic degradation and/or to reduce toxicity and the cross-resistance problems. ${ }^{69}$ Some nucleoside analogues are incorporated with unconventional nucleobases (e.g., ribavirin, where a
triazole carboxyamide base mimics either adenine or guanine). ${ }^{70}$ Other analogues, known as C-nucleosides (i.e., pyrazo-, tiazo-, selenazo-, and oxazofurin) are characterized by the replacement of the acidlabile $\mathrm{C}-\mathrm{N}$ glycosidic bond by a stable $\mathrm{C}-\mathrm{C}$ bond. ${ }^{71-76}$ Moreover, different types of modifications have been carried out through the insertion of heteroatoms or replacement of the furanose oxygen with other atoms (heterocyclic nucleosides). ${ }^{75,76}$ To be active, once they have entered the cell, nucleoside analogues have to be phosphorylated by a combination of human intracellular enzymes, through three consecutive phosphorylation steps, before they can interact in their active triphosphate form with their target enzyme, the viral DNA polymerase. ${ }^{77}$ The therapeutic effect depends on the rate of intracellular phosphorylation. In their triphosphate form, the compounds compete with the normal substrates [2'-deoxynucleoside 5'-triphosphates (dNTPs)] for binding sites on reverse transcriptase. When incorporated into nascent viral DNA, they may act as chain terminators, thus preventing further chain elongation. Of crucial importance in the phosphorylation process is the monophosphorylation step, which is mediated by a specific virus-encoded thymidine kinase (TK) (for HSV and VZV) or a specific virus-encoded (UL97) protein kinase (PK) (for CMV). ${ }^{78}$ Once the compounds have been monophosphorylated, the cellular kinases (i.e., guanosine monopho sphate kinase GMP and nucleoside diphosphate kinase NDP) will
afford further phosphorylation to the di- and triphosphate stages, respectively. ${ }^{78-80}$

In particular, the first phosphorylation step, which results in the formation of the nucleoside analogue monophosphate, is considered to be the most difficult. To overcome this problem, a series of prodrug strategies aimed at the delivery of nucleoside analogues monophosphates have been developed. ${ }^{81}$ To improve the cellular permeability and enhance the anti-HIV activity of nucleoside analogues, two main synthetic strategies have been exploited. The first is based on the mononucleotide prodrug approach, where the polar monophosphate unit of the nucleoside, masked by different groups, such as phosphoramidate, bis-S -acyl thioethyl esters (bisSATE), bis-pivaloxymethyl (bis-POM), cyclo-Saligenyl, S -pivaloyl-2-thioethyl (t-BuSATE) and phenyl, S-acylthioethyl mixed phosphate esters (mix-SATE), undergoes transient esterase-labile phosphate protection. ${ }^{82}$ The drug-design rationale on which this approach is based is that these lipophilic nucleoside phosphotriesters are able to bypass the first monophosphorylation step catalyzed by dCK or TK1 and to deliver, by hydrolysis and/or enzymatic cleavage, the corresponding 5^{\prime}-mononucleotide inside the cells. ${ }^{81}$ The prodrug approach has been shown to be effective for both antiviral and anticancer applications.

The second strategy involves the design of monophosphate analogues where the phosphate moiety is changed to an isosteric and isoelectronic phosphonate unit. ${ }^{83}$ A phosphonated nucleoside, where the phosphonate group is attached to the acyclic nucleoside moiety through a stable $\mathrm{P}-\mathrm{C}$ bond, shows an advantage, over its phosphate counterpart in being more stable metabolically and chemically. These 5'-mononucleotide mimics are able to overcome the instability of mononucleotides toward phosphodiesterases and to enhance cellular uptake by bypassing the initial enzymatic phosphorylation step. ${ }^{84}$ Furthermore, within cells, they must be phosphorylated by cellular nucleotide kinases to the corresponding diphosphates and then triphosphates to exert biological activity .

Threosyl Phosphonic Acid Nucleosides

Phosphorus-modified nucleoside analogues, bearing a phosphonate group in their sugar moiety, have shown potent antiviral activity. ${ }^{85}$ Since antiviral activity is often associated with nucleoside analogues bearing a phosphonomethoxy group in the sugar moiety, comparatively little attention have been paid to the properties and scopes of other phosphonate functions in relationship to biological activity. On the other hand, considerable attention has been paid to unusual nucleosides since modified nucleosides were reported to be promising anti-human immunodeficiency virus (HIV) and antihepatitis B virus (HBV) agents. Of these compounds, threose
nucleosides, ${ }^{86}$ such as, PMDTA 1 and PMDTT 2, have been previously synthesized (Figure 5) because they can be assembled from natural precursors. ${ }^{87}$ Furthermore, it has been demonstrated that threose nucleic acids (TNA) form duplexes with DNA and RNA that are thermally stable, in an analogous manner to natural nucleic acid association. The triphosphates of threose nucleosides are substrates of several polymerases, and can be enzymatically incorporated into DNA. ${ }^{88}$ Actually, these nucleosides are accepted as substitutes for ribonucleosides in the catalytic site of hammerhead ribozyme, although subsequently, the catalytic efficiency of the ribozyme is significantly reduced. ${ }^{89}$ The phosphonoalkoxy group of the proposed threose nucleoside phosphonates is bound at the 3^{\prime}-position, which brings the phosphorus atom and the nucleobase closer together than in previously synthesized nucleoside phosphonates, where the phosphonate group is bound to the primary hydroxyl group of the nucleoside. In the literature, nucleoside phosphonates have been prepared from several 5'-phosphate isosteres. As shown in Figure 5, compound 3^{90} is a simple 5^{\prime}-deoxynucleoside phosphonate, in which the 5'-oxygen of a nucleoside phosphate is replaced by a methylene (Figure 5). More recently, we synthesized the novel threosyl 5'deoxynucleoside adenine phosphonate $4 .{ }^{91}$ All phosphonates mimic the overall shape and geometry of nucleoside monophosphates. Phosphorylation by kinases and the incorporation into nucleic acid
(eventually leading to chain termination) is considered as important mechanism underlying the antiviral activities of nucleosides.

Figure 5. Structures of some threosyl phosphonic acid nucleosides as potent anviral agents

3

4

In fact, lack of antiviral activity by a nucleoside phosphonate is generally attributed to poor substrate properties for cellular and viral kinases. On the other hand, the potent antiviral activities of phosphonylated alkylated nucleobases are ascribed to their intracellular phosphorylation to diphosphates and to refractory incorporation of the modified nucleosides in nucleic acids. ${ }^{92}$ Furthermore, the enzymatic incorporation of phosphonate nucleosides into nucleic acids is almost irreversible, which is not the case for regular nucleotides. Phosphonates have certain advantages over their phosphate counterparts because they are metabolically stable due to the lack of susceptibility of the phosphorus-carbon bond to hydrolytic cleavage. ${ }^{93}$

Fluorinated Nucleoside Phosphonic Acid

Fluorinated nucleosides, containing fluorine atom or fluorine containing groups in the sugar moiety, have drawn increasing attention due to the introduction of the fluorine into some nucleosides resulting in a great improvement in the bioactivity and stability of the corresponding compounds. ${ }^{94}$ GS-9148 5 has a promising antiviral resistance profile, retaining potency toward HIV RT-resistant virus containing M184V, multiple thymidine analogue mutations (TAMs), and K65R resistance mutations. ${ }^{95}$ GS-9131 6, an ethylalaninyl phosphonoamidate prodrug of GS-9148, demonstrated excellent potency toward multiple subtype of HIV-1 clinical isolates (mean $\left.\mathrm{EC}_{50}=37 \mu \mathrm{M}\right)$, several fold better than 3^{\prime}-azido- $2^{\prime}, 3^{\prime}-$ dideoxythymidine (AZT). ${ }^{96}$ Especially noteworthy is gemcitabine ${ }^{97}$ (2'-deoxy-2', 2'-difluorocytidine) 7 , which has been approved by the FDA for the treatment of inoperable pancreatic cancer and of 5fluorouracilresistant pancreatic cancer Figure 6. ${ }^{98}$ Recently, 6'fluorocarbocyclic nucleoside 8 exhibited moderate activities against herpes simplex virus type (HSV-1) and type (HSV-2) in vitro. ${ }^{99}$

5 (GS-9148)

7 (gemcitabine)

6 (GS-9131)

8

Figure 6. Structures of some fluorinated nucleoside as potent antiviral agents

The 2',3'-dideoxynucleosides (ddNs) have been proved to the most effective therapeutic agents against human immunodeficiency virus (HIV) and hepatitis B virus (HBV). ${ }^{100}$ The phosphonate has certain advantages over its phosphate counterpart as it is metabolically stable because its phosphorus-carbon bond is not susceptible to hydrolytic cleavage. ${ }^{101}$ Moreover, the spacial location of the oxygen atom, namely the β-position from the phosphorus atom in the nucleoside analogue, has been demonstrated to play a critical role for antiviral activity. ${ }^{102}$ These atoms for antiviral activity may be attributed to the increased binding capacity of the phosphonate analogues to target enzymes. Phosphorylation by kinases and incorporation into nucleic acid (eventually leading to chain termination) is considered as an important mechanism to explain the antiviral activity of
nucleosides. ${ }^{103}$ The potent antiviral activity of phosphonylated nucleobases is ascribed to their intracellular phosphorylation to their diphosphates and to refractory incorporation of the modified nucleosides in nucleic acids. ${ }^{104}$

II. RESULTS AND DISCUSSION

As shown in Scheme 3, the target compounds were prepared from 1,3 -dihydroxyacetone through an acyclic synthesis route. ${ }^{105}$ The lactone functional group of 12 was prepared via desilylation, cyclization, and resilylation from 10 . The lactone 12 was reduced using DIBALH in toluene at $-78^{\circ} \mathrm{C}$ to give lactol 13 , which was acetylated in pyridine to furnish the key intermediate 14 as a glycosyl donor (Scheme 3). The synthesis of adenine nucleoside was carried out by condensation of compound 14 with silylated 6 -chloropurine using TMSOTf as a catalyst in DCE to give protected 6-chloropurine derivative 15 a and 15 b, respectively. A complete NOE study allowed an unambiguous determination of their relative stereochemistry (Figure 7). For compound 15b, strong NOE (1.1\%) of $\mathrm{H}-1^{\prime} \leftrightarrow \mathrm{CH}-3^{\prime}$, which showed $1^{\prime}, 3^{\prime}$ - cis relationships, was observed. According to this result, 3^{\prime}-vinyl and 1^{\prime}-purine base of 15 b were located on the β face. On the other hand, for 15 a compound, weak NOE (0.7%), such as $\mathrm{H}-$ $1^{\prime} \leftrightarrow \mathrm{CH}-3^{\prime}$, were assigned to the $1^{\prime}, 3^{\prime}-$ trans relationships. Crossmetathesis ${ }^{106}$ of $15 b$ with diethylphosphonate using second generation Grubbs catalyst ${ }^{107}$ gave vinylidene phosphonate nucleoside analogue 16. The chlorine group of purine analogue 16 was then converted to amine with methanolic ammonia at $65^{\circ} \mathrm{C}$ to give a corresponding adenosine phosphonate derivative 17 , which was desilylated to
provide 18. Hydrolysis of diethyl phosphonate functional groups of 18 by treatment with bromotrimethylsilane in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of 2,6-lutidine gave an adenosine phosphonic acid derivative $19 .{ }^{108}$

Scheme 3. Synthesis of 4'-hydroxymethyl-5'-deoxythreosyl phosphonic acid adenine analogues

Reagents: i) TBAF, $\mathrm{CH}_{3} \mathrm{CN}$; ii) TBDMSCI, imidazole, DMF; iii) DIBALH, toluene; iv) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine; v) silylated 6chloropurine, TMSOTf, DCE; vi) Vinyldiethylphosphonate, Grubbs cat. (II) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; vii) $\mathrm{NH}_{3}, \mathrm{MeOH}, 65$ ${ }^{\circ} \mathrm{C}$; viii) $\mathrm{TMSBr}, 2,6$-lutidine, $\mathrm{CH}_{3} \mathrm{CN}$; ix) Pd / C, cyclohexene, MeOH .

Figure 7. NOE differences between the proximal hydrogens of 15a and 15b

The vinylidene phosphonate was saturated in transfer catalytic hydrogenation conditions to give ethyl phosphonate nucleoside analogue 20 in a 74% yield. Adenine phosphonic acid analogue 23 was prepared through the similar reaction conditions such as ammonolysis, desilylation, and hydrolysis described for the preparation of 19.

For the synthesis of guanine analogues, 2-fluoro-6chloropurine ${ }^{109}$ was condensed with glycosyl donor in the similar conditions used for the condensation of 6-chloropurine. Vorbruggen coupling ${ }^{110}$ of the acetate 14 with 2-fluoro-6-chloropurine gives analogue 23a (32\%) and 23b (31\%), respectively. Cross-metathesis of 23 b and diethylvinylphosphonate gave 24 in a 54% yield.

Bubbling ammonia into the compound 21 gave separable 2 -fluoro6 -aminopurine analogue ${ }^{111} 25 \mathrm{a}$ (13%) and 2 -amino- 6 -chloropurine analogue25b (42\%), respectively. Fluorine acts as a better leaving group than chlorine in nucleophilic aromatic substitution. 2-Amino6 -chloropurine derivative 25 b, which was desilylated to give 26 in
76% yields.

Scheme 4. thesis of 4'-hydroxymethyl-5'-deoxythreosyl phosphonic acid guanine analogues

Reagents: i) silylated 2-fluoro-6-chloropurine, TMSOTf, DCE; ii) vinyldiethylphosphonate, Grubbs cat.(II) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii) NH_{3}, DME, rt; iv) TBAF, $\mathrm{CH}_{3} \mathrm{CN}$; v) (a) TMSBr, 2,6-lutidine, $\mathrm{CH}_{3} \mathrm{CN}$; (b) $\mathrm{NaOMe}, \mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, MeOH; vi) Pd/C, cyclohexene, MeOH.

Phosphonate 26 was treated with TMSBr to provide phosphonic acid and sequentially treated sodium methoxide and 2mercaptoethanol inmethanol to give desired guanine vinylidene
phosphonic acid 27, (Scheme 4). ${ }^{112}$ The guanine phosphonate 31 was synthesized from 24 via transfer catalytic hydrogenation, ammonolysis, desilylation and hydrolysis using the similar conditions as described for the synthesis of 27 .

The antiviral activity of phosphonate nucleoside is mostly explained by their intracellular metabolism to their diphosphates followed by incorporation into the viral genome and chain termination. ${ }^{113}$ The synthesized compounds $19,23,27$, and 31 were tested against HIV-1. Especially, the adenine analogue 23 did show moderate antiviral activity against HIV-1 (Table 1), indicating that this virus might allow the sugar moiety for diphosphorylation or some affinity of its diphosphate toward viral polymerases.

Anti-HIV activity was determined in human peripheral blood mononuclear (PBM) cells infected with HIV-1 strain LAI. PBM cells (1×105 cell $/ \mathrm{mL}$) were infected with HIV-1 at a multiplicity of infection (MOI) of 0.02 and cultured in the presence of various concentrations of the test compounds. After 4 days of incubation at 37 ${ }^{\circ} \mathrm{C}$, numbers of viable cells were determined using the $3-(4,5-\mathrm{di}-$ methylthiazole $-2-y l)-2,5-$ diphenyltetrazolium bromide method. The cytotoxicities of the compounds were evaluated in parallel with their antiviral activities, which were assessed based on the viabilities of mock-infected cells. ${ }^{114}$

Table 1. The antiviral activities of the synthesized compounds 19,

23, 27 and 31

Compound	$\mathrm{HIV}-1$		cytotoxicity $\mathrm{IC}_{50}(\mu \mathrm{M})$		
	$\mathrm{EC}_{50(\mu \mathrm{M})}$	$\mathrm{EC}_{90}(\mu \mathrm{M})$	PBM	CEM	Vero
19	44.6	95	>100	>100	>100
23	10.2	80	45.5	32.0	>100
27	65	95	>100	>100	>100
31	80	95	>100	>100	>100
PMEA	5.2	ND	>100	40.5	>100
AZT	0.123	ND	>100	13.5	50.5

Based on the potent anti-HIV activity of 4'-branched nucleosides as well as threosyl phosphonic acid nucleoside analogues, we have designed and successfully synthesized novel 3'-hydroxymethyl 5'deoxyphosphonic acid nucleoside analogues starting from 1,3dihydroxyacetone. The 3^{\prime}-modified adenine phosphonic acid 23 exhibits moderate antiviral activity $\left(\mathrm{EC}_{50}=10.2 \mu \mathrm{M}\right)$. As shown in Figure 8, superimposed modeling of PMDTA 1 and 23 shows close similarity with slightly two different parts such as adenine base and phosphonic acid moiety. Energy minimization was optimized with the framework of the density functional theory (DFT), with Spartan modeling software. The B3LYP functional with $6-31 G^{*}$ basis set was employed.

Figure 8. Superimposition of PMDTA 1 and 23.

For the synthesis of phosphonate adenine nucleoside, the commercially available but-3-en-1-ol 32 was selected as a starting material. As shown in Scheme 1, the synthetic route is very simple and straightforward. The primary hydroxyl group of 32 was protected as temporary p-methoxy benzyl ether (PMB) by reaction ${ }^{115}$ with PMBCl and NaH in DMF to afford the protected olefin 33 in a yield of 97%. The olefin of 33 was treated with ozone in methylene chloride at $78^{\circ} \mathrm{C}$, followed by the decomposition of the ozonide by dimethylsulfide (DMS) to give the aldehyde 34 . Compound 34 was subjected to carbonyl addition with isopropenyl magnesium bromide to provide the secondary alcohol derivative 35 , which was protected with $t-$ butyldimethylsilyl chloride (TBDMSCl) to give compound 36. Oxidative deprotection of the PMB ether moiety of 36 was effected with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) ${ }^{116}$ in methylene chloride with a small amount of water to give the alcohol 37, which was then oxidized to the aldehyde 38 using pyridinium
chlorochromate (PCC), which again underwent an addition reaction with isopropenyl magnesium bromide to provide a divinyl 39. The divinyl 39 was subjected to standard ring-closing metathesis (RCM) conditions using a $2^{\text {nd }}$ generation Grubbs catalyst to provide cyclopentenol 40a (43\%) and 40b (42\%), which were readily separated by silica gel column chromatography (Scheme 5).

Scheme 5. Synthesis of cyclopentene intermediate 40

Reagents: i) $\mathrm{PMBCl}, \mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}$; ii) $\mathrm{O}_{3}, \mathrm{DMS},-78^{\circ} \mathrm{C}$; iii) isopropenylMgBr, THF, $-78^{\circ} \mathrm{C}$; iv) TBDMSCl, imidazol, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; v) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$, rt; vi) $\mathrm{PCC}, 4 \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; vii) isopropeny $1 \mathrm{MgBr}, \mathrm{THF},-78^{\circ} \mathrm{C}$; viii) Grubbs II, benzene, $60^{\circ} \mathrm{C}$, reflux overnight.

For coupling with a nucleobase, the hydroxyl group was converted to mesylate for nucleophilic substitution. However, the yield of mesylation was very low and the mesylate was unstable during workup for storage. Alternatively, the alkylation of adenine was attempted under Mitsunobu conditions using diisopropyl azodicarboxylate (DIAD) and PPh_{3} under a THF solvent. Unfortunately, the direct coupling of adenine with alcohol 40a failed. A nucleobase precursor such as N^{6}-bis-Boc-adenine ${ }^{117}$ was coupled with alcohol 40a under Mitsunobu conditions ${ }^{118}$ to give compound 41 with a chirality inversion.

The silicon protection group of compound 41 was readily removed by treating it with tetrabutylammonium fluoride (TBAF) in THF to give compound 42. For the synthesis of phosphonate nucleoside, the hydroxyl group of 42 was phosphonated by treating it with diisopropyl bromomethyl phosphonate ${ }^{119}$ in anhydrous in the presence of $\mathrm{LiOt}-\mathrm{Bu}$ to give the phosphonate nucleoside intermediate 43 (Scheme 6). Both protecting groups ($N^{6}-$ bis-BOC \& di-O-isopropyl) of the phosphonate nucleoside were simultaneously removed using trimethylsilylbromide ${ }^{120}$ to give nucleoside phosphonic acid 44.

Scheme 6. Synthesis of carbocyclic adenine nucleoside 44

Reagents: i) PPh3, DIAD, N^{6}-bis-Boc-adenine, THF, $-20^{\circ} \mathrm{C}$; ii) TBAF, THF, rt; iii) Diisopropyl bromomethylphosphonate, LiO-t-Bu, Lil, DMF, $60^{\circ} \mathrm{C}$; iv) TMSBr, $\mathrm{CH}_{3} \mathrm{CN}$.

Antiviral assay against HIV-1 was performed for the adenine analogues 44. Unfortunately, it did not show any anti-HIV activity in

MT-4 cells.
As shown in Scheme 7, target compounds were prepared from acetol via an acyclic synthesis route. ${ }^{121}$ The lactone functional group of 47 was prepared via desilylation and cyclization from 46 , and 47 was subsequently reduced using DIBALH in toluene at $78^{\circ} \mathrm{C}$ to give lactol 48, which was acetylated in pyridine to furnish the key intermediate 49 (a glycosyl donor) (Scheme 7). The synthesis of adenine nucleoside was carried out by condensation between 49 and silylated 6-chloropurine using TMSOTf as a catalyst in DCE to give the protected 6 -chloropurine derivatives 50 a and 50 b, respectively. A complete NOE study allowed the unambiguous determination of their respective stereochemistries (Figure 9). For compound 50b, strong NOE (0.7%) of $\mathrm{H}-1^{\prime} \leftrightarrow \mathrm{CH}-3^{\prime}$, showing $1^{\prime}, 3^{\prime}-$ cis relationships, was observed. According to this result, the 3^{\prime}-vinyl group and the $1^{\prime \prime}-$ purine base of 50 b were located on the β face. On the other hand, for 50a, weak NOE (0.2%), such as, $\mathrm{H}-1^{\prime} \leftrightarrow \mathrm{CH}-3^{\prime}$, were assigned to the $1^{\prime}, 3^{\prime}-$ trans relationship. Cross-metathesis ${ }^{106}$ of 50 b with diethyl phosphonate using $2^{\text {nd }}$ generation Grubbs catalyst ${ }^{107}$ gave the vinylidene phosphonate nucleoside analogue 51, the chlorine group of which was then converted to amine using methanolic ammonia at $60^{\circ} \mathrm{C}$ to give the corresponding adenosine phosphonate derivative 52. Hydrolysis of the diethyl phosphonate functional groups of 52 with bromotrimethylsilane in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of 2,6-lutidine then
gave the adenosine phosphonic acid derivative 53. ${ }^{108}$

Scheme 7. Synthesis of threosyl-4'-methyl-5'-deoxyphosphonate adenine analogue

Figure 9. NOE differences between the proximal hydrogens of 50a and 50b

50a

50b

The vinylidene phosphonate of 51 was then saturated under transfer catalytic hydrogenation conditions to give the ethyl phosphonate nucleoside analogue 54. Adenine analogue 56 was prepared using reaction conditions (ammonolysis and hydrolysis) similar to those described to prepare 53.

To synthesize guanine analogues, 2-fluoro-6-chloropurine ${ }^{109}$ was condensed with glycosyl donor using conditions similar to those used for the condensation of 6 -chloropurine. Vorbruggen coupling ${ }^{110}$ of the acetate 49 with 2 -fluoro-6-chloropurine provided the analogues 57 a (32%) and $17 \mathrm{~b}(33 \%)$. Cross-metathesis of 57 b and diethylvinylphosphonate then produced 58 at a yield of 59%.

Bubbling ammonia into compound 58 provided the two separable analogues 2 -fluoro-6-aminopurine ${ }^{111} 59$ a (16%) and $2-$ amino-6chloropurine 59b (46%). Fluorine atom acts as a good leaving group than chlorine atom in nucleophilic aromatic substitution. The 2-amino-6-chloropurine derivative 59b was treated with TMSBr to provide phosphonic acid, and then treated with sodium methoxide and

2-mercaptoethanol in methanol to give the desired guanine vinylidene phosphonic acid 60 (Scheme 8). ${ }^{112}$

Scheme 8. Synthesis of threosyl-4'-methyl-5'-deoxyphosphonate guanine analogue

$62 \% \downarrow$ iv

$$
64 \% \mid \text { iv }
$$

Reagents: i) silylated 2-fluoro-6-chloropurine, TMSOTf, DCE; ii)
vinyldiethylphosphonate, Grubbs cat.(II) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii) NH_{3}, DME, rt; iv) (a) TMSBr, 2,6-lutidine, $\mathrm{CH}_{3} \mathrm{CN}$; (b) $\mathrm{NaOMe}, \mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{MeOH}$; v) Pd / C, cyclohexene, MeOH .

The guanine phosphonate 63 was synthesized from 58 by transfer
catalytic hydrogenation and by ammonolysis and hydrolysis using conditions similar to those described for the synthesis of 60 .

The antiviral activity of phosphonate nucleosides is largely due to their intracellular conversions to diphosphates, their subsequent incorporation into the viral genome, and chain termination. ${ }^{113}$ The synthesized compounds $53,56,60$, and 63 were tested against HIV-1 and for cytotoxicity using AZT and PMEA as positive controls; results are summarized in Table 2.

Table 2. The antiviral activities of the synthesized compounds 53,56 , 60 and 63

Compound	$\mathrm{HIV}-1$		cytotoxicity $\mathrm{IC}_{50(\mu \mathrm{M})}$		
	$\mathrm{EC}_{50(\mu \mathrm{M})}$	$\mathrm{EC}_{90}(\mu \mathrm{M})$	PBM	CEM	Vero
53	50.6	90	>100	>100	>100
56	22.2	80	42.4	30.4	>100
60	70	95	>100	>100	>100
63	85	95	>100	>100	>100
PMEA	5.4	ND	>100	50.3	>100
PMDTA	2.6	ND	>100	>100	>100
AZT	0.16	ND	>100	14.7	51.2

Anti-HIV activity was determined in human peripheral blood mononuclear (PBM) cells infected with HIV-1 strain LAI. In
particular, the adenine analogue 56 show moderate antiviral activity against HIV-1, indicating that this virus might allow the sugar moiety for diphosphorylation or some affinity of its diphosphate toward viral polymerases. PBM cells (1×105 cell/mL) were infected with HIV-1 at a multiplicity of infection (MOI) of 0.02 and cultured in the presence of various concentrations of the test compounds. After 4 days of incubation at $37^{\circ} \mathrm{C}$, numbers of viable cells were determined using the $3-(4,5-\mathrm{di}-$ methylthiazole $-2-\mathrm{yl})-2,5$-diphenyltetrazolium bromide method. The cytotoxicities of the compounds were evaluated in parallel with their antiviral activities, which were assessed based on the viabilities of mock-infected cells. ${ }^{114}$

Figure 10. Superimpose model of PMDTA and 56.
In summary, based on the known potent anti-HIV activities of threosyl 5'-norcarbocyclic nucleoside analogues, we designed and successfully synthesized novel 5'-deoxyphosphonate nucleoside
analogues starting from acetol. The previously synthesized adenine 4 exhibited better cell-based activity than 4'-methyl branched adenine phosphonic acid 56 , which suggests that the methyl substituent at the 4'-position is possibly responsible for the apparent lack of activity of 56. Superimposed modeling of PMDTA and 56 highlighted differences in adenine bases and phosphonic acid moieties (Figure 10). ${ }^{122}$

As depicted in Scheme 9, the target compounds were prepared from monosilyl-cyclopropanoid 65, which was readily prepared from diethyl malonate by the previously reported procedure. ${ }^{123}$ For the homologation, Swern oxidation ${ }^{124}$ of alcohol 64 gave an aldehyde 65, which was subjected to the Wittig reaction ${ }^{125}$ to give compound 66. Hydroboration ${ }^{126}$ and oxidation of corresponding olefin 66 provided alcohol derivative 67, which was oxidized using the similar Swern conditions described for compound 65 in 91% yields. Carbonyl addition reaction by vinylmagensium bromide furnished the allylic alcohol 69, which was successfully protected using p-methoxybenzyl chloride $(\mathrm{PMBCl})^{127}$ to provide compound 70 . Removal of the silyl protecting group of compound 70 using tetra n-butylammonium fluoride (TBAF) gave the primary alcohol 71 , which was oxidized to the aldehyde 72 using the same oxidation conditions as described for compound 68 in 71% two-step yields. The $p-$ methoxybenzyl (PMB) protection group was removed with $2,3-$ dichloro-5,6-dicyano-pbenzoquinone (DDQ) ${ }^{128}$ to produce a lactol analogue 73 in 63% yields.

The lactol 73 was acetylated in pyridine to furnish the keyintermediate 74 in 86% yields as a glycosyl donor (Scheme 9).

Scheme 9. Synthesis of 2-spirocyclopropyl furanose glycosyl donor

Reagents: i) $(\mathrm{COCl})_{2}$, DMSO, TEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii) n - $\mathrm{BuLi}, \mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{I}, \mathrm{PPh}_{3}$, THF; iii) (a)
BH_{3} /THF; (b) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$; iv) VinylMgBr, THF; v) PMBCI, DMF, NaH; vi) TBAF, THF; vii) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{O}$; ix) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine.

The synthesis of adenine nucleoside was carried out by condensation of compound 74 with silylated 6-chloropurine using trimethylsilyl trifluoromethanesulfonate (TMSOTf) as a catalyst in dichloroethene (DCE) to give protected 6-chloropurine derivative 75a (32\%) and 75b (33\%), respectively. A complete nuclear Overhauser effect (NOE) study allowed an unambiguous determination of their respective stereochemistry (Figure 11). For
compound 75 b, strong NOE (1.1\%) of $\mathrm{H}-1^{\prime} \leftrightarrow \mathrm{H}-4^{\prime}$, which showed $1^{\prime}, 4^{\prime}-$ cis relationships, was observed. According to this result, the $4^{\prime}-$ vinyl and 2^{\prime}-purine base of compound 75 b were located on the β face. On the other hand, for 75 a compound, weak NOE (0.7%), such as $\mathrm{H}-$ $1^{\prime} \leftrightarrow \mathrm{H}-4^{\prime}$, was assigned to the $1^{\prime}, 4^{\prime}-$ trans relationships.

Figure 11. NOE differences between the proximal hydrogens of 75a and 75b.

Cross-metathesis ${ }^{106}$ of compound 75 b with diethylphosphonate using the 2 nd generation Grubbs catalyst ${ }^{107}$ gave vinylidene phosphonate nucleoside analogue 76 in a 61% yield. The chlorine group of purine analogue 76 was then converted to amine with methanolic ammonia at $64{ }^{\circ} \mathrm{C}$ to give acorresponding adenosine phosphonate derivative 77. Hydrolysis of diethyl phosphonate functional groups of compound 77 by treatment with bromotrimethylsilane (TMSBr) in acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ in the presence of 2,6-lutidine gave an adenosine phosphonic acid derivative 78. ${ }^{108}$ The vinylidene phosphonate was saturated in transfer catalytic hydrogenation conditions to give ethyl phosphonate nucleoside
analogue 79. The adenine phosphonic acid analogue 81 was prepared through similar reaction conditions such as ammonolysis and hydrolysis described for the preparation of compound 78 (Scheme 10).

Scheme 10. Synthesis of 2'-spirocyclopropyl-5'-deoxyphosphonic acid adenine analogues.

Reagents: i) silylated 6-chloropurine, TMSOTf, DCE; ii) Vinyldiethylphosphonate, Grubbs cat.(II) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii) $\mathrm{NH}_{3} / \mathrm{MeOH}$; iv) TMSBr , 2,6-lutidine, $\mathrm{CH}_{3} \mathrm{CN}$. v) Pd / C, cyclohexene, MeOH .

For the synthesis of guanine analogues, 2-fluoro-6chloropurine ${ }^{109}$ was condensed with glycosyl donor in similar conditions used for the condensation of 6-chloropurine. The Vorbruggen coupling ${ }^{110}$ of acetate 74 with 2-fluoro-6-chloropurine gives analogue 82 a (31\%) and 82b (30\%), respectively. Crossmetathesis of compound 82 b with diethylvinylphosphonate provided compound 83 in a 61% yield.

Bubbling ammonia into the compound 83 gave separable 2-fluoro-6-aminopurine analogue ${ }^{111}$ 84a (17\%) and 2-amino-6chloropurine analogue 84 b (45\%), respectively. 2-Amino-6chloropurine derivative 84 b was treated with TMSBr to provide phosphonic acid and sequentially treated sodium methoxide and 2mercaptoethanol in methanol to give desired guanine vinylidene phosphonic acid 85 (Scheme 11). ${ }^{112}$ The guanine phosphonic acid analogue 88 was synthesized from compound 83 via transfer catalytic hydrogenation, ammonolysis, and hydrolysis using similar conditions as described for the synthesis of adenine derivative 85 , respectively.

The antiviral activity of phosphonate nucleosides is mostly explained by their intracellular metabolism to their diphosphates followed by incorporation into the viral genome and chain termination. ${ }^{113}$ MT-4 cells (1×105 cell $/ \mathrm{mL}$) were infected with HIV-1 (HTLV-III ${ }_{\mathrm{B}}$ strain) at a multiplicity of infection (MOI) of 0.02 and were cultured in the presence of various concentrations of the
test compounds. After a four-day incubation at $37^{\circ} \mathrm{C}$, the number of viable cells was monitored by the $3-(4,5-\mathrm{di}-$ methylthiazole-2-yl) -2,5-diphenyltetrazolium bromide method. The cytotoxicity of the compounds was evaluated in parallel with their antiviral activity, based on the viability of mock-infected cells. ${ }^{114}$

Scheme 11. Synthesis of 2'-spirocyclopropyl-5'-deoxyphosphonic acid guanine analogues

82b (30\%)

84a: $X=\mathrm{NH}_{2}, \mathrm{Y}=\mathrm{F}$ (17\%)
87a: $X=\mathrm{NH}_{2}, Y=F(15 \%)$
84b: $\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{NH}_{2}(45 \%)$

Reagents: i) Silylated 2-fluoro-6-chloropurine, TMSOTf, DCE; ii) vinyldiethylphosphonate, Grubbs cat.(II) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii) NH_{3}, DME, rt; iv) (a) TMSBr, 2,6-lutidine, $\mathrm{CH}_{3} \mathrm{CN}$; (b) $\mathrm{NaOMe}, \mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{MeOH}$; v) Pd / C, cyclohexene, MeOH.

The synthesized compounds $78,81,85$, and 88 were tested
against HIV-1. Especially, the adenine analogue 81 did show moderate antiviral activity against HIV-1 (Table 3), indicating that this virus might allow the sugar moiety for diphosphorylation or some affinity of its diphosphate toward viral polymerases. However, other 5'-deoxyphosphonicacid nucleoside analogues showed weak or lack of anti-HIV activity at concentrations up to $100 \mu \mathrm{M}$.

Table 3. Median effective $\left(\mathrm{EC}_{50}\right)$ and inhitory $\left(\mathrm{IC}_{50}\right)$ concentration of synthesized compounds $78,81,85$ and 88

Compound No.	Anti-HIV-1 $\mathrm{EC}_{50(\mu \mathrm{M})}$	Cytotoxicity $\mathrm{IC}_{50}(\mu \mathrm{M})$
78	21	90
81	7.9	80
85	54	98
88	43	98
AZT	0.002	>100
PMEA	0.39	>100

In summary, based on the potent anti-HIV activity of $2^{\prime}-$ electropositive nucleosides and 5'-deoxyphosphonic acid nucleoside analogues, we have designed and successfully synthesized novel $2^{\prime \prime}-$ spirocyclopropyl-5'-deoxyphosphonic acid nucleoside analogues starting from diethylmalonate. The synthesized adenine analogue 81
exhibited improvement in cell-based activity compared with $2^{\prime \prime}-$ modified guanine phosphonic acid analogues 85 and 88. Since spirocyclopropanations of guanine nucleoside derivatives are not perfect mimics for ribofuranose moiety, the mechanisms of virus inhibition, that is, either phosphorylation or inhibition of RNA synthesis, might be impaired in these compounds. As potent antihepatitis C virus (anti-HCV) agents, syntheses of (bis) S-acyl-2thioethyl ((bis)SATE)-prodrug of compounds 78 and 81 are in progress in our laboratory.

As shown in Scheme 12, the target compounds were prepared from 1,4-dihydroxy-2-butene 89 through an acyclic synthesis route. ${ }^{121}$ Cyclopropylation of ester 90 was effected through a enolate intermediate followed by alpha-alkylation using (2-chloroethyl)dimethylsulfonium iodide and potassium tert-butoxide ${ }^{129}$ to give a cyclopropanoid 91 . The lactone derivative 92 was prepared from 91 via desilylation and cyclization in a 54% yield. The lactone 92 was reduced using DIBALH in toluene at $-78^{\circ} \mathrm{C}$ to give lactol 93 , which was acetylated in pyridine to furnish the key intermediate 94 as a glycosyl donor. The synthesis of adenine nucleoside was carried out by condensation of compound 94 with silylated 6-chloropurine using TMSOTf as a catalyst in DCE to give protected 6-chloropurine derivative 95 a and 95 b, respectively. A complete NOE study allowed an unambiguous determination of their relative stereochemistry
(Figure 12).
Scheme 12. Synthesis of 2'-modified threosyl-4'-deoxyphosphonic acid adenine analogues.

56% vii

79\% viii
81% viii

Reagents: i) $\mathrm{CICH}_{2} \mathrm{CH}_{2} \mathrm{SMe}_{2} \mathrm{I}, \mathrm{KI}, t$-BuOK, t-BuOH; ii) TBAF, THF; iii) DIBALH, toluene, $-78{ }^{\circ} \mathrm{C}$; iv) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine; v) silylated 6-chloropurine, TMSOTf, DCE; vi) diethyl vinylphosphonate, Grubbs, cat. (II), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ vii) $\mathrm{NH}_{3} / \mathrm{MeOH}$; viii) TMSBr, 2,6-lutidine, $\mathrm{CH}_{3} \mathrm{CN}$; ix) Pd / C, cyclohexene, MeOH .

For compound 95b, strong NOE (0.9%) of $\mathrm{H}-1^{\prime} \leftrightarrow \mathrm{CH}-3^{\prime}$, which
showed $1^{\prime}, 3^{\prime}$-cis relationships, was observed. According to this result, $3^{\prime}-$ vinyl and $1^{\prime}-$ purine base of $95 b$ were located on the b face. On the other hand, for 95 a compound, weak $\operatorname{NOE}(0.6 \%)$, such as $H-1^{\prime} \leftrightarrow$ $\mathrm{CH}-3^{\prime}$, were assigned to the $1^{\prime}, 3^{\prime}$-trans relationships.

Figure 12. NOE differences between the proximal hydrogens of 95a and 95b

Cross-metathesis ${ }^{106}$ of 95b with diethyl vinylphosphonate using $2^{\text {nd }}$ generation Grubbs catalyst ${ }^{107}$ gave (E) -vinylidene phosphonate nucleoside analogue 96 in a 60% yield. The stereochemistry of the olefin was confirmed ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectroscopy. The coupling constants of the E and Z olefinic protons $\left(J_{\mathrm{Htrans}-\mathrm{P}}=22.5 \mathrm{~Hz}\right.$ vs $J_{\text {Hcis-P }}=41.5 \mathrm{~Hz}$) were readily characterized. The chlorine group of purine analogue 96 was then converted to amine with methanolic ammonia at $63{ }^{\circ} \mathrm{C}$ to give a corresponding adenosine phosphonate derivative 97 , which was hydrolyzed by treatment with bromotrimethylsilane in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of 2,6-lutidine to give an adenosine phosphonic acid derivative 98. ${ }^{108}$ The vinylidene phosphonate 96 was saturated in transfer catalytic hydrogenation conditions to give ethyl phosphonate nucleoside analogue 99 in a 81%
yield. Adenine phosphonic acid analogue 101 was prepared through the similar reaction conditions such as ammonolysis and hydrolysis described for the preparation of 98 .

For the synthesis of guanine analogues, 2-fluoro-6chloropurine ${ }^{109}$ was condensed with glycosyl donor in the similar conditions used for the condensation of 6-chloropurine. Vorbruggen coupling ${ }^{110}$ of the acetate 94 with $2-$ fluoro-6-chloropurine gave analogue 102a (30\%) and 102b (31\%), respectively. Crossmetathesis of 102 b and diethylvinylphosphonate gave 103 in a 62% yield. A complete NOE study allowed an unambiguous determination of their relative stereochemistry as described for 95 a and 95 b.

Bubbling ammonia into the compound 103 gave separable 2-fluoro-6-aminopurine 104a (10\%) and 2-amino-6-chloropurine 104b (41\%), respectively. ${ }^{111}$ They are readily identified by UV spectral data. Fluorine acts as better leaving group than chlorine in nucleophilic aromatic substituteion. 2-Amino-6-chloropurine derivative 104 b was treated with TMSBr and 2,6 -lutidine to provide phosphonic acid and sequentially which was treated with sodium methoxide and 2-mercaptoethanol in methanol to give desired guanine vinylidene phosphonic acid 105 in a 62% yield (Scheme 13). ${ }^{112}$ The guanine phosphonate 108 was synthesized from 103 via transfer catalytic hydrogenation, ammonolysis and hydrolysis using the similar conditions as described for the synthesis of 105 .

Scheme 13. Synthesis of 2'-modified threosyl-4'-deoxyphosphonic acid guanine analogues.

94

102a (30\%)
and

102b (31\%)
ii 62%

106
$\stackrel{v}{72 \%}$

107a: $X=\mathrm{NH}_{2}, \mathrm{Y}=\mathrm{F}$ (11\%)
107b: $\mathrm{X}=\mathrm{Cl}, \mathrm{Y}=\mathrm{NH}_{2}(43 \%)$

Reagents: i) silylated 2 -fluoro-6-chloropurine, TMSOTf, DCE; ii) diehtyl vinyl phosphonate, Grubbs cat. (II), CH2Cl2; iii) NH3, DME, rt; iv) (a) TMSBr, 2,6-lutidine, CH3CN (b) $\mathrm{NaOMe}, \mathrm{HSCH} 2 \mathrm{CH} 2 \mathrm{OH}, \mathrm{MeOH} ;$ v) Pd/C, cyclohexene, MeOH .

The antiviral activity of phosphonate nucleoside is mostly explained by their intracellular metabolism to their diphosphates followed by incorporation into the viral genome and chain termination. ${ }^{113}$ The synthesized compounds 98, 101, 105 and 108
were tested against HIV-1. However, none of them showed antiviral activity and cytotoxicity up to $100 \mu \mathrm{M}$ (Table 4).

Table 4. The antiviral activities of synthesized compounds 98, 101, 105 and 108

Compound	$\mathrm{HIV}-1$		cytotoxicity $\mathrm{IC}_{50(\mu \mathrm{M})}$		
	$\mathrm{EC}_{50(\mu \mathrm{M})}$	$\mathrm{EC}_{90}(\mu \mathrm{M})$	PBM	CEM	Vero
98	62.8	95	>100	>100	>100
101	49.2	80	>100	>100	>100
105	66	95	>100	>100	>100
108	80	95	>100	>100	>100
PMEA	5.0	ND	>100	40.0	>100
AZT	0.128	ND	>100	12.6	50.0

This result indicates that the virus might not allow the sugar moiety for diphosphorylation or any affinity of its diphosphate toward viral polymerases. Anti-HIV activity was determined in human peripheral blood mononuclear (PBM) cells. Briefly, uninfected phytohemagglutinin-stimulated human PBMCs were infected with HIV-1 (strain LAV-1) (about 63,000 disintegrations of RT activity per minute per 10^{7} cells per 10 mL of medium) the drugs were then added to duplicate or triplicate cultures. Uninfected and untreated PBMCs were grown in parallel at equivalent cell concentrations as
controls. The cultures were maintained in a humidified $5 \% \mathrm{CO}_{2}-95 \%$ air incubator at $37{ }^{\circ} \mathrm{C}$ for 6 days after infection, at which point all cultures were sampled for supernatant RT activity. The supernatant was clarified, and the viral particles were then pelleted at 40,000 rpm for 30 min by using a rotor (70.1 Ti; Bechman Instruments, Inc., Fullerton, Calif.) and suspended in virus-disrupting buffer. The RT assay was performed by a modification of the method of Spira et al. ${ }^{130}$ in 96 -well microdilution plates by using $(\mathrm{rA})_{\mathrm{n}} \cdot(\mathrm{dT})_{12-18}$ as the template primer. The RT results were expressed in disintegrations per minute per milliliter of originally clarified supernatant. ${ }^{131}$ The compounds were evaluated for their potential toxic effects on uninfected phytohemagglutinin-stimulated human PBMCs and also in CEM and Vero cells. PBMCs were obtained from whole blood of healthy HIV-1 and hepatitis B virus-seronegative volunteers and collected by single-step Ficoll-Hypaque discontinuous gradient centrifugation. The CEM cells were maintained in RPMI 1640 medium supplemented with 20% heat-inactivated fetal bovine serum, penicillin (100 U/mL), and streptomycin (100 $\mu \mathrm{g} / \mathrm{mL}$). The PBMCs and CEM cells were cultured with and without drug for 6 days, at which time portion were counted for cell proliferation and viability by the trypan blue exclusion method. ${ }^{132}$ Only the effects on cell growth are reported, since these correlated well with cell viability. The toxicity of the compounds in Vero cells was assessed after 3 days of treatment with
a hemacytometer. ${ }^{133}$

Figure 13. Superimpose of PMDTA 1 and 101

Based on the potent anti-HIV activity of 6^{\prime}-electropositive nucleosides as well as threosyl phosphonic acid nucleoside analogues, we have designed and successfully synthesized novel 2'spirocyclopropanoid 4'-deoxyphosphonic acid nucleoside analogues starting from 1,4-dihydroxy-2-butene. None of the synthesized nucleosides exhibits significant antiviral activity up to $100 \mu \mathrm{M}$. As shown in Figure 13, superimposed modeling of PMDTA 1 and 101 do not shows any similarity with two parts such as adenine base and phosphonic acid moiety. Furthermore, the sugar puckering of compound 101 is not positioned closer to that of adenine analogue PMDTA 1. Energy minimization was optimized with the framework of the density functional theory (DFT), with Spartan modeling software. The B3LYP functional with $6-31 G^{*}$ basis set was employed.

Scheme 14. Synthesis of threosyl-2'-fluoro-3'-vinylidene 6-chloropurine analogue

and

Reagents: i) Silylated 6-chloropurine, TMSOTf, DCE; ii) TBAF, THF; iii) Dess-Martin, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv) n-BuLi, $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{I}, \mathrm{PPh}_{3}$, THF.

As depicted in Scheme 14, target compounds were prepared from the fluorinated glycosyl donor 110 , which was readily prepared from 1,3-dihydroxyacetone 109, as previously described. ${ }^{134}$ The synthesis of adenine nucleoside was carried out by Vorbrüggen condensation ${ }^{110}$ of compound 110 with silylated 6chloropurine using TMSOTf as a catalyst in DCE to give the protected 6-chloropurine derivatives 111a and 111b, respectively. Strong NOE (0.8%) of $\mathrm{H}-1^{\prime} \leftrightarrow \mathrm{CH}-3^{\prime}$, which showed a $1^{\prime}, 3^{\prime}-$ cis relationship, was observed. According to this result, the $3^{\prime-}$ hydroxymethyl group and the $1^{\prime}-$ purine base of 111 b were located
on the β face. On the other hand, for 111a compound, weak NOE (0.4%) of $\mathrm{H}-1^{\prime} \leftrightarrow \mathrm{CH}-3^{\prime}$, demonstrated a $1^{\prime}, 3^{\prime}$-trans relationship (Figure 14).

Figure 14. NOE differences between the proximal hydrogens of 111a and 111b

111a

111b

For the homologation, removal of the silyl protecting group of 111b using tetra n -butylammonium fluoride (TBAF) gave the primary alcohol 112. Dess-Martin oxidation ${ }^{135}$ of the alcohol of 112 gave the aldehyde 113, which was subjected to Wittig olefination ${ }^{125}$ to give compound 114 without loss of the 3^{\prime}-stereochemistry. Crossmetathesis ${ }^{106}$ of 114 with vinyl diethylphosphonate using a $2^{\text {nd }}$ generation Grubbs catalyst ${ }^{107}$ gave the vinylidene phosphonate nucleoside analogue 115 in 57% yield. The chlorine group of the purine analogue 115 was then converted to amine with methanolic ammonia at $62{ }^{\circ} \mathrm{C}$ to give the corresponding adenosine phosphonate derivative 116 at in 63% yield. Hydrolysis of the diethyl phosphonate functional groups of 116 by treatment with bromotrimethylsilane in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of 2,6-lutidine then gave the adenosine phosphonic acid derivative $117 .{ }^{108}$ When the vinylidene phosphonate
was saturated under transfer catalytic hydrogenation conditions ${ }^{106}$ it produced the ethyl phosphonate nucleoside analogue 118 in 74% yield.

Scheme 15. Synthesis of threosyl-2'-fluoro-5'-deoxyphosphonic acid adenine analogues

Reagents: i) Vinyldiethylphosphonate, Grubbs cat.(II) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; vi) $\mathrm{NH}_{3}, \mathrm{MeOH}, 62{ }^{\circ} \mathrm{C}$; iii) TMSBr, 2,6-lutidine, $\mathrm{CH}_{3} \mathrm{CN}$; iv) Pd / C, cyclohexene, MeOH .

The adenine phosphonic acid analogue 120 was prepared using conditions similar to the ammonolysis and hydrolysis described to produce 117 (Scheme 15). The guanine analogues, 2-fluoro-6chloropurine ${ }^{109}$ was condensed with the glycosyl donor 110 using conditions similar to those used for the preparation of 111a and 111b to give the analogues 121a (31\%) and 121b (32\%) from 6chloropurine (Scheme 16). A complete NOE study allowed the unambiguous determination of the relative stereochemistries of
purine analogues as described for 111a and 111b. Homologation was performed using reactions similar to those used to produce 114 , such as desilylation, Dess-Martin oxidation and Wittig olefination. Crossmetathesis of 124 with diethylvinylphosphonate provided 125 in 60% yield.

Scheme 16. Synthesis of threosyl-2'-fluoro-3'-vinylidene 2-fluoro-6-chloropurine analogue

Reagents: i) Silylated 2-fluoro-6-chloropurine, TMSOTf, DCE; ii) TBAF, THF; iii) Dess-Martin, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv) n-BuLi, $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{I}, \mathrm{PPh}_{3}$, THF.

Bubbling ammonia into the compound 125 gave separable 2-fluoro-6-aminopurine ${ }^{111} 126$ a (14\%) and 2-amino-6-chloropurine 126b (45\%) analogues, respectively. The 2 -amino-6-chloropurine derivative 126 b was treated with TMSBr to provide phosphonic acid and sequentially treated with sodium methoxide and 2mercaptoethanol in methanol to give the desired guanine phosphonic acid 127 (Scheme 17). ${ }^{112}$

Scheme 17. Synthesis of threosyl-2'-fluoro-5'-deoxyphosphonic acid guanine analogues

126a: $X=\mathrm{NH}_{2}, Y=F(14 \%)$
126b: $X=\mathrm{Cl}, Y=\mathrm{NH}_{2}(45 \%)$

129a: $X=\mathrm{NH}_{2}, Y=F(13 \%)$
129b: $X=C l, Y=\mathrm{NH}_{2}(43 \%)$

Reagents: i) vinyldiethylphosphonate, Grubbs cat.(II) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii) NH_{3}, DME , rt; iii) (a) TMSBr, 2,6lutidine, $\mathrm{CH}_{3} \mathrm{CN}$; (b) $\mathrm{NaOMe}, \mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, MeOH; iv) Pd/C, cyclohexene, MeOH .

Furthermore, the guanine phosphonic acid analogue 130 was synthesized from 125 via transfer catalytic hydrogenation, ammonolysis, and hydrolysis using conditions similar to those described for the synthesis of the adenine 130 , line derivative 120 . To synthesize the thioester-protected analogue, compound 120 was
reacted with thioester 131^{136} in the presence of $1-(2-$ mesitylenesulfonyl) -3 - nitro $-1 \mathrm{H}-1,2,4$-triazole $(\mathrm{MSNT})^{137}$ to provide the bis (SATE) derivative as a target compound 132 (Scheme 18).

Scheme 18. Synthesis of target bis(SATE) prodrug of adenine analogue 132

Reagents: i) thioester, 131, 1-(2-mesitylenesulfonyl)-3-nitro-1H-1,2,4triazole, pyridine.

Antiviral Activity. The antiviral activities of phosphonate nucleosides are explained by their intracellular metabolism to diphosphates, subsequent incorporation into the viral genome, and chain termination. ${ }^{113} \mathrm{MT}-4$ cells $(1 \times 105$ cell/ mL) were infected with $\mathrm{HIV}-1$ (HTLV- $\mathrm{III}_{\mathrm{B}}$ strain) at a multiplicity of infection (MOI) of 0.02 , and then cultured in the presence of various concentrations of the test compounds. After a 4 -day incubation at $37{ }^{\circ} \mathrm{C}$, numbers of viable cells were determined using the 3 - (4,5-di-methylthiazole-$2-y l)-2,5-$ diphenyltetrazolium bromide method. The cytotoxicities of the compounds were evaluated in parallel with their antiviral
activities, by determining the viabilities of mockinfected cells. ${ }^{114}$ Compounds 117, 120, 127, 130 and 132 were tested against HIV-1, and the adenine analogue 120 showed moderate antiviral activity (Table 5). However, other three 5'-deoxyphosphonic acid nucleoside analogues showed weak or no anti-HIV activity at concentrations up to $100 \mu \mathrm{M}$.

Table 5. Median effective $\left(\mathrm{EC}_{50}\right)$ and inhitory $\left(\mathrm{IC}_{50}\right)$ concentration of synthesized nucleoside analogues $117,120,127,130$ and 132

Compound No.	$\begin{gathered} \text { Anti-HIV-1 } \\ \mathrm{EC}_{50}(\mu \mathrm{M}) \end{gathered}$	$\begin{aligned} & \text { Cytotoxicity } \\ & \mathrm{CC}_{50}(\mu \mathrm{M}) \end{aligned}$
117	34.2	95
120	8.8	80
127	66.8	98
130	47.1	98
132	2.2	80
AZT	0.003	>100
PMEA	>10	>10
Bis (SATE)PMEA	0.81	>10

In summary, based on the potent anti-HIV activities of $2^{\prime-}$ electropositive nucleosides and 5'-deoxyphosphonic acid nucleoside analogues, we designed and successfully synthesized novel $2^{\prime}-$
fluoro-5'-deoxyphosphonic acid nucleoside analogues starting from 1,3-dihydroxy acetone. The synthesized bis (SATE) adenine analogue 132 showed significant activity in a cell-based assay than the $2^{\prime}-$ modified guanine phosphonic acid analogues 117, 127 and 130. Since 2'-fluorinated guanine nucleoside derivatives are not perfect mimics of the ribofuranose moiety, mechanisms of virus inhibition, that is, phosphorylation or the inhibition of RNA synthesis, might be impaired for these compounds. For the discovery of improved antiviral nucleoside derivatives, bis (SATE) analogue 132 was synthesized and assayed for anti-HIV activity using an in vitro assay system, It showed much improved anti-HIV activity than adenine nucleoside phosphonic acid 120 (Table 5).

PMDTA

Compound 120

Figure 15. Superimpose of PMDTA and 120

As shown in the superimposition model of PMDTA 1 and the corresponding analogue 120 (Figure 15), discrepancies of phosphonic
acid regions are more pronounced than those of the base moiety. Note the furanose puckering of PMDTA 1 is closer to that of the adenine analogue $120 .{ }^{122}$

Scheme 19. Synthesis of difluoro cyclopentene ntermediate

135

137
$80 \% \mid v$

87\% \downarrow iv

Reagents: i) DAST, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$; iii) TBDMSCI, imidazole, DMF; iv) $(\mathrm{COCl})_{2}$, DMSO, TEA; v) vinylMgBr, THF; vi) PMBCI , $\mathrm{NaH}, \mathrm{DMF}$; vii) TBAF, THF; viii) Grubbs (II), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

As depicted in Scheme 19, the target compounds were prepared from ketone derivative 134, which was synthesized from the
commercially available epichlorohydrin 133 via known procedure. ${ }^{138}$ The reaction of 134 with DAST led to the key gem-difluoro compound 135 in 65% yield. Catalytic hydrogenolysis and selective monosilylation of corresponding diol 136 gave alcohol derivative 137 . Swern oxidation ${ }^{124}$ of 137 provided an aldehyde 138 , which was subjected to the carbonyl addition reaction by vinylmagensium bromide ${ }^{105}$ to furnish the alcohol 139, which was successfully protected using p-methoxybenzyl chloride $(\mathrm{PMBCl})^{139}$ to provide compound 140. Removal of the silyl protecting group of 140 using $t-$ butylammonium fluoride (TBAF) gave the primary alcohol 141, which was oxidized to the aldehyde 142 using same oxidation conditions as described for 138 . The aldehyde 142 was subjected to the second nucleophilic Grignard conditions with vinyl magnesium bromide to give divinyl 143 , which was subjected to ring-closing metathesis (RCM) conditions using $2^{\text {nd }}$ generation Grubbs catalyst $\left(\mathrm{C}_{46} \mathrm{H}_{65} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{PRu}\right)^{140}$ to provide $5^{\prime}, 5^{\prime}$-difluorocyclopentenol $144 \mathrm{a}(35 \%)$ and 144 b (36%), which were readily separated by silica gel column chromatography.

The nuclear Overhauser enhancement (NOE) experiments with cyclopentenols 144 a and 144 b confirmed these assignments. As expected, NOE enhancements were found between the cis-oriented hydrogens. Upon irradiation of $C_{1}-H$, weak NOE patterns were observed at the proximal hydrogens of compound $144 \mathrm{~b}\left[\mathrm{C}_{4}-\mathrm{CH}-\right.$ $(1.6 \%)]$ versus that of compound $144 \mathrm{a}\left[\mathrm{C}_{4}-\mathrm{CH}-(2.7 \%)\right.$ (Figure 16).

Figure 16. NOE differences between the proximal hydrogens of 144a and 144b

144a

144b

To synthesize the desired 5'-norcarbocyclic adenosine nucleoside analogues, the protected cyclopentenol 144 b was treated with 6-chloropurine under Mitsunobu conditions ${ }^{141}\left(\mathrm{DEAD}\right.$ and $\left.\mathrm{PPh}_{3}\right)$. The appropriate choice of solvent system, temperature and procedure are essential for the regioselectivity and for the yield. In purine synthesis, a mixture of dioxane and DMF instead of THF were used as the solvent for the coupling of the cyclopentenol 144b with 6chloropurine. The heterocyclic bases had a better solubility in the dioxane-DMF mixture resulting in better yields. Slow addition of diethyl azodicarboxylate (DEAD) to a mixture of cyclopentenol 144b, triphenylphosphine and the 6-chloropurine in anhydrous cosolvent (dioxane-DMF) gave a yellow solution, which was stirred for 2.0 h at $-30^{\circ} \mathrm{C}$ and further stirred overnight at rt to give the protected 6chloropurine analogue 145 as an only N^{6}-regioisomer [UV (MeOH) $\left.\lambda_{\text {max }} 263.5 \mathrm{~nm}\right] .{ }^{142}$ The PMB protection group was removed with 2,3 -dichloro-5,6-dicyano-p-benzoquinone $(\mathrm{DDQ})^{143}$ to produce the 5'-nornucleoside analogue 146, which was treated with diethyl phosphonomethyl triflate ${ }^{144}$ using lithium t-butoxide to yield the
nucleoside phosphonate analogue 147 (Scheme 20). The chlorine group of 147 was then converted to amine with methanolic ammonia at $65^{\circ} \mathrm{C}$ to give the corresponding adenine phosphonate derivative 148. Hydrolysis of 148 by treatment with bromotrimethylsilane in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of 2,6-lutidine gave an adenine phosphonic acid derivative 149 (Scheme 20). ${ }^{108}$

Scheme 20. Synthesis of 6',6'-difluoro cyclopentenyl adenine phosphonic acid 149

Reagents: i) 6-chloropurine, DEAD, PPh_{3}, 1,4-dioxane/DMF (v:v);
ii) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(10: 1)$; iii) (EtO) $)_{2} \mathrm{POCH}_{2} \mathrm{OTf}$, LiO-t$\mathrm{Bu}, \mathrm{THF}$; iv) $\mathrm{NH}_{3} / \mathrm{MeOH}, 6{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$; v) TMSBr, 2,6lutidine, $\mathrm{CH}_{3} \mathrm{CN}, 12 \mathrm{~h}$.

The cyclopentenol intermediate 144 b was also used for the synthesis of 2,6-disubstituted purine analogues such as guanine derivative 155. Regioselective coupling of the enol 144 b with $2-$
fluoro-6-chloropurine ${ }^{109}$ under the similar conditions for 6chloropurine gives analogue 152. Bubbling ammonia into the compound 152 gave separable 2 -fluoro-6-aminopurine ${ }^{110}$ analogue 153 (14%) and 2 - amino-6-chloropurine analogue 154 (55%).

Scheme 21. Synthesis of 6',6'-difluoro cyclopentenyl guanine phosphonic acid 155

Reagents: i) (EtO) ${ }_{2} \mathrm{POCH}_{2} \mathrm{OTf}$, LiO-t-Bu, THF; ii) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ (10:1); iii) 2-fluoro-6-chloropurine, DEAD, PPh_{3}, 1,4-dioxane/DMF (v:v); iv) $\mathrm{NH}_{3} / \mathrm{DME}$, rt; v) (a) TMSBr, 2,6-lutidine, $\mathrm{CH}_{3} \mathrm{CN}$; (b) $\mathrm{NaOMe}, \mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{MeOH}$.

2-Amino-6-chloropurine derivative 154 was treated with TMSBr to give phosphonic acid and sequentially treated with sodium methoxide and 2 -mercaptoethanol in methanol to give desired guanine phosphonic acid 155 (Scheme 21). ${ }^{112}$ To synthesize the thioester prodrug of adenine analogue, derivative 149 was reacted
with thioester 156^{136} in the presence of 1 -(2-mesitylenesulfonyl) 3 -nitro- $1 H-1,2,4$-triazole (MSNT) ${ }^{137}$ to provide the bis(SATE) derivative as a target compound 157 (Scheme 22).

Scheme 22. Synthesis of target bis(SATE) prodrug of adenine analogue 157

Reagents: i) thioester, 156, 1-(2-mesitylenesulfonyl)-3-nitro-1H-1,2,4-triazole, pyridine.
The synthesized nucleoside phosphonate, phosphonic acid and thioester $148,149,154,155$ and 157 were then evaluated for antiviral activity against human immunodeficiency virus. The procedures for measuring the antiviral activity toward wild-type HIV and cytotoxicity have been reported previously. ${ }^{145}$ As shown in Table 6, adenine nucleoside phosphonic ester 157 exhibits significant anti-HIV activity. However, nucleoside analogues 148, 149, 154, and 155 showed weak anti-HIV activity or cytotoxicity at concentrations up to $100 \mu \mathrm{M}$.

Table 6. Median effective (EC_{50}) and inhibitory (CC_{50}) concentration of synthesized nucleoside analogues in MT-4 cells

Compound	Anti-HIV-1 $\mathrm{EC}_{50}(\mu \mathrm{M})$	Cytotoxicity $\mathrm{CC}_{50}(\mu \mathrm{M})$
148	87.8	

149	19	90
154	90	>100
155	32	90
157	10.8	90
d4T	1.3	98

In summary, based on the potent anti-HIV activity of 6'electropositive nucleosides and 5'-norcarbocyclic nucleoside analogues, we have designed and successfully synthesized novel $6^{\prime}, 6^{\prime}$-difluoro-5'-norcarbocyclic nucleoside analogues starting from epichlorohydrin 133. Although the adenine 5'-nornucleoside analogue 158 inhibits in vitro anti-HIV activity comparable to that of d4T, the synthesized carbocyclic version 149 shows weak anti-HIV activity. Since rigid cyclopentene carbocycles are not perfect mimics for ribofuranose moiety, the mechanisms of virus inhibition, that is, either phosphorylation or inhibition of RNA synthesis, might be impaired in these compounds. Difluorination of 6^{\prime}-position is another possible reason for the apparent lack of activity. Figure 17 shows the superposition of the calculated low energy conformers of 158 and 149, highlighting the two difference parts such as purine bases and phosphonic acid functional moieties.

Figure 17. Superimposed 158 and 149. The lowest energy conformation for each molecules was calculated with the modeling package Spartan 02' and energy minimization with semi-empirical force field (PM3).

The synthesized nucleoside prodrug 157 exhibited encouraging improvement in cell-based activity compared with phosphonic acid 149. A significant step forward in terms of activity could then be made with the introduction of SATE protecting group as a prodrug scaffold.

As shown in Scheme 23, the target compounds were prepared from 1,4-dihydroxy-2-butene through a cyclopentenol intermediate 160. ${ }^{146}$ The cyclopentanol 162 was prepared via simultaneous catalytic hydrogenation of olefin and hydrogenolysis of benzyl protecting group after silylation of allylic alcohol from 160. Swern oxidation 124 of alcohol 162 gave an aldehyde 163 , which was subjected to Wittig reaction ${ }^{125}$ to give compound 164 . Removal of the silyl protecting group of 164 using tetra n-butylammonium fluoride (TBAF) gave the secondary alcohol 165 . To synthesize the desired 6'-difluorinated carbocyclic adenosine nucleoside analogues, the
protected cyclopentanol 165 was treated with 6-chloropurine under Mitsunobu conditions ${ }^{147}$ (DIAD and PPh_{3}). Slow addition of diisopropyl azodicarboxylate (DIAD) to a mixture of cyclopentanol 165, triphenylphosphine and the 6-chloropurine in anhydrous solvent (THF) gave a yellow solution, which was stirred for 30 min at $0^{\circ} \mathrm{C}$ and further stirred overnight at rt to give the protected 6-chloropurine analogue 166 as an only N^{9}-regioisomer [UV (MeOH) $\lambda_{\max } 264.0$ $\mathrm{nm}] .{ }^{142}$

Scheme 23. Synthesis of difluorinated cyclopentanol intermediate 165

Reagents: i) TBDMSCI, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; ii) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$, hexane; iii) DMSO, $(\mathrm{COCl})_{2}, \mathrm{TEA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv) n-BuLi, $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{I}, \mathrm{PPh}_{3}$, THF; v) TBAF, THF.

Scheme 24. Synthesis of 6 ',6'-difluorinated carbocyclic-5'-deoxyphosphonic acid adenine analogues

Reagents: i) DIAD, PPh_{3}, 6-chloropurine, THF; ii) vinyldiethylphosphonate, Grubbs cat.(II) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii) $\mathrm{NH}_{3} / \mathrm{MeOH}$; iv) TMSBr, 2,6-lutidine, $\mathrm{CH}_{3} \mathrm{CN}$; v) Pd / C, cyclohexene, MeOH.

Cross-metathesis ${ }^{106}$ of 166 with diethyl vinylphosphonate using the $2^{\text {nd }}$ generation Grubbs catalyst ${ }^{107}$ gave vinylidene phosphonate nucleoside analogue 13 . The chlorine group of purine analogue 167 was then converted to amine with methanolic ammonia at $62^{\circ} \mathrm{C}$ to give a corresponding adenosine phosphonate derivative 168. Hydrolysis of
the diethyl phosphonate functional groups of 168 by treatment with bromotrimethylsilane in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of 2,6-lutidine gave a desired adenosine phosphonic acid derivative 169. ${ }^{108}$ The vinylidene phosphonate of 169 was then saturated under transfer catalytic hydrogenation conditions to give ethyl phosphonate nucleoside analogue 170 in a 60% yield. The adenine phosphonic acid analogue 172 was prepared using similar conditions, that is, with respect to ammonolysis and hydrolysis, as those described for the preparation of 169. (Scheme 24)

For the synthesis of guanine analogues, 2-fluoro-6chloropurine ${ }^{109}$ was condensed with glycosyl donor using conditions similar to those used for the condensation of 6-chloropurine. Mitsunobu coupling of the alcohol 165 with 2-fluoro-6-chloropurine gives analogue 173 , and cross-metathesis of 173 and diethylvinyl phosphonate gave 174 at a yield of 58%.

Bubbling ammonia into the solution of 174 gave separable 2-fluoro-6-aminopurine ${ }^{111}$ analogue 175 a (12\%) and 2 -amino-6chloropurine analogue 175 b (43%), confirming and fluorine acts as a better leaving group than chlorine during nucleophilic aromatic substitution. Phosphonate 175b was treated with TMSBr to provide phosphonic acid and this was treated with sodium methoxide and 2mercaptoethanol in methanol to give the desired guanine vinylidene phosphonic acid 176, (Scheme 25). ${ }^{112}$ Guanine ethyl phosphonate 179
was synthesized from 174 via transfer catalytic hydrogenation, ammonolysis and hydrolysis using conditions similar to those described for the synthesis of 172 .

Scheme 25. Synthesis of 6',6'-difluorinated carbocyclic-5'-deoxyphosphonic acid guanine analogues

Reagents: i) DIAD, PPh_{3}, 2-fluoro-6-chloropurine, THF; ii) vinyldiethylphosphonate, Grubbs cat.(II) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii) NH_{3}, DME, rt; iv) (a) TMSBr, 2,6-lutidine, $\mathrm{CH}_{3} \mathrm{CN}$; (b) $\mathrm{NaOMe}, \mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{MeOH}$; v) Pd / C, cyclohexene, MeOH .

Table 7. The antiviral activities of synthesized compounds 169,172 , 176 and 179

Compound	$\mathrm{HIV}-1$		cytotoxicity $^{2} \mathrm{IC}_{50(\mu \mathrm{M})}$		
	$\mathrm{EC}_{50(\mu \mathrm{M})}$	$\mathrm{EC}_{90}(\mu \mathrm{M})$	PBM	CEM	Vero
169	55.6	95	>100	>100	>100
172	46.2	90	>100	>100	>100
176	62	95	>100	>100	>100
179	68	95	>100	>100	>100
PMEA	4.8	ND	>100	35.8	>100
AZT	0.115	ND	>100	12.3	45.5

The antiviral activity of phosphonate nucleoside are substantially explained by their intracellular metabolism to diphosphates and subsequent incorporation into the viral genome and chain termination. ${ }^{113}$ The synthesized compounds $169,172,176$ and 179 were tested against HIV-1. However, none of them showed any significant antiviral activity against HIV-1 nor cytotoxicity up to 100 $\mu \mathrm{M}$ (Table 7), suggesting that might not allow the sugar-like moiety for diphosphorylation or some affinity of its diphosphate toward viral polymerases. Anti-HIV activity was investigated in human peripheral blood mononuclear (PBM) cells infected with HIV-1 strain LAI. PBM cells $\left(1 \times 10^{5}\right.$ cell/mL) were infected with HIV-1 at a multiplicity of
infection (MOI) of 0.02 and cultured in the presence of various concentrations of the test compounds. After 4 days of incubation at $37{ }^{\circ} \mathrm{C}$, numbers of viable cells were determined using an MTT (3-(4,5-di-methylthiazole-2-yl) - 2,5-diphenyltetrazolium bromide) assay. Compound cytotoxicities were evaluated in parallel with their antiviral activities, which were assessed by examine the viabilities of mock-infected cells. ${ }^{114}$

Based on the potent anti-HIV activity of 6'-fluorinated carbocyclic nucleoside and those of phosphonic acid nucleoside analogues, we designed and successfully synthesized novel $6^{\prime}, 6^{\prime}$-difluorinated $5^{\prime}-$ deoxycarbocyclic phosphonic acid nucleosides from 1,4-dihydroxy-2-butene. However, none of the compounds synthesized showed any significant antiviral activity against HIV-1. It is hoped that information obtained during the present study will be found useful by those involved in the development of novel nucleoside analogues. To increase the cellular uptake of phosphonic acid analogues, the developments of bis-SATE phosphonodiester prodrugs are underway. As shown in Figure 18, superimposing the monophosphates of 8 and 179 does not show any significance overlap and alter the guanine base or the phosphonic acid moiety. Furthermore, the sugar (cyclopentane) puckering is not positioned closer to that of the guanine analogue. Energy minimization was optimized using density functional theory (DFT) and Spartan modeling software, B3LYP functional with the 6-

$31 G^{*}$ basis set.

Figure 18. Superimpose of monophosphonate of 8 and 179.
As shown in Scheme 26, the target compounds were prepared from but-3-en-1-ol 180 through a cyclopentenol intermediate 183. The cyclopentandiol 185b was prepared via catalytic osmium tetroxide and N-methyl morpholine N-oxide (NMO) of olefin 184.

Scheme 26. Synthesis of cyclopentandiol intermediate 185

As shown in Figure 19, the stereochemistry was readily determined by NOE experiment. On irradiation of $\mathrm{C}_{4}-H$, relatively strong NOE was observed at $\mathrm{C}_{1}-H$ and $\mathrm{C}_{2}-H$ of 185 a, which showed $1,2,4-$ cis relationships. But relatively weak NOE was observed at $\mathrm{C}_{1}-H$ and $\mathrm{C}_{2}-H$ of 185 b , which means the $1,4-$ and 2,4 -trans relationships. Selective benzoylation of 185b gave cyclopentanol derivative 186 as racemic mixture. PCC oxidation ${ }^{124}$ of alcohol 186 gave a ketone 187 , which was subjected to DAST fluorination ${ }^{125}$ to give compound 188.

Figure 19. NOE relationships between the proximal hydrogens of $\mathbf{1 8 5 a}$ and $\mathbf{1 8 5 b}$

Removal of the benzoyl protecting group of 188 in the condition of methanolic ammonia gave the secondary alcohol 189 (Scheme 27). To synthesize the 2^{\prime}-difluorinated carbocyclic adenosine nucleoside analogues, the protected cyclopentanol 189 was treated with 6chloropurine under Mitsunobu conditions ${ }^{147}$ (DIAD and PPh_{3}). Slow addition of diisopropylazodicarboxylate (DIAD) to a mixture of cyclopentanol 189, triphenylphosphine and the 6-chloropurine in anhydrous solvent (THF) gave a yellow solution, which was stirred for 30 min at $0^{\circ} \mathrm{C}$ and further stirred overnight at rt to give the
protected 6-chloropurine analogue 190 as an only N^{9}-regioisomer [UV (MeOH) $\left.\lambda_{\max } 263.0 \mathrm{~nm}\right] .{ }^{142}$

Scheme 27. Synthesis of difluorinated cyclopentanol intermediate 189

Reagents: i) BzCl , DMAP, Pyridine; ii) $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii) DAST, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv) $\mathrm{NH}_{3}, \mathrm{MeOH}$.

The PMB protection group was removed with 2,3 -dichloro-5,6-dicyano- p-benzoquinone $(\mathrm{DDQ})^{143}$ to produce the 5^{\prime}-nornucleoside analogue 191, which was treated with diethylphosphonomethyl triflate ${ }^{144}$ using lithium t-butoxide to yield the nucleoside phosphonate analogue 192 (Scheme 28).

The chlorine group of purine analogue 192 was then converted to amine with methanolic ammonia at $65^{\circ} \mathrm{C}$ to give a corresponding adenosine phosphonate derivative 193. Hydrolysis of diethyl phosphonate functional groups of 193 by treatment with bromotrimethylsilane in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of 2,6-lutidine gave a desired adenosine phosphonic acid derivative 194. ${ }^{108}$

Scheme 28. Synthesis of 2',2'-difluoro cyclopentanyl adenine phosphonic acid 194

$$
\begin{gathered}
64 \% \\
\nabla
\end{gathered}
$$

63\% \downarrow iv

Reagents: i) 6-chloropurine, DEAD, PPh_{3}, 1,4-dioxane/DMF; ii) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ (10:1); iii) (EtO) ${ }_{2} \mathrm{POCH}_{2} \mathrm{OTf}$, LiO-t-Bu, THF; iv) $\mathrm{NH}_{3} / \mathrm{MeOH}, 63^{\circ} \mathrm{C}$; v) TMSBr, 2,6-lutidine, $\mathrm{CH}_{3} \mathrm{CN}$;

For the synthesis of guanine analogues, 2-fluoro-6chloropurine ${ }^{109}$ was condensed with glycosyl donor in the similar conditions used for the condensation of 6-chloropurine. Mitsunobu coupling of the alcohol 189 with 2-fluoro-6-chloropurine gives analogue 195, which was sequentially subjected to DDQ hydrolysis and phosphonate alkylation reactions in the similar procedure described for 192 to provide 197.

Bubbling ammonia into the compound 197 gave separable 2-fluoro-

6 -aminopurine analogue ${ }^{110}$ analogue 198a (13\%) and $2-a m i n o-6-$ chloropurine analogue 198 b (51%), respectively. Fluorine acts as a better leaving group than chlorine in nucleophilic aromatic substitution. Phosphonate 198b was treated with TMSBr to provide phosphonic acid and sequentially treated sodium methoxide and 2mercaptoethanol in methanol to give a desired 5^{\prime}-norcarbocyclic guanine phosphonic acid 199, (Scheme 29). ${ }^{112}$

Scheme 29. Synthesis of 2',2'-difluoro cyclopentanyl guanine phosphonic acid 199

Reagents: i) (EtO) $)_{2} \mathrm{POCH}_{2} \mathrm{OTf}, \mathrm{LiO}-t-\mathrm{Bu}, \mathrm{THF} ;$ ii) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(10: 1)$; iii) 2-fluoro-6-chloropurine, DEAD, PPh_{3}, 1,4-dioxane/DMF; iv) $\mathrm{NH}_{3} / \mathrm{DME}$, rt; v) (a) TMSBr, 2,6-lutidine, $\mathrm{CH}_{3} \mathrm{CN}$; (b) NaOMe , $\mathrm{HSCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{MeOH}$.

Table 8. The antiviral activities of the synthesized compounds 193 , 194, 198a, 198b and 199

Compound	HIV-1		cytotoxicity $\mathrm{IC}_{50(\mu \mathrm{M})}$		
	$\mathrm{EC}_{50(\mu \mathrm{M})}$	$\mathrm{EC}_{90(\mu \mathrm{M})}$	PBM	CEM	Vero
193	42	90	>100	>100	>100
194	13	90	>100	>100	>100
198 a	81	95	>100	>100	>100
198 b	68	95	>100	>100	>100
199	43	95	>100	>100	>100
PMEA	4.4	ND	>100	35.8	>100
AZT	0.112	ND	>100	11.6	42.8

The antiviral activity of phosphonate nucleoside is mostly explained by their intracellular metabolism to their diphosphates followed by incorporation into the viral genome and chain termination. ${ }^{113}$ As shown in Table 8, adenine nucleoside phosphonic ester 194 exhibits significant anti-HIV activity. However, nucleoside analogues 193, 198a, 198b and 199 showed weak anti-HIV activity or cytotoxicity at concentrations up to $100 \mu \mathrm{M}$.

Anti-HIV activity was determined in human peripheral blood mononuclear (PBM) cells infected with HIV-1 strain LAI. PBM cells
(1×10^{5} cell $/ \mathrm{mL}$) were infected with HIV-1 at a multiplicity of infection (MOI) of 0.02 and cultured in the presence of various concentrations of the test compounds. After 4 days of incubation at $37^{\circ} \mathrm{C}$, numbers of viable cells were determined using the 3 - (4,5-di-methylthiazole-2-yl) - 2,5-diphenyltetrazolium bromide method. The cytotoxicities of the compounds were evaluated in parallel with their antiviral activities, which were assessed based on the viabilities of mock-infected cells. ${ }^{114}$

Based on the potent anti-HIV activity of 2^{\prime}-fluorinated nucleoside as well as phosphonic acid nucleoside analogues, we have designed and successfully synthesized novel $2^{\prime}, 2^{\prime}$-difluorinated 5^{\prime} norcarbocyclic phosphonic acid nucleosides starting from but-3-en1 -ol. Interestingly, adenine analogue 194 shows significant antiviral activity against HIV-1. As shown in Figure 20, superimposed modeling of monophosphate of 5 and 194 shows significant overlap between two parts such as phosphonic acid and the sugar (cyclopentane) moiety. However, adenine base moiety is not positioned closer to that of the adenine analogue 1. Energy minimization was optimized with the framework of the density functional theory (DFT), with Spartan modeling software. The B3LYP functional with $6-31 \mathrm{G}^{*}$ basis set was employed. The information obtained in the present study will be useful for the development of a novel nucleoside analogue. To increase the cellular uptake of
phosphonic acid analogues, developments of bis-SATE phosphonodiester prodrugs are underway.

Compound 5

Compound 194

Figure 20. Superimpose of monophosphate of 5 and 194

III. CONCLUSION

The antiviral activity of phosphonate nucleoside is mostly explained by their intracellular metabolism to their diphosphates followed by incorporation into the viral genome and chain termination. In summary, based on the potent anti-HIV activity of nucleoside phosphonic acid analogues, we have designed and successfully synthesized a class of novel nucleoside phosphonic acid analogues. The synthesized target compounds were tested against HIV-1. Especially, adenine analogues $23\left(\mathrm{EC}_{50}=10.2 \mu \mathrm{M}\right), 81\left(\mathrm{EC}_{50}=7.9 \mu \mathrm{M}\right), 120\left(\mathrm{EC}_{50}=8.8 \mu \mathrm{M}\right)$ and $132\left(\mathrm{EC}_{50}=2.2 \mu \mathrm{M}\right), 157\left(\mathrm{EC}_{50}=10.8 \mu \mathrm{M}\right)$ exhibits significant anti-HIV activity, the compounds $194\left(\mathrm{EC}_{50}=13 \mu \mathrm{M}\right)$, $56\left(\mathrm{EC}_{50}=\right.$ $22.2 \mu \mathrm{M})$, did show moderate antiviral activity against HIV-1, indicating that this virus might allow the sugar moiety for diphosphorylation or some affinity of its diphosphate toward viral polymerases. However, other nucleoside phosphonic acid analogues showed weak or no anti-HIV activity at concentrations up to $100 \mu \mathrm{M}$.

IV. EXPERIMENTAL SECTION

Melting points were determined on a Mel-temp II laboratory device and are uncorrected. NMR spectra were recorded on a JEOL 300 Fourier transform spectrometer (JEOL, Tokyo, Japan); chemical shifts are reported in parts per million (δ) and signals are reported as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and dd (doublet of doublets). UV spectra were obtained on a Beckman DU-7 spectrophotometer (Beckman, South Pasadena, CA, USA). MS spectra were collected in electrospray ionization (ESI) mode. The elemental analyses were performed using a Perkin-Elmer 2400 analyzer (Perkin-Elmer, Norwalk, CT, USA). TLC was performed on Uniplates (silica gel) purchased from Analtech Co. (7558, Newark, DE, USA). All reactions were carried out under an atmosphere of nitrogen unless otherwise specified. Dry dichloromethane, benzene and pyridine were obtained by distillation from CaH_{2}. Dry THF was obtained by distillation from Na and benzophenone immediately prior to use.
(\pm) - 4-Hydroxymethyl-4-vinyl-dihydro-furan-2-one (11). To a solution of $10(1.4 \mathrm{~g}, 3.36 \mathrm{mmol})$ in THF (6 mL), TBAF (7.4 mL , 1.0 M solution in THF) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight at room temperature and concentrated in vacuum. The residue was purified by silica gel column chromatography (Hexane/

EtOAc, 1:1) to give 11 (262 mg, 55\%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 5.75-5.70 (m, 1H), 5.06-4.99 (m, 2H), 4.29 (dd, $J=10.4,6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.51(\mathrm{dd}, J=8.2,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}$, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 172.2, 149.1, 108.6, 78.8, 73.5, 45.7, 37.6.
(\pm)-4-(t-Butyldimethylsilanyloxymethyl)-4-vinyl-dihydrofuran-2-one (12). To a stirred solution of compound 11 ($2.82 \mathrm{~g}, 19.86$ mmol) and imidazole ($2.025 \mathrm{~g}, 29.79 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (70 mL), $t-$ butyldimethylsilyl chloride ($3.14 \mathrm{~g}, 20.85 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred for 4 h at room temperature, and quenched by adding a NaHCO_{3} aqueous solution (5 mL). The mixture was stirred for 30 min , diluted with water (100 mL) and extracted using EtOAc (2 $\times 100 \mathrm{~mL}$). The combine organic layer was dried over anhydrous MgSO_{4}, filtered and then concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:7) to give 12 ($4.48 \mathrm{~g}, 88 \%$) as a colorless syrup: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \quad \delta 5.72-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 173.2, 148.8, 110.2, 78.7, 76.3, 46.1, 38.8, 25.5, 18.4, 5.4.
(\pm)-4-(t-Butyldimethylsilanyloxymethyl)-4-vinyl-tetrahydrofuran $-2-$ ol (13). To a cooled $\left(78^{\circ} \mathrm{C}\right)$, stirred solution of lactone 12 (323
$\mathrm{mg}, 1.26 \mathrm{mmol}$) in dry toluene (6 mL) was added dropwise a 1.0 M solution of diisobutylaluminium hydride (DIBALH) ($1.38 \mathrm{~mL}, 1.38$ $\mathrm{mmol})$. The reaction was stirred for 15 min . at $-78^{\circ} \mathrm{C}$ followed by dropwise addition of methanol (1.38 mL) and diluted with ethyl acetate. The reaction mixture was warmed to room temperature and stirred for 1 h , and the precipitate was removed by filtration through a pad of Celite, washed with ethyl acetate. The filtrate and washings were concentrated in vacuum and the residue was purified by silica gel column chromatography (EtOAc/hexane, 1:12) to give 13 (267 mg, $82 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.71-5.64(\mathrm{~m}$, $1 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.65(\mathrm{~m}, 4 \mathrm{H}), 2.01(\mathrm{~m}$, $2 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.72-5.68(\mathrm{~m}, 1 \mathrm{H})$, 5.05-4.98 (m, 2H), 4.29 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77-3.72(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H})$.
(\pm)-Acetic Acid 4-(t-butyldimethylsilanyloxymethyl) - 4-vinyl-tetrahydrofuran2-yl Ester (14). To a solution of compound 13 (457 $\mathrm{mg}, 1.77 \mathrm{mmol})$ in anhydrous pyridine $(10 \mathrm{~mL}), \mathrm{Ac}_{2} \mathrm{O}(0.265 \mathrm{~g}, 2.62$ mmol) was slowly added, and the mixture was stirred overnight under nitrogen. The pyridine was evaporated under reduced pressure and co-evaporated with toluene. The residue was diluted with $\mathrm{H}_{2} \mathrm{O}$ (100 $\mathrm{mL})$, extracted with EtOAc ($2 \times 100 \mathrm{~mL}$). The combined organic layer was dried over MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by
silica gel column chromatography (EtOAc/hexane, 1:22) to give compound 14 ($430 \mathrm{mg}, 81 \%$) as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 6.24(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.74-$ $3.69(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~s}, 0 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$.
(reI) - (1'R,3'S)-9-(3-t-Butyldimethylsilanyloxymethyl-3'-vinyl-tetrahydrofuran-1'-yl) 6-Chloropurine (15a) and (rel) - ($\left.1^{\prime} R, 3^{\prime} R\right)-9-$ (3'-t-ButyldimethylSilanyloxymethyl-3'-vinyl-tetrahydrofuran-1'yl) 6-Chloropurine (15b). 6-Chloropurine (189 mg, 1.23 mmol), anhydrous HMDS (10 mL), and a catalytic amount of ammonium sulfate (14 mg) were refluxed to a clear solution, and the solvent was distilled under anhydrous conditions. The residue was dissolved in anhydrous 1,2 -dichloroethane (10 mL). To this mixture, a solution of $10(216 \mathrm{mg}, 0.72 \mathrm{mmol})$ in dry DCE (10 mL) and TMSOTf (273 mg , 1.23 mmol) was added, and the resulting mixture was stirred for 5 h at room temperature. The reaction mixture was quenched with 2.0 mL of saturated NaHCO_{3} and stirred for 1.5 h . The resulting solid was filtered through a Celite pad, and the filtrate was diluted with water (60 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 60 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/hexane, 3:1) to give compound 15a ($93 \mathrm{mg}, 33 \%$) and 15 b ($91 \mathrm{mg}, 32 \%$): data for $15 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) ~ \delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.21$ (s, 1H), $5.96(\mathrm{dd}, J=$
$6.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.71(\mathrm{~m}$, $4 \mathrm{H}), 2.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H})$, 0.02 (s, 6H) ; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$) δ 151.6, 151.3, 150.8, 144.5, 142.3, 131.8, 108.6, 85.7, 69.7, 68.4, 42.6, 38.5, 25.7, 18.3, 5.3. data for $15 \mathrm{~b}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H})$, 6.01 (dd, $J=6.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.01(\mathrm{~m}$, $2 \mathrm{H}), 3.78-3.74(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.21(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 151.8,151.5,151.0,146.1,141.4,132.5,109.9$, 84.8, 68.8, 68.1, 41.9, 37.6, 25.4, 18.7, 5.6.
(rel)-(1'R,3'S)-Diethyl \{9-(3'-t-Butyldimethylsilanyloxymethyl-$3^{\prime}-$ vinyltetrahydrofuran $-1^{\prime}-y l$) 6-Chloropurine Phosphonate (16). To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) solution of 6 - chloropurine derivative 15 b (109 $\mathrm{mg}, 0.412 \mathrm{mmol}$) and diethyl vinylphosphonate ($338 \mathrm{mg}, 2.06 \mathrm{mmol}$), second-generation Grubbs catalyst (17.49 mg, 0.0206 mmol) was added. The reaction mixture was refluxed for 36 h under dry argon gas and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/n-Hexane/ MeOH, 4:1:0.02) to give $16(129 \mathrm{mg}, 59 \%)$ as a form: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=17.1,20.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.09(\mathrm{dd}, J=17.2,19.4 . \mathrm{Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=5.4,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.17-4.13(\mathrm{~m}, 4 \mathrm{H}), 3.76-3.68(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.33-1.30(\mathrm{~m}, 9 \mathrm{H}), 0.83(\mathrm{~m}, 9 \mathrm{H}), 0.03(\mathrm{~s}$,
$6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 151.7, 151.3 153.5, 151.6, 143.3, $132.5,114.9,84.7,71.6,69.4,63.5,62.8,42.7,36.7,25.4,18.7,15.2$, 4.6.
(reI) - (1'R,3'S) -Diethyl $\left\{9-\left(3^{\prime}-\mathrm{t}-\right.\right.$ Butyldimethylsilanyloxymethy-3'-vinyl-tetrahydrofuran-1'-yl)Adenine\} Phosphonate (17). A solution of 16 ($160 \mathrm{mg}, 0.313 \mathrm{mmol}$) in saturatedmethanolic ammonia (5 mL) was stirred overnight at $65^{\circ} \mathrm{C}$ in a steel bomb, and the volatiles were evaporated. The residue was purified by silica gel column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 10$) to give 17 ($94.5 \mathrm{mg}, 59 \%$) as a white solid: $\mathrm{mp} 177-179{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 260.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) \delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=$ $21.0,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=19.9,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=$ 6.0, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$) , $4.19-4.14(\mathrm{~m}, 4 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.22-$ 1.18 (m, 9H), $0.81(\mathrm{~m}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75$ $\mathrm{MHz)} \delta 154.8,153.2,149.4,147.5,140.7,119.4,115.1,85.2,71.5$, 68.6, 62.9, 62.2, 43.8, 37.7, 25.5, 18.7, 15.2, 5.5.
(rel) - ($\left.1^{\prime} R, 3^{\prime} S\right)$-Diethyl $\left\{9-\left(3^{\prime}-H y d r o x y m e t h y-3^{\prime}-\right.\right.$ vinyl-tetrahy drofuran $-1^{\prime}-\mathrm{yl}$) Adenine\} Phosphonate (18). To a solution of 17 (250 $\mathrm{mg}, 0.488 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(7 \mathrm{~mL})$, TBAF ($0.732 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight at room temperature and concentrated in vacuum. The residue was purified by silica gel column chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 8\right)$ to give 18 (155
$\mathrm{mg}, 80 \%):{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}$) $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}$, $1 \mathrm{H}), 6.67(\mathrm{dd}, J=21.2,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=19.4,17.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.97$ (dd, $J=6.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ $4.15(\mathrm{~m}, 4 \mathrm{H}), 3.75-3.68(\mathrm{~m}, 4 \mathrm{H}), 2.28(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J$ $=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.21(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}\right) \delta$ $155.2,152.5,150.4,149.3,141.7,119.4,114.8,84.5,71.3,69.5,62.6$, 62.0, 44.5, 38.3, 14.9.
(rel) - ($\left.1^{\prime} R, 3^{\prime} S\right)-9-\left(3^{\prime}-H y d r o x y m e t h y-3^{\prime}-\right.$ vinyl-tetrahydrofuran-1'-yl) Adenine\} Phosphonic acid (19). To a solution of the phosphonate 18 (192 mg, 0.483 mmol) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ and 2,6lutidine ($1.125 \mathrm{~mL}, 9.67 \mathrm{mmol}$) was added trimethylsilyl bromide ($0.739 \mathrm{mg}, 4.83 \mathrm{mmol}$). The mixture was heated overnight at $75^{\circ} \mathrm{C}$ under nitrogen gas and then concentrated in vacuum. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and purified water (100 mL). The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 80 \mathrm{~mL})$ and then freeze-dried to give phosphonic acid 19 (125 mg, 76\%) as a yellowish foam: UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max } 261.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ $\mathrm{MHz}) \delta 8.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 6.64(\mathrm{dd}, J=20.7$, 17.2 Hz, 1H, H-2'), 6.20 (dd, $J=19.4,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 5.93 (dd, $J=6.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCH}), 3.73-3.67\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{a}, \mathrm{H}-6^{\prime} \mathrm{b}, \mathrm{H}-4^{\prime \prime} \mathrm{a}\right)$, 3.60 (d, $\left.J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime} \mathrm{b}\right), 2.26$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{a}$), 2.17 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ 'b) ; ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75 \mathrm{MHz}$) δ $155.1,152.7,150.4,149.1,140.9,119.3,115.0,84.2,72.2,69.5,42.2$,
36.8; MS m/z $342(\mathrm{M}+\mathrm{H})^{+}$.
(rel) - (1'R,3'S) -Diethyl $\left\{9-\left(3^{\prime}-t\right.\right.$-Butyldimethylsilanyloxymethy-3'-ethyltetrahydrofuran-1'-yl) 6-Chloropurine\} Phosphonate (20). A solution of vinyl phosphonate nucleoside analogue 16 ($508 \mathrm{mg}, 0.957$ mmol) in methanol (15 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(12 \mathrm{mg})$ and cyclohexene (6 mL) under Ar. The reaction mixture was refluxed for 36 h . The reaction mixture was filtered through a pad of Celite, evaporated, and purified by silica gel column chromatography using methanol and methylene chloride (12:1) to give ethyl phosphonate analogue $20(377 \mathrm{mg}, 74 \%)$ as a white solid: $\mathrm{mp} 168-170{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{dd}, J=5.8,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19-4.14(\mathrm{~m}, 4 \mathrm{H}), 3.73-3.66(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 6 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 6 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 151.6, 151.3, 150.3, 143.4, 135.5, 84.2, 70.3, 69.6, 63.3, 62.6, 40.6, 37.2, 28.4, 25.5, 19.1, 18.3, 14.6, 5.5.
(rel) - (1'R,3'S) -Diethyl $\left\{9-\left(3^{\prime}-t\right.\right.$-Butyldimethylsilanyloxymethy-3^{\prime}-ethyltetrahydrofuran $-1^{\prime}-y l$) adenine\} Phosphonate (21). Adenine derivative 21 was prepared from 6 -chloropurine analogue 20 by the similar ammonolysis procedure as described for 17: yield 56%; mp $167-169{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 260.5 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}, 300\right.$ $\mathrm{MHz}) \delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=6.0,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.20-4.16 (m, 4H), 3.75-3.69 (m, 3H), 3.63 (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$,
2.25-2.19 (m, 6H), 1.69-1.63 (m, 6H), 0.81 (s, 9H), 0.01 (s, 6H); ${ }^{1} 3 \mathrm{C}$ NMR (DMSO- $d_{6}, 75 \mathrm{MHz}$) δ 155.0, 152.8, 150.3, 142.1, 120.3, 83.8, 69.5, 68.9, 62.8, 62.3, 39.5, 36.7, 29.1, 25.3, 19.7, 18.4, 14.1, 5.2.
(rel) - ($\left.1^{\prime} R, 3^{\prime} S\right)$-Diethyl $\left\{9-\left(3^{\prime}-H y d r o x y m e t h y-3^{\prime}-\right.\right.$ ethyltetrahydr ofuran-1'-yl)adenine\} Phosphonate (22). Desilylation of purine phosphonate analogue 21 was performed by the similar condition used for 18 to give 22 : yield 78%; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}$) $\delta 8.38$ ($\mathrm{s}, 1 \mathrm{H}$) , $8.19(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.15$ (m, $4 \mathrm{H}), 3.72-3.63(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 6 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO $\left.-d_{6}, 75 \mathrm{MHz}\right) \delta 154.7,152.2,150.1,143.6,119.5,84.2$, 70.7, 68.2, 63.3, 62.7, 40.6, 37.5, 28.8, 18.4, 14.3.
$(r e l)-\left(1^{\prime} R, 3^{\prime} S\right)-\left\{9-\left(3^{\prime}-H y d r o x y m e t h y l-3^{\prime}-E t h y l t e t r a h y d r o f u r a n\right.\right.$ $-1^{\prime}-\mathrm{yl}$) adenine\} Phosphonic acid (23). Adenine phosphonic acid 23 was synthesized from 22 using the similar hydrolysis procedure as described for 19 : yield 73%, UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max } 261.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO $\left.-d_{6}, 300 \mathrm{MHz}\right) \delta 8.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 6.00$ (dd, $J=6.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 3.77-3.69 (m, 3H, H-6'a, H-6'b, H$4^{\prime \prime} \mathrm{a}$), 3.60 (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime \prime} \mathrm{b}$), 2.25-2.19 (m, 6H, H-3'a, H3'b, H-5'a, H-5'b, PCH_{2}) ; ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75 \mathrm{MHz}$) δ 155.5, $152.2,149.1,138.5,119.8,83.7,74.6,42.7,32.2,28.4,20.7,18.8$.
(rel) $-\left(1^{\prime} R, 3^{\prime} S\right)-\left(3^{\prime}-t\right.$-Butyldimethylsilanyloxymethy-3'-vinyl-tetrahydrofuran-1'-yl) 2-fluoro-6-chloropurine (23a) and (rel) -
($1^{\prime} R, 3^{\prime} S$) - ($3^{\prime}-t$-Butyldimethylsilanyloxymethy-3'-vinyl-tetrahydrof uran $-1^{\prime}-\mathrm{yl}$) 2 -Fluoro-6-chloropurine (23b). Coupling of 14 with 2-fluoro-6-chloropurine under the similar condensation conditions as described for 15 to give 23a and 23b, respectively: data for 23a: yield 32%; UV (MeOH) $\lambda_{\text {max }} 268.5 \mathrm{~nm}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta 8.44$ (s, 1H), 5.94 (dd, $J=5.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.73-5.70 (m, 1H), 5.044.95 (m, 2H), 3.75-3.68 (m, 4H), 2.27 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.19 (d, J $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 154.8,152.2,149.7,147.6,143.9,128.2,109.8,84.6,71.2,69.9$, 42.0, 37.5, 25.6, 18.3, 4.8. data for 23b: yield 31\%; UV (MeOH) $\lambda_{\text {max }}$ $269.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) $\delta 8.43$ ($\mathrm{s}, 1 \mathrm{H}$), 5.96 (dd, $J=$ $6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.69(\mathrm{~m}$, $2 \mathrm{H}), 3.64$ (dd, $J=9.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20 (d, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta$ 154.7, 152.4, 150.1, 147.9, 144.2, 127.1, 109.4, 83.9, 70.8, 69.4, 41.6, 38.6, 25.3, 18.5, -5.3.
(rel) - ($\left.1^{\prime} R, 3^{\prime} S\right)$-Diethyl \{9-($3^{\prime}-t$-Butyldimethylsilanyloxymethy $-3^{\prime}-$ vinyltetrahydrofuran-1'-yl) 2-Fluoro-6-chloropurine\} Phosphonate (24). Phosphonate nucleoside analogue 24 was prepared from 23b using the same crossmetathesis procedure as described for 16: yield $54 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{dd}, J=17.3$, $20.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.14 (dd, $J=17.2,20.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.01 (dd, $J=6.0,1.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.18-4.12 (m, 4H), 3.71-3.65 (m, 4H), 2.25 (d, $J=8.8 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.18$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.31$ (m, 6H), 0.82 (s, 9H), 0.01 ($\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) ~ \delta$ 154.7, 152.6, 150.3, 149.2, $147.2,128.3,115.4,83.9,71.4,69.6,63.8,63.2,43.2,37.7,25.5$, 18.3, 5.6.
(rel) - (1'R,3'S) -Diethyl $\left\{9-\left(3^{\prime}-t-\right.\right.$ Butyldimethylsilanyloxymethy-3'-vinyltetrahydrofuran-1'-yl) 2-Fluoro-6-aminopurine\} Phosphonate (25a) and (reI) $-\left(1^{\prime} R, 3^{\prime} S\right)$-diethyl $\left\{9-\left(3^{\prime}-t\right.\right.$-Butyldimethylsilanyloxy methy-3'-vinyl-tetrahydrofuran-1'-yl)2-Amino-6-chloropurine\} Phosphonate (25b). Dry ammonia gas was bubbled into a stirred solution of $24(250 \mathrm{mg}, 0.455 \mathrm{mmol})$ in DME (10 mL) at room temperature overnight. The salts were removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 10$) to give 25a (31 mg, 13\%) and 25b (104 mg, 42\%), respectively: Data for 25a; UV (MeOH) $\lambda_{\max } 260.5 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) ~ \delta$ 8.22 (s, 1H), 7.74 (br s, NH2, 2H), 6.66 (dd, $J=20.8,17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.15 (dd, $J=20.2,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.16-4.09(\mathrm{~m}, 4 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 3 \mathrm{H}), 3.63(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=8.4,1 \mathrm{H}), 1.24-1.20(\mathrm{~m}, 6 \mathrm{H}), 0.83(\mathrm{~s}$, 9H), 0.02 ($\mathrm{s}, 6 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}$) δ 155.1, 152.5, $149.5,147.8,144.5,128.3,115.4,84.7,71.4,69.4,63.5,62.8,42.5$, 37.5, 25.6, 18.4, 15.1, 4.7. Data for 22b; UV (MeOH) $\lambda_{\max } 308.5 \mathrm{~nm}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}$) $\delta 8.18$ ($\mathrm{s}, 1 \mathrm{H}$) , 7.71 (br s, $\mathrm{NH}_{2}, 2 \mathrm{H}$),
$6.64(\mathrm{dd}, J=20.4,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=21.1,17.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.99 (dd, $J=6.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.12(\mathrm{~m}, 4 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 4 \mathrm{H})$, 2.28 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~m}, 6 \mathrm{H}), 0.83$ ($\mathrm{s}, 9 \mathrm{H}$) , $0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}$) δ 158.5, 154.3, 151.1, 149.4, 143.3, 124.7, 115.3, 84.7, 70.8, 68.9, 63.3, 62.6, 42.7, $37.2,25.5,18.3,14.6,4.7$.
(rel) - (1'R,3'S) - Diethyl $\left\{9-\left(3^{\prime}-H y d r o x y m e t h y-3^{\prime}-\right.\right.$ vinyl-tetrahydr ofuran-1'-yl)2-Amino-6-chloropurine\} Phosphonate (26). Desilylation of phosphonate 25 b was performed by the same conditions for 16: yield 76%; UV (MeOH) $\lambda_{\max } 309.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ $\mathrm{MHz}) \delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.71\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 6.62(\mathrm{dd}, J=20.5,16.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.19$ (dd, $J=20.5,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.98$ (dd, $J=6.1,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.98(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.17(\mathrm{~m}, 4 \mathrm{H}), 3.69-3.61(\mathrm{~m}, 4 \mathrm{H})$, $2.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.21-1.18(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75 \mathrm{MHz}$) δ 158.4, 153.9, 150.8, 149.1, 143.3, 124.7, 114.2, 83.3, 70.7, 69.8, 62.4, 61.7, 42.4, 37.2, 14.5.
$(r e l)-\left(1^{\prime} R, 3^{\prime} S\right)-9-\left\{\left(3^{\prime}-H y d r o m e t h y l-3^{\prime}-\right.\right.$ vinyl-tetrahydrofuran-$1^{\prime}-\mathrm{yl}$) Guanine\} Phosphonic acid (27). To a solution of 26 (136.4 mg, $0.316 \mathrm{mmol})$ dry $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ was added trimethylsilyl bromide ($0.0728 \mathrm{~mL}, 5.52 \mathrm{mmol}$) at room temperature. After this mixture was stirred for 28 h , the solvent was removed, evaporating three times with methanol. The residue was dissolved in MeOH (12.0 mL) and 2mercaptoethanol (86.4 $\mu \mathrm{L}, 1.266 \mathrm{mmol}$) and $\mathrm{NaOMe}(67.2 \mathrm{mg}, 1.266$
mmol) was added to the mixture. The mixture was refluxed for 12 h under N_{2}, cooled, neutralized with glacial AcOH , and evaporated to dryness under vacuum. The residue was purified by chromatography on a column of reversed-phase C18 silica gel eluting water to give 27 (73.3 mg, 65\%) as a yellowish form. UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\max } 252.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO $\left.-d_{6}, 300 \mathrm{MHz}\right) \delta 10.10(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 8.18$ (s, 1H, H8), 7.07 ($\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}$), 6.68 (dd, $J=20.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 6.17 (dd, $J=19.1,17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), 5.96 (dd, $J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, PCH), 3.75-3.67 (m, 4H, H-4'a, H-4' $\mathbf{~}$, $\mathrm{H}-6^{\prime} \mathrm{a}, \mathrm{H}-6^{\prime} \mathrm{b}$), 2.29 (d, $J=$ 10.4 Hz, 1H, H-3'a, H-3'b), 2.18 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}\right) \delta 157.4,154.3,152.5,149.2,136.4,115.7$, 74.7, 70.3, 62.6, 61.8, 42.3, 37.2, 34.6; MS m/z $358(\mathrm{M}+\mathrm{H})^{+}$. (rel) - ($\left.1^{\prime} R, 3^{\prime} S\right)$-Diethyl $\left\{9-\left(3^{\prime}-t\right.\right.$-butyldimethylsilanyloxymethy- $3^{\prime}-$ ethyltetrahydrofuran-1'-yl)2-Fluoro-6-chloropurine\} Phosphonate (28). Compound 28 was synthesized from 24 by the similar catalytic hydrogenation procedure as described for 20: yield 65%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.21-4.15 (m, 4H), 3.69-3.64 (m, 3H), 3.57 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.28-2.19 (m, 6H), 1.33-1.30 (m, 6H), 0.81 (s, 9H), 0.03 (s, 6H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 154.8,152.6,148.2,143.5,125.6,84.8$, $72.3,70.8,63.4,62.8,41.2,37.8,28.4,25.5,19.6,18.6,5.2$.
(rel) - ($\left.1^{\prime} R, 3^{\prime} S\right)$-Diethyl $\left\{9-\left(3^{\prime}-t\right.\right.$-Butyldimethylsilanyloxymethy- 3^{\prime} -ethyltetrahydrofuran-1'-yl)2-Fluoro-6-aminopurine\} Phosphonate
(29a) and (rel) $-\left(1^{\prime} R, 3^{\prime} S\right)$-diethyl $\left\{9-\left(3^{\prime}-t\right.\right.$-Butyldimethyl silanyloxy methy-3'-ethyl-tetrahydrofuran-1'-yl) 2-amino-6-chloropurine\}

Phosphonate (29b). Ammonolysis of 28 was performed using the similar procedure as described for 21: Data for 29a; yield 15\%; UV (MeOH) $\lambda_{\max } 260.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300 \mathrm{MHz}$) $\delta 8.21$ (s, 1 H), 7.66 (br s, NH $2,2 \mathrm{H}$), 5.98 (dd, $J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.24-4.20 (m, 4H), 3.74-3.70 (m, 3H), 3.62 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.29-2.19 (m, $6 \mathrm{H}), 1.25-1.18(\mathrm{~m}, 6 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 155.1,153.6,148.4,142.3,124.7,83.5,70.4$, 69.1, 63.0, 62.5, 40.8, 37.0, 28.6, 25.6, 18.9, 18.2, 14.3, -4.3; Data for 29b; yield 45%; UV (MeOH) $\lambda_{\text {max }} 309.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO $-d_{6}$, 300 MHz) o 8.18 ($\mathrm{s}, 1 \mathrm{H}$), 7.69 (br s, $\mathrm{NH}_{2}, 2 \mathrm{H}$), 5.97 (dd, $J=5.9,2.0$, Hz, 1H), 4.21-4.19 (m, 4H), 3.69-3.64 (m, 3H), 3.54 (d, $J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 6 \mathrm{H}), 1.22-1.16(\mathrm{~m}, 4 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}$, 6 H) ; ${ }^{13} \mathrm{C}$ NMR (DMSO $-d_{6}, 75 \mathrm{MHz}$) δ 157.4, 153.2, 151.0, 142.9, 124.4, 84.6, 71.2, 69.6, 63.3, 62.7, 41.5, 37.6, 28.8, 25.6, 19.4, 18.3, 15.2, 5.4.

$$
(r e l)-\left(1^{\prime} R, 3^{\prime} S\right)-\text { Diethyl }\left\{9-\left(3^{\prime}-H y d r o x y m e t h y-3^{\prime}-\right.\text { ethyl-tetrahydr }\right.
$$ ofuran $-1^{\prime}-\mathrm{yl}$) -2 -amino-6-chloropurine $\}$ Phosphonate (30). Deprotection of 29 b was performed by the same desilylation conditions for 22: yield 72%; UV (MeOH) $\lambda_{\max } 308.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 8.22$ ($\mathrm{s}, 1 \mathrm{H}$), 7.72 (br s, $\mathrm{NH}_{2}, 2 \mathrm{H}$), 6.02 (dd, $J=6.2,1.8, \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.18(\mathrm{~m}, 4 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{~d}$,

$J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 6 \mathrm{H}), 1.20-1.15(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 157.3,154.2,152.6,143.4,124.7,83.4,70.7$, $68.9,62.8,62.1,40.7,36.8,29.0,18.7,14.7$.
(rel) - ($\left.1^{\prime} R, 3^{\prime} S\right)-9-\left\{\left(3^{\prime}-H y d r o m e t h y l-3^{\prime}-\right.\right.$ ethyl-tetrahydrofuran-1'-yl) Guanine\} Phosphonic acid (31). Guanine nucleoside phosphonic acid 31 was prepared from 30 by the same hydrolysis conditions used for 27: yield 63%; UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\text {max }} 254.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}, 300$ MHz) $\delta 10.8$ (br s, NH, 1H), 8.05 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$), 7.01 (br s, $\mathrm{NH}_{2}, 2 \mathrm{H}$), 5.98 (dd, $J=6.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 3.73-3.66 (m, 4H, H-4"a, H$4^{\prime \prime} \mathrm{b}$, $\mathrm{H}-6^{\prime} \mathrm{a}, \mathrm{H}-6^{\prime} \mathrm{b}$), 2.25-2.19 (m, 6H, H-3'a, H-3'b, $\mathrm{H}-5^{\prime} \mathrm{a}$, $\mathrm{H}-5^{\prime} \mathrm{b}$, PCH_{2}) ; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}$) δ 157.5, 154.2, 152.1, 136.3, 117.6, 74.2, 70.7, 40.7, 37.4, 28.6, 19.4.

1-But-3-enyloxymethyl-4-methoxy-benzene (33). NaH (60\% in mineral oil, $3.33 \mathrm{~g}, 83.21 \mathrm{mmol}$) was added portion wise to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of but-3-en-1-ol $32(5.0 \mathrm{~g}, 69.34 \mathrm{mmol})$ and $p-$ methoxy benzyl chloride ($10.34 \mathrm{~mL}, 76.27 \mathrm{mmol}$) in DMF (100 mL). The reaction mixture was stirred at room temperature overnight. The solvent was removed under reduced pressure and the residue was quenched with $\mathrm{H}_{2} \mathrm{O}$ followed by extraction with EtOAc two times. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:10) to give $33(12.93 \mathrm{~g}, 97 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$
$\delta 7.25(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~m}, 2 \mathrm{H}), 5.87-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.01(\mathrm{~m}$, $2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{q}, J=$ 6.0 Hz, 2H) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 159.12, 135.29, 130.52, $129.24,116.28,113.74,72.53,69.28,55.25,34.21$.

3-(4-Methoxy-benzyloxy)-propionaldehyde (34). A solution of compound 33 ($3.7 \mathrm{~g}, 19.25 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was cooled down to $78{ }^{\circ} \mathrm{C}$, and ozone gas was then bubbled into the reaction mixture until a blue color persisted for an additional 5 minutes. The reaction mixture was degassed with nitrogen, and dimethyl sulfide ($5.94 \mathrm{~mL}, 80.83 \mathrm{mmol}$) was slowly added at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$ under argon gas and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:12) to give compound 34 ($2.99 \mathrm{~g}, 80 \%$) as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 3.80$ ($\mathrm{s}, 3 \mathrm{H}$) , $3.59(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 201.26, 159.20, 130.09, 129.34, 113.79, 72.78, 64.90, 55.25, 32.15.

5-(4-methoxybenzyloxy)-2-methylpent-1-en-3-ol (35). To a solution of 34 ($2.4 \mathrm{~g}, 12.36 \mathrm{mmol}$) in dry THF (35 mL) was slowly added isopropenyl magnesium bromide ($18.53 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) at $78{ }^{\circ} \mathrm{C}$. After 5 h , saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) was added, and the reaction mixture was slowly warmed to room temperature.

The mixture was diluted with water (100 mL) and extracted with EtOAc (100 mL) two times. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered, and evaporated. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:5) to give 35 ($2.09 \mathrm{~g}, 76 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.24(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.26$ (d, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$ (s, $2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~s}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 9 \mathrm{H})$, 1.86-1.78 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) ~ \delta$ 159.68, 140.26, $129.36,128.96,115.35,110.65,73.16,71.59,67.26,55.66,35.20$, 18.54.
(5- (4-methoxybenzyloxy) - $2-$ methylpent -1 -en $-3-y l o x y$) (tertbutyl) dimethylsilane (36). TBDMSCl ($0.97 \mathrm{~g}, 6.43 \mathrm{mmol}$) was added slowly to a solution of $35(1.3 \mathrm{~g}, 5.85 \mathrm{mmol})$ and imidazole $(0.60 \mathrm{~g}$, $8.77 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and stirred for 5 h at the same temperature. The solvent was evaporated under reduced pressure. The residue was dissolved in water (100 mL) and extracted with diethyl ether (100 mL). The organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:15) to give compound 36 (1.71 g , $87 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.22(\mathrm{~d}, J=6.8$ Hz, 2H), 6.78 (d, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.26(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}$,
$J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.32(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 3.46-3.88(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 159.60, 141.53, 130.28, 129.00, 114.86, 112.10, 74.28, 72.15, 67.34, 54.38, 36.43, 24.68, 18.65, 4.67.

3-(tert-Butyldimethylsilanyloxy)-4-methylpent-4-en-1-ol (37). To a solution of compound $36(0.76 \mathrm{~g}, 2.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}$ mixture ($10 \mathrm{~mL}, 20: 1 \mathrm{v} / \mathrm{v}$) was added $\mathrm{DDQ}(0.56 \mathrm{~g}, 2.48 \mathrm{mmol})$ and the mixture was stirred for 2 h at room temperature. Saturated NaHCO_{3} (2 mL) was added to quench the reaction and further diluted with water (20 mL). The organic layer was separated, washed with brine, dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography (EtOAc/hexane, 1:10) to give compound $37(0.43 \mathrm{~g}, 87 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 5.16(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}$, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.71(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{brs}, 1 \mathrm{H}), 1.88-1.67(\mathrm{~m}$, $2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75$ $\mathrm{MHz}) \delta 148.65,114.68,80.26,73.20,61.08,36.94,24.88,17.56$, 3.96.

3-(tert-Butyldimethylsilanyloxy)-4-methyl-pent-4-enal (38). 4 \AA Molecular sieves (3.0 g) and PCC ($2.99 \mathrm{~g}, 13.86 \mathrm{mmol}$) were added slowly to a solution of compound $37(1.2 \mathrm{~g}, 5.55 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) at $0^{\circ} \mathrm{C}$, and stirred overnight at room temperature. An excess of
diethyl ether (20 mL) was then added to the mixture. The mixture was stirred vigorously for 2 h at the same temperature, and the resulting solid was filtered through a short silica gel column. The filtrate was concentrated under vacuum and purified by silica gel column chromatography (EtOAc/hexane, 1:15) to give compound 38 (0.95 g, 80\%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.78$ (s, $1 \mathrm{H}), 5.24(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{q}, J$ $=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.54(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ o 201.86, 154.47, 114.45, 76.07, 50.12, 23.45, 18.12, 3.45.

5-(tert-Butyldimethylsilanyloxy)-2,6-dimethyl-hepta-1,6-dien3 -ol (39). To a solution of compound 38 ($0.25 \mathrm{~g}, 1.17 \mathrm{mmol}$) in dry THF (4 mL), isopropenyl magnesium bromide ($3.50 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) was added slowly at $-78^{\circ} \mathrm{C}$. After 3 h , a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (4 mL) was added, and the reaction mixture was warmed slowly to room temperature. The mixture was extracted with EtOAc/water two times. The combined organic layer was dried over MgSO_{4}, filtered, and evaporated. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:15) to give 39 (0.24 g , $80 \%)$ as a diastereomeric mixture. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 5.19-4.97 (m, 4H), 4.43-4.16 (m, 2H), $1.66(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 148.25,113.42,110.28$, 74.34, 71.05, 45.36, 25.86, 18.64, 16.37, 4.84.
(1S,4S)-4-(tert-Butyldimethylsilanyloxy)-2,3-dimethylcyclopent -2-enol (40a) and ($1 R, 4 S$)-4-(tert-Butyldimethylsilanyloxy)-2,3di methyl-cyclopent-2-enol (40b). To a solution of 39 ($254 \mathrm{mg}, 0.99$ mmol) in dry benzene (3 mL) was added $2^{\text {nd }}$ generation Grubbs catalyst (10 mg). The reaction mixture was refluxed overnight at $60^{\circ} \mathrm{C}$, and cooled to room temperature. The mixture was concentrated in vacuum, and residue was purified by silica gel column chromatography (EtOAc/hexane, 1:15) to give cyclopentenol 40a (97 $\mathrm{mg}, 43 \%$) and 40b ($95 \mathrm{mg}, 42 \%$) as colorless oils. Cyclopentenol 40a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.46(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}$, $6 \mathrm{H}), 1.87-1.76(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 145.01,76.94,74.5045 .12,25.76,18.38,11.36,-4.64$; Cyclopentenol 40b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.38(\mathrm{~m}, 1 \mathrm{H}), 4.16$ $(\mathrm{m}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 6 \mathrm{H}), 1.88-1.75(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 146.32, 75.46, 73.38, 46.10, 24.44, 17.86, 10.87, 4.90.
(1R,4S)-9-[4-(tert-Butyldimethylsilanyloxy)-2,3-Dimethylcyclo pent-2-enyl]- N^{6}, N^{6}-bis-(tert-butoxy-carbonyl)adenine (41). To a stirred solution of triphenylphosphine ($518 \mathrm{mg}, 1.98 \mathrm{mmol}$) in THF (4 mL) at $0{ }^{\circ} \mathrm{C}$ was added dropwise the diisopropyl azodicarboxylate (DIAD, $0.38 \mathrm{~mL}, 1.98 \mathrm{mmol}$) and the yellow reaction mixture was stirred at this temperature for 30min. After that, a solution of compound 40a (347 mg, 1.52 mmol) in THF (3.0 mL), was added and
the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . Then, the cold bath was removed and the yellow solution was stirred for 30 min at room temperature. Bis-BOC adenine ($662 \mathrm{mg}, 1.98 \mathrm{mmol}$) was added and the solution became clear after 2 min . The reaction mixture was stirred overnight at room temperature. The volatiles were removed under reduced pressure and the residue was purified by silica gel column chromatography (EtOAc/hexane, 1:3) to give 41 (522 mg , 63%) as a yellow solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.92$ (s, 1H), $8.34(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 2.44-2.37(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~s}$, 18H), $1.02(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $154.23,152.12,148.72,145.58,141.66,133.47,120.00,74.60,51.24$, 39.14, 30.86, 24.90, 13.15, 11.12, 9.43, -5.12.
$(1 R, 4 S)-\left(N^{6}, N^{6}-\right.$ Bis - (tert-butoxycarbonyl) adenine) - 2,3 -dimethyl -cyclopent-2-enol (42). To a solution of 41 (132 mg, 0.24 mmol) in THF (3 mL) was added TBAF ($0.51 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred overnight at room temperature and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane, 2:1) to give 42 ($87 \mathrm{mg}, 83 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H})$, $5.05(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{q}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H})$, 1.28 (s, 18H) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) ~ \delta 148.27,146.44,143.36$, $138.32,136.64,129.65,78.46,57.28,42.43,31.54,23.00,12.14$, 9.36.
($1 R, 4 S$) - $\left\{4-\left[N^{6}, N^{6}\right.\right.$-Bis- (tert-butoxycarbonyl) adenine $]-2,3$-di methyl-cyclopent-2-enyloxymethyl\} -phosphonic acid diisopropyl ester (43). To a solution of 42 ($85 \mathrm{~g}, 0.20 \mathrm{mmol}$) in DMF (2 mL), LiI $(1.98 \mathrm{mg}, 0.015 \mathrm{mmol})$ was added at $25^{\circ} \mathrm{C} . \mathrm{LiO}-t-\mathrm{Bu}(0.32 \mathrm{Ml}, 1.0 \mathrm{M}$ solution in THF) and a solution of diisopropyl bromomethyl phosphonate ($0.06 \mathrm{~mL}, 0.24 \mathrm{mmol}$) in $\operatorname{DMF}(2 \mathrm{~mL})$ were slowly and simultaneously added to the reaction mixture for 5 h at $60^{\circ} \mathrm{C}$ under anhydrous conditions. The mixture was quenched by adding water (10 mL), and the organic solvents (THF) were removed in vacuo. The aqueous layer was extracted with EtOAc two times. The combined extracts were washed with brine, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by silica gel column chromategraphy (EtOAc/hexane, 2:1) to give 43 ($77 \mathrm{mg}, 64 \%$) as a colorless syrup: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.83$ ($\mathrm{s}, 1 \mathrm{H}$), 8.01 ($\mathrm{s}, 1 \mathrm{H}$), 6.21 (s, 1H), $5.20(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.12-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~d}, J=$ $9.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.37$ (m, 2H), 1.58 (s, 18H), 1.48 (s, 6H), 1.32 (s, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 153.02, 144.93, 140.55, 129.74, $82.55,80.21,75.46,72.23,61.71,39.24,27.63,25.46,22.60,19.43$, 12.36, 9.87.
($1 R, 4 S$) - [4- (6-Amino-purin-9-yl) -2,3-dimethyl-cyclopent-2enyloxymethyl] phosphonic acid (44).To a solution of the phosphonate 43 ($67 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ was added trimethylsilyl bromide ($168 \mathrm{mg}, 1.11 \mathrm{mmol}$). The mixture was heated overnight at
$60^{\circ} \mathrm{C}$ and concentrated under reduced pressure. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and distilled $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then freeze-dried to give target compound $44(23 \mathrm{mg}, 64 \%)$ as a yellowish foamy solid. ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.d_{6} 300 \mathrm{MHz}\right) \delta 8.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$, 5.32 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.72 (d, $\left.J=9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{a}, \mathrm{H}-6^{\prime} \mathrm{b}\right)$, 2.46$2.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}_{2}\right), 1.48\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}$) $\delta 153.28,151.23,145.46,138.54,129.74,80.23,68.35,59.67$, 31.60, 12.18, 10.96.
(\pm)-3-Methyl-3-vinyl-dihydrofuran-1-one (47): To a solution of 46 ($1.2 \mathrm{~g}, 4.19 \mathrm{mmol}$) in THF (10 mL), TBAF ($5.03 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight at rt and concentrated in vacuo. The residue was purified by silica gel column chromatography (Hexane/EtOAc, 10:1) to give 47 (375 mg , $71 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.73-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.98(\mathrm{~m}$, $2 \mathrm{H}), 4.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=$ 7.0 Hz, 1H), $2.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 172.6,148.8,109.1,84.2,50.2,31.7,27.1$.
(\pm) - 3-Methyl-3-vinyl-tetrahydrofuran-1-ol (48): To a cooled $\left(-78^{\circ} \mathrm{C}\right)$, stirred solution of lactone $47(320 \mathrm{mg}, 2.53 \mathrm{mmol})$ in dry toluene (12 mL) was added dropwise a 1.0 M solution of diisobutylaluminium hydride (DIBALH) ($3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$). The reaction was stirred for 20 min . at $-78^{\circ} \mathrm{C}$, followed by dropwise
addition of methanol (3.0 mL) and diluted with ethyl acetate. The reaction mixture was warmed to room temperature and stirred for 2 h , and the precipitate was removed by filtration through a pad of Celite, washed with ethyl acetate. The filtrate and washings were concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc/hexane, 1:10) to give 48 (272 mg , $84 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.76-5.65(\mathrm{~m}$, $1 \mathrm{H}), 5.50-5.43(\mathrm{~m}, 2 \mathrm{H}), 5.02-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 2 \mathrm{H})$, $2.01(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H})$.
$(\pm)-$ Acetic acid 3 -methyl-3-vinyl-tetrahydrofuran-1-yl ester (49): To a solution of compound 48 ($151 \mathrm{mg}, 1.18 \mathrm{mmol}$) in anhydrous pyridine (8 mL) , $\mathrm{Ac}_{2} \mathrm{O}(0.177 \mathrm{~g}, 1.75 \mathrm{mmol})$ was slowly added, and the mixture was stirred overnight under nitrogen. The pyridine was evaporated under reduced pressure and co-evaporated with toluene. The residue was diluted with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, extracted with EtOAc (60 mL), dried over MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:20) to give compound $49(170 \mathrm{mg}, 85 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 6.25-6.20(\mathrm{~m}, 1 \mathrm{H}), 5.71-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.95(\mathrm{~m}, 2 \mathrm{H})$, $3.73-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$.

$$
(r e l)-\left(1^{\prime} R, 3^{\prime} R\right)-9-\left(3^{\prime}-\right.\text { Methyl-3'-vinyl-tetrahydrofuran-1'-yl) }
$$

6 -chloropurine (50a) and (rel) - ($\left.1^{\prime} S, 3^{\prime} R\right)-9-\left(3^{\prime}-\right.$ methyl-3'-vinyl-
tetrahydrofuran-1'-yl) 6-chloropurine (50b): 6-Chloropurine (158 $\mathrm{mg}, 1.027 \mathrm{mmol}$), anhydrous HMDS (8 mL), and a catalytic amount of ammonium sulfate (12 mg) were refluxed to a clear solution, and the solvent was distilled under anhydrous conditions. The residue was dissolved in anhydrous 1,2 -dichloroethane (8 mL). To this mixture, a solution of 49 ($102 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry DCE (10 mL) and TMSOTf (228 mg, 1.027 mmol) was added, and the resulting mixture was stirred for 8 h at rt . The reaction mixture was quenched with 2.5 mL of saturated NaHCO_{3} and stirred for 1 h . The resulting solid was filtered through a Celite pad, and the filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ two times. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc/ hexane, $4: 1$) to give compound 50a ($52 \mathrm{mg}, 33 \%$) and 50b (54 mg , $34 \%)$: data for $50 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.74$ (s, 1H), 8.31 (s, $1 \mathrm{H}), 5.96(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.72$ (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.21(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 151.7, 151.4, 151.1, 144.7, 142.4, 132.6, 109.7, 84.4, 76.2, 43.5, 34.3, 21.7. data for $50 \mathrm{~b}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}$, $1 \mathrm{H}), 5.94$ (dd, $J=5.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.73-5.70$ (m, 1H), 5.02-4.96 (m, 2H), 3.71 (d, J = 6.0 Hz, 1H), $3.64(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J$ $=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 151.5,151.3,151.0,144.3,142.9,132.3,108.7$, 83.6, 74.8, 43.5, 34.8, 21.7.
(rel) - ($\left.1^{\prime} R, 3^{\prime} R\right)$-Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ Methyl-3'-vinyl-tetrahydrofuran-1'-yl) 6-chloropurine\} phosphonate (51): To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) solution of 6-chloropurine derivative 50b ($218 \mathrm{mg}, 0.824 \mathrm{mmol}$) and diethyl vinylphosphonate $(676 \mathrm{mg}, 4.12 \mathrm{mmol}), 2^{\text {nd }}$-generation Grubbs catalyst ($34.98 \mathrm{mg}, 0.0412 \mathrm{mmol}$) was added. The reaction mixture was refluxed for 20 h under dry argon gas and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/n-Hexane/MeOH, 3:1:0.03) to give 51 (194 $\mathrm{mg}, 59 \%)$ as a form: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.31$ (s, 1H), 6.57 (dd, $J=16.4,20.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=16.5,19.8 . \mathrm{Hz}$, $1 \mathrm{H}), 5.97$ (dd, $J=5.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.10(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.22 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.21-1.31(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 151.7, 151.4, 153.2, 149.9, 144.6, 133.1, 115.3, 84.2, 76.1, 63.6, 63.1, 43.6, 35.5, 21.3, 14.4.
(rel) - ($\left.1^{\prime} R, 3^{\prime} R\right)$-Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ methyl-3'-vinyl-tetrahydrofuran-$1^{\prime}-\mathrm{yl}$) adenine phosphonate (52): A solution of 51 (213 mg, 0.533 mmol) in saturated methanolic ammonia (10 mL) was stirred overnight at $60^{\circ} \mathrm{C}$ in a steel bomb, and the volatiles were evaporated. The residue was purified by silica gel column chromatography ($\left.\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 8\right)$ to give $52(112 \mathrm{mg}, 55 \%)$ as a white solid: mp
$174-176{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 261.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ $\mathrm{MHz}) \delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=20.4,17.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.15 (dd, $J=18.9,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=6.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.15-4.07 (m, 4H), 3.73 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26-2.14 (m, 6H), 1.24-1.19 (m, 9H) ${ }^{13}{ }^{3} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $155.4,152.5,149.4,148.3,140.5,119.5,116.2,84.6,75.4,62.4,61.6$, 42.7, 35.2, 21.5, 14.5.
(rel) $-\left(1^{\prime} R, 3^{\prime} R\right)-9-\left(3^{\prime}-\right.$ Methyl-3'-vinyl-tetrahydrofuran-1'-yl)
adenine\} phosphonic acid (53): To a solution of the phosphonate 52 ($153 \mathrm{mg}, 0.403 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ and 2,6-lutidine ($0.938 \mathrm{~mL}, 8.06 \mathrm{mmol}$) was added trimethylsilyl bromide $(0.616 \mathrm{mg}$, 4.03 mmol). The mixture was heated overnight at $70^{\circ} \mathrm{C}$ under nitrogen gas and then concentrated in vacuo. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and purified water (100 mL). The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 70 \mathrm{~mL})$ and then freeze-dried to give phosphonic acid 53 ($97 \mathrm{mg}, 74 \%$) as a yellowish foam: UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\max } 261.5 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) \delta 8.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$, $8.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 6.61\left(\mathrm{dd}, J=20.4,17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$, 6.15 (dd, J $=18.9,17.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$ '), $5.95(\mathrm{dd}, J=6.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCH}), 3.75$ (d, $\left.J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 3.67$ (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ 'b), $2.24-$ $2.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{a}, \mathrm{H}-3^{\prime} \mathrm{b}\right), 1.25\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $75 \mathrm{MHz}) \delta 155.3,152.3,149.4,148.7,139.3,118.9,115.2,84.6,75.7$, 43.5, 35.3, 19.8.
(rel) - (1'R,3'R) - Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ methyl $-3^{\prime}-$ ethyltetrahydrofuran- 1^{\prime} -yl)6-chloropurine\} phosphonate (54): A solution of vinyl phosphonate nucleoside analogue 51 ($320 \mathrm{mg}, 0.798 \mathrm{mmol}$) in methanol (15 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$ and cyclohexene (5 mL) under Ar. The reaction mixture was refluxed for 25 h . The reaction mixture was filtered through a pad of Celite, evaporated, and purified by silica gel column chromatography using methanol and methylene chloride (10:1) to give ethyl phosphonate analogue 54 (254 mg, 79%) as a white solid: mp $162-164{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=5.6,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.18-4.12(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.28-2.12(\mathrm{~m}, 6 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $151.8,151.5,150.4,143.8,135.2,85.6,76.1,63.3,62.3,43.5,32.1$, 27.7, 21.2, 19.4, 14.0.
(rel)-(1'R,3'R)-Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ methyl-3'-ethyltetrahydrofuran-1'-yl) adenine\} phosphonate (55): Adenine derivative 55 was prepared from 6-chloropurine analogue 54 by the similar ammonolysis procedure as described for 52: yield 58\%; mp 167$169{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 262.5 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) \delta$ 8.28 (s, 1H), 8.07 ($\mathrm{s}, 1 \mathrm{H}$), $5.94(\mathrm{dd}, ~ J=6.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.06$ (m, 4H), $3.72(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-$ $2.14(\mathrm{~m}, 6 \mathrm{H}), 1.24-1.19(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 155.3$, 152.4, 149.3, 140.6, 120.1, 84.4, 75.3, 62.5, 61.5, 42.6, 32.3, 28.6,
21.5, 18.4, 14.5.
(rel) $-\left(1^{\prime} R, 3^{\prime} R\right)-\left\{9-\left(3^{\prime}-\right.\right.$ Methyl-3'-ethyl-tetrahydrofuran-1'-yl)
adenine $\}$ phosphonic acid (56): Phosphonic acid 56 was synthesized from 55 using the similar hydrolysis condition as described for 53: yield 74%, UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\max } 262.0 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right.$) $\delta 8.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 5.93(\mathrm{dd}, J=6.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2^{\prime}$), 3.72 (d, $\left.J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 3.66$ (d, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 6'b), 2.23-2.12 (m, 6H, H-3'a, H-3'b, H-5'a, H-5'b, PCH ${ }^{\prime}$), 1.26 (m, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 155.5,152.2,149.1,138.5$, 119.8, 83.7, 74.6, 42.7, 32.2, 28.4, 20.7, 18.8; Anal. Calc. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P}\left(+1.0 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}, 41.74 ; \mathrm{H}, 5.84 ; \mathrm{N}, 20.28$; Found: C, 41.71 ; H, 5.82; N, 20.30; MS m/z 328 (M+H) ${ }^{+}$.
(rel) $-\left(1^{\prime} R, 3^{\prime} S\right)-3^{\prime}-$ Methyl-3'-vinyl-tetrahydrofuran-1'-yl) 2-fluoro-6-chloropurine (57a) and (rel)-($\left.1^{\prime} R, 3^{\prime} R\right)-3^{\prime}-$ methyl-3'-vinyl-tetrahydrofuran-1'-yl)2-fluoro-6-chloropurine (57b):Coupling of 49 with 2 -fluoro-6-chloropurine under the similar condensation conditions as described for 50 to give 57 a and 57 b, respectively: data for 57 a : yield 32%; UV (MeOH) $\lambda_{\text {max }} 269.0 \mathrm{~nm} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~m}, 1 \mathrm{H}), 5.06-$ 4.94 (m, 2H), 3.74 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (dd, $J=10.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 154.9,152.4,149.3,147.9,144.5$, 128.6, 110.1, 84.2, 75.7, 43.3, 34.2, 20.7. data for 57b: yield 33%; UV
(MeOH) $\lambda_{\text {max }} 268.5 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.48(\mathrm{~s}, 1 \mathrm{H})$, 5.97-5.90 (dd, $J=6.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.69$ (m, 1H), 3.73 (d, $J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1 \mathrm{H}), 2.31(\mathrm{dd}, J=6.8,10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.23$ (dd, $J=8.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 150.0,152.7,149.6,143.7,136.5,129.1,109.8,84.4,76.2$, 42.9, 33.8, 20.3.
$($ rel $)-\left(1^{\prime} R, 3^{\prime} R\right)$-Diethyl $\quad\left\{9-\left(3^{\prime}-\right.\right.$ methyl $-3^{\prime}-$ vinyltetrahydrofuran-1'-yl) 2-fluoro-6-chloropurine\} phosphonate (58): Phosphonate nucleoside analogue 58 was prepared from 57 b using the similar cross metathesis procedure as described for 51 : yield $59 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 8.50(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=16.9,19.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dd}$, $J=17.1,19.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=1.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.08(\mathrm{~m}$, $4 \mathrm{H}), 3.74$ (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=$ $6.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=8.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.32$ (m, 6H), 1.24 ($\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 155.1,153.5,150.5,145.7$, 129.1, 115.7, 110.2, 84.6, 76.3, 63.2, 62.4, 43.5, 35.3, 21.6, 20.1, 14.3.
(rel) - ($\left.1^{\prime} R, 3^{\prime} R\right)$-Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ methyl-3'-vinyl-tetrahydrofuran-$1^{\prime}-\mathrm{yl}$) 2-fluoro-6-aminopurine\} phosphonate (59a) and (rel)$\left(1^{\prime} R, 3^{\prime} R\right)$-diethyl $\quad\left\{9-\left(3^{\prime}-\right.\right.$ methyl $-3^{\prime}-$ vinyl-tetrahydrofuran $\left.-1^{\prime}-\mathrm{yl}\right)$ 2-amino-6-chloropurine\} phosphonate (59b): Dry ammonia gas was bubbled into a stirred solution of 58 ($390 \mathrm{mg}, 0.96 \mathrm{mmol}$) in DME $(18.4 \mathrm{~mL})$ at room temperature overnight. The salts were removed by
filtration and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 8$) to give 59 a ($41 \mathrm{mg}, 16 \%$) and 59 b (170 mg , 46%), respectively: Data for 59 a ; UV (MeOH) $\lambda_{\max } 261.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 8.22$ (s, 1H), 7.74 (br s, NH $2,2 \mathrm{H}$) , 6.66 (dd, $J=21.1,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{dd}, J=20.5,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94$ (dd, $J=2.0,6.0 . \mathrm{Hz}, 1 \mathrm{H}), 4.15-4.05(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.64(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=8.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (dd, $J=6.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26-1.20(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 155.3,152.5,149.3,147.6,143.3,125.3,116.7,84.7,75.6$, 63.1, 62.8, 62.1, 43.8, 35.4, 21.1, 14.5, 13.9; Data for 59b; UV (MeOH) $\lambda_{\text {max }} 309.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) ~ \delta 8.15(\mathrm{~s}$, $1 \mathrm{H}), 7.69\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 6.60(\mathrm{dd}, J=20.9,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.12$ (dd, $J=21.2,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=1.8,6.5 . \mathrm{Hz}, 1 \mathrm{H}), 4.15-4.06(\mathrm{~m}$, $4 \mathrm{H}), 3.75$ (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.31 (dd, $J=$ $6.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=8.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.20(\mathrm{~m}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 158.7,154.6,151.5,149.3,143.5$, $125.8,116.2,84.5,75.4,63.0,62.3,61.7,43.4,35.7,21.5,15.6$.

$$
(r e l)-\left(1^{\prime} R, 3^{\prime} R\right)-9-\left\{\left(3^{\prime}-\text { Methyl }-3^{\prime}-\text { vinyl-tetrahydrofuran-1'-yl }\right)\right.
$$

guanine phosphonic acid (60): To a solution of 59 b (65.7 mg, 0.158 mmol) dry $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{~mL})$ was added trimethylsilyl bromide (0.0364 $\mathrm{mL}, 2.76 \mathrm{mmol}$) at room temperature. After this mixture was stirred for 36 h , the solvent was removed, coevaporating three times with
methanol. The residue was dissolved in $\mathrm{MeOH}(6.0 \mathrm{~mL}$) and 2mercaptoethanol ($43.2 \mu \mathrm{~L}, 0.633 \mathrm{mmol}$) and NaOMe ($33.6 \mathrm{mg}, 0.633$ mmol) was added to the mixture. The mixture was refluxed for 12 h under N_{2}, cooled, neutralized with glacial AcOH, and evaporated to dryness under vacuum. The residue was purified by chromatography on a column of reversed-phase C18 silica gel eluting water to give 60 (34.5 mg, 64\%) as a yellowish form. UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\max } 254.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO $\left.-d_{6}, 300 \mathrm{MHz}\right) \delta 10.7$ (br s, NH, 1H), 8.11 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$), 7.02 (br s, NH $2,2 \mathrm{H}$), 6.65 (dd, $J=20.4,17.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 6.14 (dd, $\left.J=19.3,17.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 5.92(\mathrm{dd}, J=2.4,6.6 . \mathrm{Hz}, 1 \mathrm{H}, \mathrm{PCH})$, $3.75\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime} \mathrm{a}\right), 3.59(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 2.33 (dd, $J=6.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ 'a), 2.22 (dd, $J=8.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$ 'b), $1.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 157.7,154.1$, $152.6,148.9,137.2,120.5,112.7,86.3,76.4,62.5,61.9,43.6,36.0$, 34.6, 20.5, 15.1; Anal. Calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P}\left(+2.0 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}, 38.20 ; \mathrm{H}$, 5.34; N, 18.56; Found: C, 38.23; H, 5.32; N, 18.55; MS m/z 342 $(\mathrm{M}+\mathrm{H})^{+}$.
(rel)-(1'R,3'R)-Diethyl \{9-(3'-methyl-3'-ethyl tetrahydrofuran-1'-yl) 2-fluoro-6-chloropurine\} phosphonate (61): Compound 61 was synthesized from 58 by the similar catalytic hydrogenation procedure as described for 56 : yield 75%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 8.64(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=1.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.03(\mathrm{~m}, 4 \mathrm{H})$, 3.73 (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=6.4$,
10.7 Hz, 1H), $2.13(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 155.3,152.5,147.7,142.8,124.5,83.6,75.5,63.4$, 62.8, 61.7, 44.1, 32.7, 28.4, 20.5, 18.6, 14.3.
(rel) - (1'R,3'R)-Diethyl \{9-(3'-methyl-3'-ethyl-tetrahydrofuran-1'-yl) 2-fluoro-6-aminopurine\} phosphonate (62a) and (rel)$\left(1^{\prime} R, 3^{\prime} R\right)$ - diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ methyl-3'-ethyl-tetrahydrofuran-1'-yl) 2-amino-6-chloropurine\} phosphonate (62b): Ammonolysis of 61 was performed using the similar procedure as described for 55: Data for 62a; yield 13%; UV (MeOH) $\lambda_{\max } 261.5 \mathrm{~nm} ;{ }^{1} \mathrm{H} \mathrm{NMR}$ (DMSO $-d_{6}$, $300 \mathrm{MHz}) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.76\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 5.94(\mathrm{dd}, J=2.2,6.2$. $\mathrm{Hz}, 1 \mathrm{H}), 4.14-4.10(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=6.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.09$ (m, 3H), 1.69 (m, 2H), 1.25 ($\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 155.0, 152.5, $147.2,143.8,125.6,84.2,75.7,62.4,61.7,43.8,33.0,27.6,20.6$, 18.9, 14.3; Data for 62 b ; yield 42%; UV (MeOH) $\lambda_{\max } 309.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 8.15$ (s, 1H), 7.68 (br s, NH ${ }_{2}, 2 \mathrm{H}$), 5.96 (dd, $J=2.4,6.4, H z, 1 \mathrm{H}), 4.14-4.09(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.59(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.28$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 157.8,153.8,151.5,143.7$, $125.7,85.0,74.6,62.7,62.0,61.5,44.1,33.2,27.5,21.2,18.9,16.2$, 15.1.

$$
(r e l)-\left(1^{\prime} R, 3^{\prime} R\right)-9-\left\{\left(3^{\prime}-\right.\right.\text { Methyl-3'-ethyl-tetrahydrofuran-1'-yl) }
$$

guanine\} phosphonic acid (63): Nucleoside phosphonic acid 23 was
prepared from 62 b by the similar hydrolysis conditions used for 60: yield 62%; UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\text {max }} 253.5 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right.$) $\delta 10.9$ (br s, NH, 1H), 8.07 (s, 1H, H-8), 6.98 (br s, NH2, 2H), 5.95 (dd, $\left.J=2.3,6.6 . \mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 3.72$ (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ 'a), 3.62 (d, $\left.J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 2.34\left(\mathrm{dd}, J=6.4,10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{a}\right)$, 2.18-2.10 (m, 3H, H-3'b, PCH 2), $1.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}, \mathrm{H}-5^{\prime} \mathrm{b}\right), 1.27$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 157.7,154.8,152.4,136.2$, 118.5, 75.8, 73.1, 45.3, 33.1, 28.5, 22.4, 20.3; MS m/z $344(\mathrm{M}+\mathrm{H})^{+}$. $1-(t-$

Butyldimethylsilanyloxymethyl)cyclopropanecarbaldehyde(65): To a stirred solution of oxalyl chloride ($254 \mathrm{mg}, 2.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (12 mL) was added a solution of DMSO ($234 \mathrm{mg}, 3.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8.0 mL) dropwise at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred at $78^{\circ} \mathrm{C}$ for 10 min , and a solution of alcohol $64(216 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (12 mL) was added dropwise. The mixture was stirred at $78^{\circ} \mathrm{C}$ for 20 min and TEA (608 mg, 6.01 mmol) was added. The resulting mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for $30 \mathrm{~min} . \mathrm{H}_{2} \mathrm{O}$ (30 mL) was added, and the solution was stirred at room temperature for 30 min. The mixture was diluted with water (150 mL) and then extracted with EtOAc 150 mL two times. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel column chromatography (EtOAc/hexane,

1:20) to give aldehyde compound 65 (199 mg, 93\%) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.79$ (s, 1H), 3.99 (s, 2H), 0.75-0.63 (m, $4 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 204.2$, 73.5, 25.4, 18.42, 8.7, -5.5.
t-Butyldimethyl-(1-vinyl-cyclopropylmethoxy)silane (66): To ylide solution [methyltriphenylphosphonium iodide (376 mg, 0.925 mmol), triphenylphosphine ($28.5 \mathrm{mg}, 0.11 \mathrm{mmol}$), $1.6 \mathrm{M} \quad n-$ butyllithium solution ($0.578 \mathrm{~mL}, 0.925 \mathrm{mmol}$) in dry tetrahydrofuran (7.0 mL) at $-78^{\circ} \mathrm{C}$, was dropwise added to a solution of olefin 65 (198 $\mathrm{mg}, 0.925 \mathrm{mmol}$) in dry THF (7 mL). The reaction mixture was warmed to room temperature and stirred for 5 h , quenched by saturated sodium bicarbonate solution. The reaction mixture was partitioned between saturated sodium bicarbonate solution and ethyl acetate. The organic layer was separated and the aqueous layer was extracted with ethyl acetate. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated in vacuum and chromatographed (hexane-EtOAc, 20:1) to afford 66 ($161 \mathrm{mg}, 82 \%$) as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.34(\mathrm{~m}, 1 \mathrm{H}), 5.05-$ $4.96(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.35-$ $0.31(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 148.8,109.3$, 77.6, 25.5, 24.8, 18.4, 6.4, -5.3.
$2-[1-(t$-Butyldimethylsilanyloxymethyl) cyclopropyl] ethanol (67): Anhydrous tetrahydrofuran (THF) solution of 1 M borane/THF
complex ($11.1 \mathrm{~mL}, 11.1 \mathrm{mmol}$) was stirred at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere and was treated dropwise with compound 66 (1.0 g, 4.715 mmol) in THF (10 mL). The solution was stirred at room temperature for 2.5 h . After cooling, the mixture was subsequently treated with THF/ $\mathrm{H}_{2} \mathrm{O}(8.5 \mathrm{~mL}, 1: 1, \mathrm{v} / \mathrm{v}), 2 \mathrm{~N} \mathrm{NaOH}(8.85 \mathrm{~mL})$, and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (7.35 mL). The turbid mixture was stirred at room temperature for 2 h. Diethylether (50 mL) was added to the reaction mixture, which was then washed twice with ice/water (15 mL) and saturated NaCl solution (15 mL). After drying over anhydrous MgSO_{4}, the solvents were evaporated and the residue was purified by silica gel column chromatography (EtOAc/hexane, 1:10) to give compounds 67 (738 $\mathrm{mg}, 68 \%)$ as colorless oils. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.72(\mathrm{~m}, 2 \mathrm{H})$, $3.49(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.94-0.90(\mathrm{~m}, 2 \mathrm{H})$, $0.81(\mathrm{~s}, 9 \mathrm{H}), 0.37-0.32(\mathrm{~m}, 2 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 77.5,59.1,41.3,25.6,18.7,17.3,6.1,-5.5$.
[1-(t-Butyldimethylsilanyloxymethyl) cyclopropyl] acetaldehyde (68): Aldehyde 68 was synthesized from 67 using the similar Swern oxidation conditions described for 65 . Yield $91 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 2 \mathrm{H}), 1.01-0.94(\mathrm{~m}, 2 \mathrm{H})$, $0.82(\mathrm{~s}, 9 \mathrm{H}), 0.35-0.30(\mathrm{~m}, 2 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 199.7,78.2,53.4,25.3,18.2,15.8,7.2,-5.3$.
$(\pm)-1-[1-(t$-Butyldimethylsilanyloxymethyl) cyclopropyl] but-3-en-2-ol (69): To a solution of 68 ($1.1 \mathrm{~g}, 4.8 \mathrm{mmol}$) in dry THF (10
mL), vinyl magnesium bromide ($5.28 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) was slowly added at $-30^{\circ} \mathrm{C}$ and stirred 5 h at $0^{\circ} \mathrm{C}$. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (6 mL) was added to the mixture, which was slowly warmed to rt. The mixture was diluted with water (80 mL) and extracted with EtOAc (80 mL) two times. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:13) to give 69 ($935 \mathrm{mg}, 76 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.91-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.22(\mathrm{~m}, 2 \mathrm{H})$, $3.92(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.82-$ $0.79(\mathrm{~s}, 11 \mathrm{H}), 0.36-0.32(\mathrm{~m}, 1 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 141.3,114.6,80.1,71.5,45.7,25.3,18.6,16.1,6.9,-5.6$. (\pm)-t-Butyl- \{1-[2-(4-methoxybenzyloxy)-but-3-enyl] cyclo propylmethoxy\} dimethylsilane (70): NaH (60% in mineral oil, 78.6 $\mathrm{mg}, 1.99 \mathrm{mmol})$ was added portion-wise to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of alcohol 69 ($426 \mathrm{mg}, 1.662 \mathrm{mmol}$) and p-methoxybenzyl chloride ($0.246 \mathrm{~mL}, 1.82 \mathrm{mmol}$) in anhydrous DMF (10 mL). The reaction mixture was stirred overnight at room temperature. The solvent was removed in vacuo and the residue was diluted with $\mathrm{H}_{2} \mathrm{O}$ (80 mL) followed by extraction with diethyl ether (80 mL) two times. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:15) to give 70
(419 mg, 67\%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.28-$ $7.22(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.21(\mathrm{~m}, 2 \mathrm{H})$, $4.64(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~m}$, $2 \mathrm{H}), 1.15-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.67-0.63(\mathrm{~m}, 2 \mathrm{H}), 0.35-0.31$ $(\mathrm{m}, 1 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 159.7, 141.5, $133.3,127.6,121.4,115.8,114.5,80.4,73.5,46.2,25.5,18.5,16.2$, 7.3, -5.4.
(\pm) - \{1-[2-(4-Methoxybenzyloxy)-but-3-enyl] cyclopropyl $\}$ methanol (71): To a solution of $70(1.63 \mathrm{~g}, 4.33 \mathrm{mmol})$ in THF (15 mL), TBAF ($5.11 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight at rt and concentrated in vacuum. The residue was purified by silica gel column chromatography (Hexane/ EtOAc, $4: 1$) to give $71(920 \mathrm{mg}, 81 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $7.33-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.91-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.25-$ $5.20(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 3 \mathrm{H}), 1.40(\mathrm{~m}$, $2 \mathrm{H}), 1.07-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.43-0.38(\mathrm{~m}, 2 \mathrm{H}), 0.19-0.15(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 159.4,141.7,132.4,127.9,118.1,115.0$, $77.2,74.1,73.4,56.0,45.3,13.5,6.5$.
(\pm)-1-[2-(4-Methoxy-benzyloxy)-but-3-enyl] cyclopropane carbaldehyde (72): Aldehyde derivative 72 was synthesized from 71 by the similar Swern oxidation procedure as described for 65 or 68: yield $88 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.24(\mathrm{~m}$, 2H), 6.91-6.85 (m, 2H), 5.90-5.88 (m, 1H), 5.24-5.19 (m, 2H),
$4.65(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.11-$ $1.05(\mathrm{~m}, 1 \mathrm{H}), 0.69-0.63(\mathrm{~m}, 2 \mathrm{H}), 0.32-0.27(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 200.7,159.3,141.1,130.7,129.3,117.0,114.2$, 74.2, 73.3, 55.4, 41.3, 29.1, 13.6, 7.1.

$$
(r e I)-(1 R, 4 S) \text { and }(1 S, 4 S)-4-\text { Vinyl-2-spirocyclopropyl-tetrahy }
$$ drofuran-1-ol (73): To a solution of compound 72 ($80.9 \mathrm{mg}, 0.311$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL}, 10: 1 \mathrm{v} / \mathrm{v})$ was added DDQ (70.6 mg , 0.311 mmol), and the mixture was stirred overnight at room temperature. Saturated $\mathrm{NaHCO}_{3}(0.4 \mathrm{~mL})$ was added to quench the reaction, which was then stirred for 3 h at room temperature. The mixture was diluted with water (60 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 60 \mathrm{~mL}$). The combined organic layer was dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated in vacuum and the residue was purified by silica gel column chromatography (EtOAc/hexane, 1:3) to give compound 73 (27 mg, 63\%): ${ }^{1} \mathrm{H}$ NMR (DMSO-d6, 300 MHz) $\delta 5.92-5.88$ (m, 1H), 5.47 (m, 1H), 5.25-5.22 (m, 2H), 4.45-4.41 (m, 1H), 1.78-1.75 (m, 2H), 1.09-1.02 (m, 1H), $0.70-0.63(\mathrm{~m}, 2 \mathrm{H}), 0.33-0.26(\mathrm{~m}, 1 \mathrm{H})$.

(\pm)-Acetic acid (4-vinyl-2-spirocyclopropyl-tetrahydrofuran-1yl) ester (74): To a solution of compound 73 ($450 \mathrm{mg}, 3.21 \mathrm{mmol}$) and DMAP (20 mg) in anhydrous pyridine (8 mL), $\mathrm{Ac}_{2} \mathrm{O}$ (491 mg , 4.81 mmol) was slowly added, and the mixture was stirred overnight under nitrogen. The pyridine was evaporated under reduced pressure
and co-evaporated with toluene. The residue was diluted with $\mathrm{H}_{2} \mathrm{O}$ (100 mL), extracted with EtOAc (100 mL), dried over MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/ hexane, $1: 20$) to give compound 74 ($503 \mathrm{mg}, 86 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) \delta 18(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.86$ $(\mathrm{m}, 1 \mathrm{H}), 5.26-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.42(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.79-$ $1.74(\mathrm{~m}, 2 \mathrm{H}), 1.10-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.69-0.62(\mathrm{~m}, 2 \mathrm{H}), 0.35-0.28(\mathrm{~m}$, 1H).
$($ rel $)-\left(1^{\prime} S, 4^{\prime} S\right)-9-\left(4^{\prime}-\right.$ Vinyl-2'-spirocyclopropyl-tetrahydrofuran $\left.-1^{\prime}-\mathrm{yl}\right) 6$-chloropurine (75a) and (rel)-(1'R,4'S)-9-(4'-vinyl-2'-spirocyclopropyl-tetrahydrofuran-1'-yl) 6-chloropurine (75b): 6Chloropurine ($216 \mathrm{mg}, 1.4 \mathrm{mmol}$), anhydrous HMDS (10 mL), and a catalytic amount of ammonium sulfate (14 mg) were refluxed to a clear solution, and the solvent was distilled under anhydrous conditions. The residue was dissolved in anhydrous 1,2-dichloro ethane (8 mL). To this mixture, a solution of 74 ($255 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry DCE (10 mL) and TMSOTf (311 mg , 1.4 mmol) was added, and the resulting mixture was stirred for 12 h at rt . The reaction mixture was quenched with 5.0 mL of saturated NaHCO_{3} and stirred for 1 h . The resulting solid was filtered through a Celite pad, and the filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (80 mL) two times. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated
under vacuum. The residue was purified by silica gel column chromatography (EtOAc/hexane/MeOH, 4:1:0.01) to give compound 75a (52 mg, 32\%) and 75b (54 mg, 33\%): data for 75a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.23(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=$ $10.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, J=10.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.08-1.02(\mathrm{~m}, 1 \mathrm{H})$, $0.71-0.65(\mathrm{~m}, 2 \mathrm{H}), 0.38-0.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 151.7, 151.4, 151.0, 144.4, 141.4, 131.7, 114.5, 98.5, 73.5, 41.2, 26.4, 14.3, 7.1; data for $75 \mathrm{~b}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.73$ (s, 1H), $8.38(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.21(\mathrm{~m}$, $2 H), 4.45(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=10.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{dd}, J=10.7$, 8.0 Hz, 1H), 1.10-1.04 (m, 1H), 0.69-0.62 (m, 2H), 0.36-0.31 (m, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 151.5,151.0,150.7,144.1,141.2$, 131.3, 114.1, 97.1, 74.2, 43.5, 27.8, 13.8, 6.5.

$$
(r e l)-\left(1^{\prime} R, 4^{\prime} S\right) \text {-Diethyl }\left\{9-\left(4^{\prime}-\right.\text { vinyl-2'-spirocyclopropyl-tetrahy }\right.
$$ drofuran $-1^{\prime}-$ yl) 6 -chloropurine phosphonate (76): To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4.0 mL) solution of 6 -chloropurine derivative 75 b ($150 \mathrm{mg}, 0.542 \mathrm{mmol}$) and diethyl vinylphosphonate ($355 \mathrm{mg}, 2.168 \mathrm{mmol}$), $2^{\text {nd }}-$ generation Grubbs catalyst ($18.42 \mathrm{mg}, 0.0217 \mathrm{mmol}$) was added. The reaction mixture was refluxed for 24 h under dry argon gas and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/n-Hexane/MeOH, 4:1:0.02) to give 76 (136 $\mathrm{mg}, 61 \%)$ as a form: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.34$

(s, 1H) , 6.68 (dd, $J=17.0,22.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=17.1,19.4 . \mathrm{Hz}$, $1 \mathrm{H}), 5.98$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.06(\mathrm{~m}, 4 \mathrm{H}), 1.85$ (dd, $J=10.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=10.6,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~m}$, $6 \mathrm{H}), 1.09-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.71-0.65(\mathrm{~m}, 2 \mathrm{H}), 0.31-0.24(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 151.6,151.4,151.1,149.6,145.6,132.3$, $116.7,97.2,74.6,63.8,63.3,41.7,24.7,15.2,13.2,7.2$.
(rel) - ($\left.1^{\prime} R, 4^{\prime} S\right)$-Diethyl $\left\{9-\left(4^{\prime}-\right.\right.$ vinyl-2'-spirocyclopropyl-tetrahy drofuran-1'-yl) adenine\} phosphonate (77): A solution of 76 (166 mg , 0.4 mmol) in saturated methanolic ammonia (7 mL) was stirred overnight at $64^{\circ} \mathrm{C}$ in a steel bomb, and the volatiles were evaporated. The residue was purified by silica gel column chromatography (MeOH $\left./ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 10\right)$ to give $77(92 \mathrm{mg}, 59 \%)$ as a white solid: mp $179-$ $181{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 260.5 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) ~ \delta$ $8.38(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=17.0,21.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}$, $J=17.0,19.0 . \mathrm{Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H})$, 4.13-4.05 (m, 4H), 1.82 (dd, $J=10.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.70$ (d, $J=10.7$, 8.6 Hz, 1H), $1.37(\mathrm{~m}, 6 \mathrm{H}), 1.11-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.64-0.60(\mathrm{~m}, 2 \mathrm{H})$, $0.27-0.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 155.3,152.6,150.4$, $148.8,141.7,119.2,116.8,96.9,73.8,62.8,62.4,42.4,25.8,16.7$, 12.9, 6.6.

$$
(\text { rel })-\left(1^{\prime} R, 4^{\prime} S\right)-9-\left(4^{\prime}-\right.\text { Vinyl-2'-spirocyclopropyl-tetrahydrofuran }
$$ $-1^{\prime}-\mathrm{yl}$) adenine phosphonic acid (78): To a solution of the phosphonate 77 ($165 \mathrm{mg}, 0.419 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$

and 2,6-lutidine ($0.898 \mathrm{~mL}, 8.38 \mathrm{mmol}$) was added trimethylsilyl bromide ($641 \mathrm{mg}, 4.19 \mathrm{mmol}$). The mixture was heated overnight at $75{ }^{\circ} \mathrm{C}$ under nitrogen gas and then concentrated in vacuo. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and purified water (100 $\mathrm{mL})$. The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 70 \mathrm{~mL})$ and then freeze-dried to give phosphonic acid 78 (107 mg, 76\%) as a yellowish foam: UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max } 261.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ $\mathrm{MHz}) \delta 8.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 6.64(\mathrm{dd}, J=17.0$, $\left.21.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 6.17\left(\mathrm{dd}, J=17.2,18.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 5.97$ (dd, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCH}), 4.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 1.85(\mathrm{dd}, \mathrm{J}=10.6,6.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3{ }^{\prime} \mathrm{a}$), 1.67 (dd, 10.6, $8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{b}$), 1.13-1.08 (m, 1H, $\left.H-1^{\prime \prime} \mathrm{a}\right), 0.66-0.61$ (m, 2H, H-1"b, H-2"a), 0.31-0.27 (m, 1H, H$\left.2^{\prime \prime} \mathrm{b}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta$ 155.5, 152.4, 150.5, 149.5, 141.6, 120.1, 116.3, 98.6, 74.5, 41.3, 25.7, 13.2, 7.1.
(rel) - ($\left.1^{\prime} R, 4^{\prime} S\right)$-Diethyl $\left\{9-\left(4^{\prime}-\right.\right.$ ethyl-2'-spirocyclopropyl-tetrahy drofuran-1'-yl) 6-chloropurine\} phosphonate (79): A solution of vinyl phosphonate nucleoside analogue 76 ($225 \mathrm{mg}, 0.546 \mathrm{mmol}$) in methanol (6 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(8 \mathrm{mg})$ and cyclohexene (3 mL) under Ar. The reaction mixture was refluxed for 20 h . The reaction mixture was filtered through a pad of Celite, evaporated, and purified by silica gel column chromatography using methanol and methylene chloride (10:1) to give ethyl phosphonate analogue 79 (172 mg, 76\%) as a white solid: mp $174-176{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$
$\mathrm{MHz}) \delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-$ $4.11(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 4 \mathrm{H}), 1.63(\mathrm{~m}, 6 \mathrm{H}), 1.09-$ $1.04(\mathrm{~m}, 1 \mathrm{H}), 0.62-0.57(\mathrm{~m}, 2 \mathrm{H}), 0.29-0.23(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 151.7,151.5,151.1,145.1,132.4,98.4,71.5,62.9$, 62.4, 42.0, 25.3, 19.4, 14.2, 13.1, 7.3.
(rel) - ($\left.1^{\prime} R, 4^{\prime} S\right)$-Diethyl $\left\{9-\left(4^{\prime}-\right.\right.$ ethyl-2'-spirocyclopropyl-tetrahy drofuran $-1^{\prime}-\mathrm{yl}$) adenine\} phosphonate (80): Adenine derivative 80 was prepared from 6-chloropurine analogue 79 by the similar ammonolysis procedure as described for 77: yield 54%; mp 172$174{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 261.5 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) \delta$ $8.34(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.07(\mathrm{~m}$, 4H), 3.76 (m, 1H), 2.18-2.12 (m, 4H), 1.60-1.55 (m, 6H), 1.11$1.07(\mathrm{~m}, 1 \mathrm{H}), 0.65-0.59(\mathrm{~m}, 2 \mathrm{H}), 0.34-0.27(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 75 \mathrm{MHz}\right) \delta 155.6,152.5,151.4,141.5,120.1,99.1,72.6$, 63.2, 62.8, 41.7, 24.8, 19.1, 15.4, 14.3, 6.8.
(rel) - ($\left.1^{\prime} R, 4^{\prime} S\right)-\left\{9-\left(4^{\prime}-\right.\right.$ Ethyl-2'-spirocyclopropyl-tetrahydrofuran $-1^{\prime}-\mathrm{yl}$) adenine\} phosphonic acid (81): Phosphonic acid 81 was synthesized from 80 using the similar hydrolysis condition as described for 78 : yield 78%, UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\max } 261.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta 8.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 5.92$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), $3.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 2.12-2.07\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{a}, \mathrm{H}-3^{\prime} \mathrm{b}\right.$, $\mathrm{H}-5^{\prime} \mathrm{a}, \mathrm{H}-5^{\prime} \mathrm{b}, \mathrm{PCH}_{2}$) , 1.12-1.08 (m, 1H, H-1'a), 0.67-0.59 (m, 2H, $\left.\mathrm{H}-1^{\prime \prime} \mathrm{b}, \mathrm{H}-2^{\prime \prime} \mathrm{a}\right), 0.36-0.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime} \mathrm{b}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75$

MHz) $\delta 155.3,152.5,150.6,141.7,119.4,97.8,72.5,41.5,28.4,25.3$, 19.1, 13.7, 7.2.
$($ reI $)-\left(1^{\prime} S, 4^{\prime} S\right)-\left(4^{\prime}-\right.$ Vinyl-2'-spirocyclopropyl-tetrahydrofuran-$\left.1^{\prime}-\mathrm{yl}\right)$ 2-fluoro-6-chloropurine (82a) and (rel)-(1'R,4'S)-($4^{\prime}-$ vinyl-2'-spirocyclopropyl-tetrahydrofuran-1'-yl) 2-fluoro-6chloropurine (82b): Condensation of 74 with 2-fluoro-6chloropurine under the similar Vorbruggen condensation conditions as described for 75 a and 75 b to give 82 a and 82 b, respectively: data for 82a: yield 31%; UV (MeOH) $\lambda_{\max } 268.0 \mathrm{~nm} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.22(\mathrm{~m}, 2 \mathrm{H})$, $4.45(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=10.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=10.5,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.14-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.69-0.64(\mathrm{~m}, 2 \mathrm{H}), 0.32-0.21(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 154.7,152.1,149.3,147.7,144.6,141.2$, 128.4, 115.2, $98.5,72.5,41.2,25.3,13.6,7.8$. data for 82 b : yield 30%; UV (MeOH) $\lambda_{\text {max }} 269.5 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 8.45(\mathrm{~s}$, $1 \mathrm{H}), 5.95(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.21(\mathrm{~m}, 2 \mathrm{H}), 4.47$ (m, 1H), 1.86 (dd, $J=10.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (dd, $J=10.6,8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.09-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.66-0.60(\mathrm{~m}, 2 \mathrm{H}), 0.29-0.22 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 154.4,151.8,148.9,147.2,143.8,140.7,128.5$, 114.8, 99.2, 73.3, 40.9, 24.8, 14.2, 6.9.
(rel) - (1'R,4'S) -Diethyl \{9-(4'-vinyl-2'-spirocyclopropyl-tetrahy drofuran $\left.-1^{\prime}-y l\right) 2$-fluoro-6-chloropurine $\}$ phosphonate (83): Phosphonate nucleoside analogue 83 was prepared from 82 b using the
similar cross metathesis procedure as described for 76 : yield $61 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{dd}, ~ J=21.4,17.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.22(\mathrm{dd}, J=19.2,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.14-4.09 (m, 4H), 1.84 (dd, $J=10.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (dd, $J=$ 10.7, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~m}, 6 \mathrm{H}), 1.08-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.59-0.52(\mathrm{~m}$, 2H), 0.28-0.23 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 154.8,152.4$, $149.2,144.7,130.4,115.8,98.2,74.7,62.9,62.5,41.2,21.8,13.7$, 7.5.
(rel)-(1'R,4'S)-Diethyl \{9-(4'-vinyl-2'-spirocyclopropyl-tetrahy drofuran $-1^{\prime}-y l$) 2-fluoro-6-aminopurine\} phosphonate (84a) and (reI) - (1'R,4'S)-diethyl $\left\{9-\left(4^{\prime}-\right.\right.$ vinyl-2'-spirocyclopropyl-tetrahy drofuran-1'-yl) 2-amino-6-chloropurine\} phosphonate (84b): Dry ammonia gas was bubbled into a stirred solution of 83 ($210 \mathrm{mg}, 0.487$ mmol) in DME (8.5 mL) at room temperature overnight. The salts were removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 10$) to give $84 \mathrm{a}(34 \mathrm{mg}, 17 \%)$ and 84b (93 mg, 45\%), respectively: Data for 84a; UV (MeOH) $\lambda_{\max }$ $260.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}$) $\delta 8.19$ ($\mathrm{s}, 1 \mathrm{H}$), 7.75 (br s, $\left.\mathrm{NH}_{2}, 2 \mathrm{H}\right), 6.67$ (dd, $\left.J=20.8,17.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.24$ (dd, $J=20.8,17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.08(\mathrm{~m}, 4 \mathrm{H}), 1.69(\mathrm{~s}, 6 \mathrm{H})$, $1.06-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.62-0.54(\mathrm{~m}, 2 \mathrm{H}), 0.30-0.23(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 155.5,152.2,148.8,147.2,142.5,124.7,117.5$,
97.6, 74.2, 63.5, 62.9, 62.4, 40.9, 25.3, 13.9, 8.0; Data for 84 b ; UV (MeOH) $\lambda_{\max } 308.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 8.12(\mathrm{~s}$, $1 \mathrm{H}), 7.67\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 6.70(\mathrm{dd}, J=21.6,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}$, $J=17.0,21.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.06(\mathrm{~m}, 4 \mathrm{H})$, 3.75 (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=6.4$, $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 6 \mathrm{H}), 1.11-1.06(\mathrm{~m}, 1 \mathrm{H})$, $0.67-0.59(\mathrm{~m}, 2 \mathrm{H}), 0.34-0.29(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $158.5,154.3,151.2,149.5,141.6,124.5,117.5,97.7,73.6,63.2,62.8$, 41.6, 24.7, 14.2, 7.6.
$($ rel $)-\left(1^{\prime} R, 4^{\prime} S\right)-9-\left\{\left(4^{\prime}-\right.\right.$ vinyl-2'-spirocyclopropyl-tetrahydrofuran $-1^{\prime}-\mathrm{yl}$) guanine\} phosphonic acid (85): To a solution of 84 b (135 mg , $0.316 \mathrm{mmol}) \mathrm{dry} \mathrm{CH}_{3} \mathrm{CN}(13 \mathrm{~mL})$ was added trimethylsilyl bromide ($0.0728 \mathrm{~mL}, 5.52 \mathrm{mmol}$) at room temperature. After this mixture was stirred for 24 h , the solvent was removed, co evaporating three times with methanol. The residue was dissolved in MeOH (13.0 mL) and 2mercaptoethanol ($86.4 \mu \mathrm{~L}, 1.266 \mathrm{mmol}$) and $\mathrm{NaOMe}(67.2 \mathrm{mg}, 1.266$ mmol) was added to the mixture. The mixture was refluxed for 12 h under N_{2}, cooled, neutralized with glacial AcOH , and evaporated to dryness under vacuum. The residue was purified by chromatography on a column of preparative reversed-phase C18 silica gel eluting water to give $85(34.5 \mathrm{mg}, 64 \%)$ as a yellowish form. UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max }$ $254.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) \delta 10.6$ (br s, NH, 1H), 8.12 (s, 1H, H-8), $7.05\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 6.65(\mathrm{dd}, J=20.4,17.6 \mathrm{~Hz}, 1 \mathrm{H}$,
$\left.\mathrm{H}-1^{\prime}\right), 6.14\left(\mathrm{dd}, J=19.3,17.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 5.94(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{PCH}), 4.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 1.82\left(\mathrm{dd}, J=6.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{a}\right)$, $1.74\left(\mathrm{dd}, J=8.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime} \mathrm{b}\right), 1.12-1.05$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime} \mathrm{a}$), 0.67-0.61 (m, 2H, H-1'b, H-2"'a), 0.32-0.27 (m, 1H, H-2"b) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 157.6,154.5,152.5,148.9,136.5,117.5$, 114.7, 98.5, 75.4, 63.4, 62.8, 41.7, 25.3, 13.1, 7.9; Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P}\left(+1.0 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}, 42.05 ; \mathrm{H}, 4.88 ; \mathrm{N}, 18.86$; Found: C, 42.08; H, 4.90; N, 18.85; MS m/z $354(\mathrm{M}+\mathrm{H})^{+}$.
(rel)-(1'R,4'S)-Diethyl \{9-(4-ethyl-tetrahydrofuran-1-yl) 2-fluoro-6-chloropurine\} phosphonate (86): Compound 86 was synthesized from 83 by the similar transfer catalytic hydrogenation procedure as described for 79 : yield 66%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.11(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}$, $1 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 4 \mathrm{H}), 1.11-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.61-0.55(\mathrm{~m}, 2 \mathrm{H})$, $0.31-0.27(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 154.7,152.1,147.5$, 144.6, 127.9, 98.3, 70.4, 63.6, 62.1, 41.7, 28.7, 25.5, 19.1, 13.9, 6.6.

$$
(r e l)-\left(1^{\prime} R, 4^{\prime} S\right)-\text { Diethyl }\{9-(4-\text { ethyl-tetrahydrofuran-1-yl) } 2-
$$ fluoro-6-aminopurine\} phosphonate (87a) and (rel)-($\left.1^{\prime} R, 4^{\prime} S\right)$ diethyl $\{9$ - (4-ethyl-tetrahydrofuran-1-yl) 2-amino-6chloropurine\} phosphonate (87b): Ammonolysis of 86 using the same procedure described for 84 a and 84 b to gave 87 a and 87 b , respectively: Data for 87 a ; yield 15%; UV (MeOH) $\lambda_{\max } 261.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.76\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$

exchangeable), 5.98 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 (m, 1H), 2.54-2.44 (m, $4 \mathrm{H}), 1.63(\mathrm{dd}, J=8.0,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{dd}, J=6.0,10.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.42(\mathrm{~m}, 6 \mathrm{H}), 0.99-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.54-0.47(\mathrm{~m}, 2 \mathrm{H}), 0.21-0.16(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 154.8,152.0,147.1,142.8,124.3$, $97.5,72.1,63.2,62.5,61.9,43.0,29.5,24.6,18.5,13.5,8.1$. Data for 87b; yield 41%; UV (MeOH) $\lambda_{\max } 307.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ MHz) $\delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.68$ (br s, $\mathrm{NH}_{2}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 5.96 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.30(\mathrm{~m}, 4 \mathrm{H}), 1.70(\mathrm{dd}, J=8.5$, $10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.54 (dd, $J=6.2 \mathrm{~Hz}, 10.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.35 (m, 6H), $1.02-$ $0.91(\mathrm{~m}, 1 \mathrm{H}), 0.56-0.48(\mathrm{~m}, 2 \mathrm{H}), 0.22-0.18(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 157.8,153.2,150.6,143.5,124.8,98.5,77.7,63.2$, 62.6, 42.1, 29.4, 24.7, 18.8, 13.1, 7.4.

$$
(r e l)-\left(1^{\prime} R, 4^{\prime} S\right)-9-\{(4-\text { Ethyl-tetrahydrofuran-1-yl) guanine }\}
$$

phosphonic acid (88): Nucleoside phosphonic acid 88 was synthesized by the hydrolysis conditions used for 85 . Yield 56%; UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\max }$ $253.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d, 300 MHz) $\delta 10.5$ (br s, NH, $1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $8.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.01\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 5.95 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.76 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 2.30-2.23 (m, 4H, H-5'a, H-5'b, PCH_{2}), $1.67(\mathrm{dd}, J=8.2,10.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3$ 'a), 1.52 (dd, $J=6.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$ 'b), $0.98-0.90$ (m , $\left.1 H, H-1^{\prime \prime} \mathrm{a}\right), 0.48-0.41$ (m, 2H, H-1"b, H-2"a), 0.24-0.19 (m, 1H, $\left.\mathrm{H}-2^{\prime \prime} \mathrm{b}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 157.5,154.3,152.1,136.7$, 118.0, 96.2, 74.3, 63.4, 62.9, 42.5, 28.7, 25.2, 19.0, 14.3, 7.6; Anal.

Calc. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P}\left(+2.0 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}, 39.90 ; \mathrm{H}, 5.66 ; \mathrm{N}, 17.89$; Found: C, 39.88; H, 5.68; N, 17.91; MS m/z $356(\mathrm{M}+\mathrm{H})^{+}$.
(\pm)-1-[1-(t-Butyldimethylsilanyloxymethyl)Allyl] CycloPropane carboxylic Acid Ethyl Ester (91). A solution of ester derivative 90 ($444 \mathrm{mg}, 1.63 \mathrm{mmol}$) in t-butyl alcohol (5.0 mL) was added to a stirred mixture of potassium tbutoxide ($738 \mathrm{mg}, 6.60 \mathrm{mmol}$) in $t-$ butyl alcohol (5.0 mL). After the mixture was stirred at room temperature for 20 min , potassium iodide ($546 \mathrm{mg}, 3.3 \mathrm{mmol}$) and (2 - chloroethyl) dimethylsulfonium iodide ($768 \mathrm{mg}, 3.06 \mathrm{mmol}$) were added in portions under a stream of nitrogen. The mixture was stirred at room temperature for 2.0 h , diluted with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL), and extracted with ether ($2 \times 120 \mathrm{~mL}$). The combined organic layer was washed with brine, dried under anhydrous magnesium sulfate and concentrated. The residue was purified by column chromatography (EtOAc/hexane, 1:20) on silica gel to give cyclopropanoid 91 ($150 \mathrm{mg}, 31 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $5.72-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.81(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~m}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01-0.96(\mathrm{~m}$, $2 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.27-0.21(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 184.3,143.2,115.1,65.3,61.3,51.4,25.5,24.1,18.4$, $10.2,-5.3$
(\pm)-3-Vinyl-2-spiropropyl-dihydrofuran-1-one (92). To a solution of $91(1.1 \mathrm{~g}, 3.68 \mathrm{mmol})$ in THF (6 mL), TBAF ($4.4 \mathrm{~mL}, 1.0$

M solution in THF) was added at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred overnight at RT and concentrated in vacuo. The residue was purified by silica gel column chromatography (Hexane/EtOAc, 8:1) to give 92 (274 mg, 54\%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.71-5.67(\mathrm{~m}, 1 \mathrm{H})$, 5.04-4.98 (m, 2H), 4.34 (dd, $J=6.6,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24$ (dd, $J=8.2$, 10.2 Hz, 1H), $2.78(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~m}, 2 \mathrm{H}), 0.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 184.8,143.6,115.3,71.4,44.3,33.8,15.7,10.4$.
(\pm)-3-Vinyl-2-spiropropyl-dihydrofuran-1-ol (93). To a cooled $\left(-78^{\circ} \mathrm{C}\right)$, stirred solution of lactone 92 ($450 \mathrm{mg}, 3.25 \mathrm{mmol}$) in dry toluene (10 mL) was added dropwise a 1.0 M solution of diisobutylaluminium hydride (DIBALH) ($3.58 \mathrm{~mL}, 3.58 \mathrm{mmol}$). The reaction was stirred for 20 min . at $-78^{\circ} \mathrm{C}$, followed by dropwise addition of methanol (3.5 mL) and diluted with ethyl acetate (50 mL). The reaction mixture was warmed to room temperature and stirred for 1 h , and the precipitate was removed by filtration through a pad of Celite, washed with ethyl acetate. The filtrate and washings were concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc/hexane, 1:12) to give 93 (323 mg , $71 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.74-5.68(\mathrm{~m}$, $1 \mathrm{H}), 5.47$ (m, 1H), 5.03-4.95 (m, 2H), 3.77-3.68 (m, 2H), 2.53$2.49(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.95(\mathrm{~m}, 2 \mathrm{H}), 0.35-0.30(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 141.5,140.9,115.4,110.2,109.7,62.2,61.8$, 45.3, 40.2, 39.8, 16.3, 15.9, 10.7.

$$
(\pm) \text {-Acetic Acid 3-Vinyl-2-spiropropyl-dihydrofuran-1-yl }
$$ Ester (94). To a solution of compound 93 ($124 \mathrm{mg}, 0.88 \mathrm{mmol}$) in anhydrous pyridine (6 mL) , $\mathrm{Ac}_{2} \mathrm{O}$ ($132 \mathrm{mg}, 1.31 \mathrm{mmol}$) was slowly added, and the mixture was stirred overnight under nitrogen. The pyridine was evaporated under reduced pressure and co-evaporated with toluene. The residue was diluted with $\mathrm{H}_{2} \mathrm{O}$ (60 mL), extracted with EtOAc $(2 \times 60 \mathrm{~mL})$. The combined organic layer was dried over MgSO_{4} and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromategraphy (EtOAc/hexane, 1:20) to give compound 94 (142 mg, 88\%) as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) ~ \delta ~ 6.22-6.19(\mathrm{~m}, 1 \mathrm{H})$, 5.75-5.70 (m, 1H), 5.04-4.96 (m, 2H), 3.76-3.70 (m, 2H), 2.52$2.48(\mathrm{~m}, 1 \mathrm{H}), 0.94-0.90(\mathrm{~m}, 2 \mathrm{H}), 0.34-0.29(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 171.4,171.1,140.8,114.6,114.3,112.2,111.9$, $61.5,61.2,44.7,44.2,32.8,32.5,18.7,18.4,16.0,15.7,11.2,10.8$. (rel) $-\left(1^{\prime} R, 3^{\prime} S\right)-9-\left(3^{\prime}-\right.$ Vinyl-2'-spiropropyl-dihydrofuran-1'yl) 6-chloropurine (95a) and (rel)-(1'S,3'S)-9-(3'-vinyl-2'-spiropropyl-dihydrofuran-1'-yl)6-chloropurine (95b). 6Chloropurine ($226 \mathrm{mg}, 1.48 \mathrm{mmol}$), anhydrous HMDS (15 mL), and a catalytic amount of ammonium sulfate (20 mg) were refluxed to a clear solution, and the solvent was distilled under anhydrous conditions. The residue was dissolved in anhydrous 1,2dichloroethane (15 mL). To this mixture, a solution of 94 (157 mg ,

0.86 mmol) in dry DCE (15 mL) and TMSOTf ($327 \mathrm{mg}, 1.48 \mathrm{mmol}$) was added, and the resulting mixture was stirred for 4 h at rt . The reaction mixture was quenched with 3.0 mL of saturated NaHCO_{3} and stirred for 1 h . The resulting solid was filtered through a Celite pad, andthe filtrate was diluted with water (120 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/hexane/MeOH, 2:1:0.03) to give compound 95a (76 mg, 32\%) and 95b ($78 \mathrm{mg}, 33 \%$): data for $95 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 8.72 (s, 1H), 8.25 (s, 1H), 5.95 (dd, $J=5.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71-5.68$ (m, 1H), 5.03-4.95 (m, 2H), 3.76 (dd, $J=10.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (dd, $J=10.5,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~m}, 1 \mathrm{H}), 0.45(\mathrm{~m}, 2 \mathrm{H})$, $0.12(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 151.8, 151.5, 150.9, 144.7, 141.7, 132.5, 114.5, 97.3, 64.4, 48.3, 32.1, 13.5, 7.5; data for 95b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 5.94$ $(\mathrm{m}, 1 \mathrm{H}), 5.74-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.01(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{dd}, J=10.8$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=10.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.51$ (m, 1H), 1.01 $(\mathrm{m}, 1 \mathrm{H}), 0.43-0.38(\mathrm{~m}, 2 \mathrm{H}), 0.11(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 151.7,151.4,150.8,143.9,141.5,133.7,115.0,94.8,65.7,47.8$, 33.5, 16.4, 8.0.
(rel) - ($\left.1^{\prime} S, 3^{\prime} S\right)$-Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ vinyl-2'-spiropropyl-dihydrofuran-1'-yl) 6-chloropurine\} phosphonate (96). To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 mL) solution
of 6-chloropurine derivative 95b ($57 \mathrm{mg}, 0.21 \mathrm{mmol}$) and diethyl vinylphosphonate (169 mg, 1.03 mmol$), 2^{\text {nd }}$-generation Grubbs catalyst ($8.7 \mathrm{mg}, 0.01 \mathrm{mmol}$) was added. The reaction mixture was refluxed for 36 h under dry argon gas and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/n-Hexane/MeOH, 4:1:0.05) to give 96 (51 $\mathrm{mg}, 60 \%)$ as a form: ${ }_{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.28$ (s, 1H), $6.64(\mathrm{dd}, J=16.8,20.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=16.8,20.1 \mathrm{~Hz}$, 1 H), 5.97 (dd, $J=5.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.05$ (m, 4H), 3.77 (dd, $J=$ $10.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ (dd, $J=10.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.49$ (m, 1H), $1.31-1.28(\mathrm{~m}, 6 \mathrm{H}), 0.95(\mathrm{~m}, 1 \mathrm{H}), 0.39-0.36(\mathrm{~m}, 2 \mathrm{H}), 0.11(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 151.6,151.2,150.5,149.4,144.5,135.2$, $116.1,97.8,65.4,63.7,63.2,49.4,32.4,16.7,13.5,7.9$.
(rel) - (4'S,7'S) -Diethyl \{9-(3'-vinyl-2'-spiropropyl-dihydrofuran-$1^{\prime}-\mathrm{yl}$) adenine\} phosphonate (97). A solution of 96 (115 mg, 0.28 mmol) in saturated methanolic ammonia (6 mL) was stirred overnight at $63{ }^{\circ} \mathrm{C}$ in a steel bomb, and the volatiles were evaporated. The residue was purified by silica gel column chromatography (MeOH/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 8\right)$ to give 97 ($61.7 \mathrm{mg}, 56 \%$) as a white solid: mp $173-$ $175^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }} 260.0 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) \delta$ $8.38(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=17.0,20.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{dd}$, $J=16.9,20.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=5.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.05(\mathrm{~m}$, $4 \mathrm{H}), 3.73$ (dd, $J=10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.2,8.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.53(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 6 \mathrm{H}), 0.97(\mathrm{~m}, 1 \mathrm{H}), 0.40-0.37(\mathrm{~m}, 2 \mathrm{H})$, $0.12(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 154.7, 152.6, 150.4, $148.7,141.6,119.5,115.5,97.8,66.3,63.8,63.2,47.6,32.7,14.5$, 13.7, 7.7.

$$
(r e l)-\left(4^{\prime} S, 7^{\prime} S\right)-9-\left(3^{\prime}-\right.\text { Vinyl-2'-spiropropyl-dihydrofuran-1'- }
$$ yl) adenine phosphonic acid (98). To a solution of the phosphonate 97 ($95 \mathrm{mg}, 0.24 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ and 2,6-lutidine ($0.562 \mathrm{~mL}, 4.80 \mathrm{mmol}$) was added trimethylsilyl bromide $(0.269 \mathrm{mg}$, 2.41 mmol). The mixture was heated overnight at $80^{\circ} \mathrm{C}$ under nitrogen gas and then concentrated in vacuo. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and purified water (60 mL). The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 60 \mathrm{~mL})$ and then freeze-dried to give phosphonic acid 98 ($64 \mathrm{mg}, 79 \%$) as a yellowish foam: UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\max } 261.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}$) $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$, 8.18 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2), 6.66\left(\mathrm{dd}, J=17.2,20.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 6.18$ (dd, J $\left.=17.3,19.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.96(\mathrm{dd}, J=1.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCH}), 3.74$ (dd, $\left.J=10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}\right), 3.60(\mathrm{dd}, J=10.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5'b), 2.56-2.53 (m, 1H, H-3'), 1.01 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime} \mathrm{a}$), 0.42-0.38 (m, $2 \mathrm{H}, \mathrm{H}-1^{\prime \prime} \mathrm{b}, \mathrm{H}-2^{\prime \prime} \mathrm{a}$), 0.11 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime} \mathrm{b}$) ; ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75$ $\mathrm{MHz}) \delta 154.9,152.8,151.7,149.2,142.0,119.6,115.3,99.1,63.3$, 49.5, 32.6, 14.6, 8.1.

$(r e l)-\left(4^{\prime} S, 7^{\prime} S\right)-$ Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ ethyl-2'-spiropropyl-dihydrofuran-1'-yl) 6-chloropurine\} phosphonate (99). To a solution of vinyl
phosphonate nucleoside analogue 96 ($197 \mathrm{mg}, 0.48 \mathrm{mmol}$) in methanol (8 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(8 \mathrm{mg})$ and cyclohexene (3 mL) under argon gas. The reaction mixture was refluxed for 24 h . The reaction mixture was filtered through a pad of Celite, evaporated, and purified by silica gel column chromatography using methanol and methylene chloride (12:1) to give ethyl phosphonate analogue 99 ($387 \mathrm{mg}, 81 \%$) as a white solid: $\mathrm{mp} 176-178{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.76$ (s, 1H), 8.26 (s, 1H), 5.99 (dd, $J=5.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14-4.08 (m, $4 \mathrm{H}), 3.73(\mathrm{dd}, J=10.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=10.3,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.16-2.11(\mathrm{~m}, 4 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~m}, 1 \mathrm{H}), 0.40(\mathrm{~m}, 2 \mathrm{H}), 0.13$ (m, 1H) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) ~ \delta 151.8,151.4,151.1,143.6$, 134.7, 96.6, 65.7, 63.7, 63.2, 47.2, 31.6, 28.3, 18.3, 13.7, 6.9.
(rel) - (4'S,7'S) -Diethyl \{9-(3'-ethyl-2'-spiropropyl-dihydrofuran-$1^{\prime}-\mathrm{yl}$) adenine phosphonate (100). Transformation of 6 -chloropurine to adenine derivative 100 was performed from 99 by the similar ammonolysis procedure as described for 98: yield 55\%; mp 177$179{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 261.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300 \mathrm{MHz}$) δ $8.35(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{dd}, J=5.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.10$ (m, 4H), 3.75 (dd, $J=10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63 (dd, $J=10.2,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 1 \mathrm{H}), 0.42-0.38(\mathrm{~m}$, 2H), 0.12 ($\mathrm{s}, 1 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}$) δ 154.9, 152.5, $151.4,143.5,119.6,97.8,64.2,63.2,62.8,45.7,32.3,28.5,18.4$, 14.3, 7.2.
(rel) - (4'S,7'S) - \{9- (3'-Ethyl-2'-spiropropyl-dihydrofuran1'-yl) adenine $\}$ phosphonic acid (101). Adenine phosphonic acid 101 was synthesized from 100 using the similar hydrolysis procedure as described for 98: yield 81%, UV ($\mathrm{H}_{2} \mathrm{O}$) λ max $260.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 8.36$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$), 8.17 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$), 5.99 (dd, $J=5.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}$), 3.74 (dd, J $=10.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5 'a), 3.62 (dd, $J=10.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}$), $2.20-2.16$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-$ 4'a, H-4'b, PCH 2), 1.85 (m, 1H, H-3'), 1.02 (m, 1H, H-1" a), $0.42-$ 0.38 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime} \mathrm{b}, \mathrm{H}-2^{\prime \prime} \mathrm{a}$), 0.13 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime} \mathrm{b}$); ${ }^{13} \mathrm{C}$ NMR (DMSO $-d_{6}, 75 \mathrm{MHz}$) δ 155.2, 152.1, 149.4, 137.8, 119.3, 97.6, 64.6, 46.8, 32.2, 27.2, 17.6, 13.8, 7.7; MS m/z $340(\mathrm{M}+\mathrm{H})^{+}$.
(rel) $-\left(1^{\prime} R, 3^{\prime} S\right)-9-\left(3^{\prime}-\right.$ Vinyl-2'-spiropropyl-dihydrofuran-1'yl) 2-fluoro-6-chloropurine (102a) and (rel)-($\left.1^{\prime} S, 3^{\prime} S\right)-9-\left(3^{\prime}-\right.$ Vinyl-2'-spiropropyl-dihydrofuran-1'-yl) 2-fluoro-6-chloropurine (102b) Coupling of 94 with 2-fluoro-6-chloropurine under the similar condensation conditions as described for 95 to give 102a and 102b, respectively: Data for 102a: yield 30%; UV (MeOH) $\lambda_{\text {max }} 269.0$ $\mathrm{nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=5.8,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.71-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{dd}, J=10.4$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.60 (dd, $J=10.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.48 (m, 1H), 1.03 (m, $1 \mathrm{H}), 0.40-0.35(\mathrm{~m}, 2 \mathrm{H}), 0.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $158.2(\mathrm{~d}, J=235.8 \mathrm{~Hz})$, 153.0, 147.9, 145.8, 136.8, 120.4, 114.6, 97.5, 64.2, 48.5, 31.3, 13.8, 7.8. Data for 102b: yield 31%; UV
(MeOH) $\lambda_{\max } 269.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.45$ ($\mathrm{s}, 1 \mathrm{H}$), $5.94(\mathrm{dd}, J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.75$ (dd, $J=10.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, \mathrm{J}=10.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~m}$, $1 \mathrm{H}), 1.01-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.39-0.35(\mathrm{~m}, 2 \mathrm{H}), 0.12(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 157.7(\mathrm{~d}, J=233.8 \mathrm{~Hz}), 155.4,152.2,144.9$, 141.6, 118.5, 113.8, 98.2, 63.9, 47.2, 33.0, 15.1, 9.4, 8.2.
(rel) - ($\left.1^{\prime} S, 3^{\prime} S\right)$-Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ vinyl-2'-spiropropyl-dihydrofuran-1'-yl) 2-fluoro-6-chloropurine\} phosphonate (103). Phosphonate nucleoside analogue 103 was prepared from 102 b using the same cross-metathesis procedure as described for 96 : yield 62%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=16.8,19.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.18 (dd, $J=16.8,20.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97$ (dd, $J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.12-4.08 (m, 4H), 3.73 (dd, $J=10.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, \quad J=$ $10.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~m}, 1 \mathrm{H}), 0.37-0.31(\mathrm{~m}, 2 \mathrm{H})$, $0.09(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 157.7(\mathrm{~d}, J=221.6 \mathrm{~Hz})$, $153.6,152.4,147.8,144.5,128.1,116.1,96.8,62.2,49.6,31.3,14.8$, 10.3, 7.8.
(rel) - ($\left.1^{\prime} S, 3^{\prime} S\right)$-Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ vinyl-2'-spiropropyl-dihydrofuran-$1^{\prime}-\mathrm{yl}$) -2-fluoro-6-aminopurine\} phosphonate (104a) and (rel) (1'S,3'S) - diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ vinyl-2'-spiropropyl-dihydrofuran-1'-yl) 2-amino-6-chloropurine phosphonate (104b). Dry ammonia gas was bubbled into a stirred solution of 103 ($220 \mathrm{mg}, 0.51 \mathrm{mmol}$) in DME $(10 \mathrm{~mL})$ at room temperature overnight. The salts were removed by
filtration and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 10$) to give 104a ($21 \mathrm{mg}, 10 \%$) and 104 b (89 mg , 41%), respectively: Data for 104 a ; UV (MeOH) $\lambda_{\max } 261.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO $\left.-d_{6}, 300 \mathrm{MHz}\right) ~ \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.70\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right)$, $6.63(\mathrm{dd}, J=20.2,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=20.0,16.9 \mathrm{~Hz}, 1 \mathrm{H})$, 5.98 (dd, $J=5.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.09(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{dd}, J=10.2$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.22$ $(\mathrm{m}, 6 \mathrm{H}), 0.98(\mathrm{~m}, 1 \mathrm{H}), 0.38-0.34(\mathrm{~m}, 2 \mathrm{H}), 0.10(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO $\left.-d_{6}, 75 \mathrm{MHz}\right) \delta 159.9(\mathrm{~d}, ~ J=256.8 \mathrm{~Hz}), 155.7,152.8,144.1$, $141.6,118.6,115.6,96.6,65.8,63.2,62.8,48.3,30.7,15.2,8.1$. Data for 104 b ; UV (MeOH) $\lambda_{\max } 308.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO $-d_{6}, 300 \mathrm{MHz}$) $\delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.68\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 6.66(\mathrm{dd}, J=20.0,17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.19(\mathrm{dd}, J=22.2,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=6.0,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.10(\mathrm{~m}, 4 \mathrm{H}), 3.73-3.75(\mathrm{dd}, J=10.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=$ 10.3, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.01(\mathrm{~m}, 1 \mathrm{H})$, 0.39-0.33 (m, 2H), 0.10-0.09 (s, 1H) ; ${ }^{13} \mathrm{C}$ NMR (DMSO-d, 75 $\mathrm{MHz}) \delta$ 155.0, 151.8, 149.7, 147.9, 144.0, 127.8, 115.9, 98.2, 66.5, 63.5, 62.9, 47.7, 32.1, 15.7, 11.7, 8.7.

$$
(\text { rel })-\left(1^{\prime} S, 3^{\prime} S\right)-9-\left\{\left(3^{\prime}-\right.\right.\text { Vinyl-2'-spiropropyl-dihydrofuran-1'- }
$$ yl) guanine\} phosphonic acid (105). To a solution of 104b (216 mg, 0.51 mmol) dry $\mathrm{CH}_{3} \mathrm{CN}(18 \mathrm{~mL}$) and 2,6-lutidine (1.88 mL , 17.6 mmol) was added trimethylsilyl bromide ($1.35 \mathrm{~g}, 8.83 \mathrm{mmol}$) at room

temperature. After this mixture was stirred for 24 h , the solvent was removed, coevaporating three times with methanol. The residue was dissolved in MeOH (17.0 mL) and 2-mercaptoethanol (158 mg, 2.03 mmol) and $\mathrm{NaOMe}(107.52 \mathrm{mg}, 2.03 \mathrm{mmol}$) was added to the mixture. The mixture was refluxed for 16 h under N_{2}, cooled, neutralized with glacial AcOH , and evaporated to dryness under vacuum. The residue was purified by chromatography on a column of reversed-phase C18 silica gel eluting water to give 105 ($110.6 \mathrm{mg}, 62 \%$) as a yellowish form. UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\max } 254.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}$) δ 10.11 (br s, NH, 1H), 8.17 (s, 1H, H-8), 7.09 (br s, NH2, 2H), 6.66 (dd, $\left.J=20.1,17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 6.16(\mathrm{dd}, J=20.2,17.2 \mathrm{~Hz}, 1 \mathrm{H}$, H-4'), 5.95 (dd, $J=6.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCH}), 3.74$ (dd, $J=10.6,8.4 \mathrm{~Hz}$ $1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}$), 3.62 (dd, $J=10.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}$), 2.56-2.54 (m, $\left.1 H, H-3^{\prime}\right), 0.98$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime \prime} \mathrm{a}$), 0.39 ($\left.\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime} \mathrm{b}, \mathrm{H}-2^{\prime \prime} \mathrm{a}\right), 0.09$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime} \mathrm{b}$) ; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}$) δ 157.4, 154.3, 152.6, 149.7, 136.4, 118.4, 115.5, 88.3, 64.2, 49.2, 32.0, 16.0, 8.9, 7.8; Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P}\left(+2.0 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}, 40.10 ; \mathrm{H}, 5.18 ; \mathrm{N}$, 17.99; Found: C, 40.08; H, 5.17; N, 18.01; MS m/z $354(\mathrm{M}+\mathrm{H})^{+}$.
(rel) - (1'S,3'S) - Diethyl \{9-(3'-ethyl-2'-spiropropyl-dihydrofuran-1'-yl) 2-fluoro-6-chloropurine\} phosphonate (106). Compound 106 was synthesized from 103 by the similar catalytic hydrogenation procedure as described for 99: yield 72%; UV (MeOH) $\lambda_{\max } 170.5$ $\mathrm{nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=6.0,2.1$
$\mathrm{Hz}, 1 \mathrm{H}), 4.16-4.11$ (m, 4H), 3.74 (dd, $J=10.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60$ $(\mathrm{dd}, J=10.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.16(\mathrm{~m}, 4 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~m}$, $1 \mathrm{H}), 0.34-0.30(\mathrm{~m}, 2 \mathrm{H}), 0.10-0.08(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) ~ \delta 158.1(\mathrm{~d}, ~ J=232.4 \mathrm{~Hz})$, 153.7, 145.5, 136.3, 121.8, 97.8, 64.8, 63.6, 62.9, 47.1, 32.3, 28.4, 18.6, 14.7, 8.8.
(rel) - ($\left.1^{\prime} S, 3^{\prime} S\right)$-Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ ethyl-2'-spiropropyl-dihydrofuran-1'-yl) 2-fluoro-6-aminopurine\} phosphonate (107a) and (rel)(1'S,3'S) - diethyl \{9-(3'-ethyl-2'-spiropropyl-dihydrofuran-1'-yl) 2-amino-6-chloropurine\} phosphonate (107b). Ammonolysis of 106 was performed using the similar procedure as described for 104a and 104b: Data for 107 a : yield 11%; UV (MeOH) $\lambda_{\max } 262.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d6, 300 MHz) $\delta 8.28$ (s, 1H), 7.71 (br s, NH2, 2H), 5.98 (dd, $J=5.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.14(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{dd}, J=10.2,8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.24(\mathrm{~m}, 4 \mathrm{H}), 1.88(\mathrm{~m}$, $1 \mathrm{H}), 1.05-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.39-0.36(\mathrm{~m}, 2 \mathrm{H}), 0.11-0.08(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO $\left.-d_{6}, 75 \mathrm{MHz}\right) \delta 160.4(\mathrm{~d}, \mathrm{~J}=258.2 \mathrm{~Hz}), 156.2$, 151.7, $142.8,119.2,99.5,65.2,63.8,63.4,46.2,32.4,28.9,18.6,14.3,7.3$; Data for 107b: yield 43%; UV (MeOH) $\lambda_{\max } 307.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d, 300 MHz) $\delta 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.67\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}\right), 5.95$ (dd, $J=6.0,1.6, \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.16(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{dd}, J=10.6,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61$ (dd, $J=10.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.16$ (m, 4H), 1.82 (m , $1 \mathrm{H}), 0.93(\mathrm{~m}, 1 \mathrm{H}), 0.40-0.37(\mathrm{~m}, 2 \mathrm{H}), 0.12(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 75 \mathrm{MHz}$) $\delta 156.8,152.9,150.7,143.2,125.2,95.6,65.2$,
63.0, 62.5, 46.2, 31.8, 28.3, 18.7, 16.2, 10.3, 8.4.
$(r e l)-\left(1^{\prime} S, 3^{\prime} S\right)-9-\left\{\left(3^{\prime}-\right.\right.$ Ethyl-2'-spiropropyl-dihydrofuran-1'yl) guanine\} phosphonic acid (108). Guanine nucleoside phosphonic acid 108 was prepared from 107b by the same hydrolysis conditions used for 105: yield 65\%; UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\max } 253.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}, 300 \mathrm{MHz}\right) \delta 10.7(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.05(\mathrm{br} \mathrm{s}$, $\left.\mathrm{NH}_{2}, 2 \mathrm{H}\right), 5.95\left(\mathrm{dd}, J=6.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.75$ (dd, $J=10.2$, 8.5 Hz, 1H, H-5'a), 3.62 (dd, $\left.J=10.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{b}\right)$, 2.222.17 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-4^{\prime} \mathrm{a}, \mathrm{H}-4^{\prime} \mathrm{b}, \mathrm{PCH}_{2}$), $1.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 0.99(\mathrm{~m}, 1 \mathrm{H}$, $\left.H-1^{\prime \prime} a\right), 0.37-0.33\left(m, 2 H, H-1^{\prime \prime} b, H-2^{\prime \prime}\right.$) , 0.09-0.07 (m, 1H, H$\left.2^{\prime \prime} \mathrm{b}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75 \mathrm{MHz}$) δ 157.2, 153.9, 152.2, 135.8, 116.9, 88.2, 65.3, 46.2, 31.8, 28.9, 19.0, 15.2, 10.2, 8.7.
(rel) $-\left(1^{\prime} S, 2^{\prime} R, 3^{\prime} S\right)-9-\left(3^{\prime}-t\right.$-Butyldimethylsilanyloxymethyl-2'-fluoro-tetrahydrofuran-1'-yl) 6-chloropurine (111a) and (rel) ($\left.1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)-9-\left(3^{\prime}-t\right.$-butyldimethylsilanyloxymethyl-2'-fluoro-tetrahydrofuran-1'-yl) 6-chloropurine (111b): 6-Chloropurine (216 $\mathrm{mg}, 1.4 \mathrm{mmol})$, anhydrous HMDS (10 mL), and a catalytic amount of ammonium sulfate (14 mg) were refluxed to a clear solution, and the solvent was then distilled off under anhydrous conditions. The residue obtained was dissolved in anhydrous 1,2-dichloroethane (8 mL), and to this mixture, a solution of $110(175 \mathrm{mg}, 0.6 \mathrm{mmol})$ in dry DCE (10 mL) and TMSOTf ($311 \mathrm{mg}, 1.4 \mathrm{mmol}$) was added, and stirred for 8 h at rt. The reaction mixture was quenched with 5.0 mL of saturated
NaHCO_{3}, stirred for 1 h , filtered through a Celite pad, and the filtrate obtained was then extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (80 mL). Combined organic layers were dried over anhydrous MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc/hexane/MeOH, 4:1:0.01) to give compounds 111a ($74 \mathrm{mg}, 32 \%$) and 111 b ($79 \mathrm{mg}, 34 \%$). Data for 111a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.72$ ($\mathrm{s}, 1 \mathrm{H}$), 8.34 (s, 1H), 6.23 (dd, $J=18.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.67$ (m, 5H), 2.39-2.28 (m, 1H), 0.87 (m, 9H), $0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 151.7,151.4$, 151.1, 144.8, 132.5, 92.2 (d, $J=172.0 \mathrm{~Hz}), 88.5(\mathrm{~d}, J=23.2 \mathrm{~Hz})$, 60.5, 57.4, $39.3(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 25.4,18.3,-5.1$. Data for $111 \mathrm{~b}:{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=$ 18.2, 4.8 Hz, 1H), 3.77-3.63 (m, 5H), 2.38-2.27 (m, 1H), 0.83 (m, 9H), 0.01 (s, 6H) ; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 151.6,151.3,151.0$, 144.7, 132.3, $91.6(\mathrm{~d}, J=170.8 \mathrm{~Hz}), 87.2(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 59.4$, 56.2, $38.2(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 25.5,18.4,-4.8$.
(rel) $-\left(1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)-9-\left(3^{\prime}-H y d r o x y m e t h y l-2^{\prime}-f l u o r o-t e t r a h y d r o f ~\right.$ uran-1'-yl) 6-chloropurine (112): To a solution of 111 b (2.54 g, $6.56 \mathrm{mmol})$ in THF (12 mL), TBAF ($7.7 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight at RT and concentrated in vacuum. The residue was purified by silica gel column chromatography (Hexane/EtOAc/MeOH, 2:1:0.05) to give 112 (1.59 g , $89 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 6.15$
(dd, $J=16.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.64$ (m, 5H), 2.36-2.24 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 151.8,151.4,151.1,144.5,132.6,92.5(\mathrm{~d}$, $J=166.8 \mathrm{~Hz}), 86.4(\mathrm{~d}, J=20.4 \mathrm{~Hz}), 60.2,56.2,38.2(\mathrm{~d}, J=21.4$ Hz).
(rel) $-\left(1^{\prime} R, 2^{\prime} R, 3^{\prime} R\right)-9-\left(3^{\prime}-\right.$ Carbaldehyde-2'-fluoro-tetrahydrofuran $-1^{\prime}-\mathrm{yl}$) 6-chloropurine (113): Compound 112 ($290 \mathrm{mg}, 1.066 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$, and to this solution was added Dess-Martin reagent ($588 \mathrm{mg}, 1.38 \mathrm{mmol}$). The mixture was stirred for 3 h at ambient temperature, concentrated and the residue was purified by silica gel column chromatography using Hexane/ EtOAc (1:4) as eluent. A second column, which was also eluted with EtOAc, was necessary to remove traces of Dess-Martin reagentrelated impurities to give 113 ($253 \mathrm{mg}, 88 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 9.69(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{dd}, J=18.0$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.94(\mathrm{~m}, 3 \mathrm{H}), 2.93-2.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 204.7,151.5,151.0,150.7,144.1,133.4,92.5(\mathrm{~d}, J=18.4$ $\mathrm{Hz}), 88.5(\mathrm{~d}, J=164.4 \mathrm{~Hz}), 55.7,51.1(\mathrm{~d}, J=18.8 \mathrm{~Hz})$.
(rel) $-\left(1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)-9-\left(3^{\prime}-\right.$ Vinyl-2'-fluoro-tetrahydrofuran-1'-yl)6-chloropurine (114): To ylide solution [methyltriphenyl phosphonium iodide ($188 \mathrm{mg}, 0.462 \mathrm{mmol}$) , triphenylphosphine (14.25 $\mathrm{mg}, 0.055 \mathrm{mmol}$), 1.6 M n -butyllithium solution ($0.289 \mathrm{~mL}, 0.462$ $\mathrm{mmol})$ in dry tetrahydrofuran $(5.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, was added dropwise to a solution of olefin 113 ($125 \mathrm{mg}, 0.462 \mathrm{mmol}$) in dry THF (7 mL).

The reaction mixture was warmed to room temperature, stirred for 4 h, quenched with saturated sodium bicarbonate solution, and then partitioned between saturated sodium bicarbonate solution and ethyl acetate. The organic layer was separated and the aqueous layer was extracted with ethyl acetate. Combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated in vacuum, and chromatographed (Hexane-EtOAc, 1:2) to afford 114 ($76 \mathrm{mg}, 61 \%$) as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}$, $1 \mathrm{H}), 6.21(\mathrm{dd}, J=19.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.96(\mathrm{~m}$, $2 \mathrm{H}), 3.74-3.68(\mathrm{~m}, 3 \mathrm{H}), 2.85-2.81(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 151.7,151.3,150.9,144.6,143.6,132.8,112.3,96.1(\mathrm{~d}, ~ J=$ $168.4 \mathrm{~Hz}), 88.3(\mathrm{~d}, J=16.8 \mathrm{~Hz}), 62.1,39.4(\mathrm{~d}, J=18.4 \mathrm{~Hz})$.
(rel) - ($\left.1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)$-Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ vinyl-2'-fluoro-tetrahydrofuran -1'-yl) 6-chloropurine\} phosphonate (115): To a solution of the 6chloropurine derivative 114 ($174 \mathrm{mg}, 0.650 \mathrm{mmol}$) and diethyl vinylphosphonate ($426 \mathrm{mg}, 2.60 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL}), 2^{\text {nd }}-$ generation Grubbs catalyst ($22.10 \mathrm{mg}, 0.026 \mathrm{mmol}$) was added. The reaction mixture was refluxed for 26 h under dry argon and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/n-Hexane/MeOH, 2:1:0.05) to give $115(150 \mathrm{mg}, 57 \%)$ as a foam: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $8.72(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=17.2,21.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{dd}$, $J=19.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=17.2,19.8 . \mathrm{Hz}, 1 \mathrm{H}), 4.12-4.06$
$(\mathrm{m}, 4 \mathrm{H}), 3.73-3.66(\mathrm{~m}, 3 \mathrm{H}), 2.82-2.78(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.30(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 151.8,151.4,151.0,149.5,144.2$, 132.6, 117.2, $95.6(\mathrm{~d}, J=168.4 \mathrm{~Hz}), 87.6(\mathrm{~d}, J=17.0 \mathrm{~Hz}), 62.4,61.8,60.6$, $40.7(\mathrm{~d}, ~ J=16.4 \mathrm{~Hz}), 15.8$.
(rel) - ($\left.1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)$-Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ vinyl-2'-fluoro-tetrahydrofuran $-1^{\prime}-\mathrm{yl}$) adenine\} phosphonate (116): A solution of 115 (188 mg, 0.464 mmol) in saturated methanolic ammonia (7 mL) was stirred overnight at $66^{\circ} \mathrm{C}$ in a steel bomb, and volatiles were evaporated. The residue was purified by silica gel column chromatography (MeOH/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 10\right)$ to give $116(112 \mathrm{mg}, 63 \%)$ as a white solid: UV (MeOH) $\lambda_{\max } 261.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 8.36(\mathrm{~s}$, $1 \mathrm{H}), 8.17$ (s, 1H), 6.65 (dd, $J=17.4,20.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (dd, $J=$ 18.0, 5.4 Hz, 1H), 6.10 (dd, $J=17.2,19.8 . \mathrm{Hz}, 1 \mathrm{H}$), 4.10-4.05 (m, $4 \mathrm{H}), 3.76-3.68(\mathrm{~m}, 3 \mathrm{H}), 2.83-2.77(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}\right) \delta 155.5,152.7,150.4,148.8,141.3,119.0$, 115.6, $94.8(\mathrm{~d}, J=167.8 \mathrm{~Hz})$, $88.4(\mathrm{~d}, J=16.6 \mathrm{~Hz}), 63.3,62.7,61.5$, $41.2(\mathrm{~d}, J=16.6 \mathrm{~Hz}), 15.3$.
(rel) $-\left(1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)-9-\left[\left(3^{\prime}-\right.\right.$ Vinyl-2'-fluoro-tetrahydrofuran-1'yl) adenine]phosphonic acid (117): To a solution of the phosphonate 116 ($161 \mathrm{mg}, 0.419 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ and 2,6lutidine ($0.898 \mathrm{~mL}, 8.38 \mathrm{mmol}$) was added trimethylsilyl bromide (641 mg, 4.19 mmol). The mixture was heated overnight at $75^{\circ} \mathrm{C}$ under nitrogen and then concentrated in vacuo. The residue obtained
was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and purified water (100 mL), and the aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 70 \mathrm{~mL})$ and freeze-dried to give phosphonic acid 117 (96 mg, 70\%) as a yellowish foam: UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max } 261.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ $\mathrm{MHz}) \delta 8.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 6.66(\mathrm{dd}, J=17.6$, 21.0 Hz, 1H, H-1'), 6.21 (dd, $J=17.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime}$), 6.12 (dd, J $=17.4$, 19.4. Hz, $1 \mathrm{H}, \mathrm{PCH}$), 3.72-3.65 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime} \mathrm{a}, \mathrm{H}-4^{\prime} \mathrm{b}$), 2.85-2.78 (m, 1H, H-3'); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta$ 155.3, 152.4, 150.1, 148.5, 141.5, 118.8, 114.7, $93.6(\mathrm{~d}, J=165.8 \mathrm{~Hz}), 89.6$ (d, $J=16.8 \mathrm{~Hz})$, $61.6,40.6(\mathrm{~d}, J=16.8 \mathrm{~Hz})$; Anal. Calc. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FN}_{5} \mathrm{O}_{4} \mathrm{P}\left(+2.0 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}, 36.17 ; \mathrm{H}, 4.69 ; \mathrm{N}, 19.17$; Found: C , 36.21 ; H, 4.71; N, 19.19; MS m/z $330(\mathrm{M}+\mathrm{H})^{+}$.
(rel) - ($\left.1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)$-Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ ethyl-2'-fluoro-tetrahydrofuran -1'-yl) 6-chloropurine\} phosphonate (118): A solution of vinyl phosphonate nucleoside analogue 117 ($265 \mathrm{mg}, 0.655 \mathrm{mmol}$) in methanol (8 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(10 \mathrm{mg})$ and cyclohexene (4 mL) under Ar. The reaction mixture was refluxed for 24 h . The reaction mixture was filtered through a pad of Celite, evaporated, and purified by silica gel column chromatography using methanol and methylene chloride (10:1) to give ethyl phosphonate analogue 118 ($197 \mathrm{mg}, 74 \%$) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.75(\mathrm{~s}$, $1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 6.19$ (dd, $J=18.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.06(\mathrm{~m}$, $4 \mathrm{H}), 3.76-3.68(\mathrm{~m}, 3 \mathrm{H}), 2.28-1.86(\mathrm{~m}, 5 \mathrm{H}), 1.31-1.28(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 151.8,151.4,150.0,142.9,132.8,94.8(\mathrm{~d}, J$ $=162.8 \mathrm{~Hz}), 89.1(\mathrm{~d}, J=16.8 \mathrm{~Hz}), 61.4,38.9(\mathrm{~d}, J=16.8 \mathrm{~Hz}), 28.7$, 18.8, 14.9.
(rel) - ($\left.1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)$-Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ ethyl-2'-fluoro-tetrahydrofuran $-1^{\prime}-\mathrm{yl}$) adenine\} phosphonate (119): The adenine derivative 119 was prepared from the 6-chloropurine analogue 118 using an ammonolysis procedure similar to that described for 116: yield 60%; mp $172-174{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 260.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $300 \mathrm{MHz}) \delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{dd}, J=18.8,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15-4.09(\mathrm{~m}, 4 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 3 \mathrm{H}), 2.27(\mathrm{~m}, 2 \mathrm{H}), 2.01-$ $1.88(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta$ 154.9, 152.3, 150.2, 141.4, 118.7, $93.5(\mathrm{~d}, J=162.4 \mathrm{~Hz}), 88.4(\mathrm{~d}, J$ $=16.3 \mathrm{~Hz}), 60.6,37.6(\mathrm{~d}, J=16.2 \mathrm{~Hz}), 28.3,18.5,15.1$.

$$
(r e l)-\left(1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)-\left\{9-\left(3^{\prime}-\right.\text { Ethyl-2'-fluoro-tetrahydrofuran-1'- }\right.
$$ yl) adenine\} phosphonic acid (120): Phosphonic acid 120 was synthesized from 119 using hydrolysis conditions identical to that for 117: yield 77%, UV $\left(\mathrm{H}_{2} \mathrm{O}\right) ~ \lambda_{\max } 262.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ $\mathrm{MHz}) \delta 8.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 6.14(\mathrm{dd}, J=17.6,5.4$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.70-3.64\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime} \mathrm{a}, \mathrm{H}-4^{\prime} \mathrm{b}\right), 2.25-2.21$ (m, 2H, H-3', H-5'a), 2.03-1.89 (m, 3H, H-5'b, PCH $)^{\prime}$) ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}\right) \delta 155.2,152.5,150.6,141.9,119.4,95.2(\mathrm{~d}, J=$ $160.8 \mathrm{~Hz}), 87.7(\mathrm{~d}, J=16.4 \mathrm{~Hz}), 61.4,38.2(\mathrm{~d}, ~ J=16.5 \mathrm{~Hz}), 29.1$, 18.8; $\mathrm{MS} m / z 332(\mathrm{M}+\mathrm{H})^{+}$.

(rel) - (1'S, $\left.2^{\prime} R, 3^{\prime} S\right)-9-\left(3^{\prime}-t\right.$-Butyldimethylsilanyloxymethyl-2'-fluoro-tetrahydrofuran-1'-yl) 6-chloropurine (121a) and (rel) ($1^{\prime} R, 2^{\prime} R, 3^{\prime} S$) -9-($3^{\prime}-t$-Butyldimethylsilanyloxymethyl-2'-fluoro-tetrahydrofuran-1'-yl) 2-fluoro-6-chloropurine (121b):Condensation of 110 with 2-fluoro-6-chloropurine under Vorbruggen condensation conditions similar to those described for 111a and 111b gave 121a and 121b, respectively. Data for 121a: yield 31%; UV (MeOH) $\lambda_{\text {max }} 267.5$ $\mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=18.4,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75-3.68(\mathrm{~m}, 5 \mathrm{H}), 2.23-2.19(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~m}, 9 \mathrm{H}), 0.02$ ($\mathrm{m}, 6 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{CNR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 157.1(\mathrm{~d}, J=219 \mathrm{~Hz}), 153.3$, 145.6, 136.2, 120.6, 92.2 (d, $J=166.7 \mathrm{~Hz}$), $89.1(\mathrm{~d}, J=16.4 \mathrm{~Hz}$), 60.5, 57.6, 38.7 (d, $J=16.2 \mathrm{~Hz}$), 25.5, 18.7, -4.6. Data for 121b: yield 32%; UV (MeOH) $\lambda_{\text {max }} 268.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 8.45 (s, 1H), 6.19 (dd, $J=18.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.74-3.67$ (m, 5 H), 2.22-2.18 (m, 1H), $0.87(\mathrm{~m}, 9 \mathrm{H}), 0.01(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ MHz) $\delta 157.3$ (d, $J=219.6 \mathrm{~Hz}$), 153.5, 145.8, 135.8, 120.8, 91.6 (d, $J=167.8 \mathrm{~Hz})$, $88.5(\mathrm{~d}, J=16.6 \mathrm{~Hz})$, 59.6, 57.4, $38.4(\mathrm{~d}, J=16.4$ $\mathrm{Hz}), 25.4,18.4,-5.2$.
(rel) - ($1^{\prime} R, 2^{\prime} R, 3^{\prime} S$) $-9-$ ($3^{\prime}-$ Hydroxymethyl-2'-fluoro-tetrahydrofu ran-1'-yl) 2-fluoro-6-chloropurine (122): Desilylation of 121b was performed using a procedure similar to that described for 112: yield 78%; UV (MeOH) $\lambda_{\text {max }} 269.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.46$ (s, 1H), $6.21(\mathrm{dd}, J=18.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.67(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{~m}$,

2H), 2.21-2.15 (m, 1H) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 156.9(\mathrm{~d}, J=$ $217.8 \mathrm{~Hz}), 154.0,144.6,134.8,121.6,91.6(\mathrm{~d}, J=169.4 \mathrm{~Hz}), 89.4(\mathrm{~d}$, $J=16.8 \mathrm{~Hz}), 57.6,56.2,37.2(\mathrm{~d}, J=16.6 \mathrm{~Hz})$.
(rel) - ($\left.1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)-9-\left(3^{\prime}-\right.$ Carbaldehyde-2'-fluoro-tetrahydrofuran -1'-yl) 2-fluoro-6-chloropurine (123): Oxidation of 122 was performed using the Dess-Martin reaction conditions described for 113: yield $66 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.45$ (s, 1H), 6.20 (dd, J $=18.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 3 \mathrm{H}), 3.48-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.23-$ $2.16(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 204.6,157.4(\mathrm{~d}, J=218.6$ $\mathrm{Hz}), 154.2,144.7,133.9,122.3,91.3(\mathrm{~d}, J=167.8 \mathrm{~Hz}), 88.5(\mathrm{~d}, J=$ $16.6 \mathrm{~Hz}), 58.4,57.4,38.4(\mathrm{~d}, ~ J=16.4 \mathrm{~Hz})$.
(rel) - ($\left.1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)-9-\left(3^{\prime}-V i n y l-2^{\prime}-f l u o r o-t e t r a h y d r o f u r a n-1^{\prime}-\right.$ yl) 2-fluoro-6-chloropurine\} phosphonate (124): Wittig olefination of the aldehyde 123 was performed using a procedure similar to that described for 114 : yield $59 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.46$ (s, 1H), 6.21 (dd, $J=18.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~m}, 1 \mathrm{H}), 5.05-4.98$ (m, $2 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 3 \mathrm{H}), 3.50(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.76(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 157.6(\mathrm{~d}, J=219.4 \mathrm{~Hz}), 154.5,144.3,142.5$, $134.6,123.6,112.3,95.6(\mathrm{~d}, ~ J=167.8 \mathrm{~Hz}), 90.2(\mathrm{~d}, J=16.8 \mathrm{~Hz})$, 61.6, $39.1(\mathrm{~d}, J=16.4 \mathrm{~Hz})$. (rel) - ($\left.1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)$-Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ vinyl-2'-fluoro-tetrahydrofuran -1'-yl) 2-fluoro-6-chloropurine\} phosphonate (125): Phosphonate nucleoside analogue 125 was prepared from 124 using a cross
metathesis procedure similar to that described for 115: yield $60 \% ;{ }^{1} \mathrm{H}$ NMR (DMSO $\left.-d_{6}, 300 \mathrm{MHz}\right) \delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=20.2,18.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.21-6.15(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.10(\mathrm{~m}, 4 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 3 \mathrm{H})$, 2.80-2.75 (m, 1H), $1.35(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d6, 75 MHz) δ $157.3(\mathrm{~d}, J=218.8 \mathrm{~Hz}), 154.7,149.5,143.1,133.9,124.3,115.3$, $95.7(\mathrm{~d}, J=166.6 \mathrm{~Hz}), 89.4(\mathrm{~d}, J=16.4 \mathrm{~Hz}), 62.2,61.5,60.9,40.4$ (d, $J=16.2 \mathrm{~Hz}$), 15.7.
(rel) - ($\left.1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)$-Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ vinyl-2'-fluoro-tetrahydrofuran -1'-yl) 2-fluoro-6-aminopurine\} phosphonate (126a) and (rel)($1^{\prime} R, 2^{\prime} R, 3^{\prime} S$) - diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ vinyl-2'-fluoro-tetrahydrofuran-1'yl) 2-amino-6-chloropurine\} phosphonate (126b): Dry ammonia gas was bubbled into a stirred solution of 125 ($180 \mathrm{mg}, 0.426 \mathrm{mmol}$) in DME (8.0 mL) at room temperature overnight. Salts were removed by filtration and the filtrate was concentrated under reduced pressure. The residue obtained was purified by silica gel column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 10$) to give 126 a ($24 \mathrm{mg}, 14 \%$) and 126b ($80 \mathrm{mg}, 45 \%$). Data for 126 a ; UV (MeOH) $\lambda_{\max } 261.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO $\left.-d_{6}, 300 \mathrm{MHz}\right) \delta 8.21$ (s, 1H) , 7.74 (br s, $\mathrm{NH}_{2}, 2 \mathrm{H}$) , 6.65 (dd, $J=19.8,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=19.7,18.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ (dd, $J=12.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.09(\mathrm{~m}, 4 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 3 \mathrm{H})$, $2.81-2.74(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.50(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}\right)$ $\delta 160.7(\mathrm{~d}, J=268.8 \mathrm{~Hz}), 155.2,152.3,148.8,142.3,119.4,115.4$, $94.8(\mathrm{~d}, J=168.4 \mathrm{~Hz}), 87.2(\mathrm{~d}, J=17.2 \mathrm{~Hz}), 63.4,62.8,61.5,39.6$
(d, $J=16.6 \mathrm{~Hz}$), 14.4. Data for 126 b ; UV (MeOH) $\lambda_{\max } 308.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO $\left.-d_{6}, 300 \mathrm{MHz}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.71$ (br s, NH2, 2H), 6.62 (dd, $J=20.2,17.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=19.6,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.12$ (dd, $J=14.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.10(\mathrm{~m}, 4 \mathrm{H}), 3.75-3.68(\mathrm{~m}, 3 \mathrm{H})$, 2.82-2.75 (m, 1H), 1.53-1.49 (s, 6H) ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}$) $\delta 158.5,154.4,151.7,149.4,144.0,125.2,114.6,93.9(\mathrm{~d}, J=166.8$ $\mathrm{Hz}), 88.7(\mathrm{~d}, J=16.8 \mathrm{~Hz}), 62.8,62.2,61.6,41.2(\mathrm{~d}, J=16.8 \mathrm{~Hz})$, 14.7.
(rel) $-\left(1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)-9-\left\{\left(3^{\prime}-\right.\right.$ vinyl-2'-fluoro-tetrahydrofuran-1'yl) guanine\} phosphonic acid (127): To a solution of 126 b (159 mg , 0.379 mmol) in dry $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ was added trimethylsilyl bromide ($0.0873 \mathrm{~mL}, 6.62 \mathrm{mmol}$) at room temperature. The mixture was stirred for 24 h , and solvent was removed by co-evaporation with methanol three times. The residue was dissolved in MeOH (15.0 mL) and 2 -mercaptoethanol (103.6 $\mu \mathrm{L}, 1.52 \mathrm{mmol}$), and then NaOMe ($80.6 \mathrm{mg}, 1.52 \mathrm{mmol}$) was added. The mixture was refluxed for 12 h under N_{2}, cooled, neutralized with glacial AcOH , and evaporated to dryness under vacuum. The residue was purified by preparative reversed-phase C18 silica gel column chromatography using water as eluent to give 127 ($90.2 \mathrm{mg}, 69 \%$) as a yellowish foam. UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\max } 254.0 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) \delta 10.8(\mathrm{br} \mathrm{s}, \mathrm{NH}, 1 \mathrm{H})$, 8.12 (s, 1H, H-8), 7.03 (br s, NH ${ }_{2}, 2 \mathrm{H}$), 6.63 (dd, $J=19.4,17.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, 6.17-6.08 (m, 2H, H-5', PCH), 3.72-3.65 (m, 3H, H-2',
$H-4 \prime a, H-4 \prime b), 2.80-2.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d, 75 $\mathrm{MHz}) \delta 157.4,154.6,152.3,149.4,136.2,119.1,115.3,96.0(\mathrm{~d}, J=$ $168.1 \mathrm{~Hz}), 86.9(\mathrm{~d}, J=17.4 \mathrm{~Hz})$, $63.0,62.5,61.8,40.4(\mathrm{~d}, J=17.2$ $\mathrm{Hz}) ; \mathrm{MS} \mathrm{m} / \mathrm{z} 346(\mathrm{M}+\mathrm{H})^{+}$.
(rel) - ($1^{\prime} R, 2^{\prime} R, 3^{\prime} S$) -Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ ethyl-2'-fluoro-tetrahydrofuran -1-yl) 2-fluoro-6-chloropurine\} phosphonate (128) Compound 128 was synthesized from 125 by transfer catalytic hydrogenation similar to that described for 118 : yield 73%; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}$) $\delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{dd}, J=15.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.09(\mathrm{~m}, 4 \mathrm{H})$, $3.73-3.66(\mathrm{~m}, 3 \mathrm{H}), 2.81-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO $\left.-d_{6}, 75 \mathrm{MHz}\right) \delta 157.1(\mathrm{~d}, J=218.8 \mathrm{~Hz}, 1 \mathrm{H})$, 153.1, 145.3, 136.2, 121.2, $96.2(\mathrm{~d}, J=166.8 \mathrm{~Hz}), 88.5(\mathrm{~d}, J=16.7$ $\mathrm{Hz}), 61.8,41.1(\mathrm{~d}, J=17.2 \mathrm{~Hz}), 28.5,18.4,14.7$.
(rel) - ($\left.1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)$-Diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ ethyl-2'-fluoro-tetrahydrofuran -1-yl) 2-fluoro-6-aminopurine\} phosphonate (129a) and (rel) ($1^{\prime} R, 2^{\prime} R, 3^{\prime} S$) - diethyl $\left\{9-\left(3^{\prime}-\right.\right.$ ethyl-2'-fluoro-tetrahydrofuran-1-yl) 2-amino-6-chloropurine phosphonate (129b): Ammonolysis of 128 using the same procedure described for 126 a and 126 b to gave 128 a and 128b. Data for 128a; yield 13%; UV (MeOH) $\lambda_{\max } 261.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.74$ (br s, $\mathrm{NH}_{2}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 6.08 (d, $J=15.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.10$ (m, 4H), $3.71-3.64(\mathrm{~m}, 3 \mathrm{H}), 2.82-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.99(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}\right) \delta 161.0(\mathrm{~d}, J=267.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$155.3,152.3,142.6,123.4,98.6(\mathrm{~d}, J=168.4 \mathrm{~Hz}), 89.4(\mathrm{~d}, J=16.8$ $\mathrm{Hz}), 60.6,40.4(\mathrm{~d}, J=17.4 \mathrm{~Hz}), 29.4,18.7,15.4$. Data for 128b; yield 43%; UV (MeOH) $\lambda_{\max } 307.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300 \mathrm{MHz}$) δ $8.22(\mathrm{~s}, 1 \mathrm{H}), 7.75\left(\mathrm{br} \mathrm{s}, \mathrm{NH}_{2}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 6.13 (d, $J=$ 16.0, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.11(\mathrm{~m}, 4 \mathrm{H}), 3.72-3.67(\mathrm{~m}, 3 \mathrm{H}), 2.81-2.74$ $(\mathrm{m}, 1 \mathrm{H}), 2.14-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.53(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75$ $\mathrm{MHz}) \delta 158.6,154.8,151.0,143.8,125.7,99.2(\mathrm{~d}, J=167.8 \mathrm{~Hz})$, $88.6(\mathrm{~d}, J=16.4 \mathrm{~Hz}), 61.7,41.2(\mathrm{~d}, J=16.7 \mathrm{~Hz}), 28.7,19.0,14.8$.
(rel) $-\left(1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)-9-\left\{\left(3^{\prime}-\right.\right.$ Ethyl-2'-fluoro-tetrahydrofuran-1yl) guanine\} phosphonic acid (130): Nucleoside phosphonic acid 130 was synthesized using the hydrolysis conditions used for 127 . Yield 56%; UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\max } 252.5 \mathrm{~nm} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) \delta 10.8$ (br s, NH, H, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), 8.11 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$), 7.10 (br s, NH_{2}, $2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $6.11\left(\mathrm{~d}, J=16.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.70-$ 3.64 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime} \mathrm{a}, \mathrm{H}-4^{\prime} \mathrm{b}$), 2.77-2.71 (m, 1H, H-3'), 2.091.94 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}, \mathrm{H}-5^{\prime} \mathrm{b}, \mathrm{PCH}_{2}$) ; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}$) δ $157.8,154.4,152.3,136.5,119.2,97.2(\mathrm{~d}, J=168.0 \mathrm{~Hz}), 90.1(\mathrm{~d}, J$ $=16.4 \mathrm{~Hz}), 60.5,40.4(\mathrm{~d}, J=16.4 \mathrm{~Hz}), 28.5,18.6,15.3 ; \mathrm{MS} \mathrm{m} / \mathrm{z} 348$ $(\mathrm{M}+\mathrm{H})^{+}$.
(rel) $-\left(1^{\prime} R, 2^{\prime} R, 3^{\prime} S\right)$-Bis (SATE) phosphoester of $\quad\left[9-\left(3^{\prime}-\right.\right.$ ethyl phosphonate-2'-fluoro-tetrahydrofuran-1-yl)] adenine (132): A solution of adenine phosphonic acid derivative $120(70 \mathrm{mg}, 0.212$ mmol) and tri-n-butylamine ($117 \mathrm{mg}, 0.636 \mathrm{mmol}$) in methanol (4.5
mL) was mixed for 30 min and concentrated under reduced pressure. The residue was thoroughly dried with anhydrous ethanol and toluene. The resulting foamy solid was dissolved in anhydrous pyridine (15 mL) to which thioester $131(649 \mathrm{mg}, 4.0 \mathrm{mmol})$ and $1-(2-$ mesitylenesulfonyl)-3-nitro-1H-1,2,4-triazole (251 mg, 0.848 mmol) were added. The mixture was stirred overnight at room temperature and quenched with tetrabutylammonium bicarbonate buffer ($12.0 \mathrm{~mL}, 1 \mathrm{M}$ solution, pH 8.0). The mixture was concentrated under reduced pressure and the residue was diluted with water (70 mL) and extracted with $\mathrm{CHCl}_{3}(80 \mathrm{~mL})$ two times. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The residue was purified by silica gel column chromatography (MeOH/Hexane/EtOAc, 0.05:4:1) to give 132 (48 mg , 37%) as a white solid: mp $131-133^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 262.0 \mathrm{~nm}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$, $6.11\left(\mathrm{~d}, J=16.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, $4.02\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.56(\mathrm{~d}, J$ $\left.=9.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime} \mathrm{a}, \mathrm{H}-4^{\prime} \mathrm{b}\right), 3.16\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{SCH}_{2}\right)$, 2.21-2.13 (m, 5H, H-3', H-5'a, H-5'b, PCH_{2}), 1.22-1.16 ($\mathrm{s}, 18 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 204.2$, 57.1, 154.7, 152.8, 148.2, 145.6, 124.6, 119.4, $96.6(\mathrm{~d}, J=168.2 \mathrm{~Hz}), 88.8(\mathrm{~d}, J=18.4 \mathrm{~Hz})$, 83.6, 67.5, 67.3, 62.4, 61.6, 53.4, $38.4(\mathrm{~d}, J=16.4 \mathrm{~Hz}), 30.2,28.7$, 28.5, 23.7, 14.6; $\mathrm{MS} m / z 620(\mathrm{M}+\mathrm{H})^{+}$.

2,2-Difluoro-1,3-bis-benzyloxy-propane (135): A solution of
compound 134 ($129 \mathrm{mg}, 0.48 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (38 mL) was treated with DAST ($0.496 \mathrm{~mL}, 3.76 \mathrm{mmol}$) under argon at room temperature. The reaction mixture was stirred for 6 h and was then quenched by adding a saturated solution of NaHCO_{3} in water. The organic phase was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 80 mL). The organic layer was dried over anhydrous magnesium sulfate, filtered, and evaporated to dryness. The residue was purified by silica gel column chromatography (EtOAc/hexane, $1: 10)$ to give the gem-difluorinated product 135 ($91 \mathrm{mg}, 65 \%$) as a colorless syrup: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.34-7.28$ (m, 10H), $4.65(\mathrm{~s}, 4 \mathrm{H}), 3.71(\mathrm{t}, J=9.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 136.1, 128.5, 128.3, 128.0, 113.9 (t, $J=213 \mathrm{~Hz}$), 78.5 (t, $J=20.8$ Hz) , 74.1.

2,2-Difluoro-1,3-bis-hydroxy-propane (136): To a solution of 135 ($450 \mathrm{mg}, 1.54 \mathrm{mmol}$) in n - propanol (10 mL), $\mathrm{Pd} / \mathrm{C}(10 \%, 340 \mathrm{mg}$, $0.31 \mathrm{mmol})$ was added. The mixture was thoroughly, deoxygenated, then saturated with hydrogen gas (1.1 bar) and stirred at $50^{\circ} \mathrm{C}$ for 24 h. The charcoal was, then, removed by filtration through a short Celite pad. The filtrate was concentrated to dryness to give crude 136 (165.7 mg, 96\%), which was subjected to next reaction procedure without further purification.

3-(t-Butyldimethylsilanyloxy)-2,2-difluoro-propan-1-ol (137): To a stirred solution of previous compound 136 ($165.7 \mathrm{mg}, 1.478$
mmol) and imidazole ($201 \mathrm{mg}, 2.956 \mathrm{mmol}$) in anhydrous DMF (8 mL), t-butyldimethylsilyl chloride ($269 \mathrm{mg}, 1.625 \mathrm{mmol}$) was slowly added at $0^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 4 h , and quenched by adding a NaHCO_{3} aqueous solution (3 mL). The mixture was extracted using diethyl ether ($80 \mathrm{~mL} \times 2$), dried over MgSO_{4}, filtered and then evaporated to dryness. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:7) to give 137 (217 mg, 65\%) as a colorless syrup: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $4.20(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.02$ ($\mathrm{s}, 6 \mathrm{H}$) $;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 119.5(\mathrm{t}, J=210.2 \mathrm{~Hz}), 72.2(\mathrm{t}$, $J=20.3 \mathrm{~Hz}), 68.5(\mathrm{t}, J=19.8 \mathrm{~Hz}), 25.6,18.4,-5.4$.
$3-(\mathrm{t}$-Butyldimethylsilanyloxy) - 2,2-difluoro-propenal (138): To а mixture of allylic alcohol 137 ($468 \mathrm{mg}, 2.07 \mathrm{mmol}$), manganese (IV) dioxide ($539 \mathrm{mg}, 6.2 \mathrm{mmol}$) and $\mathrm{CCl}_{4}(10 \mathrm{~mL})$ was added and refluxed overnight. Additional manganese (IV) dioxide ($90 \mathrm{mg}, 1.03 \mathrm{mmol}$) was added and refluxed for an additional 12 h . The progress of the reaction was monitored by TLC. The resulting mixture was filtered through a pad of celite, washed with ethyl acetate. The filtrate and washings were condensed in vacuo and the residue was purified by silica gel column chromatography (EtOAc/hexane, 1:20) to give $\alpha, \beta-$ unsaturated aldehyde 138 ($339 \mathrm{mg}, 73 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.83(\mathrm{~s}$, $9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 119.5(\mathrm{t}, J=211.2$
$\mathrm{Hz})$, $72.2(\mathrm{t}, J=18.6 \mathrm{~Hz}), 68.9(\mathrm{t}, J=19.6 \mathrm{~Hz}), 25.6,18.4,-5.4$.
$(\pm)-5-(\mathrm{t}$-Butyldimethylsilanyloxy) - 4,4-difluoro-pent-1-en-3ol (139): To a solution of $138(1.05 \mathrm{~g}, 4.68 \mathrm{mmol})$ in dry THF (12 mL), vinylmagnesium bromide ($5.14 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) was slowly added at $0{ }^{\circ} \mathrm{C}$ and stirred 6 h at $0^{\circ} \mathrm{C}$. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) was added to the mixture, which was slowly warmed to RT. The mixture was diluted with water (100 mL) and extracted with EtOAc ($2 \times 100 \mathrm{~mL}$). The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered, and evaporated to dryness. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:15) to give 139 (944 mg, 80\%) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.93(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.24$ $(\mathrm{m}, 2 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 139.5,122.2(\mathrm{t}, J=198.2 \mathrm{~Hz}), 81.5(\mathrm{dd}, J=$ 20.8, 18.9 Hz), $70.6(\mathrm{t}, ~ J=20.1 \mathrm{~Hz}), 25.2,18.7,-5.6$.
(\pm)-t-Butyl- [2,2-difluoro-3-(4-methoxybenzyloxy)-pent-4-enyloxy]-dimethylsilane (140): NaH (60% in mineral oil, 66.4 mg , $1.66 \mathrm{mmol})$ was added portion-wise to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of secondary alcohol 139 ($349 \mathrm{mg}, 1.385 \mathrm{mmol}$) and p-methoxybenzyl chloride ($0.206 \mathrm{~mL}, 1.52 \mathrm{mmol}$) in anhydrous DMF (6 mL). The reaction mixture was stirred overnight at RT. The solvent was removed in vacuo and the residue was diluted with $\mathrm{H}_{2} \mathrm{O}$ (60 mL) followed by extraction with diethyl ether ($2 \times 60 \mathrm{~mL}$). The combined
organic layer was washed with brine, dried over anhydrous MgSO_{4}, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:16) to give 140 (376 mg , 73%) as a colorless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.31-7.25(\mathrm{~m}$, 2H), 6.94-6.88 (m, 2H), 5.90 (m, 1H), 5.29-5.24 (m, 2H), 4.63 (s, $2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.11-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H})$, 0.01 ($\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 159.3,138.6,130.5,129.3$, $122.0(\mathrm{dd}, J=201.2,50.2 \mathrm{~Hz}), 115.5,114.2,84.1(\mathrm{dd}, J=19.8,17.4$ $\mathrm{Hz}), 73.6,70.3(\mathrm{t}, J=19.4 \mathrm{~Hz}), 56.3,25.7,18.4,-5.5$.
(\pm)-2,2-Difluoro-3-(4-methoxybenzyloxy)-pent-4-en-1-ol (141): To a solution of $140(1.05 \mathrm{~g}, 2.82 \mathrm{mmol})$ in THF (20 mL), TBAF ($4.2 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight at RT and concentrated in vacuo. The residue was purified by silica gel column chromatography (Hexane/EtOAc, 4:1) to give 141 ($670 \mathrm{mg}, 92 \%$) : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.30-$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.25(\mathrm{~m}, 2 \mathrm{H})$, $4.64(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 159.4,138.2,130.7,128.2,120.5(\mathrm{dd}, J=208.6$, $32.8 \mathrm{~Hz}), 116.0,114.1,83.5(\mathrm{dd}, J=20.4,14.7 \mathrm{~Hz}), 73.6,67.2(\mathrm{dd}, J$ $=18.8,10.6 \mathrm{~Hz}), 56.3$.
(\pm)-2,2-Difluoro-3-(4-methoxybenzyloxy)-2-methylene-pent-4-enal (142): Difluorinated aldehyde derivative 142 was synthesized from 141 by the similar procedure as described for 138: yield 87\%;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.79(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H})$, 6.91$6.85(\mathrm{~m}, 2 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.23(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.27-$ $4.23(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 159.5,137.8$ (dd, $J=220.4,53.2 \mathrm{~Hz}), 136.3,131.1,129.6,115.9,115.2$, $80.2(\mathrm{dd}$, $J=20.4,14.6 \mathrm{~Hz}), 74.0,56.1$.
(rel) - (3R and 3S,5S)-4,4-Difluoro-5-(4-methoxy-benzyloxy)-hepta-1,6-dien-3-ol (143): Divinyl analogue 143 was synthesized as a diastereomeric mixture from aldehyde derivative 142 by a procedure similar to that described for 139 as diastereomeric mixture: yield 75%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.32-7.23(\mathrm{~m}, 2 \mathrm{H})$, $6.93-6.83(\mathrm{~m}, 2 \mathrm{H}), 5.91-5.87(\mathrm{~m}, 2 \mathrm{H}), 5.25-5.21(\mathrm{~m}, 4 \mathrm{H}), 4.65(\mathrm{~m}$, $2 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$.
(rel) - (1S,4R)-5,5-Difluoro-4-(4-methoxy-benzyloxy)-cyclopent -2-enol (144a) and (rel)-(1R,4R)-5,5-difluoro-4-(4-methoxybenzyloxy) - cyclopent-2-enol (144b): To a solution of 143 (160. mg, $0.562 \mathrm{mmol})$ in dry methylene chloride $(6 \mathrm{~mL})$ was added $2^{\text {nd }}$ generation Grubbs catalyst ($30.0 \mathrm{mg}, 0.0352 \mathrm{mmol}$). The reaction mixture was refluxed overnight and cooled to RT. The mixture was concentrated in vacuo, and the residue was purified by silica gel column chromatography (EtOAc/hexane, 1:10) to give cyclopentenol 144a (50 mg, 35\%) and 144b (52 mg, 36\%). Data for $144 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.62-$ $5.47(\mathrm{~m}, 2 \mathrm{H}), 4.62-4.57(\mathrm{~m}, 3 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 159.6,131.2,130.7,129.2,122.7(\mathrm{dd}, J=$ $210.2,60.5 \mathrm{~Hz}), 115.2$, $84.6(\mathrm{dd}, J=20.2,10.4 \mathrm{~Hz}), 80.3(\mathrm{ddd}, J=$ 18.8, 10.8, 2.8 Hz$), 74.2,57.1$; Data for $144 \mathrm{~b}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.61-5.45(\mathrm{~m}, 2 \mathrm{H})$, 4.61-4.55 (m, 3H), 4.21-4.18 (m, 1H), $3.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 159.4,131.0,130.1,128.8,123.1(\mathrm{dd}, J=208.2$, $48.6 \mathrm{~Hz}), 114.4,83.8(\mathrm{dd}, J=18.8,12.6 \mathrm{~Hz}), 79.5(\mathrm{dd}, J=19.0$, 10.2 Hz), 73.9, 56.5.

$$
(r e l)-(1 S, 4 R)-9-[5,5-\text { Difluoro-4-(4-methoxybenzyloxy)-cyclo }
$$

pent-2-en-1-yl] 6-chloropurine (145): To a solution containing compound 144b ($95 \mathrm{mg}, 0.372 \mathrm{mmol}$), triphenylphosphine (264 mg , 1.008 mmol) and 6 -chloropurine ($115 \mathrm{mg}, 0.744 \mathrm{mmol}$) in anhydrous cosolvent (1,4-dioxane, 4.0 mL and DMF , 3.0 mL), diethyl azodicarboxylate (DEAD) ($0.135 \mathrm{~mL}, 0.744 \mathrm{mmol}$) was added dropwise at $30^{\circ} \mathrm{C}$ for 15 min under nitrogen. The reaction mixture was stirred for 2 h at the same temperature under nitrogen and further stirred overnight at RT. The solvent was evaporated to dryness and the residue was purified by silica gel column chromatography (EtOAc/hexane, 2:1) to give compound 145 ($74 \mathrm{mg}, 51 \%$) : mp 168$171{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 263.5 \mathrm{~nm}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.68$ (s, 1H), 8.29 (s, 1H), 7.27-7.20 (m, 2H), 6.90-6.85 (m, 2H), 5.63$5.57(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{ddd}, J=16.2,10.0$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 159.5,151.6$,
151.0, 145.2, 132.4, 130.7, 129.8, 128.9, 119.0 (dd, $J=198.4,50.6$ Hz), 115.8, 85.2 (dd, $J=18.6,12.4 \mathrm{~Hz}), 73.8,65.2(\mathrm{dd}, \quad J=20.2$, 10.4 Hz), 57.5.
(rel) - (1S,4R)-9-(5,5-Difluoro-4-hydroxy-cyclopent-2-en-1yl) 6-chloropurine (146): To a solution of compound 145 (199 mg, $0.507 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}, 10: 1 \mathrm{v} / \mathrm{v})$ was added DDQ (170 $\mathrm{mg}, 0.747 \mathrm{mmol}$, and the mixture was stirred overnight at room temperature. Saturated $\mathrm{NaHCO}_{3}(1.2 \mathrm{~mL})$ was added to quench the reaction, which was then stirred for 3 h at RT . The mixture was diluted with water (150 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$. The combined organic layer was dried over anhydrous MgSO_{4} and filtered. The filtrate was evaporated to dryness and the residue was purified by silica gel column chromatography (EtOAc/hexane/MeOH, 4:1:0.03) to give compound 146 ($83 \mathrm{mg}, 60 \%$) : mp $176-178{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 265.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 8.67(\mathrm{~s}$, $1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 5.63-5.59(\mathrm{~m}, 2 \mathrm{H}), 5.04-5.00(\mathrm{dd}, J=16.8,9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.56-4.52(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 151.7$, $151.3,151.1,145.2,132.5,130.2,129.3,121.1(\mathrm{dd}, J=192.2,40.2$ $\mathrm{Hz}), 81.5(\mathrm{dd}, J=18.4,12.0 \mathrm{~Hz}), 64.6(\mathrm{dd}, J=19.4,11.0 \mathrm{~Hz})$.
(rel) - (1S,4R) - Diethyl [9-(5,5-difluoro-4-hydroxy-cyclopent-2-en-1-yl) 6-chloropurine] phosphonate (147): Both LiOt-Bu (1.488 mL of 0.5 M solution in THF, 0.744 mmol) and a solution of diethyl phosphonomethyltriflate ($209 \mathrm{mg}, 0.696 \mathrm{mmol}$) in 6.0 mL of

THF were slowly added to a solution of the nucleoside analogue 146 ($95 \mathrm{mg}, 0.348 \mathrm{mmol}$) in 6.0 mL of THF at $40^{\circ} \mathrm{C}$ and stirred overnight at rt under nitrogen. The mixture was quenched by adding saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) and further diluted with additional $\mathrm{H}_{2} \mathrm{O}$ (100 $\mathrm{mL})$. The aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layer was dried over anhydrous MgSO_{4} and evaporated to dryness. The residue was purified by silica gel column chromate graphy (MeOH/Hexane/EtOAc, 0.03:4:1) to give 147 (85 $\mathrm{mg}, 58 \%$) as a foam: ${ }^{1} \mathrm{H}$ NMR (DMSO $-d_{6}, 300 \mathrm{MHz}$) $\delta 8.69(\mathrm{~s}, 1 \mathrm{H})$, $8.28(\mathrm{~s}, 1 \mathrm{H}), 5.62-5.56(\mathrm{~m}, 2 \mathrm{H}), 5.03-4.97(\mathrm{ddd}, J=18.6,10.3,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.35-4.31(\mathrm{~m}, 4 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 1.37 (m 6H) ; ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75 \mathrm{MHz}$) δ 151.6, 151.0, 145.3, 132.6, 130.6, 128.7, $118.1(\mathrm{dd}, ~ J=190.6,52.4 \mathrm{~Hz}), 88.5(\mathrm{dd}, J=$ $19.8,10.2 \mathrm{~Hz}), 66.3(\mathrm{dd}, J=18.8,9.8 \mathrm{~Hz}), 64.8,63.2,14.7$.
(rel) - (1S,4R)-Diethyl [9-(5,5-difluoro-4-hydroxy-cyclopent-$2-e n-1-y l)$ adenine] phosphonate (148): A solution of 147 (120 mg, 0.283 mmol) in saturated methanolic ammonia (10 mL) was stirred for 12 h at $65^{\circ} \mathrm{C}$ in a steel bomb, and the volatiles were evaporated to dryness. The residue was purified by silica gel column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 10$) to give 148 ($69 \mathrm{mg}, 61 \%$) as a white solid: mp $158-161{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 262.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) \delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 5.63-5.58(\mathrm{~m}$, 2H), $5.04(\mathrm{dd}, J=19.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.30(\mathrm{~m}, 4 \mathrm{H}), 4.18$ (m,
$1 \mathrm{H}), 3.99$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{~m} 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75$ $\mathrm{MHz}) \delta 155.3,152.6,150.4,130.4,119.3,117.2(\mathrm{dd}, J=196.7,42.8$ Hz), $87.1(\mathrm{dd}, J=19.2,11.0 \mathrm{~Hz}), 65.3(\mathrm{dd}, J=19.0,10.4 \mathrm{~Hz}), 64.2$, 63.4, 15.1.
(rel) - (1S,4R)-[9-(5,5-Difluoro-4-hydroxy-cyclopent-2-en1 -yl) adenine] 4-phosphonic acid (149): To a solution of the nucleoside phosphonate 148 ($84 \mathrm{mg}, 0.21 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ (8 mL) and 2,6-lutidine ($0.489 \mathrm{~mL}, 4.2 \mathrm{mmol}$) was added trimethyl silyl bromide ($0.277 \mathrm{~mL}, 2.1 \mathrm{mmol}$). The mixture was heated for 12 h at $50{ }^{\circ} \mathrm{C}$ under nitrogen gas and then concentrated in vacuo. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and distilled purified water $(50 \mathrm{~mL})$. The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 60$ mL) and then freeze - dried to give phosphonic acid 149 ($67 \mathrm{mg}, 92 \%$) as a yellowish foam: UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max } 265.5 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}\right.$, $300 \mathrm{MHz}) \delta 8.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 5.62-5.57(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}\right)$, 5.01 (ddd, $\left.J=19.6,11.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, 4.19 (ddd, $\left.J=18.8,10.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 3.98\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 154.7,152.5,150.3,130.7,129.2$, 119.3, 117.7 (dd, $J=198.2,52.8 \mathrm{~Hz}), 88.0(\mathrm{dd}, J=20.4,9.8 \mathrm{~Hz}), 64.5(\mathrm{dd}$, $J=19.2,10.2 \mathrm{~Hz}), 63.4,62.8$; Anal. Calc. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P}\left(+\mathrm{H}_{2} \mathrm{O}\right):$ C, 36.17 ; H, 3.86 ; N, 19.18; Found: C, 36.15 ; H, 3.85 ; N, 19.20; MS $m / z 348(\mathrm{M}+\mathrm{H})^{+}$.
(rel) - (1R,4R) - [5,5-Difluoro-4-(4-methoxybenzyloxy) -cyclopent
-2-enyloxymethyl] -phosphonic acid diethyl ester (150): Diethyl phosphonate analogue 150 was synthesized from 144 b by the similar procedure used for 147: yield 59%; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 7.28-7.23 (m, 2H), 6.90-6.85 (m, 2H), 5.61-5.58 (m, 2H), 4.46 (s, $2 H), 4.34-4.30(\mathrm{~m}, 4 \mathrm{H}), 4.18-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.74 (s, 3H), $1.36(\mathrm{~m} 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 159.4,130.6$, 129.4, $119.4(\mathrm{dd}, J=194.6,50.4 \mathrm{~Hz}), 116.3$, $86.5(\mathrm{dd}, J=19.4$, $10.6 \mathrm{~Hz}), 73.2,64.7,63.3(\mathrm{dd}, J=18.4,9.2 \mathrm{~Hz})$, $62.6,55.3,14.3$.
(rel) - (1R,4R) - (5,5-Difluoro-4-hydroxy-cyclopent-2-enyloxy methyl) - phosphonic acid diethyl ester (151): Deprotection of 150 was performed under the similar procedure as described for the preparation of 146: yield 64%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.62-$ 5.58 (m, 2H), 4.58 (ddd, $J=18.6,10.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.28$ (m, $4 \mathrm{H}), 4.18$ (ddd, $J=19.2,12.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 1.37 (m 6H) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 130.6,129.7$, $122.2(\mathrm{dd}, J$ $=190.6,44.8 \mathrm{~Hz}), 86.7(\mathrm{dd}, J=21.2,10.6 \mathrm{~Hz}), 79.4(\mathrm{dd}, J=19.7$, $10.5 \mathrm{~Hz}), 64.5,63.8,14.5$.
(rel) - (1S,4R) -Diethyl [9-(5,5-difluoro-4-hydroxy-cyclopent-$2-\mathrm{en}-1-\mathrm{yl}) 2$-fluoro-6-chloropurine] phosphonate (152): Mitsunobu coupling of 151 with 2 -fluoro-6-chloropurine under the similar reaction condition as described for 145: yield 46%; UV (MeOH) $\lambda_{\max }$ $269.5 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 5.61-5.54(\mathrm{~m}$, 2H), 5.08 (ddd, $J=19.2,11.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.27-4.20 (m, 5H), 4.00
(d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~m} 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 155.2$, 152.7, 148.2, 144.5, 130.6, 129.2, 128.4, 118.3 (dd, $J=194.2,58.6$ Hz), 87.3 (dd, $J=20.4,9.8 \mathrm{~Hz}$), $66.4(\mathrm{dd}, J=18.9,8.8 \mathrm{~Hz}$), 64.5 , 63.6, 62.4, 16.3.
(rel) - (1S,4R) -Diethyl [9-(5,5-difluoro-4-hydroxy-cyclopent-2-en-1-yl) 2-fluoro-6-aminopurine] phosphonate (153) and (rel) ($1^{\prime} S, 4^{\prime} R$) - diethyl [9-(5,5-difluoro-4-hydroxy-cyclopent-2-en-1yl) 2-amino-6-chloropurine] phosphonate (154): Dry ammonia gas was bubbled into a stirred solution of 152 ($560 \mathrm{mg}, 1.27 \mathrm{mmol}$) in DME (20 mL) at room temperature overnight. The salts were removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 12$) to give 153 ($75 \mathrm{mg}, 14 \%$) and 154 ($305 \mathrm{mg}, 55 \%$), respectively: Data for 153 ; UV (MeOH) $\lambda_{\text {max }}$ $268.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300 \mathrm{MHz}$) $\delta 8.43$ ($\mathrm{s}, 1 \mathrm{H}$), 5.60-5.57 (m, 2H), 5.03 (dd, $J=19.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.23-4.17 (m, 5H), 4.03 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $1.35-1.38(\mathrm{~m} 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\mathrm{d}_{6}, 75$ MHz) δ 154.6, 152.2, $147.3,145.6,130.8,129.5,128.6,118.6$ (dd, J $=196.6,52.8 \mathrm{~Hz}$), 86.2 (dd, $J=20.2,9.4 \mathrm{~Hz}$), $65.2(\mathrm{dd}, J=19.8,9.4$ $\mathrm{Hz})$, 63.8, 62.9, 17.1; Data for 154; UV (MeOH) $\lambda_{\max } 310.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 8.43$ (s, 1H), 5.62-5.58 (m, 2H), 5.04 (dd, $J=19.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}$) , 4.21-4.16 (m, 5H), 4.01 (d, $J=8.0 \mathrm{~Hz}$, 2H), 1.36 (m 6H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}$) δ 155.7, 153.1,
148.3, 144.9, 130.5, 129.2, 128.2, $118.6(\mathrm{dd}, J=198.1,56.2 \mathrm{~Hz})$, $88.1(\mathrm{dd}, J=20.7,9.6 \mathrm{~Hz})$, $64.6(\mathrm{dd}, J=19.4,9.9 \mathrm{~Hz}), 63.4,62.5$, 16.5.
(rel) - (1S,4R)-9-(5,5-difluoro-4-hydroxy-cyclopent-2-en-1yl) guanine] phosphonic acid (155): To a solution of 154 (20.8 mg , 0.0495 mmol) dry DMF (7 mL) was added trimethylsilyl bromide ($114 \mu \mathrm{~L}, 0.862 \mathrm{mmol}$) at room temperature. After this mixture was stirred for 2 days, the solvent was removed, coevaporating three times with methanol. The residue was dissolved in MeOH (2.0 mL) and 2 -mercaptoethanol ($13.9 \mu \mathrm{~L}, 0.198 \mathrm{mmol}$) and $\mathrm{NaOMe}(10.7 \mathrm{mg}$, 0.198 mmol) was added to the mixture. The mixture was refluxed for 5 h under N_{2}, cooled, neutralized with glacial AcOH , and evaporated to dryness under vacuum. The residue was purified by chromatography on a column of reversed-phase C18 silica gel eluting water to give $155(6.8 \mathrm{mg}, 66 \%)$ as a solid. UV (MeOH) $\lambda_{\max } 254.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta 7.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 5.61-5.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$, $\left.\mathrm{H}-3^{\prime}\right), 5.02\left(\mathrm{ddd}, J=20.4,10.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.16(\mathrm{ddd}, J=$ 18.8, 9.6, 2.8 Hz, 1H, H-4'), $4.00\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PCH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}\right) \delta 157.2,153.8,149.1,141.5,131.1,130.2$, 119.5, 118.2 (dd, $J=192.5,46.6 \mathrm{~Hz}), 86.5(\mathrm{dd}, J=19.4,10.2 \mathrm{~Hz})$, 64.5, 54.4 (dd, $J=19.6,9.8 \mathrm{~Hz}$).
(rel) - (1S,4R)-Bis (SATE) phosphoester of [9-(5,5-difluoro-4-hydroxy-cyclopent-2-en-1-yl] adenine (157): A solution of adenine
phosphonic acid derivative 149 ($117 \mathrm{mg}, 0.338 \mathrm{mmol}$) and tri-nbutylamine ($189 \mathrm{mg}, 1.02 \mathrm{mmol}$) in methanol (8 mL) was mixed for 30 min and evaporated to dryness under reduced pressure. The residue was thoroughly dried with anhydrous ethanol and toluene. The resulting foamy solid was dissolved in anhydrous pyridine (20 $\mathrm{mL})$ to which thioester $156(1.04 \mathrm{~g}, 6.4 \mathrm{mmol})$ and $1-(2-$ mesitylenesulfonyl)-3-nitro-1H-1,2,4-triazole (402 mg, 1.356 mmol) were added. The mixture was stirred overnight at room temperature and quenched with tetrabutylammonium bicarbonate buffer ($20.0 \mathrm{~mL}, 1 \mathrm{M}$ solution, pH 8.0). The mixture was concentrated under reduced pressure and the residue was diluted with water (150 mL) and extracted with $\mathrm{CHCl}_{3}(150 \mathrm{~mL})$ two times. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to dryness under vacuum. The residue was purified by silica gel column chromatography (MeOH/Hexane/EtOAc, 0.04:3:1) to give 157 ($68 \mathrm{mg}, 32 \%$) as a white solid: mp $140-143{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }} 260.0 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.11$ (s, $1 \mathrm{H}, \mathrm{H}-2$), $5.59-5.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}\right), 5.02(\mathrm{dd}, J=18.8$, 10.2 Hz, 1H, H-1'), 4.21-4.15 (m, 3H, H-4', PCH_{2}), 3.94-3.94 (m, $\left.4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.18-3.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{SCH}_{2}\right), 1.23-1.19\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 202.9,154.8,152.2,147.5,144.6,130.7$, 129.0, 119.8, $118.2(\mathrm{dd}, J=190.3,48.8 \mathrm{~Hz}), 87.7(\mathrm{dd}, J=19.8,10.2$ Hz), $65.8(\mathrm{dd}, ~ J=20.0,9.8 \mathrm{~Hz}), 64.3,62.8,58.5,49.3,34.8,25.7$;

MS m/z $636(\mathrm{M}+\mathrm{H})^{+}$.
(rel) - (1R,4S) - (4-Benzyloxymethyl-6,6-difluorocyclopent-2enyloxy) t-butyldimethylsilane (161): To a stirred solution of compound 160 ($2.38 \mathrm{~g}, 9.93 \mathrm{mmol}$) and imidazole ($1.012 \mathrm{~g}, 14.89$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}), t$-butyldimethylsilyl chloride $(1.57 \mathrm{~g}$, 10.425 mmol) was added at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight at RT, and quenched by adding a NaHCO_{3} aqueous solution (3 mL). The mixture was stirred for 30 min , diluted with water (60 mL) and extracted using EtOAc ($2 \times 60 \mathrm{~mL}$). The combine organic layer was dried over anhydrous MgSO_{4}, filtered and then concentrated. The residue was purified by silica gel column chromatography (EtOAc/ hexane, 1:7) to give 161 ($3.13 \mathrm{~g}, 89 \%$) as a colorless syrup: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.40-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.01(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{~m}, 1 \mathrm{H})$, $4.67(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.24$ $(\mathrm{m}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 138.0, 133.6, 130.6 (dd, $J=251.2,256.6 \mathrm{~Hz}$), 128.9, 128.3, 127.5, 127.2, $85.4(\mathrm{dd}, J=20.5,24.6 \mathrm{~Hz}), 64.3,44.4(\mathrm{dd}, J=19.4,23.7$ Hz), 25.4, 18.6, -5.3.
(rel) - (1R,4S) - [1-(t-Butyldimethylsilanyloxy)6,6-difluorocyclo
pentyl] methanol (162): A stirred solution of benzyl ether 161 (744 $\mathrm{mg}, 2.1 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(10 \%, 25 \mathrm{mg})$ in methanol (15 mL) was hydrogenated for 24 h at room temperature under rubber balloon. The mixture was filtered and the solvent was evaporated under
reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:20) to give 162 ($425 \mathrm{mg}, 76 \%$) as a colorless syrup: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.80-3.76(\mathrm{~m}, 1 \mathrm{H})$, 3.63 (dd, $J=8.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=8.6,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.27 (m, $1 \mathrm{H}), 2.01-1.74(\mathrm{~m}, 4 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 128.2(\mathrm{dd}, J=250.4,255.3 \mathrm{~Hz}), 78.5(\mathrm{dd}, J=21.2,25.4$ Hz) , 57.3, 43.1 (dd, $J=20.5,23.6 \mathrm{~Hz}$), 28.3, 25.5, 22.5, 18.4, -5.6 .
(reI) - (1R,4S)-1-(t-Butyldimethylsilanyloxy)-6,6-difluorocyclo pentanecarbaldehyde (163): To a stirred solution of oxalyl chloride ($129 \mathrm{mg}, 1.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added a solution of DMSO ($159 \mathrm{mg}, 2.04 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ dropwise at $78{ }^{\circ} \mathrm{C}$. The resulting solution was stirred at $78^{\circ} \mathrm{C}$ for 30 min , and a solution of alcohol 162 ($271 \mathrm{mg}, 1.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8 mL) was added drop wise. The mixture was stirred at $78^{\circ} \mathrm{C}$ for 30 min and TEA $(0.57 \mathrm{~mL}$, 4.07 mmol) was added. The resulting mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for $30 \mathrm{~min} . \mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ was added, and the solution was stirred for 30 min at RT. The mixture was diluted with water (80 mL) and then extracted with EtOAc $(2 \times 80 \mathrm{~mL})$. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc/hexane, 1:15) to give aldehyde compound 163 ($242 \mathrm{mg}, 90 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.71$ (s, 1H), 3.79-3.74 (m, 1H), 2.94 (m,
$1 \mathrm{H}), 2.03-1.77(\mathrm{~m}, 4 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta$ 202.6, $129.5(\mathrm{dd}, J=251.1,256.4 \mathrm{~Hz}), 79.3(\mathrm{dd}, J=20.5$, 24.8 Hz), $56.5(\mathrm{dd}, J=21.3,24.7 \mathrm{~Hz}), 28.7,25.4,22.3,18.5,-5.2$.
(rel) - (1R,4S) - t-Butyl-(6,6-difluoro-4-vinyl-cyclopentyloxy)
dimethylsilane (164): To ylide solution [methyltriphenylphosphonium iodide (376 mg, 0.925 mmol), triphenylphosphine ($28.5 \mathrm{mg}, 0.11$ $\mathrm{mmol}), 1.6 \mathrm{M} \mathrm{n}$-butyllithium solution ($0.578 \mathrm{~mL}, 0.925 \mathrm{mmol}$) in dry tetrahydrofuran (7.0 mL) at $-78^{\circ} \mathrm{C}$, was dropwise added to a solution of olefin aldehyde 163 ($198 \mathrm{mg}, 0.925 \mathrm{mmol}$) in dry THF (7 mL). The reaction mixture was warmed to room temperature and stirred for 6 h , quenched by saturated sodium bicarbonate solution. The reaction mixture was partitioned between saturated sodium bicarbonate solution and ethyl acetate. The organic layer was separated and the aqueous layer was extracted with ethyl acetate. The combined extracts were dried over anhydrous sodium sulfate, filtered, concentrated in vacuum and chromatographed (hexane-EtOAc, 20:1) to afford $164(161 \mathrm{mg}, 82 \%)$ as a colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 5.74-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.73(\mathrm{~m}, 1 \mathrm{H})$, $2.88(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.75(\mathrm{~m}, 4 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 141.3$, $130.2(\mathrm{dd}, J=251.3,256.8 \mathrm{~Hz})$, 115.7, 78.5 (dd, $J=19.8,23.5 \mathrm{~Hz}$), $45.2(\mathrm{dd}, J=20.6,23.9 \mathrm{~Hz}$), 29.1, 25.6, 22.7, 18.4, -5.5.

$$
\begin{equation*}
(r e I)-(1 R, 4 S)-6,6 \text {-Difluoro-4-vinyl-cyclopentan-1-ol } \tag{165}
\end{equation*}
$$

To a solution of 164 ($0.6 \mathrm{~g}, 2.286 \mathrm{mmol}$) in THF (10 mL), TBAF ($2.74 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) was added at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 6 h at RT and concentrated in vacuo. The residue was purified by silica gel column chromatography (Hexane/EtOAc, 8:1) to give 165 (308 mg, 91\%) : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.73-5.69(\mathrm{~m}$, $1 \mathrm{H}), 5.02-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.75(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.00-$ 1.78 (m, 4H) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 140.7,129.6(\mathrm{dd}, \quad J=$ 250.3, 255.5 Hz), 114.3, $76.9(\mathrm{dd}, J=19.6,22.9 \mathrm{~Hz}), 44.7(\mathrm{t}, J=$ 19.3 Hz), 27.8, 22.1.

$$
(r e l)-\left(1^{\prime} S, 4^{\prime} S\right)-9-\left(6^{\prime}, 6^{\prime}-\right.\text { Difluoro-4'-vinyl-cyclopentan-1'-yl) }
$$

6-chloropurine (166): To a stirred solution of triphenylphosphine ($281 \mathrm{mg}, 1.07 \mathrm{mmol}$) in dry THF (5 mL) at $0^{\circ} \mathrm{C}$ was added dropwise the diisopropyl azodicarboxylate (DIAD) ($216 \mathrm{mg}, 1.07 \mathrm{mmol}$) and the reaction mixture was stirred at this temperature for 30 min . After that, a solution of the alcohol 165 ($79 \mathrm{mg}, 0.535 \mathrm{mmol}$) in THF (5 mL) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Then the cold bath was removed and the yellow solution was stirred for 30 min at room temperature. 6-Chloropurine ($230 \mathrm{mg}, 1.07$ mmol) was then added and the reaction mixture was stirred overnight at room temperature. The reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography (EtOAc/hexane, 2.5:1) to give compound 166 (90 mg , $59 \%)$; UV (MeOH) $\lambda_{\max } 264.0 \mathrm{~nm}:{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.70$
(s, 1H), $8.29(\mathrm{~s}, 1 \mathrm{H}), 5.72-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.98(\mathrm{~m}, 2 \mathrm{H}), 5.12-$ $5.08(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.81(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 151.8,151.4,151.1,145.7,140.3,128.8(\mathrm{dd}, J=$ 250.5, 253.9 Hz), 132.5, 114.6, $67.4(\mathrm{dd}, J=14.3,18.6 \mathrm{~Hz}), 45.8(\mathrm{dd}$, $J=17.3,19.2 \mathrm{~Hz}$), 28.5, 22.7.
$(r e I)-\left(1^{\prime} S, 4^{\prime} S\right)-$ Diethyl $\left\{9-\left(6^{\prime}, 6^{\prime}-\right.\right.$ difluoro-4'-vinyl-cyclopentan-1'-yl) 6-chloropurine\} phosphonate (167): To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) solution of 6 -chloropurine derivative 166 ($117 \mathrm{mg}, 0.412 \mathrm{mmol}$) and diethyl vinylphosphonate $(338 \mathrm{mg}, 2.06 \mathrm{mmol}), 2^{\text {nd }}$-generation Grubbs catalyst ($17.49 \mathrm{mg}, 0.0206 \mathrm{mmol}$) was added. The reaction mixture was refluxed for 24 h under dry argon gas and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/n-Hexane/MeOH, 3:1:0.04) to give 167 ($102 \mathrm{mg}, 59 \%$) as a form: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}$) $\delta 8.70$ (s, $1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=17.2,21.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{dd}, J=$ $17.2,19.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.13$ (m, 1H), 4.15-4.10 (m, 4H), 2.81$2.79(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.21-1.17(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}\right) \delta 151.5,151.0,150.8,148.7,145.1,128.5(\mathrm{dd}, J$ = 249.9, 253.2 Hz), 131.8, 115.2, $65.7(\mathrm{dd}, J=15.7,18.9 \mathrm{~Hz}), 63.2$, $62.8,46.8(\mathrm{dd}, J=18.1,21.5 \mathrm{~Hz}), 29.2,22.5,15.4$.
$(r e l)-\left(1^{\prime} S, 4^{\prime} S\right)-$ Diethyl $\left\{9-\left(6^{\prime}, 6^{\prime}-\right.\right.$ difluoro-4'-vinyl-cyclopentan-$1^{\prime}-\mathrm{yl}$) adenine\} phosphonate (168): A solution of 167 ($135 \mathrm{mg}, 0.32$ mmol) in saturated methanolic ammonia (5 mL) was stirred overnight
at $62^{\circ} \mathrm{C}$ in a steel bomb, and the volatiles were evaporated. The residue was purified by silica gel column chromatography (MeOH/ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 10\right)$ to give 168 ($87 \mathrm{mg}, 68 \%$) as a white solid: UV (MeOH) $\lambda_{\max } 261.5 \mathrm{~nm} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) \delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~s}$, $1 \mathrm{H}), 6.65(\mathrm{dd}, J=17.0,21.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=17.1,20.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.11-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.13(\mathrm{~m}, 4 \mathrm{H}), 2.84-2.81(\mathrm{~m}, 1 \mathrm{H})$, 2.02-1.77 (m, 4H), 1.19-1.15 (m, 6H) ; ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75$ MHz) $\delta 154.8,152.5,150.7,149.2,142.0,127.9(\mathrm{dd}, J=250.3,254.5$ $\mathrm{Hz}), 119.4,114.6,66.3(\mathrm{dd}, \mathrm{J}=17.4,19.8 \mathrm{~Hz}), 63.5,63.1,46.8$ (dd, $J=18.3,21.6 \mathrm{~Hz}), 30.1,23.2,15.8$.

$$
(r e l)-\left(1^{\prime} S, 4^{\prime} S\right)-9-\left(6^{\prime}, 6^{\prime}-\right.\text { Difluoro-4'-vinyl-cyclopentan-1'-yl) }
$$

adenine\} phosphonic acid (169): To a solution of the phosphonate 168 (194 mg, 0.483 mmol) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ and 2,6-lutidine ($1.125 \mathrm{~mL}, 9.67 \mathrm{mmol}$) was added trimethylsilyl bromide $(0.740 \mathrm{mg}$, 4.83 mmol). The mixture was heated for 24 hour at $70^{\circ} \mathrm{C}$ under nitrogen gas and then concentrated in vacuum. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ and purified water (80 mL). The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 70 \mathrm{~mL})$ and then freeze-dried to give phosphonic acid 169 (125 mg, 79\%) as a yellowish foam: UV $\left(\mathrm{H}_{2} \mathrm{O}\right) \lambda_{\max } 262.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ $\mathrm{MHz}) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 7.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 6.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$, 6.20 (dd, $J=16.7,19.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCH}), 5.14-5.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, 2.84-2.79 (m, 1H, H-4'), 2.05-1.79 (m, 4H, H-2'a, H-2'b, H-3'a,
$\left.\mathrm{H}-3^{\prime} \mathrm{b}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 154.4,152.1,150.3,148.3$, 141.6, $128.6(\mathrm{dd}, J=251.5,254.7 \mathrm{~Hz}), 120.3,115.7,67.4(\mathrm{dd}, J=$ 16.7, 18.7 Hz), 44.6 (dd, $J=17.7,20.5 \mathrm{~Hz}$), 28.7, 22.3; MS m/z 346 $(\mathrm{M}+\mathrm{H})^{+}$.
(rel) - (1'S, 4'S) - Diethyl \{9-(6',6'-difluoro-4'-ethyl-cyclopentan-$1^{\prime}-\mathrm{yl}$) 6-chloropurine\} phosphonate (170): A solution of vinyl phosphonate nucleoside analogue 167 ($200 \mathrm{mg}, 0.478 \mathrm{mmol}$) in methanol (8 mL) was added $\mathrm{Pd} / \mathrm{C}(10 \%, 8 \mathrm{mg}$) and cyclohexene (4 mL) under argon gas. The reaction mixture was refluxed for 36 h . The reaction mixture was filtered through a pad of Celite, evaporated, and purified by silica gel column chromatography using methanol and methylene chloride (1:10) to give ethyl phosphonate analogue 170 ($121 \mathrm{mg}, 60 \%$) as a white solid: $\mathrm{mp} 171-173{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $300 \mathrm{MHz}) \delta 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=17.2,21.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.15(\mathrm{dd}, J=17.2,19.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.13(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.10$ (m, 4H), 2.81-2.79 (m, 1H), 2.00-1.74 (m, 4H), 1.21-1.17 (m, 6H); ${ }^{13} \mathrm{C}$ NMR (DMSO-d, $\left.75 \mathrm{MHz}\right) \delta$ 151.5, 151.0, 150.8, 148.7, 145.1, $128.5(\mathrm{dd}, J=249.9,253.2 \mathrm{~Hz}), 131.8,115.2,65.7(\mathrm{dd}, J=15.7$, 18.9 Hz), 63.2, 62.8, 46.8 (dd, $J=18.1,21.5 \mathrm{~Hz}$), 29.2, 22.5, 15.4.
(rel) $-\left(1^{\prime} S, 4^{\prime} S\right)-$ Diethyl $\left\{9-\left(6^{\prime}, 6^{\prime}\right.\right.$-difluoro-4'-ethyl-cyclopentan-$1^{\prime}-\mathrm{yl}$) adenine \} phosphonate (171): Adenine derivative 171 was prepared from 6-chloropurine analogue 170 by the similar ammonolysis procedure as described for 168: yield 62%; mp 170-
$172{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 261.0 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) \delta$ $8.27(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 5.13-5.09(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.12(\mathrm{~m}, 4 \mathrm{H})$, 2.79-2.76 (m, 1H), 2.13-1.75 (m, 8H), 1.20-1.15 (m, 6H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}\right) \delta 155.5,152.6,150.3,141.3,127.8(\mathrm{dd}, \quad J=$ 251.0, 254.8 Hz$), 118.8,66.4(\mathrm{dd}, J=17.2,20.6 \mathrm{~Hz})$, 62.8, 62.4, $44.5(\mathrm{dd}, J=17.6,20.3 \mathrm{~Hz}), 29.5,28.3,22.3,18.7,14.8$.

$$
(r e l)-\left(1^{\prime} S, 4^{\prime} S\right)-\left\{9-\left(6^{\prime}, 6^{\prime}-\text { Difluoro-4'-ethyl-cyclopentan-1'-yl }\right)\right.
$$

adenine\} phosphonic acid (172): Adenine phosphonic acid 172 was synthesized from 171 using the similar hydrolysis procedure as described for 169: yield 73%, UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\max } 261.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d6, 300 MHz) $\delta 8.26$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$), 7.79 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$), 5.09$5.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.54-2.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 2.15-1.81(\mathrm{~m}, 8 \mathrm{H}$, CH_{2}) ; ${ }^{13} \mathrm{C}$ NMR (DMSO-d6, 75 MHz) δ 154.8, 152.2, 151.0, 142.6, 129.1 (dd, $J=250.4,253.7 \mathrm{~Hz}), 119.5,63.9(\mathrm{dd}, J=16.8,19.2 \mathrm{~Hz})$, $44.5(\mathrm{dd}, J=18.7,21.4 \mathrm{~Hz}), 30.3,28.7,21.8,18.2 ; \mathrm{MS} \mathrm{m} / \mathrm{z} 348$ $(\mathrm{M}+\mathrm{H})^{+}$.

$$
(r e l)-\left(1^{\prime} S, 4^{\prime} S\right)-\left(6^{\prime}, 6^{\prime}-\text { Difluoro- } 4^{\prime}-\text { vinyl-cyclopentan-1'-yl) } 2-\right.
$$ fluoro-6-chloropurine (173): Coupling of 165 with 2-fluoro-6chloropurine under the similar condensation conditions as described for 166 to give 173 : yield 59%; UV (MeOH) $\lambda_{\max } 265.5 \mathrm{~nm} ;{ }^{1} \mathrm{HNMR}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 5.71-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.96(\mathrm{~m}$, $2 \mathrm{H}), 5.09-5.05(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.89(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 157.1(\mathrm{~d}, J=219.8 \mathrm{~Hz}), 153.7,145.7$,

141.2, 136.6, $128.8(\mathrm{dd}, J=248.6,251.2 \mathrm{~Hz}), 120.5,114.8,68.8(\mathrm{dd}$, $J=17.2,20.7 \mathrm{~Hz}), 44.8(\mathrm{dd}, J=16.7,19.8 \mathrm{~Hz}), 29.2$, 22.3.
$(r e I)-\left(1^{\prime} S, 4^{\prime} S\right)$-Diethyl $\left\{9-\left(6^{\prime}, 6^{\prime}\right.\right.$-difluoro-4'-vinyl-cyclopentan-1'-yl) 2-fluoro-6-chloropurine\} phosphonate (174): Phosphonate nucleoside analogue 174 was prepared from 173 using the similar cross-metathesis procedure as described for 167 : yield $58 \% ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}$) $\delta 8.47$ ($\mathrm{s}, 1 \mathrm{H}$), 6.69 (dd, $J=17.3,21.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.18$ (dd, $J=17.2,20.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.09$ (m, 1H), 2.73 $(\mathrm{m}, 1 \mathrm{H}), 2.04-1.81(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 157.4$ (d, $J=220.1 \mathrm{~Hz}), 153.9,145.8,150.2,136.3,129.5(\mathrm{dd}, J=249.4$, 254.5 Hz), 121.0, 116.1, $66.5(\mathrm{dd}, J=16.7,19.8 \mathrm{~Hz}$), 63.1, 62.7, $45.8(\mathrm{dd}, J=17.8,21.2 \mathrm{~Hz}), 29.2,22.3$.
(rel) $-\left(1^{\prime} S, 4^{\prime} S\right)$-Diethyl $\left\{9-\left(6^{\prime}, 6^{\prime}\right.\right.$-difluoro- 4^{\prime}-vinyl-cyclopentan-1'-yl) 2-fluoro-6-aminopurine\} phosphonate (175a) and (rel)($1^{\prime} S, 4^{\prime} S$) - diethyl $\left\{9-\left(6^{\prime}, 6^{\prime}-\right.\right.$ fluoro-4'-vinyl-cyclopentan-1'-yl) 2-amino-6-chloropurine\} phosphonate(175b): Dry ammonia gas was bubbled into a stirred solution of 174 ($210 \mathrm{mg}, 0.478 \mathrm{mmol}$) in DME $(8 \mathrm{~mL})$ at room temperature overnight. The salts were removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography ($\mathrm{MeOH} / \mathrm{CH} 2 \mathrm{Cl} 2,1: 10$) to give 175 a ($24 \mathrm{mg}, 12 \%$) and 175 b (89 mg , 43%), respectively: Data for 175 a ; UV (MeOH) $\lambda_{\max } 261.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO $\left.-d_{6}, 300 \mathrm{MHz}\right) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=16.8,19.2$
$\mathrm{Hz}, 1 \mathrm{H}), 6.21$ (dd, $J=16.8,20.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-5.01$ (m, 1H), 2.76$2.71(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.80(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d, $\left.75 \mathrm{MHz}\right) \delta$ $160.7(\mathrm{~d}, J=219.8 \mathrm{~Hz}), 155.5,152.4,151.2,141.7,130.1(\mathrm{dd}, J=$ 248.7, 253.8 Hz), 118.8, 115.3, $68.6(\mathrm{dd}, J=17.2,20.3 \mathrm{~Hz}$), 63.6, 62.9, 47.2 (dd, $J=16.7,18.9 \mathrm{~Hz}$), 29.6, 21.8. Data for 175 b ; UV (MeOH) $\lambda_{\max } 307.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 8.13(\mathrm{~s}$, $1 \mathrm{H}), 6.75$ (dd, $J=15.6,18.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=17.1,19.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.12-5.07(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.79(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO $\left.-d_{6}, 75 \mathrm{MHz}\right) \delta$ 158.4, 154.7, 151.6, 149.7, 143.4, $128.4(\mathrm{dd}, J=250.2,254.5 \mathrm{~Hz}), 124.2,115.6,66.7(\mathrm{dd}, J=15.7$, $18.8 \mathrm{~Hz}), 63.2,62.7,62.1,46.8(\mathrm{dd}, J=16.2,18.4 \mathrm{~Hz}), 27.9$, 21.7.
$(r e l)-\left(1^{\prime} S, 4^{\prime} S\right)-9-\left\{\left(6^{\prime}, 6^{\prime}-\right.\right.$ Difluoro-4'-vinyl-cyclopentan-1'-yl) guanine\} phosphonic acid (176): To a solution of 175 b ($275 \mathrm{mg}, 0.632$ mmol) dry $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ was added trimethylsilyl bromide (0.146 $\mathrm{mL}, 11.04 \mathrm{mmol}$) at room temperature. After this mixture was stirred for 30 h , the solvent was removed, evaporating three times with methanol. The residue was dissolved in MeOH (24.0 mL) and 2mercaptoethanol (172.8 $\mu \mathrm{L}, 2.532 \mathrm{mmol}$) and NaOMe (134.4 mg , 2.532 mmol) were added to the mixture. The mixture was refluxed for 18 h under N_{2}, cooled, neutralized with glacial AcOH , and evaporated to dryness under vacuum. The residue was purified by chromatography on a preparative column of reversed-phase C18 silica gel eluting by water to give 176 ($148 \mathrm{mg}, 65 \%$) as a yellowish
form. UV (H2O) $\lambda_{\max } 254.5 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}\right) ~ \delta$ $7.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 6.71\left(\mathrm{dd}, J=16.3,18.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime}\right), 6.19(\mathrm{dd}, J$ $=17.4,20.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PCH}), 5.13-5.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, 2.70-2.65 (m, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 2.09-1.76\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d6, 75 MHz) δ 157.7, 154.6, 152.5, 150.3, 136.5, 129.6 (dd, $J=251.0,254.6 \mathrm{~Hz}$), 118.7, 114.8, $68.1(\mathrm{dd}, J=14.6,17.3 \mathrm{~Hz}), 62.6,62.0,44.5(\mathrm{dd}, J=$ $15.5,17.6 \mathrm{~Hz}), 29.2$, 22.4; MS m/z $362(\mathrm{M}+\mathrm{H})^{+}$.
(rel) - ($\left.1^{\prime} S, 4^{\prime} S\right)$-Diethyl $\left\{9-\left(6^{\prime}, 6^{\prime}\right.\right.$-difluoro-4'-ethyl-cyclopentan-1'-yl) 2-fluoro-6-chloropurine\} phosphonate (177): Compound 177 was synthesized from 174 by the similar catalytic hydrogenation procedure as described for 170: yield $65 \% ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ $\mathrm{MHz}) \delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 5.12-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.09(\mathrm{~m}, 4 \mathrm{H}), 2.67-$ $2.64(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.73(\mathrm{~m}, 8 \mathrm{H}), 1.27-1.23(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO $\left.-d_{6}, 75 \mathrm{MHz}\right) \delta 157.3(\mathrm{~d}, J=220.2 \mathrm{~Hz}), 153.7,145.3,136.5$, 128.9 (dd, $J=250.4,253.2 \mathrm{~Hz}), 120.5,66.8(\mathrm{dd}, J=15.4,18.0 \mathrm{~Hz})$, 63.1, 62.3, 61.8, $45.8(\mathrm{dd}, J=16.3,18.7 \mathrm{~Hz}), 29.5,28.7,22.1,18.8$, 15.4.
(rel) $-\left(1^{\prime} S, 4^{\prime} S\right)-$ Diethyl $\left\{9-\left(6^{\prime}, 6^{\prime}-\right.\right.$ difluoro- $4^{\prime}-$ ethyl-cyclopentan-1'-yl) 2-fluoro-6-aminopurine\} phosphonate (178a) and (rel)$\left(1^{\prime} S, 4^{\prime} S\right)$-diethyl $\quad\left\{9-\left(6^{\prime}, 6^{\prime}-\right.\right.$ difluoro- $4^{\prime}-$ ethyl-cyclopentan-1'-yl) 2-amino-6-chloropurine\} phosphonate (178b): Ammonolysis of 177 was performed using the similar procedure as described for 171: Data for 178a; yield 10%; UV (MeOH) $\lambda_{\max } 261.0 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}\right.$,
$300 \mathrm{MHz}) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 5.17-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.08(\mathrm{~m}, 4 \mathrm{H})$, 2.58-2.54 (m, 1H), 2.17-1.76 (m, 8H), 1.20-1.15 (m, 6H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}\right) \delta 161.2(\mathrm{~d}, J=267.7 \mathrm{~Hz}), 155.2,152.6,141.3$, 127.3 (dd, $J=248.5,252.7 \mathrm{~Hz}), 118.5,67.5(\mathrm{dd}, J=15.8,18.1 \mathrm{~Hz})$, 63.1, 62.7, 46.2 (dd, $J=15.4,17.6 \mathrm{~Hz}$), 30.2, 29.3, 23.2, 19.4, 15.8; Data for 178 b ; yield 41%; UV (MeOH) $\lambda_{\max } 308.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO $\left.-d_{6}, 300 \mathrm{MHz}\right) \delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 5.09-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.11$ (m, 4H), 2.62-2.58 (m, 1H), 2.19-1.81 (m, 8H), 1.18-1.12 (m, 6H); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 75 \mathrm{MHz}$) δ 158.5, 154.6, 151.1, 142.8, 129.1 (dd, $J=246.8,250.4 \mathrm{~Hz}), 125.0,65.7(\mathrm{dd}, J=16.8,18.5 \mathrm{~Hz}), 62.4$, 61.9, 44.6 (dd, $J=16.2,18.7 \mathrm{~Hz}$), 28.8, 27.5, 21.7, 18.6, 14.6 .

$$
(r e l)-\left(1^{\prime} R, 3^{\prime} S\right)-9-\left\{\left(6^{\prime}, 6^{\prime}-\text { Difluoro-4'-ethyl-cyclopentan-1'-yl }\right)\right.
$$

guanine\} phosphonic acid (179): Guanine nucleoside phosphonic acid 179 was prepared from 178 b by the similar hydrolysis conditions used for 176: yield 67%; UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\max } 253.0 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{DMSO}-d_{6}\right.$, $300 \mathrm{MHz}) \delta 7.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 5.13-5.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.70-2.66$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 2.14-1.75\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d, 75 $\mathrm{MHz}) \delta 157.6,153.9,152.4,136.3,127.8(\mathrm{dd}, J=248.5,253.7 \mathrm{~Hz}$), 118.5, 65.7 (dd, $=16.8,18.5 \mathrm{~Hz}), 44.6(\mathrm{dd}, J=16.2,18.7 \mathrm{~Hz}), 29.6$, 28.2, 22.5, 18.3; MS m/z $364(\mathrm{M}+\mathrm{H})^{+}$.

But-3-enal (181): To a stirred solution of oxalyl chloride (155 mg, 1.224 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (12 mL) was added a solution of DMSO (191 mg , 2.448 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ dropwise at $78{ }^{\circ} \mathrm{C}$. The resulting
solution was stirred at $78{ }^{\circ} \mathrm{C}$ for 30 min , and a solution of alcohol 180 ($88 \mathrm{mg}, 1.224 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added dropwise. The mixture was stirred at $78{ }^{\circ} \mathrm{C}$ for 30 min and TEA ($0.684 \mathrm{~mL}, 4.88$ mmol) was added. The resulting mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for $30 \mathrm{~min} . \mathrm{H}_{2} \mathrm{O}$ (10 mL) was added, and the solution was stirred for 30 min at RT. The mixture was diluted with water (100 mL) and then extracted with EtOAc ($2 \times 100 \mathrm{~mL}$). The combined organic layer was washed with brine, dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated in vacuo and the residue was subjected to next reaction without further purification: Crude yield $91 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.73(\mathrm{~m}, 1 \mathrm{H}), 6.03-5.94(\mathrm{~m}$, $1 \mathrm{H}), 5.18-5.14(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta$ 202.0, 135.5, 118.3, 48.4.

Hepta-1,6-dien-4-ol (182): To a solution of 181 (2.3 g, 32.81 mmol) in dry THF (10 mL), vinylmagnesium bromide ($39.37 \mathrm{~mL}, 1.0$ M solution in THF) was slowly added at $-10^{\circ} \mathrm{C}$ and stirred 4 h at $0^{\circ} \mathrm{C}$. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) was added to the mixture, which was slowly warmed to RT. The mixture was diluted with water (150 mL) and extracted with EtOAc (150 mL) two times. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered, and evaporated in vacuo. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:10) to give 182 (3.02 g , 82%) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.73-5.69(\mathrm{~m}$,

2H), 5.05-4.98 (m, 4H), $3.31(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 140.4,115.7,74.7,43.5$.

Cyclopent-3-enol (183): To a solution of 182 (270. mg, 2.406 $\mathrm{mmol})$ in dry methylene chloride (5 mL) was added $2^{\text {nd }}$ generation Grubbs catalyst ($15.0 \mathrm{mg}, 0.0176 \mathrm{mmol}$). The reaction mixture was refluxed overnight and cooled to room temperature. The mixture was concentrated in vacuo, and the residue was purified by silica gel column chromatography (EtOAc/hexane, 1:8) to give cyclopentenol 183 (159.8 mg, 79\%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.63(\mathrm{~m}, 2 \mathrm{H})$, 3.65 (quint, 1 H), 2.55 (m, 2H), $2.36(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 134.5,72.4,43.5$.
$1-[($ Cyclopent-3-enyloxy) methyl $]-4-$ methoxybenzene (184): NaH (60% in mineral oil, $66.4 \mathrm{mg}, 1.66 \mathrm{mmol}$) was added portionwise to a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of secondary alcohol $183(116 \mathrm{mg}$, 1.385 mmol) and p-methoxybenzyl chloride ($0.206 \mathrm{~mL}, 1.52 \mathrm{mmol}$) in anhydrous DMF (8 mL). The reaction mixture was stirred overnight at RT. The solvent was removed in vacuo and the residue was diluted with $\mathrm{H}_{2} \mathrm{O}$ (50 mL) followed by extraction with diethyl ether (60 mL) two times. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, and concentrated under vacuum. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:20) to give 184 ($189.6 \mathrm{mg}, 67 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.11$ (d, $J=7.8 \mathrm{~Hz}$,

2H), $6.72(\mathrm{~d}, ~ J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}$, $3 H), 3.25$ (quint, 1 H), $2.57(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 159.7,137.5,134.5,129.9,115.7,73.5,72.6,56.3,42.5$.

4-(4-Methoxybenzyloxy) cyclopentane-1,2-diol (185a and 185b): Compound 184 ($118.5 \mathrm{mg}, 0.58 \mathrm{mmol}$) was dissolved in a cosolvent system (10 mL) (acetone: $t-\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}=6: 1: 1$) along with $4-$ methylmorpholine N-oxide ($135 \mathrm{mg}, 1.16 \mathrm{mmol}$). Subsequently, OsO_{4} ($0.29 \mathrm{~mL}, 4 \%$ wt. $\%$ in $\mathrm{H}_{2} \mathrm{O}$) was added. The mixture was stirred overnight at room temperature and quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (5 mL). The resulting solid was removed by filtration through a pad of Celite, and filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 5$) to give 185 a ($40.08 \mathrm{mg}, 29 \%$) and 185 b ($41.46 \mathrm{mg}, 30 \%$) as a colorless oils: spectroscopical data for $185 \mathrm{a} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ $\mathrm{MHz}) \delta 7.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.89(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), $4.64(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.38-$ $3.32(\mathrm{~m}, 2 \mathrm{H}), 2.87$ (quint, 1H), $1.90(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}\right) \delta 159.4,131.8,129.5,114.8,77.5,73.4,71.9$, 55.7, 41.6. data for $185 \mathrm{~b} ;{ }^{1} \mathrm{H}$ NMR (DMSO $\left.-d_{6}, 300 \mathrm{MHz}\right) \delta 7.11(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.92\left(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), $4.67(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.24(\mathrm{~m}, 2 \mathrm{H}), 2.81-$ $2.78(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.67(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}\right) \delta 159.7,131.3,129.7,115.1,77.6,73.6,71.5$,
54.8, 40.9.
(rel) - (1 $S, 2 R, 4 R$)-4-(4-Methoxybenzyloxy)-2-hydroxycyclo
pentyl benzoate (186): To a solution of compound 185b ($557 \mathrm{mg}, 2.34$ mmol) in anhydrous pyridine (11 mL), benzoyl chloride ($354 \mathrm{mg}, 2.52$ mmol) and DMAP ($24.5 \mathrm{mg}, 0.2 \mathrm{mmol}$) were added. The reaction mixture was stirred overnight at RT. The reaction mixture was then quenched using a saturated NaHCO_{3} solution (0.4 mL) and evaporated under reduced pressure. The residue was partitioned between water and ethyl acetate and the organic layer was separated. The aqueous layer was extracted with ethyl acetate, and the combined organic layer extracts were washed with brine, dried over MgSO_{4} and filtered. The organic solvent was evaporated under reduced pressure and the residue was purified by silica gel column chromatography (EtOAc/ hexanes $1: 12$) to yield compound 186 ($504 \mathrm{mg}, 63 \%$) as a colorless oils. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.98(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 3 \mathrm{H})$, 7.09 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.70 (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.64 (s, 2H), 4.09 $(\mathrm{m}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~m}$, 1 H), 2.12 (br s, 1H), 1.94-1.90 (m, 2H), 1.67 (m, 1H) ${ }^{13}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.7,159.6,134.5,130.3,129.5,128.6,115.2$, 77.1, 73.5, 72.9, 71.3, 55.5, 41.4, 38.4.
(rel) - (1S,4S)-4-(4-Methoxybenzyloxy)-2-oxocyclopentyl benzoate (187): To a solution of compound $186(1.64 \mathrm{~g}, 4.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}), 4 \AA$ molecular sieves (2.8 g) and PCC ($2.58 \mathrm{~g}, 12.03$
mmol) were added slowly at $0^{\circ} \mathrm{C}$, and stirred overnight at RT. To the mixture, excess diethyl ether (200 mL) was then added. The mixture was stirred vigorously for 3 h at the same temperature, and the resulting solid was filtered through a short silica gel column. The filtrate was concentrated under vacuum and the residue was purified by silica gel column chromatography (EtOAc/hexane, 1:25) to give compound $187(1.07 \mathrm{~g}, 66 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 7.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.71$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 3.74$ (s, $3 H), 3.38(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.64(\mathrm{~m}, 3 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 211.2,168.9,159.7,134.4,131.5,129.7,128.4$, $114.7,77.4,72.8,71.5,54.8,42.5,28.1$.
(rel) - (1S,4S) - 4-(4-Methoxybenzyloxy) - 2,2-difluorocyclopentyl benzoate (13): A solution of compound 187 ($326 \mathrm{mg}, 0.96 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was treated with DAST ($0.992 \mathrm{~mL}, 7.52$ mmol) under argon at room temperature. The reaction mixture was stirred overnight and was then quenched by adding a saturated solution of NaHCO_{3} in water (20 mL). The organic phase was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100$ $\mathrm{mL})$. The organic layer was dried over anhydrous magnesium sulfate, filtered, and evaporated to dryness. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:25) to give the difluorinated product 188 ($160 \mathrm{mg}, 46 \%$) as a colorless syrup. ${ }^{1} \mathrm{H}$

NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.01(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.51-4.45(\mathrm{~m}$, $1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 2.19-1.94(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $282 \mathrm{MHz}) \delta-101.4(\mathrm{dm}, J=246.7 \mathrm{~Hz}, 1 \mathrm{~F}),-119.6(\mathrm{dm}, J=247.9$ $\mathrm{Hz}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 167.8,159.5,133.7,130.4$, 129.8, 129.3, 128.2, 114.6, $110.2(\mathrm{dd}, J=234.6,240.4 \mathrm{~Hz}), 78.1$ (dd, $J=20.2,22.4 \mathrm{~Hz}), 72.9,71.5,67.0,55.4,37.5(\mathrm{dd}, J=19.5,21.6$ Hz), 31.5.
(rel) - (1S,4S) -4-(4-Methoxybenzyloxy) - 2,2-difluorocyclopentanol (189): A solution of 188 (205 mg, 0.566 mmol) in saturated methanolic ammonia (10 mL) was stirred overnight at RT, and the volatiles were evaporated. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:5) to give 189 (114 mg , $78 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 3.79-3.69(\mathrm{~m}, 4 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H})$, 2.11-1.94 (m, 5H) ; ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta-103.5(\mathrm{dm}, J=$ 251.1 Hz, 1F), -122.1 (dm, $J=251.9 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 159.8,130.1,128.4,114.7,114.7(\mathrm{dd}, ~ J=238.6,242.6 \mathrm{~Hz}$), $74.2(\mathrm{dd}, J=19.8,21.5 \mathrm{~Hz}), 72.3,65.7,56.1,37.1(\mathrm{dd}, J=20.2$, 22.4 Hz), 33.8.

$$
(\text { rel })-\left(1^{\prime} S, 4^{\prime} S\right)-9-\left[4-(4-\text { Methoxybenzyloxy })-2^{\prime}, 2^{\prime}-\right.\text { difluorocyclo }
$$

pentan $-1^{\prime}-$ yl] 6-chloropurine (190): To a stirred solution of triphenyl phosphine ($281 \mathrm{mg}, 1.07 \mathrm{mmol}$) in dry THF (5 mL) at $0^{\circ} \mathrm{C}$ was added
dropwise the diisopropyl azodicarboxylate (DIAD) (216 mg, 1.07 $\mathrm{mmol})$ and the reaction mixture was stirred at this temperature for 30 min. After that, a solution of the alcohol 189 ($138.2 \mathrm{mg}, 0.535 \mathrm{mmol}$) in THF (5 mL) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Then the cold bath was removed and the yellow solution was stirred for 30 min at room temperature. 6-Chloropurine (230 mg , 1.07 mmol) was then added and the reaction mixture was stirred overnight at room temperature. The reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography (EtOAc/hexane/MeOH, 1:3:0.02) to give compound 190 ($131 \mathrm{mg}, 62 \%$) ; UV (MeOH) $\lambda_{\max } 263.0 \mathrm{~nm}:{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.0$ Hz, 2H), 6.69 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 3.74$ (s, 3H), $2.85(\mathrm{~m}, 1 \mathrm{H}), 2.21-1.84(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right) \delta$ -106.3 (dm, $J=236.4 \mathrm{~Hz}, 1 \mathrm{~F}),-120.6(\mathrm{dm}, J=237.2 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 159.6,154.3,148.8,141.7,132.6,130.5$, 128.4, 114.7, 110.7 (dd, $J=237.2,244.4 \mathrm{~Hz}$) , 72.3, 67.8, 57.7 (dd, J $=20.4,22.4 \mathrm{~Hz}), 55.3,37.7(\mathrm{dd}, J=20.3,21.6 \mathrm{~Hz}), 30.2$. (rel) - (1'S,4'S)-9-(4-Hydroxy-2',2'-difluorocyclopentan-1'-yl) 6-chloropurine (191): To a solution of compound 190 (167 mg, 0.423 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL}, 10: 1 \mathrm{v} / \mathrm{v})$ was added DDQ (143 mg , 0.632 mmol), and the mixture was stirred overnight at room temperature. Saturated $\mathrm{NaHCO}_{3}(0.9 \mathrm{~mL})$ was added to quench the
reaction, which was then stirred for 3 h at room temperature. The mixture was diluted with water (75 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 80 \mathrm{~mL}$). The combined organic layer was dried over anhydrous MgSO_{4} and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography (EtOAc/hexane/MeOH, 4:1:0.02) to give compound 191 ($74 \mathrm{mg}, 64 \%$) as a white solid: mp $167-169{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }} 263.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO $\left.-d_{6}, 300 \mathrm{MHz}\right) \delta 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 4.31-4.24(m, 1H), 3.26(m, 1H), 2.21$1.85(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 151.9,151.6,150.9$, $145.6,132.5,110.6(\mathrm{dd}, J=228,232.6 \mathrm{~Hz}), 60.5,57.5(\mathrm{dd}, J=20.2$, 21.8 Hz), 41.6 (dd, $J=18.8,20.6 \mathrm{~Hz}$), 31.7.
(rel) - (1'S,4'S) - Diethyl [9-(4-hydroxymethyl-2', 2^{\prime}-difluorocyclo pentan-1'-yl) 6-chloropurine] phosphonate (192): Both LiOt-Bu (1.49 mL of 0.5 M solution in $\mathrm{THF}, 0.744 \mathrm{mmol}$) and a solution of diethyl phosphonomethyltriflate ($208 \mathrm{mg}, 0.696 \mathrm{mmol}$) in 7.0 mL of THF were slowly added to a solution of the 6-chloropurine analogue 191 ($96 \mathrm{mg}, 0.348 \mathrm{mmol}$) in 6.0 mL of THF at $10^{\circ} \mathrm{C}$ and stirred overnight at rt under nitrogen. The mixture was quenched by adding saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) and further diluted with additional $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc (3x100 mL). The combined organic layer was dried over anhydrous MgSO_{4} and concentrated in vacuo. The residue was purified by silica gel
column chromatography (MeOH/Hexane/EtOAc, 0.02:3:1) to give 192 (79 mg, 54\%) as a foam: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 8.71(\mathrm{~s}$, $1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.01(\mathrm{~m}, 4 \mathrm{H}), 3.91(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.87$ (m, 1H), 2.21-1.83 (m, 4H), 1.18 (m 6H); ${ }^{19} \mathrm{~F}$ NMR (DMSO-d6, 282 MHz) $\delta-105.7(\mathrm{dm}, ~ J=231.6 \mathrm{~Hz}, 1 \mathrm{~F}),-121.3(\mathrm{dm}$, $J=232.9 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}$) δ 151.7, 151.2, 150.4, 146.5, 136.8, $111.4(\mathrm{dd}, J=230.0,238.4 \mathrm{~Hz}$) , 69.0, 63.2, 62.6, 62.1, $59.0(\mathrm{dd}, J=19.4,21.2 \mathrm{~Hz}), 38.1(\mathrm{dd}, J=20.2,21.8 \mathrm{~Hz}), 29.4$, 14.2.
$($ rel $)-\left(1^{\prime} S, 4^{\prime} S\right)$ - Diethyl [9-(4-hydroxymethyl-2', 2^{\prime}-difluorocyclo pentan $-1^{\prime}-y l$) adenine] phosphonate (193): A solution of 192 (168 $\mathrm{mg}, 0.395 \mathrm{mmol}$) in saturated methanolic ammonia (10 mL) was stirred overnight at $65^{\circ} \mathrm{C}$ in a steel bomb, and the volatiles were evaporated. The residue was purified by silica gel column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 8$) to give 193 ($101 \mathrm{mg}, 63 \%$) as a white solid: mp $156-158{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 261.5 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO $\left.-d_{6}, 300 \mathrm{MHz}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), $4.23(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 4 \mathrm{H}), 3.89(\mathrm{~d}, J=$ 8.0 Hz, 2H), 2.86 (m, 1H), 2.22-1.88 (m, 4H), 1.14 (m 6H) ; ${ }^{19} \mathrm{~F}$ NMR (DMSO-d6, 282 MHz) $\delta-101.4(\mathrm{dm}, J=229.7 \mathrm{~Hz}, 1 \mathrm{~F}),-118.9(\mathrm{dm}$, $J=231.2 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}$) δ 155.3, 152.7, 150.5, 141.5, 120.5, $110.8(\mathrm{dd}, J=228.4,234.4 \mathrm{~Hz}), 68.9,63.6,62.7$, 62.2, 57.9 (dd, $J=20.4,21.8 \mathrm{~Hz}$), $38.1(\mathrm{dd}, J=21.7,23.0 \mathrm{~Hz}), 29.6$,
15.0.
$($ rel $)-\left(1^{\prime} S, 4^{\prime} S\right)-9-\left[\left(4-H y d r o x y m e t h y l-2^{\prime}, 2^{\prime}-\right.\right.$ difluorocyclopentan-$1^{\prime}-\mathrm{yl}$) adenine] phosphonic acid (194): To a solution of the phosphonate 193 ($234 \mathrm{mg}, 0.579 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ (12 mL) and 2,6 -lutidine ($1.35 \mathrm{~mL}, 11.6 \mathrm{mmol}$) was added trimethylsilyl bromide ($0.888 \mathrm{mg}, 5.79 \mathrm{mmol}$). The mixture was heated for 24 hour at $75{ }^{\circ} \mathrm{C}$ under nitrogen gas and then concentrated in vacuum to give a brown residue, and co-evaporated from conc aqueous $\mathrm{NH}_{4} \mathrm{OH}(2 \times 30$ $\mathrm{mL})$. The resultant solid was triturated with acetone ($2 \times 10 \mathrm{~mL}$) and the residue was purified by reverse-phase chromatography. Lyophilization of an appropriate fraction provided phosphonic acid salt 194 (108 mg, 51\%) as a white salt (ammonium salt): UV ($\mathrm{H}_{2} \mathrm{O}$) $\lambda_{\max }$ $262.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.13(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-2), 4.29-4.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 2.21-1.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 282 \mathrm{MHz}\right) \delta-$ $110.4(\mathrm{dm}, J=234.2 \mathrm{~Hz}, 1 \mathrm{~F}),-126.4(\mathrm{dm}, J=235.4 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 75 \mathrm{MHz}\right) \delta 154.5,152.5,150.3,141.6,119.7,110.3(\mathrm{dd}, J$ $=221.4,234.8 \mathrm{~Hz}), 69.1,67.6,58.2(\mathrm{dd}, J=19.6,20.4 \mathrm{~Hz}), 38.6(\mathrm{dd}$, $J=18.7,20.4 \mathrm{~Hz}$, 30.2.
(rel) $-\left(1^{\prime} S, 4^{\prime} S\right)-9-\left[4-(4-\right.$ Methoxybenzyloxy $)-2^{\prime}, 2^{\prime}$-difluorocyclo pentan-1'-yl] 2-fluoro-6-chloropurine (195): Coupling of 189 with 2-fluoro-6-chloropurine under the similar condensation conditions as described for 190 to give 195 as a solid: yield 65%; UV (MeOH)
$\lambda_{\max } 265.0 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.27-4.23(\mathrm{~m}$, $1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 2.19-1.83(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $282 \mathrm{MHz}) \delta-107.3(\mathrm{dm}, J=241.5 \mathrm{~Hz}, 1 \mathrm{~F}),-123.6(\mathrm{dm}, J=242.7$ $\mathrm{Hz}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 159.6,157.1(\mathrm{~d}, J=218.6 \mathrm{~Hz})$, 153.4, 136.4, 129.6, 128.5, 120.7, 114.9, $110.5(\mathrm{dd}, J=221.4,234.8$ $\mathrm{Hz}), 73.1,67.5,56.0(\mathrm{dd}, J=19.2,21.7 \mathrm{~Hz}), 37.8(\mathrm{dd}, J=18.7,19.3$ Hz), 30.3.

$$
(\text { rel })-\left(1^{\prime} S, 4^{\prime} S\right)-9-\left(4-H y d r o x y-2^{\prime}, 2^{\prime}-\text { difluorocyclopentan-1'-yl }\right)
$$

2-fluoro-6-chloropurine (196): Deprotection of 196 was performed from 195 using the similar procedure as described for 191 as a solid: yield $61 \% ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}, 300 \mathrm{MHz}$) $\delta 8.46$ (s, 1H), 4.91 (d, $J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$ exchangeable), 4.27-4.23(m, 1H), 3.35 (m, 1H), 2.23-1.87 (m, 4H) ; ${ }^{19} \mathrm{~F}$ NMR ($\mathrm{DMSO}-d_{6}, 282 \mathrm{MHz}$) $\delta-105.7(\mathrm{dm}, J$ $=234.2 \mathrm{~Hz}, 1 \mathrm{~F}),-123.8(\mathrm{dm}, J=235.7 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR (DMSO$\left.d_{6}, 75 \mathrm{MHz}\right) \delta 157.2(\mathrm{~d}, J=218.4 \mathrm{~Hz}), 153.2,145.4,136.1,121.2$, $110.2(\mathrm{dd}, J=219.2,220.4 \mathrm{~Hz}), 60.6,59.3(\mathrm{dd}, J=18.8,21.6 \mathrm{~Hz})$, $40.3(\mathrm{dd}, J=18.8,20.2 \mathrm{~Hz}), 32.2$.
(rel) - ($\left.1^{\prime} S, 4^{\prime} S\right)$-Diethyl [9- (4-hydroxymethyl-2', 2^{\prime}-difluorocyclo
pentan-1'-yl) 2-fluoro-6-chloropurine] phosphonate (197): Phosphonation of 196 was performed by the similar procedure as described for 192 as a form: yield $59 \% ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}, 300$ $\mathrm{MHz}) \delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 4.25-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.10-4.07(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{~d}$,
$J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 2.21-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.30(\mathrm{~m}$, $6 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{DMSO}-d_{6}, 282 \mathrm{MHz}\right) \delta-111.2(\mathrm{dm}, J=239.3 \mathrm{~Hz}, 1 \mathrm{~F})$, -127.8 (dm, $J=240.7 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d6, 75 MHz$) \delta$ $157.5(\mathrm{~d}, J=219.2 \mathrm{~Hz}), 153.5,144.9,136.7,122.0,111.1(\mathrm{dd}, J=$ 218.4, 220.4 Hz), 69.2, 63.4, 63.2, 60.6, $58.8(\mathrm{dd}, J=18.6,21.4 \mathrm{~Hz})$, $39.8(\mathrm{dd}, J=18.9,20.8 \mathrm{H}), 30.2,15.1$.
(rel) - ($\left.1^{\prime} S, 4^{\prime} S\right)$-Diethyl [9- (4-hydroxymethyl-2', 2^{\prime}-difluorocyclo pentan-1'-yl) 2-fluoro-6-aminopurine] phosphonate (198a) and (rel) - ($\left.1^{\prime} S, 4^{\prime} S\right)$-Diethyl[9-(4-hydroxymethyl-2', 2^{\prime}-difluorocyclo pentan $-1^{\prime}-y l$) 2-amino-6-chloropurine] phosphonate (198b): Dry ammonia gas was bubbled into a stirred solution of 197 (250 mg , 0.564 mmol) in DME (10 mL) at room temperature overnight. The salts were removed by filtration and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 8$) to give 198 a ($31 \mathrm{mg}, 13 \%$) and 198b (126 mg, 51\%) as solids: Data for 198a; UV (MeOH) $\lambda_{\max } 261.0$ $\mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO $\left.-d_{6}, 300 \mathrm{MHz}\right) \delta 8.20(\mathrm{~s}, 1 \mathrm{H})$, 6.67 (br d, 2H), $4.26-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 4 \mathrm{H}), 3.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{~m}$, 1H), 2.19-1.85 (m, 4H), $1.35(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (DMSO-d, 282 MHz) $\delta-108.2(\mathrm{dm}, J=235.5 \mathrm{~Hz}, 1 \mathrm{~F}),-129.6(\mathrm{dm}, J=237.0 \mathrm{~Hz}$, 1F) ; ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 160.3(\mathrm{~d}, J=268.4 \mathrm{~Hz}), 155.3$, $152.5,141.5,118.2,110.7(\mathrm{dd}, J=208.4,210.6 \mathrm{~Hz}), 69.0,63.4,62.2$, $58.2(\mathrm{dd}, ~ J=18.6,20.4 \mathrm{~Hz}), 37.2(\mathrm{dd}, J=16.7,18.9 \mathrm{~Hz}), 29.6,15.1$;

Data for 198b; UV (MeOH) $\lambda_{\max } 308.0 \mathrm{~nm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ $\mathrm{MHz}) \delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{br} \mathrm{d}, 2 \mathrm{H}), 4.27-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.05$ (m, 4H), $3.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.87-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.83(\mathrm{~m}$, 4H), 1.39-1.34 (m, 6H) ; ${ }^{19} \mathrm{~F}$ NMR (DMSO- $\left.d_{6}, 282 \mathrm{MHz}\right) \delta-106.8$ $(\mathrm{dm}, J=231.5 \mathrm{~Hz}, 1 \mathrm{~F}),-126.8(\mathrm{dm}, J=232.8 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-d_{6}, 75 \mathrm{MHz}\right) \delta 158.3,154.2,151.1,143.2,124.7,111.2(\mathrm{dd}, J$ $=210.4,212.8 \mathrm{~Hz})$, 69.1, 63.2, 62.4, 59.2 (dd, $J=19.6,21.6 \mathrm{~Hz})$, $38.4(\mathrm{dd}, J=19.7,10.8 \mathrm{~Hz}), 30.3,14.8$.
(rel) - (1'S,4'S)-9-[(4-Hydroxymethyl-2', 2'-difluorocyclopentan-$1^{\prime}-\mathrm{yl}$) guanine] phosphonic acid (199): To a solution of 198b (278 mg , 0.632 mmol) dry $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL}$) was added trimethylsilyl bromide ($0.146 \mathrm{~mL}, 11.04 \mathrm{mmol}$) at room temperature. After this mixture was stirred for 30 h , the solvent was removed, evaporating three times with methanol. The residue was dissolved in MeOH (24.0 mL) and 2mercaptoethanol (172.8 $\mu \mathrm{L}, 2.532 \mathrm{mmol}$) and NaOMe (134.4 mg , 2.532 mmol) was added to the mixture. The mixture was refluxed for 18 h under N_{2}, cooled, neutralized with glacial AcOH , and evaporated to dryness under vacuum. The residue was co-evaporated from conc $\mathrm{NH}_{4} \mathrm{OH}(2 \times 32 \mathrm{~mL})$ and the resultant solid was triturated with acetone ($2 \times 12 \mathrm{~mL}$). The residue was purified by chromatography on a preparative column of reversed-phase C18 silica gel eluting water. Lyophilization of an appropriate fraction provided 199 (99 mg , 41%) as a yellowish salt (ammonium salt). UV ($\left.\mathrm{H}_{2} \mathrm{O}\right) ~ \lambda_{\max } 253.5 \mathrm{~nm}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}\right) \delta 7.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 4.25-4.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\left.1^{\prime}\right), 3.67-3.62\left(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{PCH}_{2}\right), 2.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right)$, $2.18-$ $1.81\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 282 \mathrm{MHz}\right) \delta-109.5(\mathrm{dm}, J=234.2$ $\mathrm{Hz}, 1 \mathrm{~F}),-122.4(\mathrm{dm}, J=235.9 \mathrm{~Hz}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 75 \mathrm{MHz}\right) \delta$ $157.6,154.3,152.0,136.2,117.7,109.9(\mathrm{dd}, J=210.4,214.8 \mathrm{~Hz}$), 70.1, 67.8, 48.2 (dd, $J=18.6,20.3 \mathrm{~Hz}), 37.6(\mathrm{dd}, J=18.6,19.8 \mathrm{~Hz})$, 30.2.

V. REFERENCES

1. Mehellou, Y.; De Clercq, E. J. Med. Chem. 2010, 53, 521-538.
2. De Clercq, E. Curr. Opin. Pharmacol. 2010, 10, 507-515.
3. Barre-Sinossi, F.; Chermann, J. C.; Rey, F.; Nugeyre, M. T.; Charmaret, S. Gruest, J; Dauguet, C.; Axler-Blin, C.; VezinetBrum, F.; Rouzioux, C.; Rozedbaum, W.; Montagnier, L. Isolation of a T -lymphotrophic Retrovirus from a Patient at Risk for Acquired Immune Deficiency Syndrome (AIDS).
4. Levy, J. A.; Hoffman, A. D.; Kramer, S. M.; Landis, J. A.; Shimbukukuro, J. M. Science 1984, 225, 840-842.
5. De Clercq, E. Nat. Rev. Drug Discovery. 2002, 1, 13-25.
6. Meadows, D. C.; Gervay-Hague, J. ChemBioChem. 2006, 1, 1629.
7. De Clercq, E. Futrue Virol. 2008, 3, 393-405.
8. Esté. J. A.; Cihlar, T. Antiviral Res. 2010, 85, $25-33$.
9. Naeger, L. K.; Struble, K. A.; Murray, J. S.; Birmkrant, D. B. Antiviral Res. 2010, 85, 232-240.
10. De Clercq, E. In Advances in Antiviral Drug Design; Elsevier Ltd, 2007, 5 1-58.
11. Zolopa, A. R. Antiviral Res. 2010, 85, 241-244.
12. Arribas, J. R.; Pozniak, A. L.; Gallant, J. E.; Dejesus, E.; Gazzard,
B.; Campo, R. E.; Chen, S. S.; McColl, D.; Holmes, C. B.; Enejosa, J.; Toole, J. J.; Cheng, A. K. Acquir. Immune. Defic. Syndr. 2008, 47, 74-78.
13. Mehellou, Y.; De Clercq, E. J. Med. Chem. 2010, 53, 521-538.
14. Mitsuya, H.; Weinhold, K. J.; Furman, P. A.; St Clair, M. H.; Lehrman, S. N.; Gallo, R. C.; Bolognesi, D.; Barry, D. W.; Broder, S. Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 7096-7100.
15. Broder, S. Antiviral Res. 2010, 85, 1-18.
16. Carr, A. Nat. Rev. Drug Discovery. 2003, 2, 624-634.
17. Martinez-Picado, J.; De Pasquale, M. P.; Kartsonis, N.; Hanna, G. J.; Wong, J.; Finzi, D.; Rosenberg, E.; Gunthard, H. F.; Sutton, L.; Savara, A.; Petropoulos, C. J.; Hellmann, N.; Walker, B. D.; Richman, D. D.; Siliciano, R.; D' Aquila, R. T. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 10948-10953.
18. Little, S. J.; Holte, S.; Routy, J. P.; Daar, E. S.; Markowitz, M.; Collier, A. C.; Koup, R. A.; Mellors, J. W.; Connick, E.; Conway, B.; Kilby, M.; Wang, L.; Whitcomb, J. M.; Hellmann, N. S.; Richman, D. D. N. Engl. J. Med. 2002, 347, 385-394.
19. (a) De Clercq, E. Curr. Opin. Microbiol. 2005, 8, 552-560. (b) Frontiers in Nucleosides and Nucleic Acids; Schinazi, R. F.; Liotta, D. C., Eds.; IHL Press: Tucker, GA, 2004. (c) Rachakonda, S.; Cartee, L. Curr. Med. Chem. 2004, 11, 775-793. (d) De Clercq, E. J. Clin. Vir. 2004, 30, 115-133. (e) Recent Advances in

Nucleosides: Chemistry and Chemotherapy; Chu, C. K., Ed.; Elsevier Science: New York, 2002.
20. De Clercq, E. Antiviral Res. 2010, 85, 19-24.
21. Kulikowski, T. Pharm. World Sci. 1994, 16, 127-138.
22. Périgaud, C.; Gosselin, G.; Imbach, J. L. Nucleosides, Nucleotides \& Nucleic Acids. 1992, 11, 903-945.
23. Martin, J. C.; Hitchcock, M. J. M.; De Clercq, E.; Prusoff, W. H. Antiviral Res. 2010, 85, 34-38.
24. Razonable, R. R. Mayo Clin. Proc. 2011, 86, 1009-1026.
25. Cihlar, T.; Ray, A. S. Antiviral Res. 2010, 85, 39-58.
26. Asahchop, E. L.; Wainberg, M. A.; Sloan, R. D.; Tremblay, C. L. Antimicrob. Agents Chemother. 2012, 56, 5000-5008.
27. Price, N. B.; Prichard, M. N. Curr. Opin. Vorol. 2011, 1, 548-554.
28. Mitsuya, H.; Weinhold, K. J.; Furman, P. A., St; Clair, M. H.; Lehrman, S. N.; Gallo, R. C.; Bolognesi, D.; Barry, D. W.; Broder, S. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 7096-7100.
29. Balzarini, J.; Kang, G. J.; Dalal, M.; Herdewijn, P.; De Clercq, E.; Broder, S.; Johns, D. G. Mol. Pharmacol. 1987, 32, 162-167.
30. Mitsuya, H.; Broder, S. Antiviral Compositions and Methods. U. S. Patent 4, 861, 759, 1989.
31. Daluge, S. M.; Good, S. S.; Faletto,M. B.; Miller, W.H., St; Clair, M. H.; Boone, L. R.; Tisdale, M.; Parry, N. R.; Reardon, J. E.; Dornsife, R. E.; Averett, D. R.; Krenitsky, T. A. Antimicrob. Agents

Chemother. 1997, 41, 1082-1093.
32. Gosselin, G.; Schinazi, R. F.; Sommadossi, J. P.; Mathé, C.; Bergogne, M. C.; Aubertin, A. M.; Kirn, A.; Imbach, J. L. Antimicrob. Agents Chemother. 1994, 38, 1292-1297.
33. Schinazi, R. F.; Chu, C. K.; Peck, A.; McMillan, A.; Mathis, R.; Cannon, D.; Jeong, L. S.; Beach, J. W.; Choi, W. B.; Yeola, S.; Liotta, S. C. Antimicrob. Agents Chemother. 1992, 36, 672-676.
34. Balzarini, J.; Holy, A.; Jindrich, J; Naesens, L.; Snoeck, R.; Schols, D.; De Clercq, E. Antimicrob Agents Chemother. 1993, 37, 332338.
35. Balzarini, J. Pharm. World Soc. 1994, 16, 113-126.
36. Hao, Z.; Cooney, D. A.; Farquhar, D.; Perno, C. F.; Zhang, K.; Masood, R.; Wilson, Y.; Hartman, N. R.; Balzarini, J.; Johns, D. G. Mol. Pharmacol. 1990, 37, 157-163.
37. De Clercq, E. Nat. Rev. Drug Discovery. 2002, 1, 13-25.
38. De Muys, J. M.; Gourdeau, H., Nguyen-Ba, N.; Taylor, D. L., Ahmed, P. S., Mansour, T.; Locas, C.; Richard, N.; Wainberg, M. A.; Rando, R. F. Antimicrob. Agents Chemother. 1999, 43, 18351844.
39. Richard, N.; Salomon, H.; Rando, R.; Mansour, T.; Bowlin, T. L.; Wainberg, M. A. Antimicrob. Agents Chemother. 2000, 44, 11271131.
40. Bethell, R. C.; Lie, Y. S.; Parkin, N. T. Antivir. Chem. Chemother.

2005, 16, $295-302$.
41. Gu, Z.; Allard, B., de Muys, J. M.; Lippens, J., Rando, R. F.; Nguyen-Ba, N.; Ren, C.; McKenna, P.; Taylor, D. L.; Bethell, R. Antimicrob. Agents Chemother. 2006, 50, 625-631.
42. Wainberg, M. A.; Cahn, P.; Bethell, R. C.; Sawyer, J.; Cox, S. Antivir. Chem. Chemother. 2007, 18, 61-70.
43. Shi, J.; McAtee, J. J.; Schlueter Wirtz, S.; Tharnish, P.; Juodawlkis, A.; Liotta, D. C.; Schinazi, R. F. J. Med. Chem. 1999, 42, 859-867.
44. Dutschman, G. E.; Grill, S. P.; Gullen, E. A.; Haraguchi, K.; Takeda, S.; Tanaka, H.; Baba, M.; Cheng, Y. C. Antimicrob. Agents Chemother. 2004, 48, 1640-1646
45. Kim, E. Y.; Vrang, L.; Öberg, B.; Merigan, T. C. AIDS Res. Hum. Retroviruses. 2001, 17, 401-407.
46. Lennerstrand, J.; Chu, C. K.; Schinazi, R. F. Antimicrob. Agents Chemother. 2007, 51, 2078-2084.
47. Murakami, E.; Bao, H.; Basavapathruni, A.; Bailey, C. M.; Du, J.; Steuer, H. M. M.; Niu, C.; Whitaker, T.; Anderson, K. S.; Otto, M. J.; Furman, P. A. Antivir. Chem. Chemother. 2007, 18, 83-92.
48. Kodama, E. I.; Kohgo, S.; Kitano, K.; Machida, H.; Gatanaga, H.; Shigeta, S.; Matsuoka, M.; Ohrui, H.; Mitsuya, M. Antimicrob. Agents Chemother. 2001, 45, 1539-1546.
49. Nikolenko, G. N.; Palmer, S.; Maldarelli, F.; Mellors, J. W.; Coffin, J. M.; Pathak, V. K., 2005. Proc. Natl. Acad. Sci. U.S.A. 2005, 102,

2093-2098.
50. Yang, G.; Dutschman, G. E.; Wang, C. J.; Tanaka, H.; Baba, M.; Anderson, K. S.; Cheng, Y. C. Antivir. Res. 2007, 73, 185-191.
51. (a) Wang, J.; Jin, Y.; Rapp, K. L.; Bennett, M.; Schinazi, R. F.; Chu, C. K. J. Med. Chem. 2005, 48, 3736-3748. (b) Wang, J.; Jin, Y.; Rapp, K. L.; Schinazi, R. F.; Chu, C. K. J. Med. Chem. 2007, 50, 1828-1839.
52. Ohrui, H. Chem. Rec. 2006, 6, 133-143.
53. Nakata, H.; Amano, M.; Koh, Y.; Kodama, E.; Yang, G.; Bailey, C. M.; Kohgo, S.; Hayakawa, H.; Matsuoka, M.; Anderson, K. S.; Cheng, Y. C.; Mitsuya, H. Antimicrob. Agents Chemother. 2007, 51, 2701-2708.
54. Cihlar, T.; Ray, A. S.; Boojamra, C. G.; Zhang, L.; Hui, H.; Laflamme, G.; Vela, J. E.; Grant, D.; Chen, J.; Myrick, F.; White, K. L.; Gao, Y.; Lin, K. Y.; Douglas, J. L.; Parkin, N. T.; Carey, A.; Pakdaman, R.; Mackman, R. L. Antimicrob. Agents Chemother. 2008, 52, 655-665.
55. Furman, P. A.; Fyfe, J. A.; St.Clair, M. H.; Weinhold, K.; Rideout, J. L.; Freeman, G. A.; Lehrman, S. N.; Bolognesi, D. P.; Broder, S.; Mitsuya, H.; Barry, D. W. Proc.Natl. Acad. Sci. U. S, A. 1986, 83, 8333-8337.
56. Deville-Bonne, D.; El Amri,C.; Meyer, P.; Chen, Y.; Agrofoglio, L. A.; Janin, J. Antiviral Res. 2010, 86, 101-120.
57. Pontarin, G.; Gallinaro, L.; Ferraro, P.; Reichard, P.; Bianchi, V. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 12159-12164.
58. Eriksson, S.; Munch-Petersen, B.; Johansson, K.; Eklund, H. Cell. Mol. Life Sci. 2002, 59, 1327-1346.
59. Garces, E.; Cleland, W. W. Biochemistry. 1969, 8, 633-640.
60. Lascu, I.; Gonin, P. J. Bioenerg. Biomembr. 2000, 32, $237-246$.
61. Cherfils, J.; Moréra, S.; Lascu, I.; Véron, M.; Janin, J. Biochemistry. 1994, 33, 9062-9069.
62. Schaertl, S.; Konrad, M.; Geeves, M. A. J. Biol. Chem. 1998, 273, 5662-5669.
63. Chen, Y.; Gallois-Montbrun, S.; Schneider, B.; Véron, M.; Moréra, S.; Deville- Bonne, D.; Janin, J. J. Mol. Biol. 2003, 332, 915-926.
64. Schneider, B.; Xu, Y. W.; Sellan, O.; Sarfati, R.; Janin, J.; Véron, M.; Deville-Bonne, D. J. Biol. Chem. 1998, 273, 11491-11497.
65. Xu, Y.; Sellam, O.; Moréra, S.; Sarfati, S.; Biondi, R.; Véron, M.; Janin, J. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 7162-7165.
66. De Clercq, E. Nat. Rev. Drug Discovery. 2002, 1, 13-25.
67. (a) Parker, W. B. Chem. Rev. 2009, 109, 2880-2893; (b) Liu, G.; Pranssen, E.; Fitch, E. F.; Warnew, E. J.Clin. Oncol. 1997, 15, 110-115; (c) Hishitsuka, H.; Shimma, N. In Modified Nucleosides in Biochemistry, Biotechnology and Medicine, Herdewijn, P., Ed., Wiley, Hoboken, NJ, 2008, pp. 587-600; (d) Takahashi, T.; Shimuzu, M.; Akinaga, S. Cancer Chemother. Pharmacol. 2002, 50,

1930-1201; (e) Thottassery, J. V.; Westbrook, L.; Someya, H.; Parker, W. B. Mol. Cancer Ther. 2006, 5, 400-410; (f) Miura, S.; Izuta, S. Current Drug Targets. 2004, 5, 191-195; (g) Klopfer, A.; Hasenjager, A.; Belka, C.; Schulze-Osthoff, K.; Dorken, B.; Daniel, P. T. Oncogene. 2004, 23, 9408-9418.
68. (a) De Clercq, E. Rev. Med. Virol. 2009, 19, 287-299; (b) De Clercq, E. Biochem. Pharmacol. 2007, 73, 911-922; (c) Cihlar, T.; LaFlamme, G.; Fisher, R.; Carey, A. C.; Vela, J. E.; Mackman, R.; Ray, A. S. Antimicrob. Agents Chemother. 2009, 53, 150-156; (d) Choo, H.; Beadle, J. R.; Kern, E. R.; Prichard, M. N.; Keith, K. A.; Hartlina, C. B.; Trahan, J.; Aldern, K. A.; Korba, B. E.; Hostetler, K. Y. Antimicrob. Agents Chemother. 2007, 51, 611615; (e) Krcmerova, M.; Holý, A.; Piskala, A.; Masojidkova, M.; Andrei, G.; Naesens, L.; Neyts, J.; Balzarini, J.; De Clercq, E.; Snoeck, R. J. Med. Chem. 2007, 50, 1069-1077; (f) Lebeau, I.; Andrei, G.; Krecmerova, M.; De Clercq, E.; Hol'y, A.; Snoeck, R. Antimicrob. Agents Chemother. 2007, 51, 2268-2273.
69. (a) Vanek, V.; Budesinsky, M.; Rinnova, M.; Rosemberg, I. Tetrahedron. 2009, 65, 862-876; (b) Kumamoto, H.; Topalis, D.; Broggi, J.; Pradere, U.; Roi, V.; Berteina-Raboin, S.; Nolan, S. P.; Deville-Bonne, D.; Andrei, G.; Snoeck, R.; Garin, D.; Grance, G. M.; Agrofoglio, L. A. Tetrahedron. 2008, 64, 3517-3526; (c) Vrbkova, S.; Dracinsky, M.; Hol'y, A. Tetrahedron. 2007, 63,

11391-11398.
70. Wedemeyer, H.; Hardtke, S.; Cornberg, M. Chemother. J. 2012, 21, 1-7.
71. Elgemeie, G. H.; Zaghary, W. A.; Amin, K. M.; Nasr, T. M. Nucleosides, Nucleotides \& Nucleic Acids. 2005, 24, 1227-1247.
72. (a) Mironiuk-Puchalska, E.; Koszytkowska-Stawinska, M.; Sas, W.; De Clercq, E.; Naesens, L. Nucleosides, Nucleotides \& Nucleic Acids. 2012, 31, 72-84; (b) Merino, P.; Tejero, T.; Unzurrunzaga, F. J.; Franco, S.; Chiacchio, U.; Saita, M. G.; Iannazzo, D.; Piperno, A.; Romeo, G. Tetrahedron Asymmetry. 2005, 16, 3865-3876; (c) Chiacchio, U.; Rescifina, A.; Saita, M. G.; Iannazzo, D.; Romeo, G.; Mates, J. A.; Tejero, T.; Merino, P. J.Org. Chem. 2005, 70, 8991-9001.
73. Franchetti, P.; Cappellacci, L.; Perlini, P.; Jayaram, H. N.; Butler, A.; Schneider, B. P.; Collart, F. R.; Huberman, E.; Grifantini, M. J. Med. Chem. 1998, 41, 1702 -1707.
74. Franchetti, P.; Cappellacci, L.; Marchetti, S.; Martini, C.; Costa, B.; Varani, K.; Borea, P. A.; Grifantini, M. Bioorg. Med. Chem. 2000, 8, 2367-2373.
75. Romeo, G.; Chiacchio, U.; Corsaro, A.; Merino, P. Chem. Rev. 2010, 110, 3337-3370.
76. Merino, P. Curr. Med. Chem. 2006, 13, 539-545.
77. (a) De Clercq, E.; Neyts, J.; Hand B. Exp. Pharmacol. 2009, 189,

53-84; (b) Berdis, A. J. Biochemistry. 2008, 47, 8253-8260.
78. Hutter M. C.; Helms V. ChemBioChem. 2002, 3, 643-651.
79. (a) Schneider, B.; Sarfati, R.; Deville-Bonne, D.; Veron, M. J.Bioenerg. Biomembr. 2000, 32, 317-324; (b) Stein, D. S.; Moore, K. H. P. Pharmacotherapy. 2001, 2137-2146; (c) Lascu, I.; Gonin, P. J.Bioenerg. Biomembr. 2000, 32, 237-246.
80. Miller, W. H; Miller, R. L. J. Biol. Chem. 1980, 255, 7204-7207; Biochem. Pharmacol. 1982, 31, 3879-3884.
81. (a) McGuigan, C.; Harris, S. A.; Daluge, S. M.; Gudmundsson, K. S.; McLean, E. W.; Burnette, T. C.; Marr, H.; Hazen, R. J. Med. Chem. 2005, 48, 3504-3515; (b) Perrone, P.; Luoni, G. M.; Kelleher, M. R.; Daverio, F.; Angell; A.; Mulready, S.; Congiatu, C.; Rajyaguru, S.; Martin, J. A.; Leveque, V.; Le Pogam, S.; Najera, I.; Klumpp, K.; Smith, D. B.; McGuigan, C. J. Med. Chem. 2007, 50, 1840-1849; (c) McGuigan, C.; Derudes, M.; Bugert, J. J.; Andrei, G.; Snoecke, R.; Balzarini, J. Bioorg. Med. Chem. Lett. 2008, 18, 4364-4367.
82. (a) Hecker, S. J.; Erion, M. D. J. Med.Chem. 2008, 51, 2328-2345; (b) Schultz, C. Bioorg. Med. Chem. 2003, 11, 885-898; (c) Mackman, R. L., Cihlar, T. Annu. Rep. Med. Chem. 2004, 39, 305-321; (d) He, G. X.; Krise, J. P.; Oliyai, R. In Prodrugs: Challenges and Rewards, Springer-Verlag, New York, 2007, pp. 223-264; (e) Ariza, M. E. Drug Des. Rev. 2005, 2,

273-387; (f) Congiatu, C.; McGuigan, C.; Jiang, W. G.; Davies, G.; Mason, M. D. Nucleosides, Nucleotides \& Nucleic Acids. 2005, 24, 485-489.
83. (a) De Clercq, E.; Holý, A. Nat. Res. Drug Discov. 2005, 4, 928940; (b) Deville-Bonne, D.; El Amri, C.; Meyer, P.; Chen, Y. X.; Agrofoglio, L. A.; Janin, J. Antiviral Res. 2010, 86, 101-120; (c) De Clercq, E. Med. Res. Rev. 2009, 29, 571-610; (d) De Clercq, E. Antiviral Res. 2010, 85, 19-24; (e) De Clercq, E. Biochem. Pharmacol. 2011, 82, 99-109.
84. (a) Gallier, F.; Péyrottes, S.; Périgaud C. Tetrahedron. 2009, 65, 6039-6046; (b) Meurillon, M.; Gallier, F.; Peyrottes, S.; Périgaud, C. Eur. J. Org. Chem. 2007, 925-933; (c) Gallier, F.; Alexandre, J. A. C.; El Amri, C.; Deville-Bonne, D.; Peyrotts, S.; Périgaud, C. Chem. Med. Chem. 2011, 6, 1094-1106.
85. (a) Holy, A. Curr. Pharm. Des. 2003, 9, 2567-2592. (b) De Clercq, E.; Holy, A. Nat. Rev. Drug Discovery. 2005, 4, 928-940.
86. Vina, D.; Wu, T.; Renders, M.; Laflamme, G.; Herdewijn, P. Tetrahedron. 2007, 63, 2634-2646.
87. Schöning, K.; Scholz, P.; Guntha, S.; Wu, X.; Krishnamurthy, R.; Eschenmoser, A. Science. 2000, 5495, 1347-1351.
88. (a) Kempeneers, V.; Vastmans, K.; Rozenski, J.; Herdewijn, P. Nucleic Acids Res. 2003, 31, 6221-6226. (b) Chaput, J. C.; Szostak, J. W. J. Am. Chem. Soc. 2003, 125, 9274-9275.
89. Kempeneers, V.; Froeyen, M.; Vastmans, K.; Herdewijn, P. Chem. Biodivers. 2004, 1, 112-123.
90. (a) Secrist, J. A. 3rd; Riggs, R. M.; Comber, R. N.; Montgomery, J. A. Nucleosides, Nucleotides. 1992, 11, 947-956.(b) Montgomery, J. A.; Thomas, H. J.; Kisliuk, R. L.; Gaumont, Y. J. Med. Chem. 1979, 22, 109-111.
91. Liu, J. L.; Kim, E. A.; Hong, J. H. Nucleosides, Nucleotides \& Nucleic Acids. 2012, 31, 411-422.
92. Wang, W.; Jin, H.; Fuselli, N.; Mansour, T. S. Bioorg. Med. Chem. Lett. 1997, 7, 2567-2572.
93. Wu, T.; Froeyen, M.; Kempeneers, V.; Pannecouque, C.; Wang, J.; Busson, R.; De Clercq, E.; Herdewijn, P. J. Am. Chem. Soc. 2005, 127, 5056-5065.
94. Qiu, X. L.; Xu, X. H.; Qing, F. L. Recent advances in the synthesis of fluorinated nucleosides. Tetrahedron. 2010, 66, 789-843.
95. Boojamra, C. G.; Mackman, R. L.; Markevitch, D. Y.; Prasad, V.; Ray, A. S.; Douglas, J.; Grant, D.; Kim, C. U.; Cihlar, T. Bioorg. Med. Chem. Lett. 2008, 18, 1120-1123.
96. (a) Mackman, R. L.; Ray, A. S.; Hui, H. C.; Zhang, L.; Birkus, G.; Boojamra, C. G.; Desai, M. C.; Douglas, J. L.; Gao, Y.; Grant, D.; Laflamme, G.; Lin, K. Y.; Markevitch, D. Y.; Mishra, R.; McDermott, M.; Pakdaman, R.; Petrakovsky, O. V.; Vela, J. E.; Cihlar, T. Bioorg. Med. Chem. 2010, 18, 3606-3617. b) Cihlar, T.; Ray, A. S.;

Boojamra, C. G.; Zhang, L.; Hui, H.; Laflamme, G.; Vela, J. E.; Grant, D.; Chen, J.; Myrick, F.; White, K. L.; Gao, Y.; Lin, K. Y.; Douglas, J. L.; Parkin, N. T.; Carey, A.; Pakdaman, R.; Mackman, R. L. Antimicrob Agents Chemother. 2008, 52, 655-665.
97. (a) Hertel, L. W.; Kroin, J. S.; Misner, J. W.; Tustin, J. M. J. Org. Chem. 1988, 53, 2406-2409. b) Hertel, L. W.; Boder, G. B.; Kroin, J. S., Rinzel, S. M.; Poore, G. A.; Todd, G. C.; Grindey, G. B. Cancer Res. 1990, 50, 4417-4422.
98. Noble, S.; Goa, K. L. Gemcitabine. Drugs. 1997, 54, 447-472.
99. Borthwick, A. D.; Kirk, B. E.; Biggadike, K.; Exall, A. M.; Butt, S.; Roberts, S. M.; Knight, D. J.; Coates, J. A.; Ryan, D. M. J. Med. Chem. 1991, 34, 907-914.
100. Mitsuya, H.; Broder, S. Proc. Natl. Acad. Sci. USA. 1986, 83, 1911-1915.
101. Wu, T.; Froeyen, M.; Kempeneers, V.; Pannecouque, C.; Wang, J.; Busson, R.; De Clercq, E.; Herdewijn, P. J. Am. Chem. Soc. 2005, 127, 5056-5065.
102. Kim, C. U.; Luh, B. Y.; Misco, P. F.; Bronson, J. J.; Hitchcock, M. J.; Ghazzouli, I.; Martin, J. C. J. Med. Chem. 1990, 33, 12071213.
103. De Clercq, E.; Holý, A.; Rosenberg, I. Antimicrob Agents Chemother. 1989, 33, 185-191.
104. Wang, W.; Jin, H.; Fuselli, N.; Mansour, T. S. Bioorg. Med. Chem.

Lett. 1997, 7, 2567-2572.
105. Ko, O. H.; Hong, J. H. Tetrahedron Lett. 2002, 43, 6399-6402.
106. (a) Kumamoto, H.; Topalis, D.; Broggi, J.; Pradere, U.; Roy, V.; Berteina-Raboin, S.; Nolan, S. P.; Deville-Bonne, D.; Andrei, G.; Snoeck, R.; Garin, D.; Crance, J. M.; Agrofoglio, L. A. Tetrahedron 2008, 64, 3517-3526; (b) Montagu, A.; Pradere, U.; Roy, V.; Nolan, S. P.; Agrofoglio, L. A. Tetrahedron. 2011, 67, 5317-5328; (c) Huang, Q.; Herdewijn, P. J. Org. Chem. 2011, 76, 3742-3753.
107. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-956.
108. Hocková, D.; Holý, A.; Masojídková, M.; Keough, D. T.; De Jersey, J.; Guddat, L. W. Bioorg. Med. Chem. 2009, 17, 6218-6232.
109. Robins, M. J.; Uznanski, B. Can. J. Chem. 1981, 59, 2608-2611.
110. Vorbruggen, H.; Ruh-Pohlenz, C. Handbook of Nucleoside Synthesis; Eds, John Wiley \& Sons, Inc.: New York, 2001.
111. Montgomery, J.; Hewson, K. J. Med. Chem. 1969, 12, 498-504.
112. Tong, G. L.; Ryan, K. J.; Lee, W. W.; Acton, E. M. Goodman, L. J. Org. Chem. 1967, 32, 859-862.
113. Holy, A.; Votruba, I.; Merta, A.; Cerny, J.; Vesely, J.; Vlach, J.; Sediva, K.; Rosenberg, I.; Otmar, M.; Hrebabecky, H.; Travniekb, M.; Vonkac, V.; Snoeck, R.; De Clercq, E. Antiviral Res. 1990, 13, 295-311.
114. Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. J. Virol. Methods. 1988, 20, 309-321.
115. (a) Yin, X. Q.; Li, W. K.; Yang, M.; Schneller, S. W. Bioorg. Med.Chem. 2009, 17, 3126-3219; (b) Sisu, E.; Sollogoub, M.; Mallet, J. M.;Sinay, P. Tetrahedron 2002, 58, 10189-10196.
116. (a) Furstner, A. Angew. Chem. Int. Ed. 2000, 39, 3012-3043; (b) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4442-4489; (c) Hansen, E. C.; Lee, D. Acc. Chem. Res. 2006, 39, 509-519.
117. Michel, B. Y.; Strazewski, P. Tetrahedron. 2007, 63, 9836-9841.
118. Tanaka, M.; Norimine, Y.; Fujita, T.; Suemune, H.; Sakai, K. J. Org. Chem. 1996, 61, 6952-6957.
119. (a) Kim, A.; Oh, C. H.; Hong, J. H. Nucleosides, Nucleotides Nucleic Acids 2006, 25, 1399-1406; (b) Kim, A.; Hong, J. H. Nucleosides, Nucleotides \& Nucleic Acids 2006, 25, 1-8.
120. El-Subbagh, H. I.; Racha, S.; Abushanab, E.; Panzica, R. P. J. Org. Chem. 1996, 61, 890-894.
121. Hong, J. H. Arch. Pharm. Res. 2007, 30, 131-137.
122. All geometries were optimized with the framework of the density functional theory (DFT), with Spartan modeling software. The B3LYP functional with 6-31G* basis set was employed.
123. (a) House, H.O.; Lord, R. C.; Rao, H. S. J. J. Org. Chem. 1956, 21,

1487-1491; (b) Gosselck, J.; Schmidt, G. Angew. Chem. Int. Ed. 1968, 7, 456-457.
124. Mancuso, A. J.; Huang, S. L.; Swern, D. J. Org. Chem. 1978, 43, 2480-2482.
125. Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863-927.
126. Smith, K.; Pelter, A. For a review of organoboron chemistry. In. Trost, B. M.; Fleming, I. Eds., Comprehensive Organic Synthesis, vol. 8, Pergamon Press, Oxford, 1991, p. 703.
127. Marshall, J. A.; Gung, W. Y. Tetrahedron Lett. 1989, 30, 73497352.
128. Kozikowski, A. P.; Wu, J. P. Tetrahedron Lett. 1987, 28, 51255128.
129. (a) Ruder, S. M.; Ronald, R. C. Tetrahedron Lett. 1984, 25, 5501-5504. (b) Kigoshi, H.; Imamura, Y.; Mizuta, K.; Niwa, H.; Yamada, K. J. Am. Chem. Soc. 1993, 115, 3056-3065.
130. Spira, T. J.; Bozeman, L. H.; Holman, R. C.; Warfield, D. T.; Phillips, S. K.; Feorino, P. M. J. Clin. Microbiol. 1987, 25, 97-99.
131. Schinazi, R. F.; Cannon, D. L.; Arnold, B. H.; Martino-Saltzman, D. Antimicrob. Agents Chemother. 1988, 32, 1784-1792.
132. Sommadossi, J. P.; Carlisle, R.; Schinazi, R. F.; Zhou, Z. Antimicrob. Agents Chemother. 1988, 32, 997-1001.
133. Schinazi, R. F.; Peters, J.; Williams, C. C.; Chance, D.; Nahmias, A. J. Antimicrob Agents Chemother. 1982, 22, 499-507.
134. Hong, J. H.; Kim, H. O.; Moon, H. R.; Jeong, L. S. Arch. Pharm. Res. 2001, 24, 95-99.
135. (a) Amey, R. L.; Martin. J. C. J. Am. Chem. Soc. 1978, 100, 300-301; (b) Amey, R. L.; Martin, J. C. J. Am. Chem. Soc. 1979, 101, 5294-5299.
136. Lefebvre, I.; Périgaud, C.; Pompon, A.; Aubertin, A. M.; Girardet, J. L.; Kirn, A.; Gosselin, G.; Imbach, J. L. J. Med. Chem. 1995, 38, 3941-3950.
137. Périgaud, C.; Gosselin, G.; Lefebvre, I.; Girardet, J. L.; Benzaria, S.; Barber, I.; Imbach, J. L. Bioorg. Med. Chem. Lett. 1993, 3, 2521-2526.
138. Choi, M. H.; Kim, H. D. Arch. Pharm. Res. 2003, 26, 990-996.
139. Marco, J. L.; Hueso-Rodriquez, J. A. Tetrahedron Lett. 1988, 29, 2459-2462.
140. (a) Jeong, L. S.; Lee, J. A. Antiviral Chem. Chemother. 2004, 15, 235-250; (b) Amblard, F.; Nolan, S. P.; Agrofoglio, L. A. Tetrahedron 2005, 61, 7067-7080.
141. (a) Wachmeister J.; Classon, B.; Samuelsson, B. Tetrahedron. 1995, 51, 2029-2038; (b) Cadet, G.; Chan, C. S.; Daniel, R. Y.; Davis, C. P.; Guiadeen, D.; Rodriguez, G.; Thomas, T.; Walcott, S.; Scheiner, P. J. Org. Chem. 1998, 63, 4574-4580; (c) Diaz, Y.; Bravo, F.; Castillon, S. J. Org. Chem. 1999, 64, 6508-6511.
142. Chong, Y. H.; Gumina, G.; Chu, C. K. Tetrahedron: Asymmetry.

2000, 11, 4853-4875.
143. Oh, H. S.; Kang H. Y. Tetrahedron. 2010, 66, 4307-4317.
144. (a) Phillion, D. P.; Andrew, S. S. Tetrahedron Lett. 1986, 27, 1477-1480; (b) Xu, Y.; Flavin, M. T.; Xu, Z. Q. J. Org. Chem. 1996, 61, 7697-7701.
145. Lian, L. J.; Yoo, J. C.; Hong, J. H. Nucleosides, Nucleotides \& Nucleic Acids. 2009, 28, 150-164.
146. Yang, Y. Y.; Meng, W. D.; Qing, F. L. Org. Lett. 2004, 6, $4257-$ 4259.
147. (a) Tanaka, M.; Norimine, Y.; Fujita, T.; Suemune, H.; Sakai, K.; J. Org. Chem. 1996, 61, 6952-6957; (b) Liu, L. J.; Kim, S. W.; Lee, W.; Hong, J. H. Bull. Korean Chem. Soc. 2009, 30, 2989 2992.

VI. ABSTRACT

Synthesis and Conformational Study of

Non-classical Nucleoside Phosphonic Acid Analogues as Antiviral Agents

Shen, Guang Huan
Advisor: Prof. Hong, Joon Hee Ph.D
Department of Pharmacy
Graduate School of Chosun University

Since the discovery of human immunodeficiency syndrome (AIDS), there has been intense effort to find compounds that can selectively block the replication of HIV. One logical approach to discovery of new and potent HIV inhibitors involves the design of phosphonate analogues where the phosphonate moiety is changed to isosteric and isoelectronic phosphonates. These enzymatically and chemically stable phosphonate analogues, which mimic the nucleoside monophosphonates by passing the initial enzymatic phosphorylation could lead to more effective antiviral agents against HIV.

Phosphorylation by kinases and the incorporation into nucleic acid
(eventually leading to chain termination) is considered as important mechanism underlying the antiviral activities of nucleosides. In fact, lack of antiviral activity by a nucleoside phosphonate is generally attributed to poor substrate properties for cellular and viral kinases. On the other hand, the potent antiviral activities of phosphorylated alkylated nucleobases are ascribed to their intracellular phosphorylation to diphosphates and to refractory incorporation of the modified nucleosides in nucleic acids. Furthermore, the enzymatic incorporation of phosphonate nucleosides into nucleic acids is almost irreversible, which is not the case for regular nucleotides.

The phosphonate has certain advantages over its phosphate counterpart as it is metabolically stable because its phosphoruscarbon bond is not susceptible to hydrolytic cleavage. The special location of the oxygen atom, namely the β-position from the phosphorus atom in the nucleoside analogue, plays a critical role in the antiviral activity. This increased antiviral activity with this oxygen atom may be attributed to the increased binding capacity of the phosphonate analogues to target enzymes. The special location of the carbon atom, namely the β-position from the phosphorus atom in the nucleoside analogue, has been demonstrated to play a critical role for antiviral activity. These atoms for antiviral activity may be attributed to the increased binding capacity of the phosphonate analogues to target enzymes.

In this thesis, we sought to synthesize a novel class of nucleoside phosphonate analogues in order to search for more effective therapeutics against HIV and to provide analogues for probing the conformational preferences of enzymes associated with the nucleoside kinases of nucleosides and nucleotides.

Keywords: Anti-HIV agents; 5'-deoxyphosphonic acid; 5'norcarbocyclic acid; Threosyl nucleoside phosphonic acid; Conformation analysis; Spironucleoside; Mistunobu reaction; Vorbruggen reaction.

ACKNOWLEDGMETS

I would like to express my sincere thanks to my research advisor, Professor Joon Hee Hong for his guidance, support and encouragement. His extensive knowledge of organic chemistry and his dedication to teaching have made my gradute career a truly rewarding experience.

I would like to thank Hua Li and Lian Jin Liu who have shared the same lab with me.

I would like to thank my friend Hu Huang for his help and encouragement.

Finally, my utmost thanks go to my parents and young sister Chun Lian Shen for their endless support.

