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초 록

초음파 센서와 레이저 거리 센서 측정 융합을 이용한

이동로봇 위치 추정 칼만필터 방법

나비드 사이라흐

     지도교수 : 고낙용 교수

     학과 : 제어계측공학과

     학교 : 조선대학교

지난 몇십년 동안 이동로봇 위치추정은 연구자나 로봇 엔지니어들로부터 많은 관

심을 받아왔다. 이동로봇이 어떤 환경 안에서 신뢰성 있는 일을 하기 위해서는 로

봇은 자신의 위치를 알수 있어야한다. 행성탐사, 구출, 그리고 감시등과 같은 작업

에서는 미지의 환경에서 로봇이 자신의 위치를 효율적으로 알아야만 한다. 이러한 

작업을 위해서는 작업공간에서의 지도 작성과 함께 로봇은 작성된 지도안에서의 

자신의 위치를 알 수 있어야한다. 아주 복잡하고 다양한 환경들이 많이 있는데 예

를 들면, 많은 물건들이 놓여있고 여러 가지 제한적인 상황에서 로봇이 운행을 해

야 하는데 이러한 경우에는 로봇의 운행이 아주 어려운 문제가 된다. 게다가 로봇 

플랫폼과 센서는 시스템마다 서로가 아주 많이 다르다. 그래서 그런 만큼 감지와 

조종 하는 게 굉장히 어려워진다. 미지의 환경에서 로봇의 주행정확도를 높이기 위
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해서 다양한 센서들로 부터의 정보를 융합하여야 할 필요가 있다. 물건들을 탐지하

는 다양한 센서들의 정보를 융합해서 맵을 정확히 만들어내고 로봇의 위치를 정확

하게 추정해내는 것들이 필요하다. 

본 논문에서는 무향칼만필터 초음파센서 그리고 레이저 거리 센서들을 사용한 

이동로봇의 위치추정방법을 제안한다. 제안된 무향 칼만 필터 위치추정 알고리즘은 

특징점 대응 값이 주어지지 않은 상황에서 동작한다. 제안된 알고리즘은 로봇의 모

션모델, 센서 측정모델을 필요로 하고 아울러 실내에서의 특징점이나 랜드 마크들

에 대한 특징점 대응 값을 계산할 것을 필요로 한다. 특징점 대응 값이라는 것은 

측정된 센서 정보가 어떤 특징점에 대응되는지를 알아내는 것을 이야기 한다. 측정

된 센서정보의 특징점 대응 값은 유사성이 있는 최대화된 추정들을 사용해서 계산

된다. 유사성이 있는 최대화된 추정이라는 것은 센서에 의해 검출된 특징점과 지도

에 나타난 특징점의 유사성을 가장 최대화 시키도록 하는 특징점 대응 값을 구한

다. 제안된 방법은 초음파센서와 레이저거리센서정보를 융합하여서 실내에서의 로

봇 위치추정 성능을 향상시켰다.
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ABSTRACT
Kalman	 Filter	 Approach	 for	 Mobile	 Robot	

Localization	 Fusing	 Ultrasonic	 Sensor	 and	 Laser	

Range	 Finder	 Measurements

Sairah	 Naveed

Advisor:	 Prof.	 Nak	 Yong	 Ko,	 Ph.	 D.

Dept.	 of	 Control	 and	 Instrumentation	 Engg.,

Graduate	 School	 of	 Chosun	 University

Mobile	 robot	 localization	 has	 attracted	 significant	 attention	 from	 the	 researchers	and	 robotic	 engineers	 in	 the	 past	 few	 decades.	 To	 reliably	 navigate	 in	 an	environment,	 a	 mobile	 robot	 must	 know	 where	 it	 is.	 Many	 robotic	 applications,	such	 as	 planetary	 exploration,	 rescue,	 and	 surveillance	 etc.,	 requires	 efficient	robot	 localization	 within	 unknown	 environments.	 This	 issue	 involves	 building	 a	map	 of	 the	 work	 space	 and	 localizing	 itself	 with	 in	 such	 map.	 There	 are	varieties	 of	 complex	 environment	 where	 robot	 need	 to	 navigate.	 One	 of	 the	issue	 of	 localization	 is	 to	 find	 the	 location	 of	 the	 robot	 in	 partially	 or	completely	 unknown	 environment,	 which	 makes	 the	 problem	 more	 difficult	 to	solve.	 Moreover,	 physical	 platforms	 and	 sensor	 suites	 vary	 significantly	 from	system	 to	 system	 and	 complicating	 the	 task	 of	 sensing	 and	 control.	 In	 order	 to	increase	 the	 accuracy	 when	 robot	 navigates	 into	 partially	 or	 completely	
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unknown	 environment,	 it	 is	 necessary	 to	 integrate	 sensing	 information	 from	distinct	 sensors	 for	 detecting	 objects	 and	 translate	 the	 different	 sensory	 inputs	into	 reliable	 robot	 position	 estimates	 with	 respect	 to	 the	 environment.	
We	 propose	 the	 approach	 for	 mobile	 robot	 localization	 in	 a	 partially	unknown	 	 indoor	 environment.	 The	 propose	 approach	 use	 Unscented	 Kalman	filter,	 ultrasonic	 sensor	 system	 and	 laser	 range	 finder.	 We	 implement	 UKF	localization	 algorithm	 fusing	 the	 measurements	 of	 ultrasonic	 sensor	 and	 laser	range	 finder.	 This	 algorithm	 relies	 on	 calculating	 correspondence	 of	 data	association	 for	 beacons.	 The	 data	 association	 is	 computed	 through	 maximum	likelihood	 estimator	 which	 determines	 the	 most	 likely	 value	 of	 the	correspondence	 variable	 and	 the	 consider	 it	 as	 a	 true	 value.	 While	 the	 sensor	fusion	 in	 this	 context	 is	 for	 integrating	 the	 data	 from	 ultrasonic	 sensor	 and	laser	 range	 finder	 to	 improve	 the	 robot	 localization.	
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1.    Introduction 

Frequently, robots find themselves asking this question “Where Am I?”. 

Knowing your location, and being able to navigate to other locations, is 

extremely important for mobile robots. Robot localization addresses the pre 

requisite issue in field of robotics. It is an act of determining the pose of the robot 

relative to a map of the environment. The reliable localization is necessary for 

most robotic applications. It is imperative for a mobile robot to perform the given 

missions successfully. The most common form of localization and navigation is 

to use a map, combined with sensor readings and some form of motion feedback 

[1]. As localization is always a precursor to navigation. The issues associated to 

localization of mobile robot break down into three main conditions: 

1. Known map and known localization: This is the easiest type of problem. The 

robot knows the map, and its current location, so it can easily navigate to a new 

location. 

2.  Known map and unknown localization: The robot knows what the world looks 

like, but it does not know it current location. Once it finds out where it is, it just 

really does the condition 1 above. 

3.  Unknown map and unknown localization: This is the hardest of all problems. 

This is known as “Simultaneous localization and mapping”. After decent amount 

of time, robot should have the pretty good map, putting robot in condition 2 

above. 

Generally, localization and navigation of mobile robots are done in an 

iterative way. The iteration procedure is underlying structure from the fields of 

recursive state estimation and in particular markov chains. A robot will typically 

do the followings, while maintaining its knowledge of its current state in memory: 

1.  Move some distance, which typically introduces some error in its known 
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position. This is error termed as motion uncertainty. 

2.  Take some sensor measurements, which should help robot to reduce the error 

in its known position. Frequently sensors introduce errors during its measurement 

these errors known as measurement uncertainties or measurement noise. 

3.  Localize itself against a map using its knowledge of how far it might have 

moved and its sensor readings.  

Motion uncertainty and measurement noise are considered as the control 

parameters. These control parameters mainly effects location estimation with 

respect to the odometery of the robot and intrinsic behavior of the sensor systems. 

Not every localization condition which discussed above is equally hard. But they 

associated with localization problems which characterized by the type of 

knowledge that is available initially and at run time. There are three types of 

problem encounters in mobile robot localization shown in Table 1. 

Type Definition 

Position tracking 
Assumes that initial pose of the 

robot is known 

Global localization 
Assumes the initial pose of the 

robot in unknown 

kidnapped robot 

During its operation, the robot 

kidnapped and teleport to some 

other location 

Table 1.1 Taxonomy of localization problems 

A variety of Localization methods for mobile robots in indoor environment 

have been researched. Dead-reckoning method has long been used for 

localization. This method estimates robot pose by using robot motion information 

received from the wheel encoders over time form its starting position. Other 

method used beacons [2] placed at known position in the environment. The range 

sensors used ultrasonic signal or radio signal to determine the distance between 
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the robot and the beacons. Laser range finders also served for mobile robot 

position estimation methods [3, 4]. They worked as active range sensors and the 

most popular sensors in mobile robotics. They worked on the laser beams which 

measures the range from robot to objects. Least square methods or filtering 

methods uses the range data to estimate the position of the mobile robot. 

 

1.1   Brief View of Probabilistic Approaches 

The probabilistic approaches are the most promising candidate which 

provides the comprehensive and real-time solution to robot localization problems. 

Kalman filter (KF) [5] is one of the most popular approaches to solve localization 

problem. All the Kalman filters uses Gaussian distribution for estimation. There 

are several variants of Kalman filter among them most popular are extended 

Kalman filter (EKF) [6, 7], and unscented Kalman filter (UKF) [8, 9].  Pure 

Kalman filters only apply to linear Gaussian problems. To deal with non-linear 

and non-Gaussian problems EKF and UKF are employed. EKF approximates the 

non-linearity with first-order Taylor series. EKF uses analytical linearization 

approach involving Jacobian matrices. Until now extensive researches have been 

reported employing EKF to address several aspects of robot localization. EKF 

suffers considerable hurdles and lack to localize the robot, in case of real data, 

which is typically involving elements of non-Gaussianity and higher order non-

linearities. Unscented Kalman filter (UKF) approximates the non-linearity up to 

more degrees than EKF. UKF uses statistical approach called the unscented 

transform which uses set of samples called as sigma points for estimation. UKF is 

favorable when the system is highly non-linear and the derivation of Jacobian is 

not feasible. The particle filter (PF) [10, 11] is an alternative implementation for 

non-linear and non-Gaussian problems. This filter is not bound to Gaussian 

distribution it can approximate any kind of probabilistic distribution of practical 
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importance. The Monte Carlo method is a PF based method uses a set of samples 

called as particles to depict the probabilistic aspect of robot location.  In other 

words rather than approximating the probabilistic distribution of in parametric 

forms as is the case of Kfs, it describes the probabilistic distribution as it is using 

particles. But the number of particles trade-off the efficiency of the computation 

and the computational resources which is necessary to run MCL. 

      UKF and PF have some resemblance with each other in some aspects. Both 

the filter uses samples to represent the distribution of estimation. In case of UKF 

the samples called as sigma points, while in case of PF the samples are known as 

particles. However the UKF selects the sigma points deterministically while the 

PF selects particles stochatically. PF can deal with any probabilistic distribution, 

but UKF uses only Gaussian distribution which is one of the essential feature of 

KF approach. In some case where fast computations require UKF considered 

being more feasible than PF. Beacause in case of PF increasing in number of 

particles decreases the computational time. Besides favorably the computational 

efficiency of UKF is comparable to EKF but better than PF. 

1.2    Related Work 

Although much progress has been made which focused on mobile robot 

localization using probabilistic approaches which are capable of solving 

localization problems and make use of several sensors such as range-bearing 

sensor, ultrasonic sensor, vision sensor, laser range finder, and RFID sensor etc.  

Giuseppe Cotugno et al. compares the two algorithms based on Extended Kalman 

filter (EKF) and Unscented Kalman filter (UKF) for the mobile robot localization 

environment reconstruction. Their proposed algorithm has no assumption on the 

robot working space. The robot drives only by the measurements of ultrasonic 

sensors system. The basic idea behind the algorithm is only estimates the current 

position and orientation of robot. They implement the sensor switching activation 

policy which allows energy saving and still achieving the efficient tracking of the 
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workspace [12]. Leonardo Romero et al. have proposed the approach for an 

indoor mobile robot using data fusion of ultrasonic sensor, laser range finder to 

learn probabilistic grid maps of an environment. [13]. Byoung-Suk et al. suggest 

ta novel scheme to solve the problem in localization using the fusion of RFID, 

ultrasonic sensor and wheel encoder data to reduce the uncertainty of localization 

system. In this scheme certain data combination set to fuse are selected according 

to environmental factor. [14]. Byoung-Suk et al. developed the RFID based 

mobile localization system which adopts RFID tags distributed in space. The 

proposed algorithm improves the localization by fusing an RFID system with an 

ultrasonic sensor system. This system removed the uncertainties of RFID systems 

by using distance data obtained from ultrasonic sensors. This system mainly 

based on hierarchical to estimate the position of robot using global position 

estimation (GPE) and local environment cognition (LEC) [15]. Ashley W. 

Stroupe et al. have proposed the method for representing, communicating and 

fusing distributed, noisy and uncertain observation of an object by multiple robots. 

The approach of this method based on Bayes‟s rule and Kalman filter (KF) theory 

enables two or more observers to achieve greater effective sensor coverage of the 

environment and improved the accuracy in object position estimation [16]. 

Muhammad. L. Anjum et al. implement sensor data fusion method using an 

Unscented Kalman filter (UKF) for mobile robot localization. They use 

accelerometer, gyroscope, and encoders to obtain robot motion information and 

UKF used as an efficient sensor fusion algorithm. This method able to 

compensate slip error by switching between two different UKF models built for 

slip or no-slip cases. This system is able to track the robot motion in various 

scenarios including the scenario when robot‟s encoder data is not reliable due to 

the slip occurrence [17]. 

Some of the recent sensor fusion approaches used in robot localization 

like the work of W. Haijun et al. [18] they worked on the rough set theory. On the 

basis of this theory infrared sensor data fusion system was built and improved 

attribute reduction algorithm was proposed. Although the rough set theory is a 
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powerful tool in processing much uncertain and incomplete information systems. 

But fused infrared sensors data is not enough in case of complex tasks for mobile 

robot especially in unknown environments. L. D. Alfosono et al. [19] present the 

sensor fusion surrounding environment mapping for a mobile robot using mixed 

extended Kalman filter. In their research the workspace is totally unknown. The 

local information is used to give a good measurement model to complement filter. 

However, the lack of communication between transmission channel and the 

mixed filter approach encountered loss of information especially in case of more 

complex environment. G. G. Rigatos [20] worked on the estimation of robot 

position using sensor by implementing EKF and PF filter approaches and 

compared their performance. He showed in case of sensor fusion PF has better 

performance than EKF at the cost of demanding computation. 

In this thesis we proposed the modified UKF localization algorithm fusing 

ultrasonic sensor and laser range finder measurements for indoor mobile robot 

localization in a partially unknown environment. The later section will describe 

the motivation of the proposed approach. 

1.2.   Motivation 

Accurate and efficient mobile robot localization in an unknown 

environment is long awaited requirement of many robotic engineers and 

researchers. One of the requirements of localization is to localize the robot in a 

partially unknown indoor environment. Aiming at this issue we propose the 

approach for mobile robot localization in a partially unknown environment. We 

implement UKF localization algorithm fusing the measurements of ultrasonic 

sensor and laser range finder. The purpose of fusing two different sensor 

measurements is to efficiently translate the sensory inputs into reliable estimates 

that can be used by the robot to sense its whereabouts. The proposed approach 

also deals with the problem of data association in case of partially unknown 

environment. The robot is given with partial map information of its workspace 
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consisting of tables, chairs on the floor, and ultrasonic beacons attached on the 

ceiling of the room.  The environement of the floow is modeled with occupancy 

grid map while the ultrasonic beacons are considered as landmarks. The goal of 

robot is to determine its position relative to its workspace, and calculate the 

correspondence of range data to ultrasonic beacon while the robot position is 

estimated. Figure. 1 shows the method of robot localization using data association. 

 

Figure 1.1.  Flow chart of mobile robot localization with unknown correspondence 

black arrows shows the information, orange arrows show the procedure, and green 

arrow shows procedure + information 
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2.     Approaches for Robot Localization 

Mobile robot localization is the most perceptual problem in robotics. 

Nearly all the robotics tasks require information of the location of objects that are 

being manipulated. Mobile robot localization considered as an issue of coordinate 

transformation. Maps are described in a global coordinate system, which is 

independent of a robot‟s pose. Localization method establishes the 

correspondence between map coordinate and the robot‟s local coordinate system. 

Knowing the robot pose (     ) is sufficient to determine this coordinate 

transformation, assuming that the pose is expressed in the same coordinate as the 

map. Mostly robot does not possess the noise-free sensors for measuring the pose. 

A key difficulty arises from the fact that a single sensor measurement is usually 

sufficient to determine the robot pose [21]. The robot has to integrate the sensor 

data over time„t‟ to determine its pose. Figure 2.1 show the graphical model for 

the mobile robot localization problem. The map information and sensor data are 

given to robot and it has determined its position relative to the map and its 

movements.  

 The two fundamental issues that have to deal with when designing a 

localization system is how to represent the uncertain information about the 

environment and the robot pose. Localization is thus to a large extent about 

representing to uncertainties or noise [22]. This chapter represents the different 

approaches to represent the environment, dedicated methods to represent the 

robot pose and the methods deal with robot perception i.e. how robot sense its 

whereabouts when it navigates into an environment.  
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Figure 2.1.  Graphical model of mobile robot localization. The values of shaded 

nodes are known: the map m, measurements z and the controls u. The goal of 

localization is to infer the robot pose x [21]. 

 

2.1.   Environment representation 

There are many ways to represent the knowledge about an environment. 

As it state early in Chapter 1, the robot localization deals with indoor 

environment. Typical examples of indoor environment are domestic office, 

classroom, laboratory, and office settings. The assumptions and decision made in 

this work do not necessarily apply to other types of environments, for example an 

outdoor scene. 

 Localization techniques have been developed for a broad set of 

environment representations. Two major paradigms which are identified for 

mapping of indoor environments are: grid-based, and landmark-based. 

 

2.1.1.    Grid-based  

     The key idea behind the grid based map is to represent the map of an 

environment as evenly spaced grids, and each grid in the map represent the 

presence of obstacle at that location in environment.  
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To create grid maps Occupancy grid algorithm are use to compute the 

posterior estimates for these grids in the map. These algorithms require range 

measurements in a number of different directions creates a map of the 

environment by integrating data collected over time. Such measurements readily 

obtained by sweeping the sensor. As the robot explores its environment, 

information from the range sensors sweeps combined with the information about 

the robot‟s location to update the occupancy values for the global grid map. Thus 

the occupancy values for each grid cell in the grid indicate whether the cell is 

occupied, empty or unexplored.In V. Vareropoulos et al. they develop the method 

of localization and a map construction using sonar data from a sonar-based range 

sensor [23]. No prior knowledge about the environment is assumed. The map is 

constructed autonomously by the robot. S. Fheng et. al proposed the grid-based 

improved maximum likelihood estimation (GIMLE) method for localization in 

the complex indoor Wireless sensor network (WSN) environment. In this method 

the grid area is dynamically changed based on the position of mobile robot in 

each sampling time [24].  In order to make a grid-based map responsive to the 

changes in the environment but at the same time reduce the noise of false range 

sensor readings (due to multiple reflection and transducer accuracy); a weight is 

given to each occupancy update. There are two modes of mapping: exploration 

and localization. In exploration mode any change in the occupancy value will 

have the maximum effect, but during the localization mode each will have the 

reduced effect in the global map. 

The occupancy grid map is chosen for this research to model the 

geometry of the experiement work space. We assume the information of each cell 

in the gird map and the grid occupancy is already known. 
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Figure 2.2.  Examples of 2D gridbased map, in the above figures the blue line 

represent the real robot path (The left figure represent the grid based map of a 

work space which we use for navigation experiement in this research 

 

2.1.2. Landmark based 

The idea of trying to extract features from the environment is quiet 

natural; this is for example how most city maps are constructed. Landmarks are 

the features in the environment that robot can detect. Sensor readings from a 

robot are analyzed for the existence of landmark in it. Once landmarks are 

detected, they are matched with the priori known information of the environment 

of the environment to determine the position of the robot. Landmarks can be 

divided into active and passive landmarks [25, 26]. 

  Active landmarks, are also called beacons, are landmarks that actively 

send out the location information. Active landmarks can take on the form of 

satellites or other radio transmitting object. A robot sense the signal sent out by 

the landmark to determine its position. The two closely related methods are used 

to determine the absolute position of the robot using active landmarks: 

triangulation and trilateration. Triangulation techniques are use distance and 

angles to three or more landmarks, while trilateration technique only uses 

distance. The angles and distance are then used to calculate the position and 

orientation of the robot.  

  If the landmarks do not transmit signals, the landmarks are called as 
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passive landmarks. The robot has to actively look at those landmarks to acquire 

position measurements. Techniques using passive landmarks in determining the 

position of the robot rely on detection of those landmarks from sensor readings. 

The detection of the landmarks depends upon the type of senor used. For example, 

in detecting landmarks in images from the vision systems, image processing 

techniques are used. When three or more landmarks are detected it uses 

triangulation or trilateration techniques to detect the landmark location. Passive 

landmarks can either be artificial or natural and the choice of which kind of 

landmark to use can play the significant role in the performance of localization 

system.         

2.2. Robot Motion 

When we talk about location, pose, or position we mean the x and y 

coordinates and  (heading) of the robot in global coordinate system.  The robot 

configuration of a mobile robot is commonly describing the three variables (    

 ), its three-dimensional Cartesian coordinates relative to the global coordinate 

frame. Figure 2.3 shows the robot pose in Cartesian coordinate frame. The robot 

pose is the fundamental knowledge to estimate the robot‟s location in an 

environment. 

 

Figure 2.3.  The robot poses in Cartesian coordinate frame 
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2.2.1.   Dead reckoning 

Dead reckoning is the estimation of a robot‟s location based on its 

estimated speed, direction and time of travel with respect to a previous estimate 

[27]. If the robot has a good initial pose estimate 1 1 1 1( , , )t t t tX x y      at time  t − 1 , 

odometric information can be used to track of the pose of the robot.  

The odometer sensor is used to measure distance travelled, typically by 

measuring the angular rotation of the wheels. The direction of travel can be 

measured using an electronic compass or the change in heading can be measured 

using gyroscope or differential odometry. These sensors are imperfect due to 

systematic errors such as incorrect wheel radius or gyroscope bias, and random 

errors such as slip between the wheels and the ground, or the effect of turning 

[28].   

 Let‟s consider the kinematics for an ideal noise free robot. Let ut =

 (v ω)T denotes the control at time„t‟.  Both velocities are kept at fixed value for 

the entire time interval  (t − 1 t].   Mathematically, the robot‟s configuration at 

the time step t , including the odometry is expressed as: 

         (
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)                              (2.1)        

The Equation 2.4 [29] follows the simple trigonometry. After  t units of 

time, the noise free robot has progressed v.  t along the circle which caused its 

heading direction to turn by  ω.  t . Of course the robots cannot jump for one 

velocity to another, and keep velocity constant in each time interval.  To compute 

robot motion with non-constant velocities, it is therefore common practice to use 

small values for  t and to approximate the actual velocity by a constant within 

each time interval. The approximate final pose is then obtained by concatenating 

the corresponding trajectories using equation 2.1. 
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 2.2.1.1    Motion Model 

In actual, robot motion is subject to noise. The actual velocities differ 

from the commanded ones or measured ones. The difference between 

commanded and actual velocities usually model by a zero- centered variable with 

finite variance. More precisely, the actual velocities are given by:   
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Here 2a
  is the zero mean error with variance 2a . Thus, the true velocity 

equals the commanded velocity plus some small additive error (noise). The 

parameters 1 through 4  are robot specific motion error parameters. They 

model the accuracy of the robot. The less accurate motion of a robot, the larger 

these parameters.  

  The motion model assumes that the robot control through two velocities, 

a translational velocity „v‟ and a rotational velocity „ω ‟. Many control robots 

offer control interfaces where the programmer specifies velocities. Differential 

drives, Ackerman drives and synchro drives are controlled in this way. The 

transitional velocity at time„t‟ by vt    and the rotational velocity by ωt.   Hence 

we have, 

                                      = (
  
  
)                                                    (2.3) 

In this thesis we consider positive rotational velocity    induce the counter 

clockwise turn (left turn). Positive translational velocity    corresponds to 

forward motion.   

Table 2.1 shows the motion model which generates random values of     

and     for a fixed control    and robot pose     . This algorithm accepts 1tX  , 

tu  and motionpara as input and predict the pose of the robot tX  at time t . tu  is 
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the control commanded or proprioceptive motion sensing  , .
T

v   t  is the 

sampling time step. The variable motionpara consisting of motion noise 

parameters 1 2 3 4( , , , ).     The function sample generates the random sample from 

a zero centered distribution with variance 2 2

i jv    [29, 30]. 
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Table 2.1.  Algorithm of motion model  

2.3.    Robot Perception 

Robot perception has traditionally been addressed as a passive and 

incidental activity, rather than active as task-directed activity. The robot has to get 

the idea of the environment surrounding it. The robot senses the environement by 

means of its exteroceptive sensors. These sensors give momentary situation 

information called as observation or measurments [25]. However, what robot 

thinks it senses is not necessary what actually the case is. Uncertainties in sensor 

readings make difficult in obtaining an accurate idea of the environment. To 

enable the reason about the perceptual capabilities of robot system, mathematical 
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models are needed to describe the various sensors of robot.  

  

2.3.1. Sensor Model 

Sensor or measurement models describe the formation process by 

which sensor measurements are generated in the physical world. The specifics of 

the sensor model depend upon the type of sensor. Imaging sensors are best 

modeled by the projective geometry, sonar sensors are best modeled by 

describing the sound wave and its reflection on surfaces in the environment, and 

ultrasonic senosrs are best modeled by calculating the distance between beacons 

to object through ultrasonic signal.Whereas Laser range finders are modeled 

through raycasting technique.  Probabilistic distribution methods are used to 

model the inherent uncertinaites in sensors. In this research we use two different 

range sensors and we model the noise in their measurements by Gaussian noise 

on the range. Table 2.2 shows the algorithm of sensor model. 

 

 

 

 

 

Table 2.2.  Algorithm of Sensor model  

This algorithm requires an observed feature ( ),t tf r  the robot pose 

( , , ) ,T

t t t tX x y  and map m as inputs. The output q returns the weight value of 

noise in received range information with zero mean and and standard deviation 

r .  

2 2

( , , )

ˆ ( ) ( )

ˆ( , )

t t

t x t y t

t t r

f X m

r m x m y

q prob r r

q



                      

                      

   

 

                       

Sensor Model 

return 



- 17 - 

 

2.3.2. Ultrasonic Sensor 

Ultrasonic sensor system (also known as ultrasonic transceivers) is 

among the most popular sensors in robotics. Ultrasonic sensors have various 

applications in robotics i.e. to detect the movement of robot, to measure the 

distance between target and object, process plants, and unmanned aerial vehicle 

(UAV) navigation etc. They primarily work on the principle similar to radar or 

sonar which evaluates the attributes of a target by interpreting the echoes from 

radio or sound waves respectively. Because the ultrasonic sensors use high 

frequency sound waves rather than light for detection, they work in applications 

where photoelectric sensors may not. Ultrasonic sensor calculates the time 

interval between sending and receiving the echo to determine the distance to an 

object. In this research we have used USAT A105 ultrasonic sensor system 

developed by Korea LPS Company shown in Figure 2.4. 

  

Figure 2.4.  USAT A105 Ultrasonic sensor system. The left figure shows ultrasonic 

beacon (or transmitter) and the figure in the right side shows ultrasonic receiver 

 

 
 

 

 

 

Figure 2.5.  Ultrasonic sensor system environment [31] 
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Figure 2.5 shows the usable area for the existent beacons methods. Each 

beacon has fixed angle, and it usually aim at the center of its corresponding 

section. Also dotted lines from each beacons show the beacon‟s bean angle 

resulting in the recognizable areas (dark parts) while there are un- recognized 

areas beyond the beam angles [31]. 

2.3.3.    Laser Range Finder 

Laser range finders have been in extensive use for many years for 

autonomous robots.  They have multiple applications in mobile robotics. They 

can be used for object tracking, obstacle avoidance, feature extraction, map 

building or self-localization. Their primary usage is to measure the range to 

nearby objects. Range measured along a beam, considered good working model 

of laser range finders [32]. We have three different kinds of laser range finders 

available in the market. As an example three different kinds of laser range finder 

are shown in  Figure 2.6.  

 

    Figure 2.6.  A number of laser range finders from the SICK Company (LMS Tech,      

2004) The right-most scanner LMS-511 is specifically used in the reported 

experiments. 

 

A laser range finder is sending out the series of M laser rays in a 

plane as illustrated in Figure 2.7 illustrates the principle. The left most pulse 

represents the riginal pulse and the time of flight is denoted by  t.  t is directly 
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proportional to the distance r from the scanner to the object, r can be computed as:  

                     2

t
r c


                                                                  (2.4) 

Where, c is the speed of light.  

 

Figure 2.7.  Top view of laser scanner consisting of M laser rays emitted  

in a plane [31] 

 

The operates on the principle of  “time of flight” between sending laser 

pulse in narrow beam towards the object and measure the time taken by the pulse 

to be reflected off the target and returned to the sensor.  

2.3.2.1 Ray Casting 

The robot used in this research features the laser range finder that is 

mounted on the robot and it sweep about 180o and computes range from its laser 

beams. The number of laser beams is computed mathematically using Equation 

2.5 

1LRF
LRFN




 


                             (2.5) 

Where, LRF shows total sweep,  is the difference angle between the beams of 

laser, and LRFN represent the total number of laser beams. In this research we use 

19 laser beams in our experiment to calculate the distance from obstacles to robot. 

In order to calculate 19 laser beams we keep LRF  =180
o
 and  = 10

o
. The range 

computed from the laser range finder is computed through ray casting operation. 



- 20 - 

 

Ray casting determines the heading and distance to an obstacle and to discover 

obstacle free routes for robot to navigate. It works by tracing the path of a series 

of rays originating from the laser range finder current position on a map of 

objects. When one of these rays hits an object (such as wall) the distance is 

registered and the object is rendered at a size proportional to its distance.  

Raycasting can be applied to a robot by using the robot‟s global position to the 

place the robot on a map and then casting the rays from robot‟s position until they 

reach an obstacle on the map. This will result the distance between the robot and 

the object [33]. Figure 2.9 shows the example of ray casting with 360
o
 sweep. 

 

Figure 2.8.  An example of ray casting with 360
o
 sweep. The ray can be seem 

emerging from the robot which is represented by the red circular dot, The green 

square just right to this dot indicates the closest occupied grid cell to the robot [33]. 

 

Table 2.3 shows the ray casting algorithm using grid map information. 

This algorithm requires grid map information 
gridm robot pose

tX , laser range 

finder maximum range Maxr , grid resolution _grid resolution , and the grid occupancy 

_grid occ  as an input. The output of the raycasting algorithm will be the range 

computed from the laser range finder LRFr . We have implemented the same 

raycasting algorithm in this research to compute the distance from obstacles to 

robot through laser range finders.  
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Table 2.3. Ray Casting algorithm using grid map 

2.4 Sensor Fusion  

 
The methods that solve robot localization problem combine initial 

information, absolute and relative measurements to form estimates of the location 

of the robot at a certain time. If the measurements are considered to be readings 

from different sensors, the process used to combine the readings from different 

sensors to forma a combined representation of the environment. The term used in 

robotics for this process is called as sensor fusion or multi-sensor fusion. 
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Fusion of information from multiple sensors is important, since 

combined representation information from multiple sensors can be more accurate. 

In particular, when all sensors are not able to sense the same. Some features may 

occlude for some sensors, while visible to others. Together the sensor can provide 

a more complete picture of scene at a certain time. Multi-sensor fusion is also 

important since it can reduce the effect of errors in measurements [34]. 

Multi-sensor fusion can rely on a probabilistic approach, where 

notion of uncertainty and belief are common terminology. Kalman filter (KF) 

approach is the most popular tools for sensor fusion in mobile robot navigation. 

Sensor data fusion through Kalman filter significantly improves on-line 

estimation reducing the effect of sensor noise and bias. Figure 2.10 shows the 

basic sensor fusion scheme using Kalman filter. 

In Kalman filter formulation, the observation z(k) ∈  ℛn is 

approximated by the linear model 

            
( 1) ( 1) ( 1) ( 1)z t H t x t Q t     

                  (2.9) 

Where mx is a state vector, n mH  is an observation model, and n is the 

observation noise.  

    

Figure 2.10.  Sensor fusion scheme using Kalman filter approach 

The most common use of Kalman filter in sensor fusion for 

navigation  is to construct and maintain the a model of the mobile robot 

environment, and to monitor the position of the moving robot in that environment, 

the filter estimates simultaneously the parameters of the features or landmarks 
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needed in the environment model and the state of the moving robot. 

As stated in the previous chapter, in our proposed approach we use 

the fusion of ultrasonic sensor and laser range finder measurements for mobile 

robot localization. The next chapters will explain in detail how we fuse the 

measurements from both sensors in UKF localization algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 24 - 

 

3.  Unscented Kalman Filter for Mobile    

Robot Localization 

Filtering methods play vital role in mobile for estimating the states of 

robotic system. A good filtering algorithm can reduce the noise from the control 

and measurement signals while retaining the useful information. During the last 

few decades Kalman filter (KF) and extended Kalman filter (EKF) have been 

widely used for state estimation. The Unscented Kalman filter (UKF) is one of 

the recent variations of Kalman filter. UKF have been developed to overcome the 

inherent flaws of Extended Kalman filter (EKF) using statistical approach for 

calculating the mean and covariance which undergoes a non-linear transform upto 

higher order.  

 

3.1  Preliminary Knowledge of UKF parameters 

The UKF is a versatile engineering tool that provides good non-linear 

estimation results for many practical problems. UKF performs the stochastic 

linearization through the use of weighted linear regression process called as 

unscented transform. Unscented transform is the central technique of UKF which 

is used to handle the non-linearity in a non-linear transform by deterministiacally 

selects the set of samples called as sigma points [35]. Figure 3.1 shows the basic 

figure of unscented transformation. 

UKF compute the transformation which approximates the mean and 

covariance of a random vector of length L  when it is transformed by the linear 

map. This is done by computing a set of 2 1L  sigma points, provides the basis of 

mean   and covariance   of the original vector, transforming these points by 

the non-linear mapping and then approximate the mean   and covariance   of 

transformed vector from the transformed sigma points. 
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Figure 3.1.  Unscented transformation 

For L  dimensional Gaussian with mean   and covariance   the 

resulting sigma points are chosen according to the following rule: 
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                      (3.1)  

Here 2( )L L     with   and   being scaling parameters that 

determines how far the sigma points are spread from the mean. Each sigma point 

[ ]i  has two weights associated with it. One weight, [ ]i

mw  is used when computing 

the mean, the other weight, [ ]i

cw  is used when recovering the covariance of the 

Gaussian. 
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The parameter   can be chosen to encode additional (higher order) 

knowledge about the distribution underlying the Gaussian representation. If the 

distribution is exact Gaussian then   =2 is the optimal choice. 

3.1.1   Augmented Unscented Kalman Filter 

In this thesis we implement the augmented unscented Kalman filter 

(UKF) strategy in robot localization.  The key trick is to augment the state with 

the additional components representing the control and the measurement noise. 

The dimensionality of the augmented state is given by the sum of state, control 

and measurement dimensions, which 3+2+N (where N is the number of 

measurements). We assume zero-mean Gaussian noise, throughout in this 

algorithm. The mean 1

a

t   of the augmented state estimate is given by the mean of 

location estimate , 1 , 1 , 1 , 1( , , )X t x t y t t       , and zero mean values for the control 

tz and measurement 
tz  noise. 

           

, 1

1 ( 0)
tt t

t

X t

a

t u u z

z



   







 
 

   
 
  

                        (3.3) 

The covariance 1

a

t of the augmented state estimate is given by combining 

the location position covariance 1t , the control noise tM and measurement 

noise covariance tQ  

1

1

0 0

0 0

0 0

t

a

t t

t

M

Q





 
  
 
  

                                (3.4) 

The Equation 3.3 and 3.4 are used to generate the augmented sigma points using 
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unscented transform (Equation 3.1). 

1

1 1 1 1 1 1[ ]
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a uT a a a a a

t t t t t t t

zT

t



      





     

 
 

      
 
 

                    (3.5) 

 Where, L    and the matrix of augmented covariance matrix 
1

a

t  can 

be done in block as, in 

1
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                      (3.6) 

The augmented covariance calculation is done prior to the prediction step. In 

prediction the state and process noise sigma points passes through the f
      

motion model function. 

   
( ) ( ) ( )

| 1 1 1( , , ) 1 , . . . . . . . 2x i x i u i

t t t t tf u f o r i L                            (3.7) 

The mean , | 1X t t   and covariance | 1t t  of the state calculated as: 

2
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In measurement prediction the predicted state sigma points ( )

| 1

x i

t t 
and the 

measurement noise sigma point passes through the h  measurement model 

function. 
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( ) ( ) ( )

| 1 | 1( , ) 1,.......2i x i z i

t t t t tz h for i L                             (3.9) 

Then estimated measurement | 1
ˆ

t tz  , measurement covariance 
tS  and the cross 

covariance ,X z

t  between state and measurement are calculated 
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                        (3.10) 

The correction step of augmented UKF is virtually identical to EKF 

correction step. All the values computed form Equations 3.3 to 3.10 are 

propagated to the next time step where they need to re-augment with the noise 

states (all zeros) and corresponding covariance matrices. Repeat the computation 

of each equation at each time step of UKF for the desired number of time steps. 

This section provided the theoretical explanation of UKF. In the later section 3.3 

of this chapter will covers the details of each equation with respect to proposed 

approach used to process UKF algorithm. 

3.2   Maximum Likelihood Estimation 

The principle of maximum likelihood estimation (MLE) originally 

developed by R.A fisher in 1920s, states that the desired probability distribution 

is the one that makes the observed data “most likely” which means that one must 

seek the values of the parameter vector that maximizes the likelihood function 

[35]. In this section we discuss the maximum likelihood estimation (MLE) 

method used to cope with the data association problem to calculate the 

correspondence in a partially unknown evnironment. The maximum likelihood 

estimator determines the correspondence that maximizes the data likelihood. 
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1: 1: 1 1:
ˆ ( | , , , )

t

t t t t t
c

c argmax p z c m z u                          (3.11) 

Here tc is the correspondence vector at time t . As before, the vector 

1 1{ , ,.....}t t tz z z  is the measurement vector that contains the list of features, or 

landmarks,
k

tz  observed at time t [21].  

The argmax operator in Equation 3.11 selects the correspondence 

vector ˆ
tc  that maximizes the likelihood of the measurement. Note that this 

expression is conditioned on the prior correspondences 1: 1tc  . While those have 

been estimated in previous update steps, the maximum likelihood approach treats 

them as if they are always correct. This has two important ramifications: 

1. It makes it possible to update the filter incrementally 

2. It also introduces brittleness in the filter, which tends to diverge when 

correspondence estimates are erroneous. 

 Even under the assumptions of known prior correspondences, there 

are exponentially many terms of maximization in Equation 3.13. When the 

number of detected landmarks per measurement is large, the number of possible 

correspondences may grow too large for practical implementations. The most 

common technique is to avoid such an exponential complexity is to performs the 

maximization separately for each individual feature, k

tz in the measurement 

vector tz .  Equation 3.14 shows the correspondence of each feature. 

1: 1: 1 1:

1: 1 1:
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k k
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k k

t t t t t
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c argmax p z c m z u

argmax p z h c m z u








                        (3.12) 

We have implemented Equation 3.12 in the later section of this chapter 

for calculating the correspondence associated with ultrasonic beacons. This 

component wise optimization is justified only when we know that individual 
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feature vectors are conditionally independent (an assumption that is usually 

adopted for convenience) 

3.3   UKF Localization Algorithm  

In this section we discuss the augmented UKF localization algorithm 

for the case of unknown correspondence. This section describes the detail of this 

algorithm based on the robot navigation experiment which is performed for this 

thesis. Basically the UKF algorithm undergoes the two main steps shown in Table 

3.1.  

, 1 1
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  



             

UKF Localization 

Prediction step

Correctionstep

return

          

 

Table 3.1.  Pseudo code of UKF algorithm 

Line1 shows the Prediction step in which state is predicted at time t  

using the previous state information 1t   and control tu as input. Then mean ,X t

and covariance t  of predicted state is computed. The Correction step corrects 

the predicted mean and covariance using the measurement tz , the map m

information and generates the mean ,X t  and covariance t  of the updated state.  

On the basis of experiment we illustrate the prediction step and correction step of 

augmented UKF algorithm in detail below. 

3.3.1  Illustration of Prediction Step 

In prediction step UKF localization algorithm considers control input 

tu  as translational velocity tv  and rotational velocity t  from the wheel 
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encoders, then determined the motion uncertainty covariance matrix
tM in control 

space. The covariance matrix in Equation 3.13 follows directly from the motion 

model in Table 2.1. 

2 2

2 2
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                       (3.13) 

Where vv  
 in Equation 3.13 show the motion uncertainty parameters. 

Equation 3.14 shows the measurement noise covariance matrix tQ
 with respect 

to range data. 
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(3.14) 

The variable 
usat

r  denotes the measurement noise for ultrasonic 

sensor, and 
LRF

r denotes the measurement noise for laser range finder. For sensor 

measurements we only consider sensor noise with respect to range. Because we 

have use the fusion of ultrasonic sensor and laser range finder measurements. 

Altogether we have 
23usat LRFN N N  

 range data. Where usatN
= 4 denotes the 

number of ultrasonic sensor data, and LRFN
=19 denotes the number of laser range 

finder data.  

Then Equation 3.15 the augmented means state vector 1

a

t   consists of mean 
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of robot position , 1 1 1 1( , , )X t t t tx y    
, and zero mean vectors for the control 

uncertainty and measurement values (as discussed in earlier we assume zero 

mean noise) at time 1t  . The dimensionality of this vector should be 3+2+23. 
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          (3.15) 

Equation 3.16 shows the augmented covariance matrix 1

a

t  which consists of 

robot position covariance 1t  motion uncertainty covariance tM , and 

measurement noise covariance tQ at time 1t  .  
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Now the augmented mean state vector and the augmented state covariance are 

used to generate the sigma points. The Equation 3.17 illustrates the sigma point 

matrix 1

a

t  . The dimension of sigma point matrix is 
(2 1)L L 

and each column 

of this matrix represents a sigma point. Where L  denotes the number of states in 

augmented state vector. In this case L =28, so we have 28 57 dimension of sigma 

point matrix and 57 sigma points.  
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(3.17) 
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The , 
 

parameters are already defined in previous section 3.1. Equation 3.18 

shows velocity motion model g . The g requires the location components 1

x

t  of 

the sigma points, control input 
tu with added control noise component 

, 1

u

i t 
of 

each sigma point at time 1t   . 
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(3.18) 

The Equation 3.18 actually performs the prediction step. In this case the 

prediction position components of sigma points 1

x

t   are predicted at time t . 

Equation 3.19 computes the predicted state mean t  by adding up the location 

component of sigma point 1

x

t   with the mean weight ( )m

iw  value. The t  

vector is the predicted robot position ( , , )t t t tX x y  at time t .  
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      (3.19) 

Equation 3.20 computes the predicted state covariance t  at time t .  
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(3.20) 

The complete pseudo code of UKF prediction step is shown in Table 3.2.  

1 1( , , )tt t u  

-----------------------------------------------------------------------------------------------------------

Prediction step

-----------------------------------------------------------------

1

18

19

1

4

2 2
1 2

2 2
3 4

2

2

2

2

2

1 , 1 , 1

0
1.

0

0 0 0

0 0 0 0

0 0 0

0 0 0 02.

0 0 0

0 0 0 0

0 0 0

3.

LRF

LRF

LRF

usat

usat

t t
t

t t

r

r

t r

r

r

a
t x t y t

v
M

v

Q

  

  











     

 
 
 

 
 
 
 
 
 
 
 
 
 
 
  










------------------------------

 

1 1 22 23, 1 , 1 , 1 , 1 , 1 , 1, 1

1

1

1 1 1 1 1 1

1

2 ( )
,0

2 (c)
, ,0

0 0

4. 0 0

0 0

5.

6. ( , )

7.

8.

T

v t t r t r t r t r tt

t

a
tt

t

a a a a a a
t t t t t t

x u x
t t t t

L m x
t i i ti

L x x
t i i t t i ti

M

Q

g u

w

w

      

     

  

 

  

     





     







 
 

 
 
 
  

 
  



 

    

 

 

  



  t

----------------------------------------------------------------------------------------------------------------

Table 3.2.  Pseudo code of UKF prediction step 
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3.3.2   Illustration of Correction Step 

Correction step of UKF algorithm undergoes the measurement 

prediction step and the filter update step. The measurement prediction step 

requires measurement model with additive measurement noise sigma points. As 

we discussed earlier in this section this algorithm works for unknown 

correspondence. Therefore, the additional block for calculation of correspondence 

is accumulated in the UKF correction step. For the calculation of correspondence 

we only consider the ultrasonic sensor measurement data and the position of the 

ultrasonic beacons in the experiment work space.  

3.3.2.1   Calculation of Correspondence 

To determine the correspondence, we have 4usatN   sensor data usat

tz  

from the ultrasonic sensor, the variable k  denotes the number of actual ultrasonic 

sensor data. The k

tc  is correspondence variable consisting of hypothesis which 

associates range data to beacon by selecting the maximum likelihood of the 

measurement 
,

usat

t kz  of any possible ultrasonic beacon in the map usatm  . The 

variable usatm denotes the map which specifies every thj ultrasonic beacon‟s 

position in work space. In this case the correspondence variable k

tc  contains 4 

different most likely correspondence values correspond to each ultrasonic beacon 

position in the experiment work space.  

Equation 3.21 shows that the predicted robot position components x

t  

passes through the ultrasonic measurement model usath and added up with 

measurement noise components usatz

t ; generates the measurement sigma points 

usat

tZ for ultrasonic sensor measurement the superscript usat denotes ultrasonic 

sensor measurement.  
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(3.21) 

Equation 3.22 shows the predicted measurement ˆusat

tz by adding up the 

measurement sigma points usat

tZ  with the weighted mean ( )m

iw . 
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(3.22) 

Equation 3.23 illustrates the measurement covariance usat

tS  for each thj

ultrasonic beacon.  
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(3.23) 

Equation 3.24 illustrates the maximum likelihood this calculation requires 

predicted measurements ˆusat

tz , measurement covariance usat

tS , and the actual 

ultrasonic sensor data usat

tz . The variable ML  in this equation shows the 

maximum likelihood measurement of every thk actual ultrasonic sensor data. 
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(3.24)  

Equation 3.25 determines the correspondence. The argmax operator selects the 
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correspondence vector ˆ
tc
 
that maximizes the likelihood of every thk ultrasonic 

sensor measurement usat

tz . 

(1) (2) (3) (4)

( )

( , , , )

k

t
k

k

t
k

c argmax  ML

c argmax  ML ML ML ML





                                 (3.25)  

Table 3.3 shows the complete pseudo code for the calculation of correspondence 

of ultrasonic beacons. 

----------------------------------------------------------------------------------------------------------

For the case of unknown correspondence

--------------------------------------------------------
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, (1 57)

( )

, ,

1.

2.

3. ( ( ) )

ˆ4. (

usat

usat usat

t k t k

zusat x

t j usat t t

usat m us

t j i t j

z r

j m

Z h

z w Z

 







 



--------------------------------------------------
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----------------------------------------------------------------------------------------------------------

Table 3.3. Pseudo code of calculation of correspondence 

3.3.2.2   Measurement Prediction and filter update 

In measurement prediction steps the robot position components x

t

passes through the measurement model h  shown in Equation 3.26 then added 

with measurement noise sigma points z

t . 
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(3.26) 

The Equation 3.26 generates the measurement sigma points tZ . The 

measurement model h  incorporates the ultrasonic measurement model usath  

and laser range finder measurement model LRFh . Basically this equation fuses the 

ultrasonic sensor and laser range finder measurements. Equation 3.27 shows the 

calculation of predicted measurement ˆ
tz  which requires the sum of measurement 

sigma points tZ with weighted mean ( )m

iw .  
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(3.27) 

The variable ˆ
tz describes the predicted ultrasonic sensor and laser range finder 

measurements. Equation 3.28 illustrates the measurement covariance matrix 

which calculates through measurement sigma points tZ  , predicted 

measurement ˆ
tz  and the weighted sigma point covariance ( )c

iw . 
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Equation 3.29 illustrates the cross covariance, which describes the covariance 

between the position components sigma points x

t and the measurement sigma 

points tZ . 
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The filter update step consists of unscented Kalman gain tK  calculation, updates 

the predicted mean and covariance. Equation 3.30, 3.31 and 3.32 illustrates the 
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(3.30) 

Equation 3.31 and 3.32 illustrates the updated mean and covariance matrices. 
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Table 3.4 depicts the complete pseudo code of UKF correction step with the 

correspondence calculation pseudo code. The next sections discuss the 

implementation of UKF localization algorithm with known correspondence in our 

experiment.  
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Table 3.4.  Pseudo code of UKF correction step 
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3.4   UKF Localization Algorithm using ultrasonic 

sensor with unknown correspondence 

This section summarizes the UKF algorithm using only ultrasonic sensor 

measurement. As it is already describes in the previous section of this chapter we 

have used 4usatN   ultrasonic measurements in robot localization. This algorithm 

assumes all the ultrasonic beacons detection is contained in the observation tz  

and we assume the data association to beacon is unknown. The correspondence 

problem is solved through maximum likelihood estimation (MLE). MLE first 

determines the most likely value of the correspondence vector tc , and then take 

this value for granted. 

In this algorithm the dimensionality L of the augmented state vector is 

given by the sum of robot state, control and 4usatN  ultrasonic measurements 

dimensions, which is 3 2 usatN  . The augmented state estimate generates 

2 1 19L  sigma points each having components in state, control and ultrasonic 

measurement space.  

Table 3.5 illustrates the complete pseudo code of UKF localization 

algorithm using ultrasonic measurement with unknown correspondence. Lines 3 

and 4 generate the augmented mean and covariance matrices. Line 5 calculates 

the sigma points
1

a

t 
. Line 6 to 8 performs the prediction step.  In line 6 which 

the location components of sigma point 
1

x

t 
 undergoes the motion model 

g
 

using the control and additional control noise components u

t . Line 7 and 8 

computes the predicted mean t  and covariance 
t  . 

Line 11 computes the measurement sigma points j

tZ . In line 9 the variable 

k

tz denotes the each thk   actual ultrasonic sensor actual range information tr .  

Line 12 shows the calculated measurement ˆ j

tz  from each thj beacon position in 
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the map m . Line 13 gives measurement covariance j

tS of each ˆ j

tz .  Line 14 

computes the maximum likelihood of the measurement ˆ j

tz of any possible beacon 

the in the map. In line 16 tc  denotes the correspondence vector containing the 

computed correspondence values associated with each thk actual ultrasonic 

sensor measurement. 

Measurement model h  in line 17 generates the measurement sigma 

points 
tZ  based on the correspondence tc  computed in line 16. Line 18 and 19 

calculates the measurements ˆ
tz  and measurement covariance tS . Line 20 shows 

the cross covariance ,x z

t  between robot predicted state and calculated 

measurement. Lines 21 to 25 shows the filter update step which computes 

Kalman gain tK  and updates the predicted mean t  and covariance t . 
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------------------------------------------------------------------------------------------------

  

Table 3.5.  Complete Pseudo code of UKF Localization with unknown 

correspondence using ultrasonic measurement 
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3.5  UKF Localization Algorithm using laser range 

finder  

In this section we discuss the UKF localization algorithm using laser 

range finder measurements. In this algorithm all the correspondences related to 

laser range finder measurement, and the map information is known. We have used 

19LRFN   laser beams to calculate the distance from the robot to the surroundings. 

The grid map information is used to model the geometry of robot‟s work space. 

 The dimensionality L of the augmented state vector is given by the 

sum of robot state, control and 19LRFN  laser range finder measurements 

dimensions, which is 3 2 usatN  . The augmented state estimate generates 

2 1 49L  sigma points each having components in state, control and laser range 

finder measurement space. Table 3.6 depicts the complete pseudo code of this 

algorithm. Augmented mean and covariance matrices are generated in lines 3 and 

4. Sigma points 
1

a

t 
 are calculated in line 5. The prediction step illustrated in 

lines 6 to 8. In line 6 the location components of sigma point 
1

x

t 
 undergoes the 

motion model using the control and additional control noise components u

t . The 

line 7 and 8 compute the predicted mean t  and covariance 
t .       

In Line 17 measurement model h  generates the measurement sigma 

points 
tZ . Line 18 and 19 calculates the measurements ˆ

tz  and measurement 

covariance tS . Line 20 shows the cross covariance ,x z

t  between robot predicted 

state and calculated measurement. Lines 21 to 25 shows the filter update step 

which computes Kalman gain tK  and updates the predicted mean t  and 

covariance t . 
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-----------------------------------------------------------------------------------------------------

Table 3.6. Complete Pseudo code of UKF Localization using laser range finder 

measurement 
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4. Experiment and Analysis of Proposed 

Approach 

This chapter presents the details of robot navigation experiment and 

performance evaluation of proposed approach in UKF localization algorithm. The 

navigation experiment is performed to collect the robot proprioceptive 

information and sensor measurement information. The experiment data set is 

utilized to implement UKF localization algorithm. Moreover, the performance of 

UKF localization algorithm is evaluated by considering the effect of control 

parameters values, and the comparatively analysis of UKF design parameter α 

values.  

 

4.1 Mobile Robot Platform 

4.1.1 Complete Robot Hardware  

The complete robot hardware is divided into three main blocks: the 

control system, the robot, and the sensor system. Control system consists of a 

laptop computer that connected to robot via Ethernet. The mobile robot used for 

experiment is “MRP-NRLAB02” differential drive robot (shown in Figure 4.1) 

manufactured by REDONE Technologies. The sensor system consists of USAT 

A105 ultrasonic sensor system from Korea LPS Company, and LMS-511 laser 

range finder system of SICK. USAT A105 receiver sensor is connected to laptop 

computer via serial to USB connector. LMS-511 is connected to laptop via USB 

2.0 to fast Ethernet adaptor. Figure 4.2 displays the connectivity diagram of the 

complete robot hardware for experiment.   



- 52 - 

 

 

Figure 4.1.  MRP-NRLAB02 Differential drive robot 

 

Figure 4.2.  Connectivity diagram of MRP-NRLAB02 Hardware 

The robot is controlled by a joystick. The robot‟s wheel encoder 

calculates the proprioceptive information consisting of translational velocity v

and rotational velocity  . The range information from ultrasonic beacons to 

robot receives from ultrasonic receiver. The distance from walls to robot is 

measured by laser range finder. Figure 4.3 shows the complete view of robot 
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hardware used in experiment.  

 

  

Figure 4.3.  Front and rear view of complete robot hardware 

4.1.2 Experiment Workspace 

The experiment is conducted in a Capstone design laboratory, IT building 

6th floor, Chosun University. The total work area for navigation is 15m×8m. The 

experiment work space consists of chairs, tables on which desktop computers are 

located, and ultrasonic beacons are attached on the ceiling of the room. The robot 

navigates through the defined way points on the floor.  The initial position and 

the goal position of the mobile robot are set as (5.3m, 1.21m, π rad) and (10.26m, 

6.16m,π rad). Figure 4.4 shows the actual environment of the workspace. The 

green line shows the nominal path of real robot. 
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Figure 4.4.  Robot Navigation work space (Capstone Design Laboratory) 

Beacon x position(m) y position (m) 

1 5.06 0.6 

2 10.6 0.6 

3 10.6 6.94 

4 5.06 6.94 

Table 4.1.  Position of beacons 

Due to the cluttered structure of work space environment some artificial 

arrangements are made in room. Because of the laser range finder which 

sometimes fail to detect the narrow legs of chair and tables. Therefore we have 

made some changes in the work space environment by creating the boundaries 

with the wooden blocks under each table. Figure 4.6 shows the artificial 

arrangement of workspace with nominal robot path and guided way points. Table 

4.2 shows the position of way points specified on the robot‟s nominal path. 
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Figure 4.5. Workspace environment with artificial arrangement 

 

Way Points x position(m) y position(m) 

1 5.3 1.21 

2 5.3 6.16 

3 7.55 6.16 

4 7.55 1.21 

5 10.26 1.21 

6 10.26 6.16 

Table 4.2.  Location of way points 

4.1.3  Navigation Experiment  

The robot navigation experiment is performed to collect wheel 

encoder data, range data from ultrasonic sensor system and laser range finder. We 

develop GUI which allows us to visualize the sensor data and wheel encoder data 

simultaneously during robot navigation. Figure 4.5 shows the snapshot of GUI 

display. 
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Figure 4.6.  Robot navigation display GUI 

During the navigation experiment there is a time difference observed on 

receiving ultrasonic sensor, and laser range finder data, because of their different 

time of flights (TOFs). The USAT A105 ultrasonic sensor system we have used in 

our experiment has TOF values of 0.5 secs to propagate ultrasonic signal from 

beacon to receiver. On contrary LMS-511 laser range finder has TOF of 20 milli 

secs to measure the distance from wall to robot. The complete data set received 

from the navigation experiment consisting of wheel encoder data, ultrasonic 

sensor data, and laser range data is then saved into a text file. The text file is then 

use to implement the UKF localization algorithm in a simulated environment 

using MATLAB. 
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4.2. Implementation of UKF Localization Algorithm 

The proposed approach used in UKF localization algorithm is to 

estimates the position of the robot in case of partially unknown environment. The 

experiment work space is modeled by grid map while the ultrasonic beacons are 

considered as landmarks, and the correspondence of range data to ultrasonic 

beacons is unknown while the robot location is estimated. 

It is noted from the navigation experiment data set that ultrasonic 

sensor and laser range finder data does not receive at the same time. In this case 

we use separate UKF algorithm for each sensor measurement. The UKF 

algorithm using ultrasonic sensor measurements also computes the 

correspondence which associates the range data to a beacon. On the other hand it 

can happen very rarely that either of the sensor data can be received at the same 

time, or we can regard them roughly at the same time. This situation depends 

upon the algorithm computation time or it may happen due to the negligible TOF 

difference of each sensor‟s data availability. Therefore, in this situation both of 

the sensor data are fused and we use UKF algorithm using the fusion of both the 

measurements. Table 4.3 illustrates the 3 separate instances to access any of these 

situations using UKF algorithms (discussed in Chapter 3). 

---------------------------------------------------------------------------------------------------------------------------

 Algorithm: Accessing Sensor data in UKF (Ultrasonic sensor data, Laser range finder data)

---------------------------------------------------------------------------------------------------------------------------

   Ultrasonic sensor data available

   execute Algorithm:UKF Lo

if

 

 

1 1

1 1

calization using Ultrasonic sensor 

  Laser range finder data available

    execute Algorithm : UKF Localization  using Laser Range Finder

Both Ultrasonicsens

- -

- -

, , , ,

, , , ,

t t t t

t t t t

u z m

elseif

u z m

elseif









 1 1

or and Laser rangefinder data available

execute Algorithm:UKF Localization  using  Ultrasonic and Laser Range Finder

---------------------------------------------------------------------

- -
, , , ,

t t t t
u z m

endif

 

-----------------------------------------------------------
Table 4.3.  Pseudo code for accessing UKF algorithms 
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4.2.1  UKF Localization Result 

In this thesis we used the first two instances of Table 4.3. The data sets 

that we collected from the navigation experiment have ultrasonic sensor and laser 

range finder data which are not received at the same time. Altogether we have 23 

measurement values and among them 4 are ultrasonic sensor data and 19 are laser 

range finder data. For the implementation of UKF localization algorithm we have 

setup the simulation on MATLAB. Figure 4.6 shows the Simulation setup for 

UKF localization. 

In Figure 4.7 the light blue line shows the robot‟s nominal path. The 

four small colored (red, green, blue, and pink) circles denoted by labels B1, B2, 

B3, and B4 are ultrasonic beacons. The numbers shown on the nominal path 

indicate the way points. The arcs centered at the beacons indicate the range from 

the corresponding beacons. The laser range finder data represented by the blue 

lines emerging from estimated robot shown by small red circle. The black ellipse 

around the estimated robot position indicates the robot pose error covariance or 

robot pose uncertainty. The black connected dots display the map information of 

the experiment work space. The variable „i‟ shows the number of iterations. The 

correct correspondence and the calculated correspondence of ultrasonic beacons 

denoted as “ct” and “calc c”. The „tv‟ and „rv‟ variable displays the robot 

translational and rotational velocity calculated from its wheel encoders. 

To check the estimation of robot location given by the UKF 

localization, the estimated position of the robot followed by the robot‟s nominal 

trajectory. Because in real situation we don‟t know the actual location of robot, in 

this case we compare the estimated robot trajectory with robot‟s nominal 

trajectory.  
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Figure 4.7.  Simulation setup for UKF Localization 

Table 4.4 the values motion noise and measurement noise used for 

simulation. Figure 4.5 and shows the simulated results of UKF estimation for 

robot localization.  

Motion Noise Measurement Noise 

𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟒 𝝈𝒖𝒔𝒂𝒕 𝝈𝑳𝑹𝑭 

0.0012 0.050001 0.0011 0.13 0.5 0.1 

 Table 4.4.  Uncertainty parameter values used for simulation 

For displaying robot pose uncertainty in simulation, the uncertainty 

ellipse is magnified by the factor of 10 to make it easier to examine. Figure 4.8(a) 

shows the estimated robot at its initial position, it can explicitly observed through 

the pose uncertainty ellipse that robot has high error covariance also the sigma 

points quiet far spread around the estimated robot mean position. However it can 

be seen that estimated robot allocate correct correspondence value to beacons. In 
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Figure 4.8(b) the robot progresses towards way point 2. The pose uncertainty 

with respect to robot x pose coordinate is considerably small than y pose 

coordinate, also the sigma points gets condensed around the estimated robot mean 

position. Moreover, the robot correctly specify the correspondence value to 

beacons.  

Figure 4.8(c) displays the estimated robot at way point 2. At this 

position it can be clearly through uncertianty ellipse that robot pose uncertainty is 

large. Due to large pose uncertainty, estimated robot allocates incorrect hypothese 

for the correspondence to beacon 1. Another reason of this situation is the range 

data received from beacon 1 and 3, which is same, in this case robot selects the 

measurement likelihood for beacon 1 and 3 is same. Figure 4.8(d) depicts the 

estimation with high ambiguity. Although the robot pose uncertainty seems to be 

very small still the hypothesis for the correspondence to beacons asserts false data 

association. Through intuitive obervation of this situation the distance from 

beacons 1 and 2 to robot is same and the distance from beacon 3 and 4 is same, 

However, the range data from each beacon which is represented by their 

respective arcs are measured to be same. Therefore this situation enable the robot 

to determines the same correspondence values to each beacon. 

 Figure 4.8(e) indicate the robot postion at way point 4. This figure 

depicts the two situations, first the robot has high pose uncertainty. Secondly 

hypothesis for correspondence to beaons is incorrect. It can be seen that robot is 

diagonally equidistant from beacons 3 and 4 therefore, robot deterimine the most 

likely correspondence value is 3. On the other hand the location of the robot not 

equally distant to beacons 1 and 2, but allocate incorrect correspondence value to 

them. This situation can be seen in two ways first at way point 4 robot has high 

pose uncertainty and secondly the range measured from beacons 1 and 2 has high 

measurement noise. 
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Figure 4.8 UKF estimation results for robot localization 

(a) (b) 

(c) (d) 

(e) (f) 
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4.2.1.1   Discussion 

The implications made for deriving the simulation results to 

process the proposed approach in UKF localization are: (a) The robot has partial 

information about its work space i.e robot does not know the actual 

correspondence of data association for beacons. However correspondence of 

associating range data to beacon is known actually. (b) The robot actual pose is 

unknown and the estimation of robot postion is according to the nominal path of 

real robot.  The simulation results regards the two aspects of estimation. First the 

robot pose uncertainty during estimation and second the hypothesis of the 

correspondence to beacons.  

As on the basis of first implication the robot has partial information 

about its work space so it can be explicitly observed in the Figure 4.8(a) the robot 

pose uncertainty ellipse is large and also the sigma point located far apart from 

the mean position of the robot. However, it is observed from the other figures of  

Figure 4.8 the sigma points postion get condensed at the estimated robot mean 

position throughout the simulation. The large robot pose uncertainty is also 

observed in Figure 4.8 (c) and (e) suggest that the motion and measurement errors 

are relatively high. However, it is also observed that pose uncertainty decreases 

when the estimated robot moves straight along the nominal path. The cause of the 

incorrect data association to beacons has two ramifications: It is due to the high 

robot pose error covariance. Another ambiguity occurs if there are many likely 

hypothesis for the correspondence (i.e the similar range data measured from the 

beacons). To reduce the danger of asserting the false data association, there exist 

essentially two techniques: First, select the beacons that are sufficiently apart 

from each other so it doest not that confuse them with each other while they have 

same range information. Second, make sure that the robot pose uncertainty 

remains small. Unfortunately, these two strategies are somewhat counter to each 

other, and finding the right granularity of landmarks in the environment can be 
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regarded somewhat as an art [21].  

 

4.2.1.2  Performance Evaluation 

To evaluate the performance of proposed UKF localization method 

we have performed the analysis according to two aspects. First by considering the 

effect of motion and measurement noise on localization and correspondence 

calculation. Secondly, the comparative analysis of UKF “ α ” parameter for 

localization and correspondence calculation.  

4.2.1.2.1  Effect of Control Parameters 

The control parameters considered as robot motion noise and sensor 

measurement noise in mobile robot localization. In actual case the real control 

parameter values are unknown to us. Therefore, in this section the simulated 

values of motion and measurement noise are used to evaluate the perfromance of 

proposed UKF localization method. We have performed analysis using 4 different 

sets of motion noise values and 2 sets of measurement noise values to investigate 

the behaviour of proposed method. We have assigned one set of measurement 

noise values for two of four sets of motion noise values. Table 4.5 shows six 

different set for the control parameter values used in simulation. 

Motion Noise Measurement Noise 

Case 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟒 𝝈𝒖𝒔𝒂𝒕 𝝈𝑳𝑹𝑭 

1 0.001001 0.033001 0.001001 0.10001 

0.5 0.1 

2 0.001003 0.051001 0.001201 0.15001 

3 0.001002 0.050001 0.001100 0.13001 

0.25 0.09 

4 0.001003 0.053001 0.001101 0.12001 

 

Table 4.5. Simulated control parameters values used for estimation (for each case 

the UKF parameter α set to 0.7. 
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The analysis result is evaluated by plotting the estimated trajectory, distance error 

between nominal robot postion, and estimated robot position for each case and 

also computing the rate of correct correspondence caluculation for each case. 

Figure 4.9 and 4.10 shows the estimated trajectories and distance error. Table 4.6 

and 4.7 listed mean, standard deviation and root mean square error (RMSE) for 

estimation, and the rate of correct correspondence for beacons. 

 

 

 

 

 

 

 

Figure 4.9. Estimated trajectories according to control parameter values of Table 4.5 

 

 

 

(a) (b) 

(c) (d) 
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Figure 4.10.  Distance error according to control parameter values of Table 4.5 

 

 

Case Mean Standard deviation RMSE 

1 0.1991 0.1047 0.2249 

2 0.1547 0.0927 0.2034 

3 0.1458 0.1150 0.1857 

4 0.2104 0.1546 0.2611 

 

Table 4.6.  Mean, standard deviation and root mean sqaure values of distance 

error according Table 4.5 

 

 

 

(a) (b) 

(c) 

(d) 

(d) 
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Case 

Rate of calc. correspondence of each Beacon Over all correct 

correspondence 

rate 
B1 B2 B3 B4 

1 70.36% 74.36% 73.25% 76.62% 68.78% 

2 74.06% 76.50% 80.43% 79.01% 73.18% 

3 72.87% 77.10% 75.21% 78.30% 70.41% 

4 66.03% 73.28% 67.72% 74.09% 65.40% 

 

Table 4.7. Rate of correct correspondence caluation for each beacon according to 

control parameter values of Table 4.6 

 

4.2.1.2.2  Comparative analysis of UKF “𝛂” parameter values 

The UKF “α” parameter is considered as a design parameter which 

determine how far the sigma point spread around the mean t . Its values can 

vary between 10-4 and 1. In this section the comparative analysis of “α ” is 

performed to evaluate the estimation performance of proposed appraoch to 

process UKF localization. We have performed series of comparative analysis 

using different alpha parameter values. In this thesis we have include the result of 

4 suitable alpha values among them. Because the estimation results from these 

alpha values found to be more feasible as compared to other values of alpha. The 

comparative analysis of alpha parameter is performed with fixed values of control 

parameter values. Table 4.8 shows the alpha parameter values used for the 

estimation UKF localization. The analysis result is evaluated by plotting the 

estimated trajectory, distance error between nominal robot, and estimated robot 

trajectory for each case. Also computing the rate of correct correspondence 

caluculation for each case. Figure 4.11 and 4.12 shows the estimated trajectories 
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and distance error. Table 4.9 and 4.10 list mean, standard deviation and root mean 

square error (RMSE) for estimation, and the rate of correct correspondence for 

beacons. 

Case 1 2 3 4 

𝛂 0.2 0.3 0.45 0.55 

 

Table 4.8.  UKF 𝛂 parameter values used for the estimation (for each case 

control parameter values are set to α =0.001002, α =0.05001, α =0.001100, 

α =0.13001, and     t=0.5,     =0.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Estimated trajectories according UKF 𝛂 parameter values 
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Figure 4.12. Distance error according to UKF 𝛂 parameter values of Table 4.8 

 

Cas

e 

Mean Standard 

deviation 

RMSE 

1 0.2776 0.1532 0.3171 

2 0.2492 0.1300 0.2810 

3 0.2581 0.1718 0.3100 

4 0.3767 0.3567 0.5188 

 

Table 4.9. Mean, standard deviation and root mean sqaure values of distance error 

according UKF α of Table 4.8 

 

 

 

 

(a) (b) 

(c) (d) 
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Case 

Rate of calc. correspondence of each Beacon Over all correct 

correspondence rate B1 B2 B3 B4 

1 64.37% 67.23% 68.12% 70.03% 63.03% 

2 66.85% 67.18% 70.43% 71.65% 65.10% 

3 56.21% 66.56% 67.45% 71.56% 55.46% 

4 59.23% 59.48% 70.52% 68.09% 57.40% 

 

 Table 4.10. Rate of correct correspondence caluation for each beacon accrding to 

UKF α parameter values of Table 4.8 

 

4.2.1.2.3 Discussion 

The pupose of performance evaluation is to analyse the 

estimation behavior of proposed approach for robot localization. The results 

which considers effect of control parameter values infer from the estimated 

trajectories, statisitical analysis and the correct correspondence rate. The value of 

UKF α parameter kept as 0.7  throughout while considering the effect of control 

parameters. Estimated trajectoy result from (b) and (c) of Figure 4.9 represents 

significantly better estimation results and correct correspondence rate as 

compared to (a) and (d) of Figure 4.9. It is evident form the results that propoer 

selection of control parameter values is curcial for the use of propsed approach.  

The comparative analysis of UKF α  parameter values, deduce 

the results of esimtated trajectories, statistical analysis and the correct 

correspondence rate. It is evident from the results that proper selection of the 

values of UKF α  parameter has primary importance for the implementation of 

proposed approach.  After considering the results of performace evaluation it is 
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concluded that UKF parameter α =0.7, and the set of control paramter values of 

case 2 of Table 4.6 are found to be optimal values for our simulation results.  

However, the simulated control parameter values, and the UKF α 

parameter values are not fixed to implement the UKF localization algorithm used 

in proposed appraoch. Because we use these values in simulation. These values 

may vary depending upon the enviromnet of work space, robot‟s propioceptive 

information, and the type of sensors we used. The values also depends upon the 

startegies adopt by the user to test the algorithm in simulation. 

 

4.3   Comparitive analysis of UKF Localization  

In this section we have performed the comparitive analysis for UKF 

localization without sensor fusion and with sensor fusion (i.e. the proposed 

approach). In case of without sensor fusion we implement UKF localization 

algorithm using only ultrasonic sensor measurement, and UKF localization 

algorithm using only laser range finder individually. The implementation of 

comparative analysis is done through using the data set collected from the 

navigation experiement. Figure 4.13 depicts the comparison result of UKF 

loclaization for each measurement case. 

4.3.1 Statistical analysis and correspondence calculation rate 

The statistical analysis is performed to evaluate the perfromance of UKF 

localization result without sensor fusion and with sensor fuison. The analysis  

distance error between nominal robot, and estimated robot trajectory for each 

case. Also computing the rate of correct correspondence caluculation for each 
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case. Figure 4.13 and 4.14 shows the estimated trajectories and distance error. 

Table 4.11 and 4.12 listed mean, standard deviation and root mean square error 

(RMSE) for estimation, and the rate of correct correspondence for beacons. 

 

 

 

 

 

 

 

 

Figure 4.13. Estimated trajectories (a) UKF localization using ultrasonic sensor 

measurement (b) UKF localization using laser range finder measurement (c) UKF 

localization using fusion of ultrasonic sensor and laser range finder 
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Figure 4.14. Distance error according according to comparative analysis 

 

UKF Localization 

 

Mean Std dev. RMSE 

using ultrasonic sensor 3.5476 1.4028 3.8144 

using laser range finder 0.9905 0.8254 1.2853 

using fusion of ultrasonic sensor 

and laser range finder 

0.278 0.2384 0.3630 

 

Table 4.11. Mean, standard deviation and root mean sqaure values of distance 

error according to comparative analysis 

 

 

(c) 

(b) (a) 
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UKF Localization using ultrasonic sensor 

using fusion of ultrasonic 

sensor and laser range finder 

B1 66.85% 77.06% 

B2 67.18% 78.50% 

B3 70.43% 80.43% 

B4 71.65% 79.01% 

Over all correct     

correspondence rate 

65.01% 76.18% 

 

   Table 4.12. Rate of correct correspondence caluation for each beacon according 

comparative analysis 

 

4.3.2 Discussion 

The comparative analysis is performed to investigate the estimation 

performance of UKF localization between without sensor fusion case and with 

sensof fusion (i.e. the proposed approach).  Estimated trajectory of Figure 4.13(c) 

represents the improved estimation result from the proposed approach as 

compared to Figures 4.5(b) and Figure 4.5(c) which shows UKF localization 

using ultrasonic sensor measurement only, and UKF localization using laser range 

finder only. It is evident from the distance error plots, statistical evaluation, and 

correspondence rate calculation the propsed approach shows improved estimation 

results as comapred to UKF loclaization results using ultrasonic sensor 

measurement and UKF localization results using laser range finder measurement.  

 

 



- 74 - 

 

5. Conclusion 

The research done for this thesis describes the method for mobile robot 

localization in partially unknown environment. We proposed the appraoch using 

UKF localization algorithm with fusion of ultrasonic sensor and laser range finder 

measurements. The proposed approach also deals with the data asocation problem 

in a partially unknown environement.  

To implement the proposed approach we first perform the robot naivgation 

experiement in an indoor environment. The purpose for the navigation 

experiement is to collect the robot proprioceptive information, range data 

received from beacon to robot by ultrasonic receiver and the distance information 

from walls to robot by laser range finder. Form the navigation data set, it is noted 

that at every time stamp the robot receive measurement information from either 

of the sensor. It is also impractical to receive both of the sensor measurment 

simultanously due to their time of flight (TOFs) differences. 

According to the experiment data set organization we use separate UKF 

loclaization algorithms for each sensor measurements. The UKF localization 

algorithm which uses ultrasonic sensor measurements also calculates the 

correspondence which associates range data to a beacon. We also considered the 

situation that if both of the sensor measurements received at the same time, then 

we use UKF algorithm for fusing both of the sensor measurements. All of these 

UKF algorithms are discussed in chapter 3. Table 4.3 shows how the UKF 

localization alogorithms are accessed on the availabity of respective sensor data. 
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 We implement our proposed approach on simulation using the data set 

collected from the navigation experiement. The simulation results show some 

brittle behavior of estimation perfomance. At some instant during simulation the 

robot pose has high position error covaraince which computes incorrect 

correspondence of associating data to ultrasonic beacons. At some instants of 

simulation the robot receive same range information form all the beacons which 

also results incorrect data association results. Although robot location is not 

equidistant from all the beacons.  

The discrepancies in the results can be improved by some practical 

considerations i.e. the robot first selects those landmarks which are sufficiently 

apart from each other, this strategy reduce the confusion of likely correspondence 

hyothesis for them. Secondly the robot pose uncertainty should remain small. 

Unfortunately both of these considerations somewhat counter each other while 

the robot position is estimated. On the other hand in context with simulation 

results we faced some work space contraints. More generally speaking the 

positions of ultrasonic beacons are fixed in the workspace and the sequence of 

range data generated from the ultrasonic sensor sytem is also fixed.  

Moreover the performance of propsed approach is analysed by 

considering the effect of control parameters, and by comparative analysis of UKF 

design parameter α values. From the performance evaluation it is explicitly 

shown that the appropriate selection of control parameter values, and UKF α 

parameter values are crucial for implementing the proposed approach.  

We also perfromed the comparative analysis between the UKF 

localization algorithm using ultrasonic sensor measurement only, UKF 

localization algorithm using laser range finder only, and the propsed apporach 
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which contributes the fusion of ultrasonic sensor and laser range finder 

measurments. The statistical evaluation, and the correspondence calculation rate 

shows that the proposed approach shows improved estimation as compared to 

UKF localization estimation without fusion cases. 

The maximum likelihood estimation approach we used to cope with 

unknown correspondence issue for the ultrasonic beacons. However we have 

found that it may not be work efficiently as it could be. From the simulation 

results it is showed that MLE was able to correctly assocaite the arange data to 

beacons in all but at few instants. This may due to the experiment poor work 

space modeling which causes incorrect coorespondence results. It can be 

improved by throught more thoughtful selection of landmarks in line 1 of 

algorithm in Table 3.3. Nevertheless the MLE teachnique is of great practical 

importance. The hypothesis framework use in MLE provides the perfect platform 

for applying more various and advanced techniques such as multi-hypothesis 

tracking (MHT) [36]. 

Throughout the progress of this research interesting ideas for future work 

came up. In this reaserch we discuss the implementation and performance of 

proposed approach for robot loclaization by considering fixed ultrasonic beacon 

as static landmark assuming the correspondence is unknown to robot. One of 

these is to look for ways to make this proposed approach applicable in dynamic 

environments, when the number of landmarks are not fixed and static. 
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