

저 시-동 조건 경허락 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

l 저 물 리 적 할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 허락조건
 확하게 나타내어야 합니다.

l 저 터 허가를 러한 조건들 적 지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

동 조건 경허락. 하가 저 물 개 , 형 또는 가공했 경
에는, 저 물과 동 한 허락조건하에서만 포할 수 습니다.

http://creativecommons.org/licenses/by-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-sa/2.0/kr/

August 2014

Master’s Degree Thesis

Novel Hardware Architecture

of the LT CODEC with Non-

Belief Propagation Based

Decoding Algorithm

Graduate School of Chosun University

Department of Information and Communication

Engineering

Md. Tariq Hasan

[UCI]I804:24011-200000276196

Novel Hardware Architecture

of the LT CODEC with Non-

Belief Propagation Based

Decoding Algorithm

비 BP 복호 알고리즘을 적용한 새로운 LT 코덱

하드웨어 구조

August 25, 2014

Graduate School of Chosun University

Department of Information and Communication

Engineering

Md. Tariq Hasan

Novel Hardware Architecture

of the LT CODEC with Non-

Belief Propagation Based

Decoding Algorithm

Advisor: Prof. GoangSeog Choi, PhD

A thesis submitted in partial fulfillment of the

requirements for a Master’s degree

April, 2014

Graduate School of Chosun University

Department of Information and Communication

Engineering

Md. Tariq Hasan

May, 2014

i

TABLE OF CONTENT

TABLE OF CONTENT ... i

LIST OF FIGURES ... iii

LIST OF TABLES ... vi

LIST OF ABBREVIATIONS AND SYMBOLS ... vii

ABSTRACT ... xi

한 글 요 약 ... xiii

I. INTRODUCTION .. 1

A. Background Problem .. 1

B. Motivation .. 2

C. Research Goal .. 2

D. Organization of the Thesis ... 3

II. DIGITAL DESIGN METHODOLOGIES ... 5

A. Choices of Implementation .. 6

B. Electronic Design Automation ... 7

C. Important Features of HDLs .. 9

D. Design Flow ... 10

E. Design Methodologies .. 13

F. HDL Design Level ... 14

III. LUBY’S PROPOSED LT CODES .. 17

A. Erasure Channel ... 17

B. Fountain Codes ... 19

C. An Example of the LT Decoding ... 27

D. Applications ... 28

ii

IV. RELATED WORKS ON HARDWARE ARCHITECTURE OF THE LT

CODEC ... 30

A. Already Proposed Architectures ... 30

V. PROPOSED HARDWARE ARCHITECTURE OF THE LT ENCODER 33

A. Proposed Overall Architecture of the LT CODEC 33

B. Design Hierarchy .. 35

C. Random Number Generator Unit ... 36

D. Degree Generation Unit ... 40

E. Proposed Hardware Architecture of the Generator Matrix 42

F. Proposed Hardware Architecture of the LT Encoder 43

VI. PROPOSED HARDWARE ARCHITECTURE OF THE LT DECODER . 46

A. LT Decoder .. 46

B. Check Node Processing Unit .. 47

C. Generator Matrix Construction Unit .. 49

D. Identification of Single Edge Check Nodes and C2S Units 49

E. Check Nodes Update Unit .. 50

F. Generator Matrix Update Unit ... 51

G. Input-output Waveforms of the CODEC ... 52

VII. SIMULATION RESULTS .. 54

A. Performance of the Proposed Degree Distribution Unit 54

B. Performance of the Proposed Architecture of the LT CODEC 56

VIII. CONCLUSIONS .. 58

A. Summary .. 58

B. Future Work ... 60

REFERENCES ... 61

ACKNOWLEDGEMENTS .. 64

iii

LIST OF FIGURES

Figure 1. Digital system implementation approaches. .. 6

Figure 2. Design flow of a typical digital system design. 11

Figure 3. Top-down hierarchy of a significant complexity digital system. 13

Figure 4. Bottom-up hierarchy. ... 14

Figure 5. Binary erasure channel. ... 17

Figure 6. A broadcast unit is sending packets to a large number of receivers. ... 19

Figure 7. Fountain where sufficient amount of droplets are collected according

to one’s requirements. ... 20

Figure 8. The LT encoding process with the generator matrix G. 23

Figure 9. Check node selection and corresponding generator matrix formation

for 4 bit message and encoded output bits. ... 26

Figure 10. Decoding process for a given matrix G and check nodes. 27

Figure 11. Method of generator matrix generation proposed in [21]. 31

Figure 12. Overall hardware architecture of the LT codec as Luby has

proposed the codes. ... 34

Figure 13. Bottom-up design hierarchy is followed for the LT codec hardware

design. ... 35

Figure 14. Hardware architecture of the codec where the encoder part is

shown in detail. ... 36

Figure 15. An L-stage typical linear feedback shift register. 37

Figure 16. An LFSR random number generation unit designed using the

polynomial P(X). ... 38

Figure 17. Output waveforms of the LFSR RNG. .. 38

Figure 18. Architecture of the LCG. ... 39

Figure 19. Output waveforms of LCG RNG. ... 40

iv

Figure 20. Hardware architecture of the degree generation unit. tp1 and tp2 are

the temporary registers for holding probability (prob) and cumulative

sum of the probabilities (csum) respectively. prob and csum are

memories for storing probabilities and cumulative sum respectively. 41

Figure 21. Generator matrix, G generation using degrees and different

counters of unlike initial values. ... 42

Figure 22. GMU architecture with different counters with unlike initial values. 42

Figure 23. Here a column is multiplied with the message bits s to get d

message bits and then these d message bits are added together by

modulo-2 addition which produces a single bit of the respective check

node. .. 43

Figure 24. Multiplication and modulo-2 addition can be implemented by this

simple logical operation. ... 44

Figure 25. Output waveforms generated by the proposed LT encoder. 44

Figure 26. The detail architecture of the LT decoder. .. 47

Figure 27. The architecture of the CNPU. .. 48

Figure 28. Output waveforms of the check node processing unit. 48

Figure 29. Generator matrix G construction unit. ... 49

Figure 30. SEIU and C2S units – column sum calculator, finding the row and

column indexes of a single edge check node and the value of the check

node is assigned to the variable node. ... 50

Figure 31. The register where c is stored is updated by performing XOR

operation with every check node or c which is connected with the newly

recovered s and c value which is recently assigned to the s. 51

Figure 32. Generator matrix, G update unit. Each column of the generator

matrix is updated in the respective row position by replacing the edge

value 1 with 0. ... 52

Figure 33. Input-output waveforms of the LT codec. ... 53

v

Figure 34. ran (degree) is the output random number generated by the DGU (

or DDU) according a distribution and it follows the distribution almost

exactly. .. 54

Figure 35. RSD degree distribution for K = 128, δ = 0.2, and c = 0.03. 55

Figure 36. RSD degree distribution implemented by the proposed hardware. ... 55

Figure 37. Performance of the degree distribution unit, DDU. 56

Figure 38. Input-output waveforms of the LT codec. ... 57

vi

LIST OF TABLES

Table 1: Encoding Algorithm of the LT codes ... 22

Table 2: Decoding Algorithm of the LT codes ... 25

vii

LIST OF ABBREVIATIONS AND SYMBOLS

ARQ Automatic Repeat request

ASIC Application Specific Integrated Circuit

BEC Binary Erasure Channel

BP Belief Propagation

BP Belief Propagation

BSC Binary Symmetric Channel

C2S Check-node to s

CAD Computer Aided Design

CN Check Node- LT encoded output

CNG Check Node Generator

CNPU Check Node Processing Unit

CODEC COder-DECoder

CPU Central Processing Unit

CUU Check- Node Update

DDU Degree Distribution Unit

DGU Degree Generation Unit

DSP Digital Signal Processing

EDA Electronic Design Automation

FEC Forward Error Correction

FPGA Field-Programmable Gate Array

G2G G2 Generator

GMU Generator Matrix-generation Unit

GSI Giant (or Giga) Scale Integration

GUU Generator-matrix Update Unit

viii

HDL Hardware Description Language

IC Integrated Circuit

IID Independent and Identically Distributed

IP Intellectual Properties

ISD Ideal Soliton Distribution

LCG Linear Congruential Generator

LFSR Linear Feedback Shift Register

LT Luby Transform

LUT Lookup Table

MG Matrix Generator

MUX Multiplexer

NAK negative acknowledgement

NoC Network-on-Chip

PAK Positive Acknowledgement

POS Product of Sum

PU Permutation Unit

PU Permutation Unit

RNG Random Number Generator

RRVN Recently Recovered Variable Node

RSD Robust Soliton Distribution

RTL Register Transfer Logic

SEIU Single Edge Identification Unit

SoC System-on-Chip

SOP Sum of Product

SPA Sum Product Algorithm

STA Static Timing Analysis

ULSI Ultra Large Scale Integration

ix

VHDL Very-High-Speed-Integrated-Circuit Hardware Description

Language

VLSI Very Large Scale Integration

VN Variable Node- Input message of an LT encoder

? Unknown symbol for lost or erased one

µ RSD

a Multiplier

b Increment

c Check node or a constant

col_pos Column position

csum Cumulative sum

d Degree

deg Memory to store degrees according to probabilities

e Erasure probability

G Generator Matrix

g_in Input generator matrix

K Number of input message bits

m modulus

N Total number of check nodes generated

prob Memory to store probabilities of the respective degrees

ran Random number

rand Random number produced by the LFSR

ro_pos Row position

S Number of degree-one check node

s Variable Nodes

se_flag Register to store single edge status

x

tp Temporary register to hold probability

tsum Register to hold temporary value of a column sum

X0 Seed, initial value of the random number generator

Xt Channel input, at time t

Yt Channel output, at time t

Z Sum of ρ (d) and τ(d)

δ Probability of decoding failure

ρ Degree distribution usually ISD

τ Degree distribution usually RSD

xi

ABSTRACT

Novel Hardware Architecture of the LT CODEC with Non-Belief

Propagation Based Decoding Algorithm

 Md. Tariq Hasan

 Advisor: Prof. GoangSeog Choi, Ph.D.

 Department of Information and

 Communication Engineering

 Graduate School of Chosun University

Present technology- EDA tools, technology independent hardware description

languages, have made possible to design almost a complete system on a chip, and

design time is reduced to engineer-month. As a result, the computer, processor,

internet, wireless communication, etc. are getting new shape and dimension

swiftly. In a typical automatic repeat request based communication, some

transmitted symbols may be lost or erased due to the adverse effects- excessive

delay or buffer over flow, of the binary erasure channel, where data is either

received or lost, even though higher order of error correcting code is applied. There

are couples of solutions of the problem, such as RS code and Tornado code.

However, these codes are not rateless and true fountain codes to combat against the

adverse effects of the binary erasure channel. In 1998 M. Luby proposed the first

rateless fountain code known as LT codes. In this thesis a novel hardware

architecture of the LT codec is presented where non- BP based decoding algorithm

is applied. A new and fully functional LT codec architecture is designed with an

xii

efficient degree distribution unit using Verilog HDL in ModelSim. To perform

permutation operation, different initial valued or time shifted counters have been

used to get pretty well permutations and an effect of randomness. Any kind of

degree distribution can be implemented with the degree generator architecture.

Usually, LT codes performs well as the number of input bits goes higher, and the

encoder will generate ideally endless streams of encoded bits like fountain.

However, for hardware implementation there should be a limitation. Here the

codec will take 128 bits as input and produce 256 encoded output bits. The

encoder, along with the random number generator unit, distribution generator unit

and generator matrix unit performed quite satisfactorily. The decoder with its

internal functional units – check node and generator matrix processing unit, single

degree check nodes identification unit, value assignment unit, check nodes update

and generator matrix update units performed quite satisfactorily as it successfully

decoded the encoder generated check nodes to original message bits. The result-

waveforms and distribution figures shows expected performances as the

implemented distribution and the original distribution are pretty same. Matrices are

stored in memories and address indicates the respective column. Encoding and

decoding processes do not have complex mathematical functions such as tanh(),

ln(), and inverse matrix, etc of soft BP decoding and inverse matrix based hard

decoding processes respectively. Instead of using LUTs and predefined arrays, here

a simple random number generator and a degree generator have been used to get a

distribution. From the simulation it is found that the proposed LT codec takes

257.5 cycle counts and 2.575 µs for encoding and decoding instead of 5,204,861

minimum cycle counts and 4.43s of the design mentioned in the previous works

where iterative soft BP decoding was used in ASIC and ASIP implementation of

the LT codec.

xiii

한 글 요 약

비 BP 복호 알고리즘을 적용한 새로운 LT 코덱 하드웨어 구조

 하산 타릭

 지도 교수:최광석

 정보 통신공학과

 대학원, 조선대학교

현재 독립적인 하드웨어 기술 언어인 EDA 툴 기술은 칩 에 거의 완전한 시스템 을

설계하는 것이 가능 했고, 디자인 설계 시간을 줄였다. 이 결과 , 기타 컴퓨터 프로세서 ,

인터넷, 무선 통신 은 신속히 새로운 형상 및 치수 를 받고 있다. 일반적인 자동 반복 요청

기반의 통신 에서 전송 된 일부 기호는 , 데이터를 수신 하거나 분실 하거나 이진 소거

채널 의 손실 또는 삭제 로 인해 부작용 - 과도한 지연 이나 흐름을 버퍼링 할 수있다

그럼에도 불구하고 오류의 고차 정정 코드 가 적용된다 . 이러한 RS 코드와 토네이도

코드는 문제의 솔루션 커플 이다. 그러나 이러한 코드는 이진 소거 채널의 역 효과에 대해

대처하기 위해 레이트리스 진정한 분수 코드이지 않다. 1998 년 M. 지도 Luby 는 LT 코드

로 알려진 첫 번째 레이트리스 분수 코드를 제안했다. 이 논문 에서 LT 코덱 의 새로운

하드웨어 아키텍처가 비 BP 기반 디코딩 알고리즘 이 적용되는 곳에 제공된다. Verilog

HDL과 ModelSim을 사용하고 특별히 설계된 정도(차수) 생성기를 이용하여 새롭고

완전하게 동작하는 LT 코덱 구조를 설계했다. 높은 순열과 무작위 효과를 얻기 위하여

다른 초기 값들 혹은 시-변위 카운터들이 사용되었다. 어떠한 정도(차수) 분포도 이

xiv

정도(차수) 생성기 구조로 구현되어 질 수 있다. 일반적으로 입력 비트들의 수가 많을수록

LT 부호들은 잘 동작하고 부호기는 분수와 같이 끝없는 부호화된 비트 스트림을 생성할

것이다. 그러나 하드웨어 구현에서는 한계가 있다. 여기서는 코덱은 입력으로 128비트를

가지고 256비트의 출력 비트들을 생성할 것이다. 랜덤 수 생성기, 분포 생성기 및 생성

매트릭스기와 함께 부호기는 아주 만족스럽게 동작했다. 내부기능 유닛들 - 일차 체크

노드 인식 유닛, 값 할당 유닛, 체크 노드 개선 및 생성 매트릭스 개선 유닛들을 가진

복호기가 아주 만족스럽게 동작했다. 파형들과 분포 그림들은 구현된 분포와 원 분포들이

매우 같다는 예상 성능을 보여준다.

매트릭스들은 메모리에 저장되고 어드레스는 해당 열을 나타낸다. 부호 및 복호 과정들은

BP 복호 과정에서의 tanh(), ln() 등과 같은 복잡한 수학적인 항들을 가지고 있지 않다.

분포들을 얻기 위하여 LUT들과 미리 정의된 배열들을 이용하는 대신에 간단한 난수

발생기와 정도(차수) 생성기들을 사용하였다. 아주 좋은 무작위 효과들을 얻기 위한

매트릭스 생성하기 위하여 다른 초기 값들의 클록들이 사용된다. 부호와 복호를 위해 517

사이클 수와 2.585μS가 걸린다. 반면에 LT 코덱의 ASIC과 ASIP 구현에서 사용된 반복적인

연 BP 복호에서 부호와 복호에서 5,204,861 최소 사이클 수와 4.43s가 걸렸다.

1

I. INTRODUCTION

In a traditional Automatic Repeat Request (ARQ) based data communication, extra

feedback path is required and yet sometimes receiver fails to receive the

transmitted packets and send a message to the upper layer that the packet is lost.

Few solutions have been proposed to solve the problem, such as Tornado codes.

However, those are not true rateless fountain codes. Then in the year 1998, Michael

Luby came out to solve the problem. The codes that he proposed named after him

as Luby Transform codes and abbreviated as LT codes. These codes have some

fascinating characteristics. Because of its importance, it is being adopted in many

standards.

On the other hand, invention of transistor, microelectronics, then integrated

circuits, Electronic Design Automation (EDA) tools, multi-core chip, etc.- have

changed the concept of VLSI design and implementation, and hence the world and

the way people used to live. Whole system is being integrated on a chip as System-

on-Chip (SoC); people are using embedded system in their daily life. Here a novel

architecture of the LT codec (COder-DECder) has been proposed with an excellent

degree distribution unit and a random permutation unit.

In this chapter, background problem, motivation, research goal and organization of

the thesis are presented.

A. Background Problem

In the traditional ARQ based data communication, feedback path is required to

exchange positive acknowledgement (PAK) and negative acknowledgement

(NAK). However, according Shannon, this extra feedback path is wasteful [1].

2

Because, if a number of receiver request to resend of the packets, sender may get

busy and this may increase its work load. Besides, these packets might be lost or

erased due to the adverse effect of the binary erasure channel (BEC). To solve this

problem, M. Luby proposed first true rateless fountain codes, called LT code. The

efficiency of the code increases as the code size increases [2]. Now a hardware

architecture of the LT codec is required for practical implementation of the codes.

B. Motivation

The binary erasure channel, introduced by Elias in 1954 [3], is the real world and

simplest channel model where data arrive correctly or lost due to buffer overflow

or excessive delay experienced in the transmission [4]. LT codes are the first true

rateless codes introduced by Michael Luby in 1998 to solve the erasure problem [2]

[5]. Instead of sending message bits along with the redundant bits like other block

codes, the information of the transmitting message are distributed among a number

of encoded bits in LT codes. Therefore, if some of the transmitted bits are lost or

erased in BEC, source information can be recovered from the remaining intact bits.

Because of its efficiency and universal characteristics, it might be used in many

applications [6], [7], [8]. It will have a good impact in the field of digital system

design and communication if an efficient hardware architecture of the LT codec is

found.

C. Research Goal

The main goal of this research is twofold. First, we would like to study the basics

of LT codes as Luby has proposed in his paper and hence find the design

parameters to design a hardware for efficient implementation of a degree-

distribution and a generator matrix. These are important parts of the performance

of the LT codec. Second, we would like to design a hardware architecture of LT

3

codec as Luby has presented the codes using non-Belief Propagation (BP) based

hard decision decoding algorithm. It is quite challenging to have an efficient

random number generator and degree generator of a specific degree distribution.

With all these modules an LT codec will be designed which will perform as LT

encoder and decoder as Luby has described the fountain code.

D. Organization of the Thesis

In this thesis, background study of the LT encoding and decoding, latest research

on it, hardware design methodology, proposed architecture, and simulation

outcomes are organized in the following way.

Chapter I: Introduction – it includes background problem, motivation, research

goal and organization of the thesis.

Chapter II: Digital design methodologies – it deals with the choices of

implementation, electronic design automation, important features of HDLs, design

flows, design methodologies, and HDL design levels.

Chapter III: Luby’s proposed LT Codes – it describes the background theories,

degree distributions, encoding process, decoding process, and applications of the

LT codes.

Chapter IV: Related works on hardware architecture of the LT codec – it covers

literature review or previous works done on the hardware architecture of the LT

codec.

Chapter V: Proposed hardware architecture of the LT encoder – it discusses

proposed overall architecture of the LT codec, design hierarchy, random number

generator unit, degree generator unit, proposed hardware architecture of the

generator matrix, and hardware architecture of the LT encoder.

4

Chapter VI: Proposed hardware architecture of the LT decoder – it focuses on the

LT decoder, check node processing unit, generator matrix construction unit,

identification of single edge check nodes and C2S units, check nodes update unit,

generator matrix update unit, and input-output waveforms of the codec.

Chapter VII: Simulation results – it explains the performance of the proposed

degree distribution unit, and the architecture of the LT codec.

 Chapter VIII: Conclusion – this chapter summarizes the research works and

recommends the possible future works.

5

II. DIGITAL DESIGN METHODOLOGIES

In the previous chapter, thesis objectives, motivation, background problem, thesis

organization are presented, and here, digital design methodologies are explored as

the beginning of the main subject. In the past 40 years, electronics as well as digital

design have grown very sharply from SSI to VLSI, ULSI and finally GSI. In the

earlier stage, there were very small numbers of transistors or logic gates inside an

IC (Integrated Circuit). However, Intel is thinking about 10nm transistor

technology by 2015 [9]. This means the number of transistors is increasing very

rapidly in the chip and the number would be more than 26×1009 in near future to

satisfy the Moore’s law. To handle this huge number of transistor, electronic design

automation (EDA) tools have been used since 1983 [10]. Hardware description

languages (HDLs) have become popular to design a digital system; however, the

use was very limited – only for logic verification, and design engineers had to

translate the HDL-based design into a schematic circuit with interconnections

between gates manually [10], [11]. Then the birth of synthesis changed this concept

and design engineer could design a system at a register transfer level (RTL) by the

use of an HDL. Here they need to specify how the data flows between registers and

how the design processes the data. The details of gates and their interconnections to

implement the system were automatically extracted by logic synthesis tools from

the RTL description. The design engineers no longer had to manually place gates to

build digital circuits. They could describe complex circuits at an abstract level in

terms of functionality and data flow by designing those circuits in HDLs. Logic

synthesis tools implements the specified functionality in terms of gates and gate

interconnections.

6

A. Choices of Implementation

A circuit or a system can be implemented in different ways. Figure 1 shows the

typical ways of design, and a brief description of these are mentioned below.

In the full custom or simply custom design, each transistor and interconnection are

designed and laid out manually. This is also applicable for the standard cell design

initially to prepare the standard cell library. This approach maximizes the

performances- minimum chip area for high density of transistor, very high clock

speed, etc. Usually this is followed when the volume of production will be very

high, however, it is very time consuming and labor-intensive job [12].

Figure 1. Digital system implementation approaches.

In semicustom approach, pre-designed standard cell libraries or available off the

shelf hardware and HDL codes are used. It can be cell based or array based.

7

In the standard cell based design, pre-designed layouts from a vendor are used.

Gate level simulation is performed of an RTL and usually all layers are customized

for medium-high density and performance, and it takes reasonable time for design

[13].

In the Macrocell-based design, predefined macro blocks (IPs–intellectual

properties) of analog and digital units, such as microprocessor, RAM, etc., are

collected from a vendor. Gate level or behavioral simulation is performed to

produce high density and high performance chip in a short time.

Gate array (SOP or POS) uses fixed sizes of array for the predefined transistors

and these are connected via metal. Gate level simulation is performed for medium

density, and medium performance chip and it takes short time for design [13].

Field-Programmable Gate Array (FPGA) uses programmable logic blocks and

through program connections can be made between blocks and units; therefore, no

layers are customized. Devices are expensive but the design tools are cheap. It

takes short time for the design and implementation; however, it is not a real ASIC

(Application Specific Integrated Circuit).

B. Electronic Design Automation

Electronic Design Automation (EDA) is the collection of methodologies,

algorithms and tools, which assist and automate the design, synthesis, floor

planning, place and route, verification, design rule check, mapping, and testing of

electronic systems [14]. EDA has completely changed the way that electronic

engineers design and manufacture integrated circuits. Before the invention and

practice of EDA tools, usually, chips were designed and laid out manually. After

the system design according to the system specifications, mask information,

translation or mapping from transistors and interconnections to graphics was

8

managed by hand or manually. Developers started to automate the design with the

drafting by the mid 1970s, for automatic placement and routing.

Afterwards in 1980s, the text book ‘Introduction to VLSI Systems’ by Craver

Mead and Lynn Conway, made a dramatic change in VLSI design and showed a

path which led to design a chip with the help of programming languages. This

made design, simulation and verification possible before the actual fabrication of

the chip. Initially EDA tools were produced academically. However, in 1981 EDA

tools started its journey as commercial products. At the very beginning, Daisy

Systems, Mentor Graphics, and Valid Logic Systems were founded around this

time, and collectively known as DMV. In 1981, the U.S. Department of Defense

began financial supporting of VHDL (Very-High-Speed-Integrated-Circuit

Hardware Description Language) as a hardware description language and in 1986,

Verilog was first introduced as a hardware description language by Gateway

Design Automation [15]. In the 1990s, large second-order partial differential

equation of heat was solved for energy optimization, Fast Fourier and discrete

cosine transform were applied to solve the multi-layer Green’s function for full-

chip thermal analysis; for higher reliability, quality assurance, and removing

lithographic limitations, and anomalous operation conditions, technology-centric

EDA tools were evolved; for accurate system design, model checking, SAT solver,

static analysis etc. were applied. All these evolutions led to the rise of System-on-

Chip (SoC), where many components such as microprocessors, custom IPs, and

even analog circuits are integrated in a single die [16]. The driving force of

Moore’s law causes the growth of transistors in a single chip and the operating

frequency indirectly. However, due to power consumption and thermal density

constraints, operating frequency cannot be increased indefinitely according to the

prediction of Moore’s law. Then the design engineers introduced multi-core

architecture in a chip to accommodate CPUs, DSPs, IPs, memories, analog circuits,

9

etc. to obtain higher performance without a proportional increase in operating

frequency. Connectivity and data transfer between the cores can be done in a

similar way as it is followed in the computer networks, and this lead to a new era of

Network-on-Chip (NoC) in the early 2000 [16]. By the new millennium, the

VLSI world made a quantum leap by using the device size in the order of

nano-meter, which led to a new-generation EDA design tools to manage nano-

scale issues such as leakage currents, to develop multi-scale modeling for the

beyond-Moore's-law technologies such as carbon nano-tubes, tunneling FETs,

quantum dots, single electron transistors, and molecular devices. Design

abstraction has transformed from polygon drawing, to schematic entry, then to

RTL specification using hardware description languages (HDLs), and most

recently to behavior specifications—for example, in C, C++, SystemC, and Matlab

code [14].

C. Important Features of HDLs

Now design engineers can design complex digital system with hardware

description language. It has following features to design, compile and simulate any

digital system [10] [17].

- Design engineers do not need to think about the specific fabrication

technology. It is logic synthesis tools’ job to automatically convert the

design to any fabrication technology.

- For new technology, design engineers do not need to redesign the digital

system. The synthesis tools will create a new gate-level netlist for the new

technology by optimizing the circuit in area and timing for the new

technology.

10

- Designer can optimize and modify the RTL description until it fulfills the

expected functionality, and system specifications. In this way bugs can be

eliminated early.

- HDL is text based and portable. It is more portable than a schematic design

and does not need any drawing tools.

- It is more like computer programming language.

- A system can be designed in a behavioral or structural manner.

- HDL permits to synthesize the intended digital system very fast as

compared to the schematic design.

- Easy to test the design with test bench as the test bench is also text based,

portable and repeatable. This functional verification can be done before the

fabrication in the design cycle.

The sophisticated EDA tools- HDL tools, synthesis tools, and others, have made

this field easily manageable, and now-a-days system designers cannot but think of

it.

D. Design Flow

A general design flow of a digital system design of any reasonable complexity is

shown in Figure 2 [10], [11] [17]. In any design, specifications are defined first.

These specifications describe abstractly the functionality, interface, and overall

architecture of the digital circuit to be designed. However, at this stage, the design

engineers do not need to think about how they will implement this circuit. A

behavioral description is then created to analyze the design in terms of

functionality, performance, compliance to standards, and other high-level issues.

11

Behavioral descriptions are written with HDL [10]. The behavioral description is

converted to an RTL description in an HDL manually.

Figure 2. Design flow of a typical digital system design.

Here the design engineer has to describe the data flow that will implement the

desired digital circuit. In the design cycle, the designers can test the functionality of

12

the design using test bench and remove design flaws, bugs, modify the description

according to the specifications and functionality. Then logic synthesis tools

automatically convert the high-level description, like RTL description, to a gate-

level netlist, which is a description of the system in terms of gates and connections

between them. The RTL can be modified according to requirement if there is any

error or to check the functionality of the system. The stages from the design

specification to the synthesis are known as front-end. On the other hand, the stages

from place and route to GDSII (Graphic Database System)1 [18] file generation

are known as back-end. After static timing analysis (STA), the gate-level netlist

can be input to an automatic place and route tool, which creates a layout [10]. The

layout is verified and then fabricated on chip. Thus, most digital design activity is

concentrated on manually optimizing the RTL description of the circuit. After the

completion of RTL description, EDA tools are ready to assist the design engineers

for the next processes. Designing at RTL level has reduced design cycle times from

engineer-years to a few engineer-months. Behavioral synthesis tools have begun to

emerge recently. Here these tools can create RTL descriptions from a behavioral or

algorithmic description of the circuit directly. As these tools get more developed,

digital system design will become similar to high-level computer programming in

near future. Design engineers will simply implement the algorithm in an HDL at a

very abstract level. CAD or EDA tools will help the design engineers to convert the

behavioral description to a final chip. Usually a large number of skilled people are

involved in the whole process of chip design.

1 GDSII, is a database file format introduced by Calma. Now it is owned by Cadence Design Systems [18].

13

E. Design Methodologies

It is good to practice hierarchical design methodologies for efficient digital system

design and organization. Usually there two types of digital design methodologies.

These are

 Top-down hierarchy and

 Bottom-up hierarchy.

1. Top-Down Hierarchy

In a top-down hierarchy, the top-level block is defined and the sub-blocks

necessary to build the top-level block are identified. The sub-blocks are further

divided until easy and manageable leaf cells are found, which are usually the cells

that cannot further be divided. Figure 3 shows the top-down hierarchy [19].

Figure 3. Top-down hierarchy of a significant complexity digital system.

2. Bottom-Up Hierarchy

In a bottom-up design methodology, first the building blocks that are available to

design engineer are identified. The bigger cells are designed using these bottom

14

level building blocks. These cells are then used for higher-level blocks until the

top-level block of the system is designed. Figure 4 shows the bottom-up hierarchy

[19].

Usually a hybrid of top-down and bottom-up hierarchies are followed in practice

and it depends totally on front-end design engineers.

Figure 4. Bottom-up hierarchy.

F. HDL Design Level

HDL language can be both behavioral and structural language. For example:

Verilog HDL. Here module is the basic building block. Internals of each module

can be defined at four levels of abstraction, depending on the requirements of the

design. The module behaves identically with the external environment irrespective

of the level of abstraction at which the module is described. The internals of the

module are hidden from the environment [10]. Thus, the level of abstraction to

describe a module can be changed without any change in the environment. The

levels are defined following.

15

Behavioral or Algorithmic Level

This is the highest level of abstraction provided by Verilog HDL. A module can be

implemented in terms of the desired design algorithm without the concern of the

hardware implementation details. Designing at this level is very similar to C

programming.

Dataflow Level

At this level, the module is designed by specifying the data flow. The design

engineer is aware of how data flows between hardware registers and how the data

is processed in the design.

 Gate Level

The module is implemented in terms of logic gates and interconnections between

these gates. Design at this level is similar to describing a design in terms of a gate-

level logic diagram.

Switch Level

This is the lowest level of abstraction provided by Verilog. A module can be

implemented in terms of switches, storage nodes, and the interconnections between

them. Design at this level requires knowledge of switch-level implementation

details [10].

 Verilog allows the designer to mix and match all four levels of abstractions in a

design. The term register transfer level (RTL) is frequently used for a Verilog

description that uses a combination of behavioral and dataflow constructs and is

acceptable to logic synthesis tools. Usually, the higher the level of abstraction, the

more flexible and technology independent the design is. As one goes lower toward

switch-level design, the design becomes technology dependent and inflexible, and

a small change in codes can cause a significant change in the design.

16

In this chapter, choices of implementation, design flow, digital design hierarchy,

HDL design levels are discussed with necessary figures. One of the important

characteristics of HDL is that it is independent of fabrication technology. Design

engineers can concentrate only on design or functionality. All EDA tools, design

flexibility, level of abstraction, and eventually the automation have decreased the

design and fabrication time from engineer-years to engineer-months. This is really

important from the commercial point of view. On the other hand, design engineers

are adopting multi-core in a single chip to increase the performance of the chip

instead of increasing the proportional operating frequency, and this has opened a

new field of study, which is known as NoC and routing algorithms.

17

III. LUBY’S PROPOSED LT CODES

In the previous chapters, thesis objectives, motivation, background problem, VLSI

implementation choices, electronic design automation, important features of HDLs,

system design flow, design methodologies, and design levels are presented. Here

binary erasure channel (BEC), fountain codes and Luby’s proposed LT codes are

discussed. Shannon showed that the feedback path for traditional ARQ-based

packet data communication is wasteful. Besides, a receiver sometimes sends the

upper layer that the packet is not received or lost although high level error

correcting and detecting code is applied. Michael Luby came out with a solution

that can solve this type of problem and remove the feedback channel to send PAK

or NAK.

A. Erasure Channel

A channel can be modeled to find the adverse effects of it and the solution of the

effects. The binary erasure channel, introduced by Elias in 1954, is the real world

0 01-e

1 11-e

?

e

e

Xt Yt

Figure 5. Binary erasure channel.

and simplest channel model where data arrive correctly or lost due to buffer

overflows or excessive delays experienced in transmission [6]. In this channel, data

18

is lost or erased but is never corrupted as shown the model in Figure 5 for the 1-bit

BEC (e). Here time is discrete and indexed by t. The transmitter and receiver are

synchronized, and present state is t. Channel input, at time t is denoted by Xt and

for binary channel Xt ∈{0,1} and corresponding output can be found as Yt ∈{0,

1, ?}, where ‘?’ indicates an erasure. Each transmitted bits is either erased with

probability e, or received correctly: Yt ∈{ Xt, ?} and p{Yt = ?} = e [6].

In a traditional data communication, correct and faithful communication is

achieved by exchanging control signals between a sender and a receiver. In brief it

follows following scenario [1].

o Messages are converted into small manageable packets.

o Error detecting (and correcting) codes are applied to encode each packet.

o Encoded packets are transmitted through a binary symmetric channel

(BSC).

o If the decoded message has any error or encoded bits are lost, receiver

sends negative acknowledgement and tell the sender resend the packet.

 This protocol is advantageous that it will work regardless of the erasure

probability. Faithful and correct message reception may fail even though higher

level of error-correcting codes is applied. However, according to Shannon, there is

no need for the feedback channel and actually it is wasteful. The capacity of the

forward channel is (1-e)L bits, whether there is any feedback or not for L number

of bits per packet. Reliable communication should be possible at this rate, with the

help of an appropriate forward error correcting code [1]. The wastefulness of the

retransmission protocols can be understood by the following example and Figure 6.

Consider a broadcast scenario where one broadcast unit sends to large number

receivers. Each receiver receives a random fraction (1-e) of the packets and rest of

the fraction, e is erased or lost. The sender has to retransmit every packet as every

19

receiver might have lost a fraction of a packet. Those retransmissions will be

redundant as every receiver will have already received most of the retransmitted

packets.

Figure 6. A broadcast unit is sending packets to a large number of receivers.

The scenario will be the worst if the number of receiver becomes more. Thus, it is

required to make erasure-correcting codes that require no feedback or almost no

feedback path.

B. Fountain Codes

In the fountain codes, the encoder is like a fountain, as shown in Figure 7, and

generates randomly an arbitrary number of encoded symbols or droplets from a

given set of message symbols and sends to the receivers. The receivers have to

collect these symbolic droplets until its cup fills up and recover the whole message.

For example, the encoder generates K number of droplets or symbols and each drop

contains n number of bits. That is total number of bit is Kn. Now anyone who

wishes to receive the encoded file holds a cup under the metaphorical fountain and

20

collects drops until the number of drops in the cup is little larger than K. Then they

can recover the original whole file or message.

Figure 7. Fountain where sufficient amount of droplets are collected according to

one’s requirements.

1. Luby Transform Codes

Michael Luby, in 1998, invented the codes known as LT (Luby Transform) codes

as the solution for erasure problem of the BEC. In his proposal, the information of

the transmitting message is usually distributed among a number of encoded output

bits. If some of the bits are erased or lost with erasure probability e due to the

negative impact of the BEC, still message can be recovered from the (1-e)M, rest

of the intact received encoded bits, where M is the total number of encoded bits.

On the other hand, receiver does not need any feedback path to send

acknowledgement [1].

2. Characteristics of the LT Codes

LT codes have some important and fascinating characteristics. Some of the

important characteristics and attributes of the LT codes are mentioned following

[2], [4], [5].

21

o It is the first rateless erasure or fountain codes. It is rateless in a sense that

encoder generates endless stream of encoded outputs like natural fountain

and the receiver has to collect as many as it needs to decode the whole

message. Practically a transmitter will transmit the encoded bits until each

receiver has enough unerased encoded bits to recover the associated

message bits—i.e., until each receiver has filled its cup from the digital

fountain. Thus, fountain codes provide reliable dissemination of

information without the complexity and congestion incurred by the

conventional forward error correction (FEC) codes and ARQ techniques

based communication [20].

o The encoded bits can be generated on the fly, as many or as few as required

by the receivers. Again, the decoder can recover the exact replica of the

data from any set of the encoder generated bits [2].

o No matter what the probability of erasure or loss model is of the BEC,

encoded output bits can be generated as many as required and transmitted

over the channel until a receiver gets sufficient number of encoded bits to

recover the whole message.

o Furthermore, encoded bits can be received in any order and it is not

required to follow the order that it was sent.

o Message can be recovered from the minimum number of encoded bits. This

means that LT codes are optimal with respect to any erasure channel.

o LT codes are universal. It means that it is very efficient as the data length

grows.

22

3. LT Encoding

An LT encoder will receive K number of message bits (s0, s1, s2, s3, … , sk-1), which

are also known as variable nodes u, and dn degree from ρ(d) degree distribution.

K

k
knkn Gsc

1

 (1)

dn message bits are chosen uniformly at random from u to get output encoded bits,

known as check nodes, c by modulo-2 addition and the corresponding column of

the generator matrix is generated. Equation (1) can be used to describe the

encoding process mathematically where n is the position of the check node and

corresponds the column number of the generator matrix G [1]. Table 1, explains

the LT encoding process.

Table 1: Encoding Algorithm of the LT codes

Algorithm 1: LT Encoding

1. Repeat
2. Select a degree dn from the degree distribution ρ(d)
3. Select uniformly at random dn distinct input message bits
4. Perform modulo-2 addition among the selected dn input

message bits
5. Until maximum number of the encoded bits are generated

4. An Example of Encoding

Figure 8 shows a simple example of the encoding process. Here number of

symbols, K = 3; number of bits per symbols, n = 1. In an encoding session, say for

example, four degrees {d0, d1, d2, d3} = {1, 3, 2, 3} generated from to a degree

distribution, and by selection d variable nodes at random uniformly, the generator

matrix G is formed as shown in Equation (2).

23

Figure 8. The LT encoding process with the generator matrix G.

For a given message {1, 0, 1} the encoded output will be {0, 0, 1, 0} according to

the Equation 1, and encoding algorithm. From the graph of Figure 8, c1 will be

generated as s0⊕s1⊕s2 = 1⊕0⊕1	 =	 0.	 Rest of the check nodes will be generated

similarly.

1110

1111

1010

G (2)

5. Degree Distributions

Degree distribution is the important part of the design, and the efficiency and

performance of the codes depend on it. Luby proposed two distributions- Ideal

Soliton Distribution (ISD), and Robust Soliton Distribution (RSD). Besides these

distributions, there are other distributions, such as Pareto degree distribution,

power degree distribution, Shokrallahi proposed distributions for Raptor code in

[4].

24

 Ideal Soliton Distribution

The distribution is defined in Equation (3). Here, ρ(d) represents the probability of

degree d. The expected degree of this distribution can be found rough by loge K [1],

[2].

Kd
dd

K
d

, 3, 2, for
1

1

1

)((3)

This degree distribution performs poorly, because of poor distribution and

generation of degree one. It means, in the decoding process there will be no degree

one check nodes and, sometimes a few variable nodes will have no connections at

all with any of the check nodes [1].

Robust Soliton Distribution

As the performance of ISD was not as good as expected, RSD was formulated as

following.

 /log KKcS e (4)

for 0

for /log

121for

)(

 K/Sd

 K/Sd S
K

S

-K/S, ..., d
Kd

S

d e
 (5)

Z

dd
d

)()(
)(

 (6)

where, Z = ∑d [ρ (d)+ τ(d)].

S is the expected number of degree-one check nodes and is defined in Equation (4)

with a constant c of order 1 and decoding failure probability δ [1], [2]. It will

ensure sufficient number of single-degree check nodes required for decoding.

25

Finally RSD, µ(d) can be found from the Equation (6) after normalizing the

summation of ρ(d) and τ(d) by Z.

6. LT Decoding

The only purpose of degree-one check nodes is to initiate decoding process, and if

there is no single degree check node due to erasure or poor degree distribution, the

decoding may halt or fail. The decoding algorithm is mentioned in Table 2.

Table 2: Decoding Algorithm of the LT codes

Algorithm 2:LT Decoding

1. Repeat
2. if d = 1
3. sk ← cn

4. nc ← (cn ⊕ sk) (update the check nodes)

5. d ← d-1 (release edge or reduce degree)
6. Until all input bits recovered

It is required to reconstruct the generator matrix G before the decoding process.

The decoder will receive the transmitted bits and decode it. If some of the bits are

erased or lost due to the adverse effect of the BEC, it will discard those bits and

corresponding column from the matrix G which is shown in Figure 9 by ash color

and letter ‘X’. After matrix construction and getting intact check nodes, the

decoder will start decoding and in short, it will perform following steps one by one.

o Identify the check nodes having degree one. Here, column index and row

 index of the degree-one check nodes are determined.

o Value assignment, i.e. s ← c.

26

o Check nodes updates – the check nodes which have edge connection with

the recently recovered variable node (RRVN) s, are updated to make those

check nodes independent of the s.

Figure 9. Check node selection and corresponding generator matrix formation for 4

bit message and encoded output bits.

o Edge updates or matrix updates. The edge connections among the RRVN s

and updated cs are no longer required. Therefore, those edges are replaced

with 0s, which means there are no edge connections.

The above process will continue until all the variable nodes are recovered.

There are other decoding processes except the above mentioned one. These are

o Belief propagation (BP) based soft decoding

27

o Gaussian elimination based decoding etc.

In the BP based decoding, the algorithm is realized by sum product algorithm

(SPA).

C. An Example of the LT Decoding

In a decoding session, for a given G and encoded output bits {0, 0, 1, 1}, it is

required to find out the transmitted message.

Figure 10. Decoding process for a given matrix G and check nodes.

Step 1: Find the check nodes having degree 1. Here c0 has the degree one. Its

column position, col_pos = 0 and row position, ro_pos = 1.

Step 2: Assign the value of degree-one check node to the variable node. Here the

value of c0 is assigned to s1 as

s[ro_pos] = c[col_pos]

or, s[1] = c[0].

And ultimately s1 will have 0.

0110

1111

1010

G

28

Step 3: Update the check nodes. s1 is connected to all four nodes. All nodes are

needed to be updated except c0. This is done by the XOR operation with c0 and all

the check nodes which are connected to the RRVN, s1. Therefore, after update the

check nodes will have {0, 0, 1, 1}.

Step 4: Update the generator matrix, G. This operation is performed as

G[ro_pos] = 0

and after update, the matrix will have the following form.

0110

0000

1010

G

Above steps will be repeated until all the message signals are recovered. At the end

recovered message will be {1, 0, 1}.

D. Applications

Fountain codes like LT code has a number of applications. It can be applied where

data are lost due to the erasure nature of the medium; or in another word, the LT

codes can be applied in the system, which can be modeled as the BEC.

This is age of information and usually magnetic hard drives are widely used to

store information on it. However, this device is quite unreliable and stored data are

lost forever at a rate of 0.001/day [1]. LT codes can be used to store data on it. All

the data will be LT encoded, and can be stored on the drive here and there like

spray. If some of the encoded symbols are lost, all the data can be recovered from

the intact rest of the encoded symbols.

29

LT codes can be used to efficiently broadcast data without interruption. Consider

that ten thousand subscribers are watching world cup football from a satellite

where if a frame is lost at the receivers, these will send ARQ to the sender. If the

erasure probability, e = 10-3, on an average e∙K packets will lost in every house for

K number of transmitted packets. In the traditional network, each house will

request for retransmission of the lost packets. Total retransmission request will be

10,000eK. It means the broadcast unit may need to retransmit the all packets again.

Therefore, it will transmit the entire broadcast more than one to ensure that all the

subscribers can watch the match perfectly.

However, if the packets are encoded with LT codes, each subscriber needs to

receive only slightly more than K number of packets to recover the whole message

which will ensure congestion free transmission and low work load of the broadcast

unit.

Random code construction is the important characteristic of the LT codes. The

variable nodes which will be used for encoding are selected uniformly at random

and the number depends on the degree, d. This random selection is also challenging

part for the design. Degree-one check nodes are merely used to initiate the

decoding process. Usually without degree-one check node decoding is not possible.

Sufficient number of degree-one check nodes is ensured by the well defined degree

distribution.

30

IV. RELATED WORKS ON HARDWARE

ARCHITECTURE OF THE LT CODEC

In the previous chapter, basics of the LT codes, encoding, decoding, and

applications of the codes are discussed with figures and examples where required.

A generator matrix can be constructed from the degrees and this matrix can be

applied for encoding and decoding process of the LT codes.

Now in this chapter, related works on hardware design and architecture of the LT

codec are discussed. In the last couple of decades, digital system design and hence

electronics has made a rapid change in design process and automation, and opened

an unlimited possibilities. On the other hand, due to some important characteristics,

wide spread applications and very high impact on future communication, the LT

codes have drawn much attention of the digital system design engineers. They are

taking challenges to design the universal LT codec with fascinating specifications.

A. Already Proposed Architectures

As mentioned earlier that the LT codes have some very important characteristics to

solve some of the problems of present technology. Therefore, this has drawn much

attention of the students from different universities, academicians and researchers.

Some are working on the LT codes and others are working on the architecture of

the codec.

Han in his master’s thesis [21] presented two BEC channel models for the

performance analysis of the LT code. He has also presented hardware architecture

of the LT encoder and decoder. Here, variable nodes are chosen or the generator

matrix is produced by taking the degree and index from degree generator and

31

index register’s output respectively. In another register called neighbor, variable

nodes’ positions are stored according to the degree and index. However, address or

the index stored randomly. Then according to the index and degree values

neighbors are selected. Index will indicate the initial address of the neighbor, and

according to the degree, subsequent positions will be selected as shown in Figure

11. It also includes three-stage architecture of the decoder.

Figure 11. Method of generator matrix generation proposed in [21].

Kai et. al. [22] have also followed almost the same architecture of the generator

matrix, and the codec along with router and reverse router. The architecture was

used for storing non-zero elements in the generator matrix for Belief Propagation

(BP) based soft decoding.

Alam et. al. in [23] have implemented the LT codec in ASIC using TSMC and

Samsung libraries, and showed the performance in terms of area and cycle count.

Here they used empirically modified RSD and almost same idea and architecture as

32

shown in Figure 11 for matrix construction. They also used the BP based soft

decoding of the LT codes.

For the matrix construction, almost same idea and architecture was used but Han

used hard decoding while rest of the previous works used BP based soft decoding

and the corresponding algorithm and architecture.

33

V. PROPOSED HARDWARE ARCHITECTURE OF

THE LT ENCODER

In the previous chapters, LT codes, encoding-decoding algorithms and different

hardware implementations of the LT codec are discussed. Encoding-decoding

algorithms are formulated, which can be used to find the hardware architecture of

the codec. In this chapter, a new hardware architecture of the LT encoder is

presented as Luby proposed the codes, with necessary figures and explanation.

A. Proposed Overall Architecture of the LT CODEC

Hardware design for the LT codec is quite challenging due to its random code

construction characteristic and variable data length. However, Figure 12 shows the

overall architecture of the LT codec. Here an encoder may contain

o A random number generator (RNG),

o A degree distribution unit (DDU) or degree generation unit (DGU),

o A generator matrix generation (MG) unit,

o A permutation unit (PU) and finally

o A check nodes generator (CNG).

In short, a RNG will generate a random number; the DDU will receive the random

number as input and generate a degree according to RSD or any other predefined

definition of the distribution. The PU will generate K! permutations ideally and

choose one, and send permutation information to matrix generator, MG. It will

make edge connections by assigning 1s (or 0s for no edge connection) between

34

check and variable nodes according to the magnitude of degree generated by the

DGU.

Figure 12. Overall hardware architecture of the LT codec as Luby has proposed the

codes.

If the value of a degree is 2, there will be two 1s in the column of the generator

matrix, G as shown in the previous chapters. Finally the check nodes generator,

CNG, will generate N number of encoded output bits where each of the check

nodes will be generated by d variable nodes. Usually, these encoded output bits

will be transmitted through a BEC.

The decoder will receive the transmitted bits and decode it. If some of the bits are

erased or lost due to the negative impact of the BEC, it will discard those bits and

corresponding columns from the matrix G. Practically, a decoder will also have all

the units like encoder except the CNG to decode the message. At the receiving end,

it can generate G with the help of same seed and degree distribution.

35

B. Design Hierarchy

Usually there are two different types of design hierarchies as mentioned earlier.

These are

1. Top-down and

2. Bottom-up and

Figure 13. Bottom-up design hierarchy is followed for the LT codec hardware

design.

In this hardware design, bottom-up type design hierarchy is followed as shown in

Figure 13. To generate random number, Linear Feedback Shift Register (LFSR) is

used, which consists of the leaf cell D flip-flop and 2-to-1 MUX.

36

Similarly upper-level units are designed. Some functional units are designed and

integrated with another unit to make it easy and manageable. Figure 14 shows the

hardware architecture of the codec where the encoder part is emphasized.

0010

1000

1110

1111

g

Figure 14. Hardware architecture of the codec where the encoder part is shown in

detail.

Each unit is described following in brief.

C. Random Number Generator Unit

The code construction nature of the LT codes is random as mentioned earlier. Thus

its performance mostly depends on the randomness of the degree and random

construction of the generator matrix, G. Random numbers are independent and

identically distributed (IID). Natural phenomenon like cosmic background

radiation, atmospheric noise, etc. measured over a very short time, show true

randomness [24]. Different devices, like gamma ray counters, noise diodes [25],

two resistors with different temperature [26] can be used to generate true random

number. However, these devices make a system complex and may not provide

desired outputs [25]. On the other hand, if an algorithm is used to generate random

numbers, usually it will provide an impression of randomness, however, the output

37

will not be true random because of its repeatable patterns, since this is computed in

deterministic way. This random number is known as pseudorandom number.

Definition: A pseudorandom number generator is a structure ℛ	 =	 (S,	 s0,	 T,	 U,	 G),	

where S is a finite set of states, s0 ϵ S is the initial state (or seed), the mapping T: S	

→	 S is the transition function, U is a finite set of output symbols, and G: S	 →	 U is

the output function.

The states are finite, therefore, the output of the generator will revisit its previous

outcomes [25]. Hardware implementable several pseudorandom number generators

are described in the following sections.

1. Linear Feedback Shift Register

The shift register with feedback, whose output bit is a linear function of its

previous sate, is known as Linear Feedback Shift Register (LFSR).

Figure 15. An L-stage typical linear feedback shift register.

A typical linear feedback shift register of length L is shown in Figure 15. The

output of the mth iteration can be found as

38

L

i
iimm Xaa

1

 (7)

where X = 0 or 1, known as taps and depends on feedback connection [27]. An 8-

bit LFSR is designed with the feedback or characteristic polynomial P(X) is shown

in Figure 16 [28].

 Figure 16. An LFSR random number generation unit designed using the polynomial

P(X).

1)(45678 XXXXXXP (8)

Figure 17. Output waveforms of the LFSR RNG.

Here, using leaf cell D flip-flop and 2-to-1 MUX, upper level unit of the LFSR is

designed. Different Seed can be loaded to obtain different pattern of the random

39

number. Figure 17 shows the output waveforms, where out is the 8-bit output and

ran is the randomly selected 4-bit output of the RNG.

2. Linear Congruential Generator

The mathematical relation that is used for the linear congruential generator (LCG)

can be found by the Equation (9).

 mbXaX nn mod1 (9)

mcX n mod (10)

where Xn-1 is previous number and Xn is the next random number, a is the

multiplier, b is the increment, and m is the modulus.

Figure 18. Architecture of the LCG.

And above parameters must satisfy the following conditions.

mX

mb

ma

m

00

,0

,0

,0

40

Here, X0 is the initial value or seed and this can be changed to get different pattern

of random numbers [25]. It is easy to implement the Equation 9 and Figure 18

shows hardware architecture of the LCG.

Figure 19. Output waveforms of LCG RNG.

In the mod unit, m will be subtracted from c until the subtracted result is less than

m or zero. Figure 19 shows the output waveforms of the random number generated

by the LCG and rand is the output random number of the unit.

D. Degree Generation Unit

Figure 20 pictorially describes the proposed architecture of the degree generation

unit (or degree distribution unit). Whatever the name is, it will take the random

from the RNG unit and generate random numbers according to the distribution

defined in it. The mathematics behind the generation of the random number

according to a distribution is the comparison of the random number with

cumulative sum of the given probabilities as mentioned in Equation 11. It will

receive a random number from the RNG unit which is using a LCG or linear

feedback shift register and the number is generated according to a seed.

][kcsumrand (11)

The DGU generated random numbers will be used as degree for the subsequent

units. Any degree distribution can be loaded any time if superior degree

41

distribution is found instead of RSD. From the stored probabilities, cumulative

probabilities are calculated according to the formula

csum[j] = csum[j-1] + prob[j]| j≠ 0 (12)

p
ro

b
[A

d
rs]

csu
m

[k]

Figure 20. Hardware architecture of the degree generation unit. tp1 and tp2 are the

temporary registers for holding probability (prob) and cumulative sum of the

probabilities (csum) respectively. prob and csum are memories for storing

probabilities and cumulative sum respectively.

with the help of two temporary registers tp1 and tp2, and stored in memory csum.

On the other hand, a random number, rand is received from RNG unit. This

random number is compared with every cumulative sum of probabilities. There

will be at least one value of csum for which rand will be less than or equal to csum.

First value will be considered, and degree can be found as deg[k] where the

memory deg stores the degrees according to the probability. Here, seed can be

changed to generate different sequence of the RNG.

42

E. Proposed Hardware Architecture of the Generator Matrix

The generator matrix-generation unit (GMU) will receive degree from DGU. This

degree means how many 1s there will be in a column of the generator matrix G. If

degree is 3, there will be three 1s in a column. This is one of the critical parts of the

LT encoder. In the LT encoding process, d variable nodes will be selected

uniformly at random.

Figure 21. Generator matrix, G generation using degrees and different counters of

unlike initial values.

Figure 22. GMU architecture with different counters with unlike initial values.

To do that it is better to have the permutations of K message bits. Design becomes

43

critical as K grows. In this architecture, ten counters with different initial values are

proposed to get the effect of permutations and randomness. The idea is shown in

Figure 21. These different initial values of the counters will make sure that the

counts are non-overlapping. For example, there are four counters with different

initial conditions. For the column or address 01, the received degree is 3. Then the

GMU will select first three counters and a 1 will be stored in every row position

indicated by the corresponding counter’s count. That is, here counter1 = 1, counter2

= 2, and counter3 = 3. In column c1, it will have 1 in row position 1, 2 and 3; rest of

the position will have 0s. In this way, a single column of the generator matrix,

scog, is generated and stored in the temporary register tg, as shown in Figure 22, to

send it to the encoder and decoder units. Counters can be customized with different

initial values and increment with some conditions to have better sparse matrix.

F. Proposed Hardware Architecture of the LT Encoder

In this section, check nodes or encoded output bits are generated from a column of

Figure 23. Here a column is multiplied with the message bits s to get d message bits

and then these d message bits are added together by modulo-2 addition which

produces a single bit of the respective check node.

44

the generator matrix, G and input variable nodes, s. Figure 23 shows the encoder

module and Figure 24 shows the logical operation in detail. A column number of

the matrix is used as the address. According to the address, the respective column

of the G will be chosen and these values will be sent for the logical multiplication

or AND operation with the variable nodes, s.

Figure 24. Multiplication and modulo-2 addition can be implemented by this simple

logical operation.

Figure 25. Output waveforms generated by the proposed LT encoder.

From this multiplication, corresponding d variable nodes will be selected as the

column contains d 1s and (K-d) 0s. These selected variable nodes will be added

together by modulo-2 addition or reduced XOR operation which will provide the

encoded output bit of a single check node.

45

There will be N such units, as shown in Figure 24 for N number of check nodes.

Figure 25 shows the output waveforms generated by the proposed encoder.

In this chapter, the design hierarchy that has been followed is presented. Different

units of the LT encoder are discussed. In the check nodes generation, first

generator matrix is constructed, then encoding operation is done with the help of

the generator matrix, and the output waveforms show that the encoder is encoding

well along with its all units and subsequent levels. Proposed decoder architecture

will be discussed in the next chapter.

46

VI. PROPOSED HARDWARE ARCHITECTURE OF

THE LT DECODER

Random number generation, degree distribution, performing permutation and

selecting any one of the permutation, are the pretty critical parts of the encoder

section. However, the proposed encoder is working perfectly. In this chapter, the

proposed hardware architecture of the LT decoder is presented.

A. LT Decoder

This is one of the challenging sections of the LT codec. Major functional unit are

mentioned below and overall architecture is shown in Figure 26.

o Reception of the intact (existent or not erased) check nodes by the CNPU

(check node processing unit) of a receiver.

o Generator matrix, G construction for the corresponding received check

nodes by the GCU (generator matrix construction unit).

o Identification of the degree-one check node with the SEIU (single edge

identification unit) - that determines row index and column index of a

single edge in a column of the matrix, G.

o The value of c is assigned to s by the C2S assignment unit.

o Check node register updating by the CUU (check nodes update unit) and

o Matrix updating by assigning zeros to every column in a particular row

index by the GUU (generator matrix update unit).

These functional units are discussed next.

47

Figure 26. The detail architecture of the LT decoder.

B. Check Node Processing Unit

Figure 27 shows the architecture of the check node processing unit which actually

will receive the intact check nodes generated by the encoder unit and will discard

the erased check nodes. Here, input check nodes will be stored in cin register and

first)(KKK intact check nodes will be received according to the following

equations.

][][icinAc (13)

1 AA (14)

If a single check node cin[i] is not erased and if it is within first K bits, it will be

received in c[A] according to the Equation 13; and the address A will be updated

according to the Equation 14.

48

Figure 27. The architecture of the CNPU.

Figure 28. Output waveforms of the check node processing unit.

Figure 28 shows that first 128 bits of cin are lost, and in the last 128 bits it contains

two 1s- one in the 128th and second one in the 255th bit positions while rest 126

bits have zeros. That is, last 128 bits which contain 10000…..0001 are accepted as

intact bits for further processing.

49

C. Generator Matrix Construction Unit

Figure 29 shows the architecture of the generator matrix, G construction unit. It

will use the same conditional operation as the CNPU and will perform the

operation as Equation 15. The address will be updated as previous one according to

the Equation 14.

][_][iingAg (15)

Figure 29. Generator matrix G construction unit.

D. Identification of Single Edge Check Nodes and C2S Units

Here, the column sum of the matrix G is determined to find the single edge check

nodes, and hence its row and column positions for the use of next sections. A

complete column is copied to temporary register tg and column sum is calculated

and stored in tsum. If the value of tsum is 1, a 1 is stored in se_flag register at the

address of column index.

50

Figure 30. SEIU and C2S units – column sum calculator, finding the row and column

indexes of a single edge check node and the value of the check node is assigned to

the variable node.

The same se_flag register and tg are used to determine the row position or index of

the single edge in a column by searching the 1 in tg. The proposed architecture is

shown in Figure 30. Then the value of c, is assigned to the s register according to

the column and row indexes, as

s[row_index] = c[col_index] (16)

This variable node, s is known as recently recovered variable node (RRVN).

E. Check Nodes Update Unit

Now the check nodes in c must be updated to make these independent of the newly

recovered variable node or RRVN. This architecture is depicted in Figure 31. Here,

the value of c which is very recently assigned to s is stored in temporary register tc.

Now, every c which is connected to the RRVN, s is updated by doing XOR

operation with tc, and the updated c values are stored in the respective indexes. The

Equations (17) and (18) explains the above operations clearly.

]_[indexcolctc (17)

51

indexcoljtcjcjc _][][(18)

c

.

.

tc

c[j ≠ col_index]

c[col_index]

c[j ≠ col_index]

updated c

.

.

.

Figure 31. The register where c is stored is updated by performing XOR operation

with every check node or c which is connected with the newly recovered s and c

value which is recently assigned to the s.

F. Generator Matrix Update Unit

Next step is to update the matrix, G to make the check nodes free or disconnected

from the RRVN, s. This is shown in the Figure 32. Here, each column of the

generator matrix is copied to the temporary register tg2 and this tg2 is updated as

 tg2[row_index] = 0 (19)

and all the contents of tg2 is stored in matrix G according to the column indexes.

After this operation, entire row will have 0s in every column. In this way the edge

update or G update operation is completed by the GUU using the indexes

information of SEIU.

52

Figure 32. Generator matrix, G update unit. Each column of the generator matrix is

updated in the respective row position by replacing the edge value 1 with 0.

G. Input-output Waveforms of the CODEC

Using above architecture, a complete codec is designed, compiled and simulated

using Verilog® HDL in ModelSim. As mentioned earlier that some of the units are

integrated with other units to make it easy and operationally manageable. Figure 33

shows the input-output waveforms of the codec. It takes arbitrary message

128’hefac….43ff as the input or variable nodes (sin) and generates

256’hfffff….dedc155 as the encoded output (cout) of the encoder. These are used

as the input of the decoder and generate 128’hefac….43ff at the output (sout) of the

decoder which are actually the recovered variable nodes.

Actually, a decoder will also have all units for the construction of the generator

matrix for the given distribution and seed. However, here in the proposed

53

architecture, encoder generated matrix is also used in the decoder unit for

simplicity.

Figure 33. Input-output waveforms of the LT codec.

After getting the intact check nodes and the corresponding matrix, it will start to

calculate the sum of a column and find out the single edges of the matrix, and

hence at the end it will get the column and row indexes of a single degree check

node. With these addresses, the decoder will assign the check node value to a

variable node which eventually is the recovered variable node. Then it will update

the check nodes and the matrix sequentially. These steps will continue until all the

variable nodes are recovered.

54

VII. SIMULATION RESULTS

In the previous chapters, method of digital system design, LT codes, encoding-

decoding, hardware architecture of encoder and decoder are discussed. Here

design, simulation and results are the main points of discussion.

A. Performance of the Proposed Degree Distribution Unit

A hardware architecture is proposed which can generate random numbers of any

predefined distribution. The performance of the degree distribution unit depends on

the performance of the generation of the input random number. Here, a linear

feedback shift register is used with different seeds for the generation of the random

numbers. Figure 34 shows the output waveform of the degree distribution unit. It

generates output random numbers according to the predefined degree distribution

almost exactly. ran is the output random number or the degree.

Figure 34. ran (degree) is the output random number generated by the DGU (or

DDU) according a distribution and it follows the distribution almost exactly.

55

Figure 35. RSD degree distribution for K = 128, δ = 0.2, and c = 0.03.

Figure 36. RSD degree distribution implemented by the proposed hardware.

56

Figure 35 shows the RSD degree distribution and Figure 36 shows the hardware

implemented degree distribution. An important feature of the architecture is that

any distribution can be implemented in it as shown in Figure 37. The performance

of the DGU is shown by the hardware implemented or approximated distribution,

which is pretty well following the original distribution.

Figure 37. Performance of the degree distribution unit, DDU.

B. Performance of the Proposed Architecture of the LT CODEC

The LT codec architecture was designed as Luby proposed the LT codes in his

paper. Since the LT code is a fountain code and it will ideally generate limitless

bits at the output. However, in practice, this is not feasible. Therefore, this

architecture is designed for 128 message bits and 256 encoded output bits. Figure

38 shows the input-output waveforms of the codec. Here, sin represents the input

variable nodes or s; cout represents the encoded output or check nodes generated

by the encoder; and sout indicates the decoded or recovered variable nodes or ŝ.

128’hefac96……..3643ff are used as message bits and encoded output bits are

57

256’hfff……… dc155. These 256’hfff……… dc155 are used by the decoder to

recover the original message bits 128’hefac96……..3643ff.

Figure 38. Input-output waveforms of the LT codec.

Using Verilog® HDL and ModelSim tool, a new and fully functional LT codec

architecture is proposed with a specially designed degree generator; permutation

was performed by different initial values or time shifted counters, the encoder and

decoder units were designed as the Luby proposed the codes in his paper. Any kind

of degree distribution can be implemented with this architecture and the result-

waveforms and figures shows expected performance. Here, multiple counters were

used to get the permutation result for encoding to have an effect of pretty

randomness. The encoder and decoder performed quite satisfactorily. The Figure

38 shows that decoding operation is completed in 2575 ns for 100MHz clock. This

means the encoding and decoding operation takes 257.5 cycles to complete the

operation.

58

VIII. CONCLUSIONS

In the previous chapter, the results are discussed. In this chapter, summary of the

whole works are presented and the recommendation of the future work will be used

to conclude the chapter.

A. Summary

The whole works can be divided into three main categories.

1. Hardware architecture of the proposed degree distribution unit.

2. Hardware architecture of the proposed LT encoder and

3. Hardware architecture of the proposed LT decoder.

The code construction nature of the LT codes is random. To design an efficient LT

codec, a good random number generator, degree distribution unit, permutation unit

and a random selector are required. Here, an efficient a hardware architecture is

presented which can generate random number according to the distribution. It will

take a random number and compare it with the cumulative sum of probabilities;

based on the comparison result a random number will be generated which will

follow the defined distribution.

In the proposed LT codec architecture, first generator matrix is constructed with

the help of degree, d (random number according to the distribution) generated by

the DGU. Each column of the generator matrix is generated from the degree, and

using different initial valued counters to provide the pretty well random

permutation effect. This degree will select d counters having different initial values

to avoid collision in the matrix generation. A single 1 is placed in the column

59

where the value of a counter indicates the row position and the degree determines

the number of 1s and hence the number of counters. The matrix will be stored in a

memory for encoding and decoding. Each column is used to perform AND

operation with the variable nodes to obtain the d variable nodes. These d variable

nodes are used for reduced XOR operation to obtain a single check node. This

process is repeated until sufficient numbers of check nodes are generated.

In the decoding, matrix based hard decision decoding was used, which did not

include any inverse matrix operations, and the process is named as non-Belief

Propagation based decoding algorithm.

In the decoder, after getting intact check nodes and the corresponding generator

matrix, sum of each column is calculated and hence the position of the degree-one

check node is identified. This position is used to recover a check node, update the

check nodes, and afterwards to update the generator matrix. This process will

continue until all the variable nodes are recovered.

In short, here an architecture of the LT codec is proposed as Luby has described the

code, and simple matrix-based encoding and decoding process have been adopted.

Matrices are stored in memories, and an address indicates the respective column.

Encoding and decoding processes do not have complex mathematical operations

such as tanh(), ln(), etc. as these are found in soft BP (Belief Propagation) decoding

process.

Instead of using LUTs (Lookup Tables) and predefined arrays, here simple random

number generator and degree generator are used to get a distribution. Different

initial valued counters are used to generate the generator matrix to get pretty well

random effects.

60

It takes 257.5 cycle counts and 2.575 µs for encoding and decoding instead of

5,204,861 minimum cycle counts and 4.43s of the design mentioned in [23] where

iterative soft BP decoding was used in ASIC and ASIP implementation of the LT

codec.

B. Future Work

In this, proposed LT codec architecture, matrix based encoding and decoding

methods are used as Luby described this code in his paper. However, Hamming

distance based decoding has some fascinating features. For example, it can decode

even if there is no degree-one check node. In future, this algorithm can be studied,

formulated and based on the algorithm an architecture can be designed to obtain a

complete or universal LT codec which will not be prone decoding failure problem

due to the lack of degree-one check node.

On the other hand, the performance of the LT codes improves as the number of

input variable nodes increases. Thus, 2048-input LT code can be designed with

parallel processing.

61

REFERENCES

[1] D. MacKay, "Fountain Codes," in IEE Proceedings- Communications, 2005.

[2] M. Luby, "LT Codes," in 43 rd Annual IEEE Symposium on Foundations of

Computer Science, 16–19 November 2002.

[3] P. Elias, "Coding for Two Noisy Channels," in 3rd London Symp. Information

Theory, London, U.K, 1955.

[4] A. Shokrollahi, "Raptor Codes," IEEE Transactions on Information Theory,

vol. 52, no. 6, pp. 2551-2567, 2006.

[5] M. Asim and G. Choi, "An Optimized Framework for Degree Distribution in

LT Codes Based on Power Law," J. Cent. South Univ., pp. 2693-2699, 2013.

[6] T. Richardson and R. Urbanke, Modern Coding Theory, NY: Cambridge

University Press, 2008.

[7] "3GPP TS 26.346, Techn. Spec. Group Serv. and Sys. Aspects; Multimedia

Broadcast/Multicast Service (MBMS); Protocols and codecs, V7.4.1," June

2007.

[8] T. Mladenov, S. Nooshabadi and K. Kim, "Efficient Incremental Raptor

Decoding Over BEC for 3GPP MBMS and DVB IP-Datacast Services," IEEE

Transactions on Broadcasting, vol. 57, no. 2, p. 313, June 2011.

[9] M. Bohr and K. Mistry, "Intel’s Revolutionary 22 nm Transistor Technology,"

Intel, May 2011.

[10] S. Palnitkar, Verilog HDL A guide to Digital Design and Synthesis, SunSoft

Press , 1996.

62

[11] P. J. Ashenden, Digital Design: An Embeded Systems Approach Using

Verilog, MA: Morgan Kaufmann Publishers, 2008.

[12] Wikimedia, "Full Custom," Wikimedia Foundation, Inc, 15 March 2013.

[Online]. Available: http://en.wikipedia.org/wiki/Full_custom. [Accessed 2

April 2014].

[13] U. V. C. Laboratory, "Design Styles," 2005. [Online]. Available:

http://vlsicad.ucsd.edu/courses/ece260b-w05/pdf/ece260b-w05-design-

style.pdf. [Accessed 02 April 2014].

[14] R. Brayton and J. Cong, "NSF Workshop Report: Electronic Design

Automation Past, Present, and Future," 08 July 2009. [Online]. Available:

http://cadlab.cs.ucla.edu/nsf09/. [Accessed 02 April 2014].

[15] Wikipedia, "Electronic Design Automation," Wikimedia Foundation, Inc, 05

April 2014. [Online]. Available:

http://en.wikipedia.org/wiki/Electronic_design_automation. [Accessed 02

May 2014].

[16] K. Tatas, K. Siozios, D. Soudris and A. Jantsch, Designing 2D and 3D

Network-on-Chip Architectures, New York: Springer, 2014.

[17] S. Lee, Advance Digital Logic Design Using Verilog, State Machines, and

Synthesis for FPGAs, Canada: Thomson, 2006.

[18] Wikimedia, "GDSII," Wikimedia Foundation, Inc, 15 May 2014. [Online].

Available: http://en.wikipedia.org/wiki/GDSII. [Accessed 18 May 2014].

[19] J. Cavanagh, Verilog HDL Digital Design and Modeling, FL: CRC Press,

2007.

[20] S. Puducheri, J. Kliewer and T. E. Fuja, "The Design and Performance of

Distributed LT Codes," IEEE Transactions on Information Theory, pp. 3740-

3754, 2007.

63

[21] H. Wang, "Hardware Designs for LT Coding," Delft University of

Technology, Netherlands, 2006.

[22] K. Zhang, X. Huang and C. Shen, "Soft Decoder Architecture of LT Codes,"

in IEEE Workshop on Signal Processing Systems, Washington, 2008.

[23] S. M. S. Alam and G. Choi, "Design and Implementation of LT CODEC

Architecture with Optimized Degree Distribution," IEICE Electronics

Express, pp. 1-10, May 29, 2013.

[24] Wikimedia, "Random Number Generation," Wikimedia Foundation, Inc, 25

April 2014. [Online]. Available:

http://en.wikipedia.org/wiki/Random_number_generation. [Accessed 01 May

2014].

[25] J. Banks, Handbook of Simulation: Principles, Methodology, Advances,

Applications, and Practice, USA: John Wiley & Sons, 1998.

[26] R. e. d. R. Franco, "R.F. elettronica di Rota Franco," 2014. [Online].

Available: http://www.rf-microwave.com/datasheets/2582_generic_NSG-

10A_01.pdf. [Accessed 01 May 2014].

[27] J. L. Massey, "Shift Register Synthesis and BCH Decoding," IEEE

Transaction on Information Theory, Vols. IT-15, no. 1, pp. 122-127, 1969.

[28] P. Schaumont, "Virginia Tech Department of Electrical and Computer

Engineering," 2012. [Online]. Available:

http://rijndael.ece.vt.edu/schaum/slides/ddii/lecture6.pdf. [Accessed 21 April

2014].

64

ACKNOWLEDGEMENTS

First and foremost, I offer my sincerest gratitude to my supervisor Professor

GoangSeog Choi for his excellent guidance, caring, patience, and providing me

with comfortable research environment. His encouragements to pursue my master’s

degree at SoC Design Lab and continuous support have been a great assistance to

achieve a significant milestone in my career. Without his help, this thesis would

not have been completed. He is the friendliest, caring, easy going and encouraging

advisor that anyone could wish for.

I would also like to show appreciation to all faculty members of the Department of

Information and Communication Engineering, Chosun University, specially the

members of the thesis examining committee Professor Jae-Young Pyun, and

Professor Young-Sik Kim for their valuable advices, comments, and insight

throughout my research. In addition, I would like to thank my department to

provide me the atmosphere to cultivate and augment my knowledge.

My family members in Bangladesh have always supported me with their distant

love and sympathy. The painful and cruel experience and fact of being away from

home, friends and family helped me to realize the value and importance of friends

and family in every instance. I would like to thank my respectable mother, father

and my dear brother, sisters for their constant prayers during my study, support and

condolence.

I would also like to show my gratitude to all the members of Chosun University,

specially to the members of International Office and Graduate Schools.

During my daily life in Korea, I have been supported by lab-mates, classmates,

dorm-mates, cheerful friends and always smiling local people. Specially S. M.

65

Shamsul Alam, Muthukumar, Shajeel Iqbal, 구정주, 김철홍, 전준철, 안성민,

김범석, 선장균, 박한빛, 정대성, and 장현정 will remain in my mind forever for

their philanthropist nature and generous assistances. Whenever I got stuck, they

helped whole heartedly.

This research was supported by the NIPA under the Global IT Scholarship program

and the NIIED (National Institute for International Education). I am really grateful

to the Korean Government and the people of Korea. The honour is mine to be with

them.

	I. INTRODUCTION
	A. Background Problem
	B. Motivation
	C. Research Goal
	D. Organization of the Thesis

	II. DIGITAL DESIGN METHODOLOGIES
	A. Choices of Implementation
	B. Electronic Design Automation
	C. Important Features of HDLs
	D. Design Flow
	E. Design Methodologies
	F. HDL Design Level

	III. LUBY’S PROPOSED LT CODES
	A. Erasure Channel
	B. Fountain Codes
	C. An Example of the LT Decoding
	D. Applications

	IV. RELATED WORKS ON HARDWARE ARCHITECTURE OF THE LT CODEC
	A. Already Proposed Architectures

	V. PROPOSED HARDWARE ARCHITECTURE OF THE LT ENCODER
	A. Proposed Overall Architecture of the LT CODEC
	B. Design Hierarchy
	C. Random Number Generator Unit
	D. Degree Generation Unit
	E. Proposed Hardware Architecture of the Generator Matrix
	F. Proposed Hardware Architecture of the LT Encoder

	VI. PROPOSED HARDWARE ARCHITECTURE OF THE LT DECODER
	A. LT Decoder
	B. Check Node Processing Unit
	C. Generator Matrix Construction Unit
	D. Identification of Single Edge Check Nodes and C2S Units
	E. Check Nodes Update Unit
	F. Generator Matrix Update Unit
	G. Input-output Waveforms of the CODEC

	VII. SIMULATION RESULTS
	A. Performance of the Proposed Degree Distribution Unit
	B. Performance of the Proposed Architecture of the LT CODEC

	VIII. CONCLUSIONS
	A. Summary
	B. Future Work

	REFERENCES
	ACKNOWLEDGEMENTS

<startpage>20
I. INTRODUCTION 1
 A. Background Problem 1
 B. Motivation 2
 C. Research Goal 2
 D. Organization of the Thesis 3
II. DIGITAL DESIGN METHODOLOGIES 5
 A. Choices of Implementation 6
 B. Electronic Design Automation 7
 C. Important Features of HDLs 9
 D. Design Flow 10
 E. Design Methodologies 13
 F. HDL Design Level 14
III. LUBY¡¯S PROPOSED LT CODES 17
 A. Erasure Channel 17
 B. Fountain Codes 19
 C. An Example of the LT Decoding 27
 D. Applications 28
IV. RELATED WORKS ON HARDWARE ARCHITECTURE OF THE LT CODEC 30
 A. Already Proposed Architectures 30
V. PROPOSED HARDWARE ARCHITECTURE OF THE LT ENCODER 33
 A. Proposed Overall Architecture of the LT CODEC 33
 B. Design Hierarchy 35
 C. Random Number Generator Unit 36
 D. Degree Generation Unit 40
 E. Proposed Hardware Architecture of the Generator Matrix 42
 F. Proposed Hardware Architecture of the LT Encoder 43
VI. PROPOSED HARDWARE ARCHITECTURE OF THE LT DECODER 46
 A. LT Decoder 46
 B. Check Node Processing Unit 48
 C. Generator Matrix Construction Unit 49
 D. Identification of Single Edge Check Nodes and C2S Units 50
 E. Check Nodes Update Unit 51
 F. Generator Matrix Update Unit 51
 G. Input-output Waveforms of the CODEC 52
VII. SIMULATION RESULTS 54
 A. Performance of the Proposed Degree Distribution Unit 54
 B. Performance of the Proposed Architecture of the LT CODEC 56
VIII. CONCLUSIONS 58
 A. Summary 58
 B. Future Work 60
REFERENCES 61
ACKNOWLEDGEMENTS 64
</body>

