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Abstract

Functional analysis of PDCD4 on the assembly
Of stress granule

Ra-Young PARK
Advisor : Prof. Tak— Bum OHN, Ph.D.
Department of Bio—Materials,

Graduate school of Chosun University

Programmed cell death 4 (PDCD4) is a novel tumor suppressor that
function in the nucleus and the cytoplasm and appears to be involved in the
regulation of transcription and translation. Stress granules (SGs) are
cytoplasmic foci at which untranslated mRNAs accumulate when cells exposed
to environmental stresses. Since PDCD4 has implicated in translation repression
through direct inhibition of eukaryotic translation initiation factor 4A (elF4A), we
here investigated if PDCD4 has a functional role in the process of SG assembly
under oxidative stresses. Using immunofluorescence microscopy, we found that
PDCD4 is relocalized to SGs under oxidative stresses. Next, we tested if
knockdown of PDCD4 has an effect on the assembly of SG using PDCD4-
specific siRNA.

Interestingly, SG assembly was accelerated and this effect was caused by

N
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sensitization of phosphorylation of elF2a and dephosphorylation of elF4E
binding protein (4E-BP). We demonstrate that knockdown of PDCD4
accelerated polysome disassembly and causes elF4F complex disruption and
ehances elF4E:4EBP1 interaction under H,O, stress. Moreover, Overexpression
of PDCD4 decrease stress granule assembly under stress conditions.

These results suggest that POCD4 has an effect on SG dynamics and
possibly involved in cap—dependent translation repression under stress

conditions.
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|. Introduction

In eukaryotic cells exposed to environmental stress, inhibition of
translation initiation conserves energy for the repair of cellular damage.
Untranslated mRNAs that accumulate in these cells move to discrete
cytoplasmic RNA—-protein complexes known as stress granules (SGs) [1].
Stress granules contain nontranslating mRNAs, translation initiation
component, and many additional protein affecting mRNA function [10].
The assembly of SGs helps cell survival under adverse environmental
conditions by modulating various aspects of cell metabolism [2]. Stress
granules typically contain poly(A)+ mRNA, 40S ribosomal subunit, elF4E,
elF4G, elF4A, elF4B, poly(A) binding protein (PABP), elF3, and elF2,
although the composition can vary. Many stress responses inhibit
translation upstream of 485 complex formation by impairing elF4E function
or via phosphorylation of elF2, which then limits the formation of a 43S
complex containing elF2, the initiator tRNA, elF3, and the 40S subunit
[3,4,5]. This results from reduced assembly of the pre-initiation
complexes elF4F (composed of elF4E, elF4G, and elF4A) [6, 7, 8] and
43S (composed of the small ribosomal subunit in association with several
initiation factors). Assembly of the elF4F complex is inhibited by elF4E-

binding proteins (4EBPSs) that interfere with interactions between elF4E and

1
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elF4G [18-21]. Stress—induced inactivation of the PISBK-mTOR pathway
reduces the constitutive phosphorylation of 4EBPs to promote the
assembly of inhibitory elF4E:4EBP complexes [16, 17]. Assembly of the
43S complex is inhibited by stress—induced activation of PKR, PERK, GCN2
and HRI, kinases that phosphorylate elF2a, a component of the elF2-GTP-
tRNAMet ternary complex essential for 43S assembly [9, 12]. These
complementary mechanisms are primarily responsible for the global
repression of protein synthesis observed in cells subject to adverse
environmental conditions [13, 14, 15]. Thus, SGs are thought to promote
cell survival under stress conditions by modulating various aspects of cell
metabolism.

Programmed cell death 4 (PDCD4) is a novel tumor suppressor
encodes a multi-function in the nucleus and the cytoplasm that is involved
in the regulation of transcription and translation [22, 23]. Furthermore,
PDCD4 plays an important role in suppressing tumorigenesis by
regulating several other genes involved in related processes including
apoptosis, cell cycle, and cell proliferation [24]. Studies in cultured
ovarian cancer cells, for example, suggest that PDCD4 suppresses
proliferation and cell cycle progression and induces apoptosis. Acting
via the MA-3 domain, PDCD4 acts as a translation inhibitor, thereby

influencing protein patterns in the cells.

i
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Additionally, PDCD4 has been shown to be regulated by a
diverse set of molecules, including topoisomerase—-inhibitors, COX-2
inhibitors, Akt, and various mitogens. Recently, down decreased
expression of Pdcd4 has been identified in various human solid
neoplasias (human colon cancer, ovarian cancer, lung cancer, primary
pancreatic cancer, and glioma) [25-28]. As a translation regulator,
Pdcd4 interacts with the eukaryotic translation initiation factor elF4A, a
RNA helicase that catalyzes the unwinding of mRNA secondary structures
in 5 -untranslated regions (UTRs) [29]. Binding of Pdcd4 to elF4A is
mediated by the MA-3 domains, whose structure and complex formation
with elF4A have been analyzed [30-34].

Because binding of Pdcd4 to elF4A inhibits the helicase activity of
elF4A [35, 36] it is believed that Pdcd4 functions as a suppressor of cap-
dependent translation of mMRNAs with structured 5'-UTRs. This assumption
was supported by studies, which assessed the effects of Pdcd4 on the
translation of artificial RNAs containing 5'—hairpin structures [36]; however,
because physiological translational target mRNAs for Pdcd4 have not yet
been unambiguously identified, it is presently unclear whether translation of
all RNAs containing structured 5-UTRs are suppressed by Pdcd4 or
whether there are mechanisms that allow Pdcd4 to target specific mRNAs.

Reactive oxygen (ROS) are an important trigger for SG assembly

3
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[37]. Oxidative stress elicits elevated levels of ROS, such as hydrogen
peroxide (H202), superoxide (02—) and hydroxyl radical (HO—), which
cause increased permeability of the blood—-brain barrier, tubulin alterations,
and perturbation in synaptic transmission [38], and are known to play an
important role in neuronal cell death [39]. Therefore, ROS induction
becomes a prominent feature of many neurodegenerative disorders, such
as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral
sclerosis. Increasing evidence has further shown that under pathological
conditions, excessive amounts of ROS can readily react with thiol groups
of proteins, thereby disrupting the structure of cellular proteins and altering
their functions, and also activate related signaling pathways, leading to
neuronal apoptosis or neurodegeneration [40-46].

In the present study, we found that knockdown of PDCD4 of
accelerates stress granule assembly through sensitization of
phosphorylation of elF2a and dephosphorylation of elF4E binding
protein(4E-BP) under oxidative stress. Furthermore we show knockdown of
PDCD4 triggers SG assembly by disrupting the elF4F complex under H.0,
stress. PDCD4 is a key component of the translation initiation machinery.
Our results reveal that depletion of PDCD4 triggers SG assembly that may

have unigue properties in the regulation of the stress response program.
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ll. Materials and Methods

lI-1. Cell culture and transfection.

The human osteosarcoma (U20S) were grown in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 10 % fetal bovine
serum (FBS) and 500 U/ml penicillin-streptomycin at 37 C in a humidified
atmosphere of 5 % CO, in air. U20S cells were transfected with
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) or Fugene 6 (Roche,

Indianapolis, IN, USA). After 36 h, the cells were lysed by using RIPA buffer

(150 mM sodium cloride, 1 % NP-40, 0.5 % sodium deoxycholate,

0.1 % SDS, and 50 mM Tris—HCI pH 8.0).
[I-2. Reagents and antibodies.

The Sodium arsenite, hydrogen peroxide (H,O.) and cyclohexamide
were purchased from Sigma. The 4EBP1, elF4E, p—4EBP1 antibodies were
purchased from Cell Signaling (Danvers, MA, USA). The PDCD4, B—actin
(AC15), elF4A1, RPL13A antibodies were purchased from Abcam
(Cambridge, MA, USA). p—elF2a (Ser52) was purchased from Biomol
(Farmingdale, NY, USA). The elF3b, G3BP, elF4G, PABP and GFP was

purchased from Santa Cruz Biotechnology. The FLAG-MZ2 antibody was

n
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purchased from Sigma. Secondary antibodies conjugated with horseradish
peroxidase (HRP) were from GE Healthcare. Cy2—-, Cy3—-, and Cy5-
conjugated secondary antibodies were purchased from Jackson

Immunoresearch Labs.
[I-3. Construction of plasmids.

The PDCD4 coding region was amplified from pCl-neo—-flag-PDCD4
for 35 cycles (94 °C for 1 min, 56 °C for 1 min, and 72 °C for 1 min) using
EX polymerase (TAKARA) and primers with Xho/ and BamH/ cloning sites
GATCCTCGAGTCATGGATGTAGAAAATGAG and GATCGGATCCTCAGTAGC
TCTCTGGTTTAAG respectively. The inserts were cut with Xho/ and BamH/
and cloned in—frame with the C—terminal in pmCherry that was similarly cut.
The G3BP1 coding region was amplified from pEFta-flag—biotag for
using primers with Xho/ and BamH/ cloning sites GATCCTCGAGATGGTG
ATGGAGAAGCCTAG and GATCGGATCCTCACTGCCGTGGCGCAAGCC
respectively. The inserts were cut with Xho/ and BamH/ and cloned in—

frame with the C—terminal in pEGFP that was similarly cut.

lI-4. Preparation of cell lysate and western blot analysis.

The U20S cells were washed with PBS twice and lysated in RIPA

¢
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buffer supplemented with protease and phosphatase inhibitor cocktails.
After incubation on ice for 15 min, the supernatants were collected by
centrifugation at 13.000 r.p.m. for 15 min. Protein concentration was
determined using a Bradford protein assay (BioRad, Hercules, CA, USA).
Aliquots containing 20~35 pg protein were separated on a 12 % SDS-
polyacrylamide gel and transferred to a PVDF membrane. The protein—
bound membrane was incubated with an antibody, followed by HRP-
conjugated secondary antibodies, and visualized by chemiluminescence

(ECL).
[1-5. Immunofluorescence microscopic analysis.

Cells were grown on glass coverslips, transfected, and incubated
as indicated above, then washed twice in PBS-A (1X PBS with 0.02 %
sodium azide), immediately fixed with 4 % (v/v) formaldehyde in PBS for
15 min at 4 C, and permeabilized with Methanol for 5 min at RT. Protein
was detected using a primary antibody for overnight at 4 C, then washed
twice in PBS-A, Driefly stained with Cy2- or Cy3-conjugated
immunoglobulin (Jackson ImmunoResearch, West Grove, PA, USA) and
Hoechst 33258 (Sigma) for 1 h at RT in dark condition, washed twice in

PBS—A, and the coverslips were mounted on slide glasses. Fluorescence

microscopic images were taken using a Nikon Eclipse 80i fluorescence

9
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microscope (40 X) and compiled using Adobe Photoshop software (San

Jose, CA, USA).
[I-6. Polysome profiling analysis.

U20S cells (1*¥10°) were plated and treated with siCONT or siPDCD4
for 72 hrs. Before harvest, cells were incubated with or without 0.15 Mm
sodium arsenite for 40 min prior to addition of 10 mg/ml cyclohexamide,
washed with cold PBS, then scrape harvested into 1 ml polysome lysis
buffer (20 mM HEPES (pH 7.6), 125 mM KCI, 5 mM MgCI2, 2 mM DTT, and
DEPC water) supplemented with protease inhibitor cocktail (EDTA free,
PIERCE), and RNAsin (Ambion). After 15 min tumbling in the cold room,
and insoluble material was pelleted by centrifugation at 13 000 r.p.m. for
10 min. The resulting supernatant extracts were then loaded onto a
17.5~50 % sucrose gradient prepared with polysome profiling buffer and
ultracentrifuged for 2.5 h at 35,000 r.p.m. in a SW41-Ti rotor (Beckman,
Brea, CA, USA). Following centrifugation, the gradients were fractionated
using a fraction collector (Brandel, Gaithersburg, MD, USA).

Fractions were acetone—precipitated, and processed for further analysis.

lI-7. BNA interference.

N
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U20S cells were transfected with siRNAs (40 nM) using
Lipofectamine 2000 (Invitrogen). After 36 h, cells were trypsinized,
reseeded, and transfected again for another 40 h. For single transfection,
cells were ftreated for 48~72 h and processed for the next step.
Knockdown efficiencies were verified by western blot analysis.

GFP  siRNA (GGCUACGUCCAGGAGCGCACC) and PDCD4 siRNA

(GCAUGGAGAUACUAAUGAA) was purchased from Bioneer.
[1-8. Methyl Cap Pull-Down Assay

Association of PDCD4 with the cap mRNA-elF4F complex was
assessed using 7-methyl-GTP sepharose beads, which simulate cap
mRNA pool in vivo. U20S cell were treated with SA and HO, after
knockdown contol or PDCD4 and lysed in buffer A (50 mM Tris—HCI at pH
7.4, 50 mM KCI, 1 mM EDTA, 0.5 % NP-40 and protease inhibitors). Equal
amounts of protein were used in pull-down assays using 7—-methyl-GTP
sepharose beads for overnight at 4 °C. Sepharose—associated PDCD4-
depleted supernatant was collected and assessed for PDCD4-elF4A and
PDCD4-elF4G associations following PDCD4 immunoprecipitation. The
resin was washed twice with buffer A and immunoblotted for elF4A and

elF4G along with PDCD4 immunoprecipitates.
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[I-9. Cytosolic and Nuclear Protein Fractionation

U20S seeded at a density of 2+x10° cells/ 60-mm petridish were
treated with SA (0.5 mM). At the end of the experiment, nuclear and
cytosolic protein fractions were isolated according to manufacturer’s
instructions (BioVision). Following protein estimation, equal amounts of
protein were used for immunoblotting experiment as described above
Purity of the extracts was confirmed by immunoblotting for lamin BT

(nuclear).

by
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lll. Results

llI-1. Knockdown of PDCD4 accelerates stress granule assembly.

To conclusively determine whether knockdown of PDCD4 affects SG
assembly, U20S cell were transfected with control or PDCD4-directed
siRNA and then left untreated or treated with SA (Fig. 1A). Western blot
analysis verified that siRNA targeting PDCD4 downregulated PDCD4 protein
levels (Fig. 1B). We found that depletion of PDCD4 resulted in accelerates

in SG assembly induced by SA.

T
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Figure 1. Knockdown of PDCD4 accelerates stress granule assembly.

(A) U20S cells were transfected with non-target control (siCONT) or
PDCD4-specific (siPDCD4) siRNAs, then treated with or without oxidative
stress induced by 150 yM sodium arsenite for 40 min before processing
for immunofluorescence microscopy. Stress granules were visualized as
green foci (GFP-elF3b) and p—bodies were visualized with red foci (RFP-

RCK). (B) Knockdown of PDCD4 was confirmed by Western blot analysis.

19}
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[II-2. PDCD4 is component of SGs under oxidative stresses.

elF3b has been known SG marker under various stress conditions.
Therefore, we next examined whether PDCD4 is component of SGs.
PDCD4 was found to be localized in the nucleus of U20S cell. Upon
treatment with 0.5 mM arsenite, PDCD4 was localized in the cytoplasm and
predominantly in the SGs containing elF3b in U20S cells. Colocalization
study of endogenous PDCD4 with a SG component elF3b confirmed that

PDCD4 is also a SG component.
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Figure 2. PDCD4 is component of SGs under oxidative stresses.
A) U20S cells were treated with sodium arsenite (0.5 mM) for the indicated
times prior to processing for immunofluorescence microscopy. Anti—elF3b

antibodies were used to visualize SGs.
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[I1-3. PDCD4 is colocalized to SGs under oxidative stresses.

G3BP1 has been shown to be essential for the assembly of SGs
under various stress conditions. Therefore, we next examined whether
PDCD4 is localized in SGs. To confirm the result, pmCherry-PDCD4 and
pEGFP-G3BP constructs were co—transfected and expressed for 24 hrs in
U20S cells. Upon treatment with 0.5 mM arsenite, PDCD4 was localized
in the cytoplasm and predominantly in the SGs containing G3BP1 in U20S
cells (Fig. 3A). Western blot analysis show that PDCD4 antibody recognize
distinct N—terminal pmCherry-PDCD4 detected PDCD4 protein in U20S cell
(Fig. 3B). These results show that PDCD4 is recruited into SG in cells

exposed to stress.

)
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Figure 3. PDCD4 is colocalized to SGs under oxidative stresses

(A) To confirm the result, pmCherry—-PDCD4 and pEGFP-G3BP constructs
were co—transfected and expressed for 24 hrs in U20S cells, SGs were
then induced by treating sodium arsenite (0.5 mM, 1 hr) prior to
immunofluorescence microscopy. (B) Overexpression of PDCD4 was

confirmed by Western blot analysis.
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lII-4. Relocalization of PDCD4 from nucleus to cytoplasm under
oxidative stress condition.

Programmed cell death 4 (PDCD4) is a multi-function in the nucleus
and the cytoplasm that is involved in the regulation of transcription and
translation. Therefore, we assessed cytoplasmic and nucleus PDCD4
expressions following SA treatment. Immunoblot analysis showed that SA
transfer from nucleus PDCD4 to cytoplasmic PDCD4 (Fig. 4). Purity of the
cytosolic fraction was further confirmed by a-tubulin. PDCD4 has been
shown to localize in the nucleus in U20S cell, while the SA induced

cytoplasmic PDCD4.

b]
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Figure 4. Relocalization of PDCD4 from nucleus to the cytoplasm by sodium
arsenite treatment. Western blot analysis using a-tubulin and lamin B1
antibodies was performed on cytoplasmic extracts and nucleus extracts

from control and SA-treated U20S cell.
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lI-5. SG assembly was accelerated by sensitization of
phosphorylation of elF2a under sodium arsenite stress.

Several reports have shown that SA are oxidative stress that induce
the phosphorylation of eukaryotic translation initiation factor 2a (elF2a).
And elF2a phosphorylation was shown to be essential for SG assembly in
response to several stresses. We determined whether elF2 phosphorylation
is required for SG assembly in depletion of PDCD4.

We confirmed that knockdown of PDCD4 upregulate the
phosphorylation of elF2a in U20S cell that induced by SA. As shown in Fig.
5, knockdown of PDCD4 accelerated SG assembly by sensitization of

phosphorylation of elF2a under sodium arsenite stress.
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Figure 5. SG assembly was accelerated by sensitization of phosphorylation
of elF2a under sodium arsenite stress. (A) U20S cells were treated with
either control (siCONT) or PDCD4-specific (siPDCD4) siRNAs prior to
treatment with sodium arsenite (0.15 mM) for the indicated times before
processing for immunofluorescence microscopy. Cells were stained with
elF3b (SG marker; green), G3BP (SG marker: red). (B) Cells containing
SGs were quantified from each time course. (Error bars indicate the
standard deviations of the mean (n = 3, /p = 0.00036). (C) Sensitization

of phosphorylation of elF2a was confirmed by Western blot analysis.
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IlI-6. SG assembly was accelerated by sensitization of
dephosphorylation elF4E binding protein under H2O. stress.

Reactive oxygen species (ROS) are an important trigger for SG
assembly. To determine whether PDCD4 accelerated SG assembly by H>O»,
U20S cells were transfected with control or PDCD4 directed siRNAs and
then treated H,O,. Western blot analysis verified that siRNAs targeting
PDCD4 downregulated PDCD4 protein levels (Fig. 6C). Knockdown of
PDCD4 accelerates SG assembly and this effect was caused by
sensitization of dephosphorylation elF4E binding protein (4E-BP) under

H,O, stress (Fig. 6C).
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Figure 6. SG assembly was accelerated by sensitization of
dephosphorylation elF4E binding protein under HoO» stress.

(A) U20S cells were treated with either control (siCONT) or PDCD4-
specific (siPDCD4) siRNAs prior to treatment with H.O. (1 mM) for the
indicated times before processing for immunofluorescence microscopy.
Cells were stained with elF3b (SG marker; green), G3BP (SG marker; red).
(B) Cells containing SGs were quantified from each time course. Error bars
indicate the standard deviations of the mean (n = 3, /p = 0.00036). (C)
Sensitization of dephosphorylation of 4E-BP was confirmed by western

blot analysis.
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lII-7. Overexpression of PDCD4 decrease stress granule assembly
under SA stress

Our data suggest a novel role knockdown of PDCD4 in stress
granule assembly in U20S cells under oxidative stress. We therefore
wondered if, and how, when overexpression of PDCD4 are stress granule
assembly.

To address this we transfected FB-PDCD4 constructs and
expressed for 24 hrs in U20S cells, SGs were then induced by treating
sodium arsenite (0.15 mM) for the indicated times before processing for
Immunofluorescence microscopy. The result, stress granule assmbly was
significantly decreased (Fig. 7A). And we confirmed that overexpression of
PDCD4 downregulate the phosphorylation of elF2a in U20S cell (Fig. 7C).

These observations suggested that the suppressive effect of PDCD4
is diminished under DNA-damaging conditions. Taken together, our data
suggest PDCD4 have an effect on phosphorylation of elF2a for stress

granule assembly under oxidative stress.
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Figure 7. Overexpression of PDCD4 decrease stress granule Assembly.

(A) To confirm the result, FB-PDCD4 constructs were transfected and
expressed for 24 hrs in U20S cells, SGs were then induced by treating
sodium arsenite (0.15 mM) for the indicated times before processing for
immunofluorescence microscopy. Cells were stained with elF3b (SG
marker; green), G3BP (SG marker; red). (B) Cells containing SGs were
quantified from each time course. Error bars indicate the standard
deviations of the mean (n = 3, /p = 0.00036). (C) Overexpression of
PDCD4 and sentization of phosphorylation of elF2a was confirmed by

western blot analysis.
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[II-8. Knockdown of PDCD4 accelerated polysome disassembly
under SA stress.

We used sucrose gradient analysis to compare polysome profiles in
cells expressing reduced levels of PDCD4. U20S cells were treated with
control, PDCD4 targeted siRNAs, then cultured in the absence or presence
of arsenite (0.15 mM) for 40 min prior to harvesting for sucrose gradient
fractionation. In control cells, arsenite—induced translational arrest results
reduces of polysome profiles (Fig. 8, left panel). Knockdown of PDCD4
has no effect on the polysome profile from cells cultured in the absence of
stress, but arsenite-induced polysome remarkably reduces the
accumulation of polysomal RNPs (Fig. 8, right panel). Thus, PDCD4 are

required for efficient polysome assembly.
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Figure 8. Knockdown of PDCD4 accelerated polysome disassembly.

(A) U20S cells were transfected with control (siCONT)), PDCD4-specific
SiRNA (si—-PDCD4) then cultured in the absence (MOCK) or presence (SA)
of 0.15 mM sodium arsenite before processing for sucrose gradient
analysis. Fractions from control and PDCD4 knockdown sucrose gradients

were analyzed by Western blotting using antibodies reactive with RPL13a.
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lI-9. Knockdown of PDCD4 causes elF4F complex disruption and
enhance elF4E:4E-BP1 interaction under H>O; stress.

To determine whether elF4E:4E-BP1 interaction is essential for
H>.Oo—induced SG assembly, U20S cells were transfected with control or
PDCD4-directed siRNAs and then untreated or treated with H.O. or SA.
Western blot analysis verified that siRNAs targeting downregulated elF4E
protein levels (Fig. 9C). We found that depletion of PDCD4 resulted only in
a strongly increase in SG assembly induced by SA and H.O, (Fig. 9A).
Inhibition of translation initiation correlates well with SG assembly in cells
subjected to different types of stresses. Since H>O. inhibits global protein
synthesis in different types of cells primarily at the level of translation
initiation it is likely that H,O, targets the translation initiation machinery and
thus induces SG formation. To test this hypothesis, we pulled down the
elF4F complex from lysates of SA or H,O,— treated U20S cells using
m7GTP-Sepharose (Fig. 9C). Although SA had no effect on the assembly
of the elF4F complex, remarkably, H>O, significantly disrupted the elF4F
complex. This analysis revealed that H,O, displaces elF4G and elF4A from
elF4E (Fig. 9C), and at the same time, H,O, promotes interactions
between 4E-BP1 and elF4E. It has been well documented that
dephosphorylated 4E-BP1 isoforms binds to elF4E to displace elF4G and

inhibit translation initiation. Knockdown of PDCD4 affected H-O»,—induced

itk)

Collection @ chosun



SG assembly, resulting in more SGs (Fig. 9A and 9B). These data suggest
that elF4E:4E-BP1 complexes play an essential role in the H.O.—induced

assembly of SGs.
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Figure 9. Knockdown of PDCD4 causes elFAF complex disruption and
enhance elF4E:4E-BP1 interaction under HyO, stress.

(A) Immunofluorescence microscopy showing SG assembly in U20S cells
after PDCD4 depletion. Cell treated with the indicated siRNAs were left
untreated (No treat, upper pan or treated with 1 mM H,O, (middle panels),
or 100 mM SA (lower panels) and then stained with SG markers elF3b and
G3BP (red). Nuclei are stained with Hoechst. (B) Percentage of cells with
SGs after PDCD4 depletion. . Error bars indicate the standard deviations of
the mean (n = 3, /p = 0.00036). (C) U20S cells without (MOCK) or with
drug treatment (sodium aresenite (SA) and H,0O,) were assembled on
m7GTP-Sepharose. Western blot analysis showing the knockdown
efficiency of PDCD4 in U20S cells transfected with control siRNA (si-
CONT) or PDCD4-specific siRNA (si-PDCD4). G3BP1 was used as a

loading control.
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V. Discussion

PDCD4 is a well-known tumor suppressor whose levels are
decreased in a variety of cancers, and a link has been identified between
decreased levels of PDCD4 and increased invasiveness and tumors
exhibiting greater aggression. Recent studies have been aimed at
elucidating the mechanism of PDCD4 action. It has been shown that
PDCD4 is able to bind to elF4A and elF4G, thus inhibiting the helicase
activity of elF4A and preventing cap-dependent translation, which
suggests that PDCD4 acts as a general repressor of translation. However,
some studies have shown that mRNAs containing a highly structured 5’
UTR are preferentially repressed by PDCD4, suggesting an alternative
model whereby PDCD4 has specific targets and is not a general inhibitor of
translation.

SG assembly results from dynamic re—-modeling of global translation
in cells subjected to a variety of environmental stresses. Although SG
assembly is a conserved phenomenon in a wide range of eukaryotes, the
assembly and composition of SGs clearly demonstrate species—specific
and stress—specific differences. Mammalian SGs assembled in response to
stress—induced phosphorylation of elF2a are composed of 40S ribosomal

subunits in association with the cap-binding complex (elF4E, elF4A and
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elF4G), PABP and subunit of elF3.

Here, we demonstrate that Depletion of PDCD4 accelerates stress
granule assembly through sensitization of stress response pathways under
oxidative stresses. First, in cultured U20S cells, knockdown of PDCD4
accelerates SG assembly (Fig. 1). SGs have been shown to harbor
untranslated mRNAs that accumulate as a consequence of stress—induced
translational arrest. Second, using immunofluorescence microscopy, we
found that PDCD4 is a component of SGs formed in response to oxidative
stresses (Fig. 2, 3). Third, programmed cell death 4 (PDCD4) is a multi-
function in the nucleus and the cytoplasm that is involved in the regulation
of transcription and translation. In this regard, immunoblot analysis showed
that SA transfer from nucleus PDCD4 to cytoplasmic PDCD4 under SA (Fig
4). Next, we confirmed that knockdown of PDCD4 upregulate the
phosphorylation of elF2a in U20S cell that induced by SA. As shown in
Fig 5, knockdown of PDCD4 accelerated SG assembly by sensitization of
phosphorylation of elF2a under sodium arsenite stress. SA induces elF2a
phosphorylation, the phospho—-elF2a itself is required for SA-induced SGs.
On the other hand SG assembly was accelerated by sensitization of
dephosphorylation elF4E binding protein under HxO» stress. H»O, indirectly
promotes binding of 4E-BP1 to elF4E Dby promoting 4E-BP1

dephosphorylation (Fig 6). This raises the possibility that mTOR which
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regulates 4E-BP1 phosphorylation might be involved in HxO2—induced SG
assembly. Moreover, knockdown of PDCD4 accelerated polysome
disassembly under SA stress (Fig. 8). Therefore, knockdown of PDCD4
may directly affect the aggregation of untranslated mRNAs.

In summary, we have identified functional roles of PDCD4 on
arsenite—induced stress response and polysome disassembly, and finally,
stress granule assembly. PDCD4 has known to be a general translation
inhibitor targeting elF4A, a helicase that function start codon scanning
performed by translational preinitiation complex. Recently, PDCD4 has also
identified as a target mRNA-specific regulator involved in apoptotic cell
death procedure under severe stress conditions. However, this target-
specific regulatory role is not clear which is mainly because it doesn’t have
RNA recognition motifs. Hence, systematic large—scale gene expression
profiling analysis searching for genes controlled by PDCD4 would be very
valuable and this would allow biological relevance of PDCD4 in the process

of apoptosis.
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