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ABSTRACT

 

Development of Patch-Type Sensor Module for Energy 

Expenditure Estimation

             

Li Meina                               

                             Advisor: Prof. Youn Tae Kim, Ph.D.   

                             Department of IT Fusion Technology,

                             Graduate School of Chosun University

 

    For ubiquitous healthcare system, in-situ monitoring of energy 

expenditure is one of essential requirement. Ubiquitous healthcare means 

monitoring anyone, in everywhere without any dependence on time and 

location. Excess nutrient and energy imbalance are considered major 

important cause of chronic disease. Either of them is base on the individual 

energy consumption and caloric intake. 

    In this dissertation, accurate quantification of physical activity energy 

expenditure has been evaluated by the wireless patch-type sensor module. 

The patch-type sensor has been designed for real-time monitoring heart 

rate (HR) and movement index (MI). The major components of the system 

are the sensor board, the rubber case, and the communication module. The 

relation test for HR yields an error rate within 2% compared with CASE 

system (GE, USA). And the correlation coefficient between the average MI 

and conventionally used agility point score was found to be in the range of 

0.8-0.9. The Zigbee telecommunication system was used for communication 
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over distances of more than 400 m in an open space.

   The energy expenditure was estimated by the embedded incremental 

network. The embedded incremental network includes linear regression (LR) 

and radial basis function network (RBFN) based on context-based fuzzy 

c-means (CFCM) clustering. This incremental network is constructed by 

building a collection of information granules through CFCM that is guided 

by the distribution of errors of the linear part of the LR model. The results 

showed significantly high accuracy compared with the conventional network 

structure (RMSE = 0.78).
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요약

에너지 소비량 감지 및 분석을 위한 부착형 센서 모듈

 
                                      Li Meina

                                      지도교수: 김윤태 교수, Ph. D.

                                      조선대학교 대학원 IT융합학과

  유비쿼터스 헬스케어는 시간과 장소에 구애받지 않고 언제 어디서나 사용자의 

신체 정보의 모니터링이 가능함을 의미한다. 이 중 에너지 소비량의 실시간 모니터

링은 필수 요구 사항 중 하나이다. 과다한 영양분과 에너지 불균형은 고질적인 질

병의 원인으로 독립적인 에너지 소비량과 칼로리 섭취량에 기초를 두고 있다.

  이 논문에서는 물리적인 활동 에너지 소비량을 무선 부착형 센서 모듈을 이용하

여 측정하였다. 패치형 센서는 센서 보드, 고무 케이스, 통신 모듈로 구성되며 실시

간 모니터링 심박수 (heart rate)와 움직임 지수(movement index)를 고려하여 설

계하였다. 심박수는 CASE 시스템과 비교하여 약 2% 오류율을 보였으며 평균 움

직임 지수와 기존의 민첩성 포인트와 비교하여 상관 계수 0.8 ~ 0.9의 범위를 보

여주었다. Zigbee 통신 시스템은 개방된 공간에서 400m 이상의 거리에서 통신을 

할 수 있다. 

에너지 소비는 장착된 incremental network에 의해 측정되며 이는 선형 회귀 

(linear regression)와 context-based fuzzy c-means(CFCM) 클러스터링을 기반

으로 한 방사 기저함수 네트워크(radial basis unction network)를 포함하고 있다. 

Incremental network는 LR 모델의 선형 부분의 오류 분포로 알려진 CFCM을 통

해 정보 미립의 수집을 구성하여 기존의 네트워크 구조와 비교하였을 때 상당히 

높은 정확성을 보여주고 있다. (RMSE = 0.78)
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I. Introduction

A. Definition of Energy and Energy Expenditure

1. Energy 

   Humans oxidise (metabolism) carbohydrate, protein, fat (and alcohol) to 

produce energy. The energy is needed: To maintain body functions. To 

breathe, to keep the heart beating, to keep the body warm and all the 

other functions that keep the body alive. The body warm and all the other 

functions that keep the body alive. For physical activity, for active 

movement, muscle contraction. For growth and repair, which require new 

tissues to be made.

2. Energy Expenditure 

   

   The amount of energy used to perform an activity. A baseline of energy 

is used to maintain life functions. 

   The energy expenditure (EE) of a man or woman over a whole day is 

often divided into different components, which can be individually 

determined [1]. These are (Fig. 1.1):
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Fig. 1.1 Total energy expenditure.

a)  Basal Metabolic Rate (BMR)

   The basal metabolic rate is defined as the basal metabolism of an 

animal. BMR is the minimal rate of energy expenditure compatible with life. 

In other words, it is the minimum amount of energy (expressed in number 

of calories) our body needs to stay alive at rest [2]. For the basal 

metabolic rate estimation to be accurate, several assumptions must be true 

at the time of measurement: Absence of gross muscular activity. i.e. you 

must be resting, and your muscles must be relaxed. Post-absorptive state.  

i.e. 12 hours or more after the last meal. Thermal neutrality. i.e. ambient 

temperature variations should be minimal (not too hot or cold). Emotional 

disturbance must be minimal, as studies have shown that emotional upset, 

particularly apprehension, may result in rises in BMR of from 15–40 percent 

awake state, as sleep tends to depress BMR by approximately 10 percent. 

b)  Diet Induced Thermogenesis (DIT) 
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   Also called post-prandial thermogenesis (PPT) or the thermic effect of 

food (TEF). DIT accounts for about 10% of total energy intake (EI) for a 

mixed western diet. This is the amount of energy utilized in the digestion, 

absorption and transportation of nutrients.

c)  Physical Activity (PA) 

   PA is the most variable component of EE in humans. It includes the 

additional EE above RMR and TEF due to muscular activity and comprises 

minor physical movement (such as shivering and fidgeting) as well as 

purposeful gross muscular work or physical exercise. In this study, we 

focus on the physical activity measurement. The three primary source of 

energy for human body as follows:

Glucose: C6H12O6+6O2→6CO2+6H2O                                (1.1)

Fats: C16H32O2+23O2→16CO2+16H2O                               (1.2)

Proteins: C72H112N2O22S+77O2→63CO2+38H2O+SO3+9CO(NH2)2     (1.3)

   From the equation, we can measure the oxygen consumption or dioxide 

oxygen production for indirectly estimating energy expenditure. To convert 

the amount of oxygen consumed into heat equivalents, one must know the 

type of energy substrate that is being metabolized, that is, carbohydrate or 

fat, since protein rarely participates in energy metabolism. The energy 

liberated when fat is the only substrate being oxidized is 4.7 kcal or 19.7 

kJ per liter of oxygen used. However, the energy released when 

carbohydrate is the only fuel being oxidized is 5.05 kcal or 21.1 kJ per 
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liter of oxygen used. Another measure often implemented, although it is 

less accurate, estimates the energy expenditure of exercise on the basis of 

5 kcal or 21 kJ per liter of oxygen used. Therefore, a person exercising at 

an oxygen consumption of 2.0 L ᠊ min-1 would expend approximately 10 

kcal or 42 kJ of energy per minute. Consequently, the use of an energy 

equivalent of 4.825 kcal per liter of oxygen has been suggested for 

circumstances such as resting or steady-state exercise at mild intensities.

B. Research Necessity

   Recently, the rate of chronic disease such as obesity, hypertension, and 

diabetic is rapidly increased. Excess nutrient and energy imbalance are 

considered major important cause of chronic disease. Either of them is base 

on the individual energy consumption and caloric intake. Energy is needed 

to power muscular activity but that excessive energy storage can lead to 

obesity and other metabolic disorders, it is important to understand what 

energy transformation is all about, how energy expenditure can be assessed 

and quantified, and what strategies either can augment energy provision to 

enhance performance or can maximize energy utilization to facilitate weight 

loss or maintain optimal body weight. Simply explained as the following Fig. 

1.2.
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Fig. 1.2 Necessity for measuring human energy expenditure.

C. Methods for Estimating Energy Expenditure

   A range of methods are used in the assessment of energy expenditure. 

These major methods maybe be classified in to direct calorimetry, indirect 

calorimetry, heart rate monitoring, movement sensors, and combined heart 

rate and movement sensors. This chapter lists the methods with their 

advantage and problems.

1. Direct Calorimetry

a) Definition
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   The process of measuring heat production occurred via both cellular 

respiration and cell work in an animal is called direct calorimetry.

 

b) Method 

   Using a thermally-isolated chamber, the heat subjects dissipated by 

evaporation, radiation, conduction and convection is recorded accurately and 

measured precisely. In direct calorimetry, on the other hand, CO2 

production and O2 consumption are measured [3]. Assuming that all the 

oxygen is used to oxidize degradable fuels and all the CO2 there by 

evolved is recovered, it is possible to calculate the total amount of energy 

produced.

   To measure this heat, a person is placed in a specially designed, 

insulated chamber (called a calorimeter) supplied with air and surrounded 

by a jacket of circulating water; the heat production (or energy 

expenditure) is estimated from changes in the temperature of the 

surrounding water (Fig. 1.3).

                    Q = cmΔT                     (1.4)

 

   Where Q is the heat energy put into or taken out of the substance, m is 

the mass of the substance, c is the specific heat capacity, and ΔT is the 

change in temperature [4].
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Fig. 1.3 Direct calorimetry.

   All calorimeters consist of the calorimeter proper and a jacket or a bath, 

which is used to control the temperature of the calorimeter and the rate of 

heat leak to the environment. For temperatures not too far removed from 

room temperature, the jacket or bath contains liquid at a controlled 

temperature. For measurements at extreme temperatures, the jacket usually 

consists of a metal block containing a heater to control the temperature. 

With nonisothermal calorimeters, where the jacket is kept at a constant 

temperature, there will be some heat leak to the jacket when the 

temperature of the calorimeter changes. It is necessary to correct the 

temperature change observed to the value it would have been if there were 

no leak. This is achieved by measuring the temperature of the calorimeter 

for a time period both before and after the process and applying Newton's 

law of cooling. This correction can be avoided by using the technique of 

adiabatic calorimetry, where the temperature of the jacket is kept equal to 
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the temperature of the calorimeter as a change occurs. This technique 

requires more elaborate temperature control, and its primary use is for 

accurate heat capacity measurements at low temperatures.

   In calorimetric experiments it is necessary to measure temperature 

differences accurately; in some cases the temperature itself must be 

accurately known. Modern calorimeters use resistance thermometers to 

measure both temperatures and temperature differences, while 

thermocouples or thermistors are used to measure smaller temperature 

differences.

c) Limitation of Direct Calorimetry

   The limitations of direct calorimetry are the expensive of the 

construction of suitable chamber. Experiment is done by chamber or 

calorimetry, the subjects are restricted their activity, since change their 

usual activity patterns. And the fact that such investigations must be made 

in the laboratory. This is not applicable to measure in free-living 

conditions. Direct calorimetry is the only method by which continuous 

recording of energy expenditure for a long time can be obtained. It should 

consider the investigator time.

2. Indirect Calorimetry

a) Definition

   The measurement of the amount of heat generated in an oxidation 

reaction by determining the intake or consumption of oxygen or by 

measuring the amount of carbon dioxide or nitrogen released and 
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translating these quantities into a heat equivalent.

   The term 'indirect' refers to the fact that energy production is 

determined by measuring O2 consumption and CO2 production rather than 

directly measuring heat transfer (direct calorimetry). It is less expensive 

than direct calorimetry. Its disadvantages are primarily that it remains an 

expansive technique and requires the use of a hood or a mask that the 

subject may find confining.

 

b) Method

   There are tow main indirect calorimetry systems for the measurement of 

VO2 and hence EE.

   Firstly, the ‘closed-circuit’ method requiring subjects to be isolated from 

the outside air works well for measuring resting or basal metabolic rate 

(Fig. 1.4a) [5]. The subject breathes air from the atmosphere. The 

composition of the air flowing in and out of the lungs is measured to 

estimate oxygen consumption [6].

   Secondly the ‘open-circuit’ method is more suited to measure exercise 

metabolism. In this method, airflow and percentage of oxygen and CO2 are 

measured precisely to calculate VO2 and CO2 consumption (VO2) and hence 

respiratory exchange ratio. This method is particularly useful for long-term 

measurements with subjects at rest or performing only light exercise (Fig. 

1.4b). The subject inhales via a face mask from a container filled with 

oxygen. Expired air goes back to the container via soda lime, which 

absorbs carbon dioxide. Changes in the volume of oxygen in the container 

are recorded as the volume of oxygen consumed.
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Fig. 1.4 Indirect calorimetry. 

a. Closed-circuit indirect calorimetry. 

 b. Opened-circuit indirect calorimetry.

c) Limitation of  Indirect Calorimetry

  Indirect calorimetry can be used in the field but  continuous recording of 

activity is difficult. Because this method requires subjects to wear 

apparatus on face or in mouth, such as ventilated hood system [7].

   This method also needs expensive and sophisticated equipment. For 

example, oxygen consumption measurements often suffered due to the 

response time of oxygen analyzer [8], this issue related to the sensitivity 

of oxygen analyzer.

   This method can only be accurately used for measuring resting or basal 

metabolic rate and light exercise during steady state exercise.  Steady 

state conditions are necessary to accurately predict cellular metabolism 
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through measurements of gas exchange in the airways. If a patients has 

rapid change in minutes ventilation during a study (hyper or 

hypoventilation), the measured carbon dioxide at the airway will not 

accurately reflect cellular levels of carbon dioxide. Thus VO2 will be 

artificially higher when the patient hyperventilates and lower during periods 

of hypoventilation [9]. This is a common problem during mechanical 

ventilation, especially when a mode that allows of spontaneous ventilation is 

used.

   And this method need consider the consider the system leak problem, 

especially during mechanical ventilation, area common problem. Failure to 

capture all of the exhaled volume into the metabolic computer will result in 

measurement errors. Care should be taken to ensure a tight seal around all 

circuit fittings as on the artificial airway cuff. 

3. Heart Rate Monitoring

a) Definition  

   

   Generally, there was a fairly close and linear relationship between HR 

and EE or VO2 during steady exercise [10]. This technique has also been 

validated against electrocardiography (ECG) monitoring. To date, HR is 

non-invasive, low cost and easy to measure. EE is easily accessible from 

HR data. HR-based EE-estimates are relatively accurate in steady exercise 

conditions [11].

   However, there are still some limitations. HR does not increase as 

steeply for a given change in EE, probably due to changes in stroke 

volume between lying, sitting and standing [12]. For example, HR can vary 

due to emotional stress, which would result in disproportional rise in HR 
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for a constant VO2. At a low level of activities estimations of EE from HR 

may have errors of up to 30% in individuals, although the average for a 

group of individuals is likely to be within 10% of the true value.

 

b) Method

   Spurr et al., (1988) developed one method that involves the 

determination of FlexHR [13]. With this method, an individual’s resting 

metabolic rate (RMR) and HR-VO2 curve across exercise of varying 

intensities are first determined. The FlexHR is then calculates as the mean 

of the highest HR achieved at rest and the lowest HR achieved during 

exercise. If a given HR observed during field activity is below the FlexHR, 

then energy expenditure is determined based on RMR. If a given HR is 

above FlexHR, then energy expenditure is determined based on the 

individual’s HR-VO2 curve [14]. Even though this method takes into 

account individual variability in the slope of the HR-VO2 relationship, it is 

time-consuming to establish individualized calibration curves.

c) Limitation of  Heart Rate Monitor

   Heart rate has in estimates of energy expenditure. It can occur during 

sedentary and light activities because HR can be elevated due to their 

factors such as stress, hydration, and environmental factors [15].

   In particular, HR are affected by biology [16]. Because subject 

characteristics such as age, sex, body posture, and fitness level affect the 

slope and intercept of a linear HR-EE relationship.

   This method requires individual laboratory calibration curves for accurate 

estimates of EE [17].
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4. Motion Sensors

a) Definition

   Motion sensors are mechanical and electronic device that pick up motion 

or acceleration of limb or trunk, depending on where the monitor is 

attached to the body. There are several types of motion sensors that range 

in complexity and cost from the pedometer to triaxial accelerometer [18]. 

Among motion sensors, triaxial accelerometers which measure acceleration 

in the vertical, horizontal and mediolateral plane are the most commonly 

used. But it is unable to detect certain movements such as cycling and 

upper body exercise. Some devices failed to detect the increased energetic 

cost of walking on a steep incline.

   Lately, a relatively new, commercially available device for assessing 

energy expenditure, called SenseWear pro armband (SWA) [19]. It monitors 

various physiological and movement parameters. These data together with 

demographic information including gender, age, height, and weight, used to 

estimate energy expenditure with a generalized algorithm. However, its 

ability to detect energy expenditure during exercise remains questionable. 

The SWA can not accurately access EE.

 

b) Method

   A new device for assessing energy expenditure, called the SenseWare 

armband (SWA), came on the market. The device is worn on the right 

upper arm over the triceps muscle, It has an ergonomic design and can be 

easily slipped on and off, and it does not interfere with day-to-day 
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acidities or sleeping [20]. The device has multiples sensors that can 

measure various physiological and movement parameters simultaneously, 

including body surface temperature, skin vasodilatation and rate of heat 

dispassion, as well as a two-axis accelerometer. Data on these parameters, 

together with demographic information including gender, age, height, and 

weight, are used to estimate energy expenditure with generalized algorithm, 

the principal difference between this system and the devices discussed 

previously is the inclusion of a heat flux sensor [21]. This allows the 

system to detect a change in heat produced as a result of metabolism.

c) Limitation of Movement Sensors

   Accelerometers are generally worn on the hip which limits their ability 

to detect certain movements such as in weight lifting, cycling, and upper 

body exercise [22].

   There are also unable to discriminate walking or running performed on 

soft or graded terrain.

5. Combined Heart Rate and Motion Sensors

a) Definition

   HR monitoring and accelerometers combined methods are most often 

chosen for assessing physical activity and energy expenditure. However, 

there are limitations associated with each method when used alone. The HR 

monitoring is primarily due to biological variance. HR found to be affected 

by age, gender and psychological stress [23]. That means it is not possible 

to differentiate between increases in heart rate due to activity or those due 
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to stress. On the other hand, the limitations of movement sensors, when 

used alone, they cannot quantitatively estimate all physical activities, as 

mentioned before, such as cycling and rowing. The technique is generally 

unable to adequately detect increases in energy expenditure. These 

limitations reduce the usefulness of movement sensors alone as instruments 

to estimate EE in field studies. As errors associated with the two methods 

are not inherently related [24]. 

   The researchers have studied the combined heart rate and movement 

sensors for measuring energy expenditure. In these studies, HR and 

movement counts were recorded at the same time. The activity data were 

used to separate the HR data into activity and inactivity, which improved 

the estimates of EE.

   AirBeat system that provide HR and mobility index has developed. Until 

now, a prediction equation using them has not been made for it. Therefore, 

a well designed experiment is needed to provide more precise prediction of 

energy expenditure than similar instruments by combining HR and mobility 

index.

 

b) Method

   Indirect calorimetry is considered to be a precise technique for the 

measurement of metabolic rate. The principle of indirect calorimetry can be 

explained by the following relationship:

 

Foodstuff + O2  -------------->  Heat + CO2+H2O     (1.5)

(Indirect Calorimetry)                (Direct Calorimetry)

 

Since a direct relationship exists between O2 consumed and the amount of 
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heat produced in the body, measuring O2 consumption provides an estimate 

of metabolism. In order to convert the amount of O2 consumed into heat 

equivalents, it is necessary to know the type of nutrient (i.e.,carbohydrate, 

fat, or protein) that was metabolized. The energy liberated when fat is the 

only food stuff metabolized 4.7 kcal (or 19.7 kJ)/L O2, while the energy 

released when only carbohydrates are used is 5.05 kcal (or 21.13kJ)/L O2. 

Although it is not exact, the caloric expenditure of exercise is open 

estimated to be approximately 5 kcal (or 21kJ) per liter of O2 consumed.

   The open-circuit spirometry is used to measure oxygen consumption. 

The volume of air inspired is measured with a device that is capable of 

measuring gas volumes. The expired gas from the subject is channeled to a 

small mixing chamber to be analyzed for O2 and CO2 content by electronic 

gas CO2 in the expired gas is sent to a digital computer by way of a 

device called an analog-to-digital converter (converts a voltage signal to a 

digital signal). The computer is programmed to perform the necessary 

calculations of volume of O2 consumed per min and the volume of carbon 

dioxide produced. 

   In short, the energy expenditure during exercise is estimated by 

measuring VO2 (liter per min) using open-circuit spirometry, and then 

converting it to kcal in following way:

 

EE(kcal/min) = VO2 × Energy cost of Oxygen (about 5 kcal/liter)    (1.6)

c) Limitation of Combined Heart Rate and Movement Sensors

  This method requires HR-VO2 equations to be developed on each 

individual for both leg and arm work [25]. This method should consider if 

multiple sensors are used. The subjects wear cumbersome fitting, which 
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Method Measurement Outcome

Room Calorimetry CO2 and VO2 EE

Indirect Calorimetry CO2 and VO2 EE

Movement Sensors
Acceleration

(i.e. body movement)
Counts

HR  Monitoring HR EE

can affect the accuracy of energy expenditure estimation [26]. In addition, 

the data analysis is time consuming, thus limiting its use to studies 

involving small samples [27]. The following Table 2.1 gives a summary of 

these methods.

Table 1.1 Comparison of different methods outcome. 

6. Neural Network for Estimation of Energy Expenditure

   Another approach to improve the accuracy is to use the machine 

learning. Dong [28] uses wearable multi-sensors to extract features of 

different activities for the construction of the artificial neural network and 

linear regression. In [29], the authors presented three regression 

techniques - least squares regression, Bayesian linear regression and 

Gaussian process regression with the data from treadmill walking using 

hip-worn inertial sensors. The results show the nonlinear methods have 

better prediction accuracy. Wang [30] presents a portable-accelerometer 

and electrocardiogram sensor system with a machine learning-based model 

for energy expenditure. Lin [31] estimated daily energy expenditure by a 
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wearable sensor module with a neural network based activity classification 

algorithm. They employed forward and backward search strategies for 

feature selection. Radial Basis Function Network (RBFN) and Generalized 

Regression Neural Network (GRNN) models were employed as energy 

expenditure estimation. Wong [32] have developed and tested a portable 

device that measures energy expenditure per unit time of a human subject. 

Wixted [33] has analyzed the variance of accelerometer-count based 

energy estimates and identified mechanical, biomechanical, and 

anthropometrical influences. There are numerous portable instrumentations 

to measure movement [34-36]. Various methods have demonstrated 

success in classification or prediction applications [37-42]. Oliver [38] has 

investigated the utility of a variety of active accelerometer count thresholds 

for classifying sitting time in a sample of office workers. Xiao [39] has 

designed a prediction model using the feedforward neural network (FFNN) 

to reflect the effects of physical activities on the heart rate. In [40], a 

multi-step HR prediction method is proposed. The HR prediction problem 

was converted into an initial-value problem for ordinary differential 

equations. Then the Adams-Bashforth method was used to implement a 

multi-step prediction. Yuchi [41] and Xiao [42] proposed the well-known 

FFNN as the predictor model based on the relationship between heart rate 

and physical activity. The FFNN experimental results showed the potential 

of the predictor with the results close to the actual data. Vathsangam [43] 

estimated energy expenditure during treadmill walking using a single 

hip-mounted inertial sensor with a triaxial accelerometer and triaxial 

gyroscope. He performed a comparative analysis of the well-known 

probabilistic techniques in conjunction with inertial data modeling to predict 

energy expenditure for steady-state treadmill walking. Nonlinear regression 

methods showed better prediction accuracy compared to linear methods. Lin 
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[44] presented a wearable sensor module and two representative neural 

networks (RBFN, GRNN) for activity classification and prediction. He 

demonstrated the effectiveness of a wearable sensor module and its neural 

network-based activity classification algorithm for energy expenditure. The 

research in the literature mentioned above has been performed based on 

well-known neural networks [39-42, 44] or statistical methods [43] from 

numerical data. However, these methods have not been considered to be 

knowledge representation via fuzzy if-then rules with meaningful linguistic 

labels. In general, it is frequently advantageous to use several computing 

techniques synergistically rather than exclusively, resulting in construction 

of complementary hybrid intelligent systems such as neural-fuzzy 

computing. The effectiveness of these complementary approaches has been 

demonstrated [45]. 

   The literature of above mentioned have been performed based on well 

know regression or neural networks from numerical data. However the core 

of these methods is also based on built linear models. Due to the various 

activities, the data set could not always be kept on the line and that can 

reduce the accuracy of estimation. This is therefore we aim to develop a 

patch-type sensor with embedded architecture of network that can integrate 

the non-linear parts as the fully input variables for energy expenditure 

estimation. 

D. Research Final Target

   For estimating energy expenditure, already have a range of methods. 

Researchers used variety of sensors and algorithms to estimate energy 

expenditure. However the accuracy of estimation is difficult. The high 

accuracy always depend on laboratory. The cumbersome devices are not 
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comfortable to wear and also need physician to help. The researchers focus 

on light weight, small size and high accuracy to estimate the energy 

expenditure. 

   In this study, we designed a small size, light weight patch type sensor 

module (AirBeat System) to realize the basic physical activity energy 

expenditure estimation on the treadmill. The final target: To associate with 

multiple sensors into relatively homeogenous, small size, long power 

duration one. Develop software for a sophisticated in determining energy 

expenditure and can record data for a long time. Realize accuracy energy 

expenditure estimation from lab to free-living.

E. Dissertation Organization

   Chapter Ⅰ introduces the basic background knowledge and the principle 

of indirect energy expenditure estimation. Explained why we do this 

research and what's the final target for this study. Chapter Ⅱ presents the 

common methods for estimating energy expenditure and discusses the 

problem and limitation of each method. Chapter Ⅲ describes the sensor 

design, their function and experimental results. Chapter Ⅳ illustrates the 

embedded software for estimation of energy expenditure. Chapter V 

demonstrates the experimental results.  This study is concluded in the last 

chapter VI.



- 21 -

II. Development of Patch-type Sensor

   It has been confirmed that precise measurements of heart rate and 

movement index are possible using the patch-type sensor module designed 

in this research. The proposed movement index shows a good correlation 

with the conventional agility test and can be used to evaluate an athlete’s 

exercise state. Changes in heart rate and movement index could be 

confirmed by changes in exercise intensity through analysis of three-axial 

acceleration and heart-rate variability. Moreover, dependable real-time 

communication has been secured for a distance of over 400 m for eight 

people simultaneously. This research has demonstrated that the proposed 

sensor can be applied to the efficient training of athletes and to emergency 

forecasting by in-situ heart-rate monitoring.

A. System Design

1. General System Description

  

   The goal of this research has been to develop the AirBeat as a small 

patch-type system which can be attached to the subject’s chest during 

exercise. The major components of the system are the sensor board, the 

rubber case, and the communication module.
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Fig. 2.1. Top and bottom views of the patch-type sensor.

   Fig. 2.1 shows a photograph of the sensor chip. As input data, a number 

of sensor signals were selected, including one-channel ECG and three-axis 

acceleration [46]. The communication module, ECG sensor, and 

accelerometer are placed on the top of the sensor, and the switch capacitor 

voltage converters and regulators are placed on the bottom. The USB 

interface connector is used for charging the sensor. The signals are 

interpreted appropriately as heart rate, heat stress, and movement index 

using a signal-processing algorithm. The microcontroller uses a Texas 

Instruments MSP 430 chip with 60 KB flash memory, 2048 B SRAM 

memory, and 8 MHz clock frequency. Table 2.1 lists the specification of 

AirBeat system.
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Items Performance

Channel 8ch

Resolution 12bit

Sampling Rate 200/s

Frequency B.W. 1Hz~50Hz

Power LI-ION

Max HR 250/m

HR Detection Error Below 10%

Power 3.3V

Comm. Module ZigBee

Comm.  Distance 400 m

MCU MSP430 (TI,USA)

Electrode Jumper setting available

Size
6 cm * 9 cm, 

20g

Table 2.1 The specification of AirBeat system.

   Two quasi-triangular flexible PCB boards are combined in the sensor, as 

shown in Fig. 2.2. The device consists of flexible printed circuit boards 

which include analog and digital circuitry and onboard sensors. The shape 

of the FPCB is a quasi-triangle of 60 mm x 80 mm (width, length), and the 

total system weight is 41 g, including a set of Li-ion rechargeable 

batteries. The recharger power output is 5V, 3A, and the input power is 
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220V, 60Hz.

       (a)Sensor board.          (b) Silicon packaging case.

Fig. 2.2. Photograph of the AIRBEAT system: (a) sensor board including 

battery and Zigbee module; (b) silicon packaging case, 

85mm×110mm×1.6mm. 

2. Heart Rate Monitor Design

   

   For ECG measurement on the chest, three electrodes are used for a 

single channel. Three dry Ag/AgCl electrodes without gel are mounted on a 

conductive adhesive patch. The ECG analog circuitry was specifically 

designed for effective motion artifact rejection during exercise. The input 

data were then filtered and amplified, as shown in Fig. 2.3. This part of the 

device consists of an instrumentation amplifier, a notch filter, and a 

non-inverting amplifier with a total gain of 80 dB and a bandwidth of 40Hz. 

To monitor exercise, it is not necessary to measure the perfect QRS 

because during exercise, much noise will be generated. The trigger signal 

can also provide the HR information.
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Fig. 2.3. Preprocessing for detection of heart rate.

   The ECG signal is then converted into a digital signal with a sampling rate 

of 200 Hz for heart-rate estimation. The heart-rate detection algorithm is used 

to analyze the athlete’s heart rhythm during exercise. A well-known 

bandpass-filter-based R-wave detection algorithm has been redesigned to make 

it more robust during motion. After digital conversion of the ECG signal using 

a 200-Hz sampling rate, the data undergo preprocessing, including band pass 

filtering, differentiation, squaring, and calculation of a moving average. Then 

QRS complexes with positive peak values are detected using an adaptive 

threshold technique.

   The detected QRS peaks are temporarily stored for three seconds. Then 

a set of motion artifact rejection steps is carried out. First, any QRS peaks 

which are less than 50% of the previous value are dropped. Second, any 

QRS complex which does not show a heart-rate value between 30 and 250 

is rejected. Finally, if a QRS complex is more than 15 beats longer than 

the previous value, it is also ignored. This means that the observed 

heart-rate variation lies within the known range of physiological variation. 

Next, the algorithm calculates the final heart rate by processing the 

acquired signal according to the flowchart shown in Fig. 2.4. Performance 

evaluation of the heart-rate detection procedure was conducted using a 
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Find maximum peak value
(during 3sec)

Determine threshold value
(Threshold = 0.5 x Max peak value)

Find first point is 
over threshold value

[Back-searching process ]
① Decide back-searching threshold value
    (Threshold = 0.2 x Max peak value ) 
② Find point is over threshold value
③ Find Max peak point of QRS candidate
④ Find peak bigger than QRS candidate
⑤ Decide QRS peak or remove

QRS candidate is decided 
QRS peak All condition pass

Find peak bigger than Candidate 
(searching region is 240msec before 

and after Candidate )

Find Max peak point 
of QRS candidate

(searching region is 240msec from 
first threshold over point )

Compare RR interval 
for back-searching

Not be found

If present RR interval is longer than 
Before 1.3 x RR interval,

Back-searching process startPass interval compare

If bigger peak is found , 
QRS candidate is removed 
and skip 240msec region 

 Low-pass
Integer filter 

 High-pass
Integer filter Differentiation Squaring Moving-window 

Integral

Preprocessing Module

commercial stress ECG monitor (CASE system, GE Medical, USA).

Fig. 2.4. Flowchart for heart-rate detection.
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3. Movement Processing

   To detect acceleration changes during exercise, a three-axis 

accelerometer (MMA7260Q) was used. This device is a cheap capacitive 

micro-machined accelerometer featuring good sensitivity, low power 

consumption, and very small size. With this sensor, the AirBeat can 

measure the athlete’s motion signals in the range of -6g to 6g and 

calculate the movement index as proposed in this study. 

   The authors suggest a movement index as a helpful indicator of exercise 

performance and a measure of agility. Agility is the ability to change the 

body’s position and requires a combination of balance, coordination, speed, 

reflexes, and strength.

   In the present study, the movement index is calculated using the steps 

shown in Fig. 2.5. First, the acceleration signal is digitized using a 12-bit 

analog-to-digital converter with a 100-Hz sampling rate. Then the 

converted data are preprocessed using band pass filtering and a robust 

zero-crossing detection algorithm. The zero-crossing detection algorithm 

extracts characteristic points from the raw data. Using the extracted points, 

the final movement-index value can be calculated.
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Fig. 2.5. Flowchart of the movement-index calculation.

   The zero-crossing detection step described above is the most important 

step in the algorithm. “Zero crossing” is a commonly used term in 

electronics, mathematics, and image processing. In mathematics, it usually 

refers to a change of sign, e.g., from positive to negative, that is, a 

crossing of the axis (the zero value) in a plot of a particular function. In a 

real-world acceleration signal, there are many noise factors which create 

signal artifacts. As a result, a robust zero-crossing detector must be 

designed.
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Fig. 2.6. Procedural diagram of the robust zero-crossing detection 

algorithm.

   As shown in Fig. 2.6, the proposed zero-crossing detection algorithm 

consists of the following steps: 

(1) Determine the positive and negative thresholds (+thr and –thr) assuming 

the noise margin.

(2) When the signal strength becomes greater than +thr, the zero-crossing 

point can be determined by decreasing the sample index from the 

intersection point. Then the zero-crossing point is labeled as the ASP 

(Acceleration Start Point).

(3) Once the ASP has been found, the APP (Acceleration Peak Point) can 

be detected as a peak value by increasing the sample index from the +thr 

intersection point.
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(4) The zero-crossing point can then be found as the AEP (Acceleration 

End Point) by increasing the sample index.

(5), (6), (7) Steps (2) through (4) are repeated for the negative threshold, –

thr.

   This procedure reduces the probability of false-value extraction due to 

motion artifact noise. An algorithm performance test achieved a 99% 

detection ratio for a simulated acceleration signal.

   Based on the feature points extracted using the robust zero-crossing 

detection algorithm, feature values can then be calculated. The feature 

value to be computed was experimentally selected as the triangular area 

determined by the ASP, APP, and AEP, because the value of this area 

shows an excellent correlation with agility performance tests in the zigzag 

run, sidestep test, Burpee test, and shuttle run test. Finally, the movement 

index can be defined as the average of the triangular areas of the 

acceleration graph for each second, as shown in Fig. 2.7.
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Fig. 2.7. Theoretical acceleration waveforms with feature points, feature 

values (triangular areas), and movement index (the sum of areas per 

second).

   To enable wireless exercise management, the acquired sensor data 

should be passed to a central monitoring station. In the AirBeat, a 

commercial Zigbee telecommunication module [47] is used for data transfer. 

This module (LM2400) features good data communication range (over 400 

m in an open space) without data loss. It operates in the 2.4-GHz ISM 

(Industrial, Scientific and Medical) band and contains an embedded 

8051-compatible microcontroller. The portable transmitter includes 3.3V 

Li-ion rechargeable batteries with a continuous operation period of 

approximately two hours. Moreover, it comes with a certified software 

package and supports the 802.15.4 MAC (Media Access Control) protocol. 

In practical application, the AirBeat uses a flexible printed circuit board, 

silicone rubber packaging, and a silicone rubber adhesive. Thanks to the 
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FPCB (Flexible Printed Circuit Board) and silicone rubber packaging, the 

whole system is flexible and can be attached to the user’s chest. The 

silicone rubber adhesive can be washed and reused repeatedly. Dow 

Corning 7-9800 is used as a soft-skin adhesive.

B. Function Test 

1. Reliability Test

   When monitoring athletes’ training, electrodes without gel materials are 

usually difficult to stick firmly onto the chest. The contact area between 

the electrodes and the skin may easily slip and release during athletic 

activities. This factor always affects the ECG signal and produces noise 

signals. In addition, the ECG signal is easily interfered with by the moisture 

and electrical resistance of human skin. To address this problem, the 

authors have tested the reliability of the patch-type sensor. 

   The soft-skin adhesive coating is made of a non-woven spunlace fabric 

[48] which features good ventilation, water penetration, and temperature 

resistance (-73°C to 75°C). The purpose of this part of the study is to test 

the adhesive strength of the three-point ECG electrode. The coating was 

patched onto an SUS plate and also onto skin. After some time, the top of 

the coating was fixed onto a hook and then connected to a push-pull gauge 

(Fig. 3.8) and pulled down at a speed of 10 mm/sec. The push-pull gauge 

measured the maximum force applied to the coating before it peeled off. 

The test was repeated five times.
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SUS   

plate

Skin

(immediately)

Skin

(after 10 minutes)

Skin

(after 2 

hours)
Average  

 Max 

Adhesive 

strength 

0.401kgf 0.332kgf 0.466kgf 0.658kgf

Fig. 2.8. Peeling test.

   The results of the peeling test are shown in Table 2.2. When the 

coating was initially patched onto the SUS plate and onto skin, the results 

showed that the SUS plate is more adhesive than skin. However, the skin 

adhesive bond became stronger over time. Fig. 2.9 shows the comparison 

between the adhesive strength on the SUS plate and on skin over time. 

Table 2.2 Average maximum adhesive strength on SUS plate and on skin 

over time.
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Fig. 2.9. Comparison of adhesive strength values on SUS plate and on skin. 

  As athletes perform long high-intensity exercise, sweat may make patch 

sensors drop off. To address this possible drawback, three participants 

were tested in a sauna and after taking a shower. The first participant was 

patched for one hour under normal conditions and then in the sauna for 

another hour. After a one-hour rest, the participant was tested by the pull 

test. The second participant remained in a normal state for three hours and 

was then tested by the pull test. The third participant remained under 

normal conditions for two hours and then took a shower for approximately 

one hour. The results are shown in Fig. 2.10. Table 2.3 summarizes the 

average maximum adhesive strengths obtained. 
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Sauna
Normal 

condition
After shower

Average Max 

Adhesive 

strength

0.775 kgf 1.387kgf 0.863kgf

Fig. 2.10. Adhesive strength after sauna, after shower, and under normal 

conditions.

Table 2.3 Average maximum adhesive strength test results after sauna, 

after shower, and under normal conditions.

2. Performance Evaluation of Heart Rate Detection
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   Performance evaluation of the heart-rate detection algorithm was 

conducted by comparing it with the reference system and changing the run 

speed as shown in Fig. 2.11(a). 

 

       Fig. 2.11. Performance evaluation of the heart-rate detection 

algorithm: (a) experimental setup; (b) speed profile used in the test.
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     In this test, a commercial stress ECG monitor (CASE system, GE 

Medical, USA)[49] was used as the reference system. Heart-rate data were 

simultaneously gathered from the reference system and from the device 

designed in this research. The test subjects were people in their twenties. 

The predetermined speed profile shown in Fig. 2.11(b) was used for 

exercise load control. The total 13-minute test was divided into five steps 

with a running speed varying from a minimum of 0 km/h (resting) to a 

maximum of 13 km/h.
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Fig. 2.12. Results of comparison tests of the proposed heart-rate monitor 

and the reference CASE system: (a) graph of time versus heart rate; (b) 

graph of heart-rate values from the proposed system (x-axis) versus     

those from the CASE system (y-axis).

   Fig. 2.12 shows the results of comparison tests of the proposed 

heart-rate monitor and the data from the reference system. 

   The average heart-rate error between the proposed HR monitor and the 

CASE system was less than 2%. It is evident that the AirBeat shows good HR 

detection performance compared with a commercial stress ECG  monitor over 

a wide range of exercise loads.

3. Performance Evaluation of Movement Index
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Test Correlation coefficient
Zigzag run 0.90
Shuttle run 0.80
Burpee test 0.89

Side step test 0.91

   Performance evaluation of the movement index was conducted in two 

steps. First, the feature-point extraction function was evaluated in a noisy 

environment using simulated data. For this test, acceleration signals were 

simulated using a signal generator with noise-level control. Using the 

robust zero-crossing detector described above [50], the proposed algorithm 

showed good feature-point extraction characteristics with maximum 1% 

error.

   Second, a comparison test was carried out to evaluate how well the 

proposed agility index represents the athlete’s actual exercise state. Ten 

subjects performed a zigzag runtest, a 20-mshuttle run [51], a Burpee test 

[52] and a sidestep test for ten repetitions of each test. These tests are 

commonly used to evaluate an athlete’s performance and to provide a basis 

for an exercise prescription [53].

   Table 2.4 shows the correlation coefficient between the average 

movement index measured with AirBeat and the conventional agility point 

score (time or counts which were tested) by a supervisor in each test. The 

proposed movement index clearly shows a good correlation with the 

conventional agility test and can be used to evaluate an athlete’s exercise 

state. 

Table 2.4 Correlation coefficient between the average movement index 

measured by AirBeat and the conventional agility point score.
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4. Field Test Using Bruce Protocol

   The field test of the AirBeat as designed was performed according to 

the Bruce protocol [54]. The Bruce protocol is an exercise protocol with 

multiple steps where each step is performed for three minutes and exercise 

intensity is increased in each step.

   Fig. 2.13. Result of field tests using the Bruce protocol.

   

   Fig. 2.13 shows the result of the field tests using the Bruce protocol. 

The participants performed exercise ranging from walking to running at 

different speeds and gradient slopes for 15 minutes on the treadmill. The 

movement index clearly shows the steps according to the different exercise 

intensities. The acceleration is shown by three different colors representing 
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x, y, and z planes. According to the test results, changes in HR and 

movement index can be reliably monitored and measured during exercise 

using the proposed device. These results confirm that the AirBeat could be 

used as an exercise evaluation system for athletes.
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Data Linear regression

Error

RBFN

Incremental 
RBFN 

III. Embedded Algorithm

   

    An incremental RBFN is proposed in this study; its structure is formed 

in two steps, as shown in Fig. 3.1. In the first step, we build a standard 

regression model that can be treated as a preliminary construct capturing 

the linear part of the data and thus, forming the backbone of the entire 

construct. Next, all modeling discrepancies are compensated by a collection 

of receptive fields that become attached to the regions of the input space 

where the error is localized. The receptive fields are in the subspaces of 

the original input space rather than in the entire input space. The 

incremental RBFN is reconstructed by building a collection of information 

granules formed by using the context-based fuzzy C-means (CFCM), which 

is guided by the distribution of errors of the linear part of the model. The 

so-called CFCM is the input space conditioned on the basis of linguistic 

landmarks. We determine the optimal context of input variables by trial and 

error in order to realize a high-accuracy output. The principle of the 

designed architecture can be summarized as follows: adopt a construct of 

an LR as a first-principle “global” model, and then refine it through a 

series of “local” receptive fields that capture the remaining and more 

“localized” non-linearities of the system.

Fig. 3.1. General flow of the development of the incremental RBFN.
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A. Incremental RBFN

   The main design of the incremental RBFN is shown in Fig. 3.2. The two 

inputs are placed according to the LR design. The non-linear datasets are 

formed in a collection of input-error pairs. The input-error pairs are found 

in the contexts space E and characterized by triangular membership 

functions. CFCM is completed by the individual fuzzy set of the context in 

the previous step. The clusters are formed using the RBFN model center 

values from the hidden layer. Finally, the output layer is summarized by 

each of hidden layer. The results of incremental RBFN are combined with 

the linear part and RBFN model output. The numeric bias term is added as 

the eliminated eventual systematic shift of the results.

Fig. 3.2. Overall flow of processing realized in the design of incremental 

RBFN.

B. RBFN Algorithm
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   The RBFN is attractive in that it can be used for functional 

approximations, localization, interpolation, and cluster modeling [55], which 

makes it useful in many applications. It has a three-layer structure: an 

input layer that feeds feature vectors into the network, a hidden layer that 

calculates the outcome of basic functions, and an output layer that 

calculates the linear combination of the basic functions. The hidden layer 

considers a Gaussian basis function centered at   with the width 

parameter σ; therefore, the receptive fields   of hidden u n i t    

are calculated as follows:

                         

                            (3.1)

                                                  

w h e r e  denotes a multidimensional input vector;  represents the 

center associated with hidden unit  , and σ denotes the width 

coefficient. The output of the hidden units is normalized between 0 and 1. 

The activation level of an output unit is determined as follows:

                        

                                (3.2)

w h e r e     denotes the weight from the hidden unit to output .

   From the above equation, we can know that the network performance is 

highly dependent on the receptive fields and the connections of the neuron 

in the output layer of the network. The RBFN is two-layer feed forward 

network. Further, the network training is divided into two stages: first, the 
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centers from the input to the hidden layer are determined, and then, the 

weights are determined from the hidden layer to the output layer. Once we 

have formed the receptive field, the optimization of weights of the neuron 

in the output layer becomes straight forward [56, 57]. Since the centers 

and widths are fixed after they are selected, the RBFN often results in an 

unsatisfying performance when the input patterns are not particularly 

clustered. Therefore, the context-based C-means clustering was applied in 

the input space by ensuring that the resulting reception fields directly 

associated with the clusters already constructed in the output space for 

achieving excellent performance.

C. Context-based Fuzzy C-means (CFCM) Clustering

   The CFCM algorithm is used for predicting the cluster centers. The 

context is defined by the error of LR. The given data then belong to the 

corresponding membership values. The partition matrices induced by the 

-th context can be defined as follows:

       

                     (3.3)

where  denotes a membership value of the  –th data point implied 

b y –th context. The underlying objective function can be expressed in 

the standard format as follows:

                 

                         (3.4)
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where m denotes a real number greater than 1,  represents the degree of 

membership of  in the cluster k,  refers to the k-th element 

of the dimensional measured data,   denotes the dimension center of 

the cluster, and || ∙ || stands for a distance function between 

any measured data and the i-th center cluster. The minimization of 

objective function is realized by iteratively updating the values of the 

partition matrix and the prototypes as shown above. The update of the 

partition matrix   and the cluster center    is computed as 

follows:

              

                             (3.5)

 

                                     = 1, 2, …, c;  = 1, 2, …, N     

w h e r e  denotes the iteration step and  represents the element 

of the membership matrix induced by the  -th cluster and the  

-th data element in the  -th context.

                          

   

                                                          (3.6)

   The proposed algorithm is composed of the following steps:

Step 1: Divide the error pairs into contexts by average distribution.

Step 2: Normalize matrix U with random values between 0 and 1 such that 

Equation (3.1) is satisfied.

Step 3: Calculate the context-based cluster   , using Equation(3.6).
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Step 4: Compute the cost function according to Equation (3.3). Stop if 

either it is less than the low bound or its improvement over the previous 

iteration is less than a certain threshold.

Step 5: Compute a new U and update using Equation (3.5). Go to step 4.

   The training procedure for the RBFN consists of two major phases: 

unsupervised and supervised learning. In the unsupervised phase, the 

number of receptive fields is defined, and then, the CFCM algorithm is used 

for determining the center and spread of the receptive field. In the 

supervised phase, the weight between the output of the RBFN and the 

receptive fields is computed using the least squares estimate (LSE), which 

is possible because of a linear relationship with respect to the parameters 

to be estimated. Further, the RBFN employs optimization techniques with 

learning rules to fine-tune its parameters to match a dataset produced by a 

target system to be modeled. Because such a dataset always contains the 

desired outputs to be reproduced by the network, the underlying learning 

rule is referred to as supervised.
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Variable
Men (N = 17) Women (N = 13)

Mean Range Mean Range

Age, year 26 ± 2.1 24~27 25.8 ± 3.2 23~28

Height, cm 169 ± 6.7 167~180 162.1 ± 6.3 155~165

Weight, kg 65.2 ± 9.6 59~70 52.1 ± 9.4 48~57

BMI, kg∙m-2 22.8 ± 7.1 20~23 19.8 ± 4.1 18.6~21.7

IV. Experiment

A. Subjects

   Thirty students from Chosun University (Table 4.1) were participated in 

gradual exercise test on the treadmill for estimating caloric expenditure in 

accordance with the Bruce protocol. The whole process from walking to 

running total 12 minutes. The outdoor exercise were performed four 

activities from walking to running.

Table 4.1 Physical characteristics of the subjects (N = 30).

B. Gas System

   Gas system is used to measure energy expenditure. The predicted 

values were compared from indirect calorimeter Cosmed K4b2 (Cosmed, Srl, 

Italy). The gas system can realtime monitor VO2, VCO2 (Fig. 4.1), and EE 

(Fig. 4.2). The data can export to Excel form for analysis with AirBeat 

system. The gas system can be wore by one person for one time. It costs 

time to guide and help the participants wearing. For one participant, the 
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whole experiment need around half an hour. And the experiment can not do 

in anytime of the day. Since it should consider the participants body 

condition, like no coffee, no smoking, and after meal 2 hours later. Hence, 

the efficiency is not high.

Fig. 4.1 Gas system real-time monitor VO2 and VCO2. 
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Fig. 4.2 Gas system real-time monitor energy expenditure.

C. Procedure

   For determination of the VO2 / HR regression line, the subjects reported 

to the laboratory at 3 PM, after lunch at least 2 h later, having avoided 

substantial physical exercise and smoking that day. VO2 and HR were 

recorded during the entire periods (Fig. 4.3): 1: warm-up, 2: five3-min 

periods of walking or jogging on a treadmill at different speeds, base on 

Bruce Protocol as in Table 4.2, 3:  recovery. The heart rate was recorded 

with the AirBeat system and O2-intake was measured using open-circuit 

system.
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Table 4.2 Participants' activity on  treadmill base on Bruce Protocol

Slope (grade)
Speed

 (km/h)
Time (min) Stage

10 2.7 3 1

12 4.02 6 2

14 5.47 9 3

16 6.76 12 4

Fig. 4.3 Experiment procedure.

D. Data Analysis

  All data were saved in Excel 2003 format. The time were expressed in 

seconds and beats per min (bpm) for heart rate. Oxygen consumption and 

carbon dioxide production were expressed in ml per minute (ml/min). 

Energy expenditure were expressed in Kcal per minute (Kcal/min). All of 



- 52 -

the data were a rang in same excel sheet then average each group data. 

The data can be classified the following groups: Time-HR, Time-VO2, 

Time-VCO2, and Time-EE. These data then were converted to HR-EE, was 

estimated energy expenditure, then compare with measured the EE 

(Time-EE)[58]. 

E. Results 

   In order to evaluate the function of the incremental RBFN and to realize 

the final goal under free-living conditions, the design of the experiment 

was tested in a laboratory and a field test.

1. Laboratory Experiment

   The participants were tested on a treadmill using the sub-maximal Bruce 

protocols in the laboratory, as shown in Fig. 4.4. The treadmill was started 

at 9.72 m∙s-1 with a gradient of 10%. The incline of the treadmill was 

increased by 2% at 3-min intervals. The participants walked and ran until 

they felt exhausted. For men, the test lasted around 12min, and for women, 

the test lasted approximately 9~10min. The HR and MI were recorded in 

real-time by the patch-type sensor, and VO2 and EE were measured by the 

gas system. 
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Fig. 4.4. Laboratory experiment on the treadmill.

   HR and MI are two major factors for estimate EE. Therefore, they are 

considered to be two inputs to the incremental RBFN. A total of 76 

samples were considered. The number of iterations for all the experiments 

was ten. 60% of the total data was randomly selected as the training 

dataset, and the remaining 40% formed the testing dataset. The data were 

normalized between 0 and 1. The training data were used for the 

construction of the neuron network, and the testing data were used for the 

verification of the network. The nonlinear data called “errors” could be 

calculated by using the root-mean-square error (RMSE) Euclidean value as 

shown in Equation (4.1).

            

                                                           (4.1)
( )2'

1RMSE
n

k kk EE EE
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where N denotes the size of the training or the testing dataset. 

   The error values were used as the contexts dataset. These contexts 

were generated using the triangular membership functions that were equally 

spaced along the domain of an output variable. The membership matrix was 

initialized with a value between 0 and 1, as shown in Fig. 4.5 (number of 

contexts: p = 3).

Fig. 4.5. Linguistic contexts produced by the error distribution of treadmill 

data (p = 3).

   The centers could be generated using fuzzy C-means clustering based 

on each of the contexts. For “p” contexts and “c” centers per context, we 

obtained c × p clusters. Fig. 4.6 shows the cluster centers generated by 

using three contexts and three clusters. The cluster centers could be 

considered the RBFN hidden layer. Therefore, the RBFN model could be 

constructed as follows: consider two inputs HR and MI to be the input 

layer, and nine units to be the hidden layer on the basis of the number of 

contexts and the number of clusters; further, consider the EE to be the 

output layer.
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Fig. 4.6. Estimation of cluster centers in each context (p = 3).

   The network performance is estimated using the RMSE as the number of 

contexts and that of clusters increased from three to six and from two to 

six, respectively. Table 4.3 shows the result of RMSE for the training and 

the checking datasets. The best-fit model is presented in bold letters (p = 

3, c = 3). The comparison of RMSE with previous work is shown in Table 

3. The RBFN that we used was a 2-10-1 network with a back propagation 

algorithm and 1000 epochs with a learning rate of 0.01. The linguistic 

model (LM) that we used had three contexts and three clusters that were 

determined by using the trial and error method. The CFCM-RBFN used in 

the hidden layer increased from 3 to 20 in the experimental design.
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Treadmill data
Number of contexts (training data)

3 4 5 6

No.of clusters per 

context

2 0.5237 0.5089 0.4798 0.4557

3 0.4722 0.4436 0.4182 0.3834

4 0.4367 0.3832 0.3605 0.3276

5 0.3935 0.3659 0.3050 0.2425

6 0.3691 0.3245 0.2528 0.1821

Treadmill data
Number of contexts (checking data)

3 4 5 6

No.of clusters per 

context

2 0.6913 0.7506 0.7375 0.7563

3 0.6627 0.7109 0.7197 0.8622

4 0.6944 0.7903 0.7819 0.8641

5 0.7321 0.7162 3.6389 10.938

6 1.0113 1.1930 99.955 261.54

Table 4.3 RMSE in incremental RBFN model for training data and testing 

data.

2. Field Test

   The final goal was to realize an accurate estimation of EE under 

free-living conditions. After the testing in the laboratory environment, all 

the participants were encouraged to complete four exercise tests in an 

open field. The first was comfortable walking; the second, jogging; the 

third, a quick walk; and the last, slow running. Each test course was 

performed for around 2 min on an oval track. The experiment procedure 

was designed to progress as naturally as possible. The structure of the 
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RBFN, as per the laboratory experiment, was used as a reference. The 

total obtained data in the cases of walking, jogging, a quick walk, and slow 

running were 157, 60, 63, and 99 sample pairs, respectively. The prediction 

performance is shown in Fig. 4.7. Table 4.4 lists the RMSE comparison 

with the LM.

a. Normal walking on school playground.
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b. Brisk walking on school playground.

c. Slowest running on school playground.
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Activity Method Trn_RMSE Txt_RMSE

Walking

LM 0.75 1.06

Incremental

CFCM-RBFN
0.60 0.95

B r i s k 

walking

LM 1.47 1.82

Incremental

CFCM-RBFN
0.96 1.68

S l o w 

running

LM 0.79 1.44

Incremental

CFCM-RBFN
0.61 1.07

Jogging

LM 2.0 2.58

Incremental

CFCM-RBFN
1.32 2.45

d. Jogging on school playground.

Fig. 4.7. (a–d) EE prediction performance of incremental CFCM-RBFN.

Table 4.4 Comparison of the RMSE values for field exercise data.
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V. Conclusion

   Energy expenditure are used in a variety of applications. The rate of 

chronic disease such as obesity, hypertension, and diabetic is rapidly 

increased. Excess nutrient and energy expenditure imbalance are considered 

major important cause of chronic disease. Energy expenditure is assessed 

along with energy intake for weight management purpose. The assessment 

of energy expenditure can play a role in promoting a healthy lifestyle.

   Energy expenditure measurements are also important in the study of 

relationship between physical activity and health. In addition to health 

promotion and health-related research, energy expenditure measurement 

can be utilized in fitness and athletic training. Athletes and active sports 

participants, together with their coaches and personal trainers, can plan 

their nutrition by utilizing information on expended calories. During fitness 

training it is often typical to compare energy expenditure values between 

different exercises, and to select the activities that are perceived most 

positive and also have relatively high energy expenditure. Coach and 

athlete can design athlete's daily diet by considering the total energy 

expended in daily training and living. This is an important issue because a 

proper nutritional state supports optimal recovery. And body weight and 

composition can be optimized by utilizing the information on daily energy 

expenditure.

   The method of combine heart rate and motion sensors is most often 

chosen for assessing physical activity and energy expenditure. We choose 

this topic because it has many advantages. It overcomes the major 

weakness associated with HR monitoring or motion sensing alone. For 

example, HR monitoring is not subject to error in movement sensing such 

as in detecting the level of activity during resistance exercise, swimming, 
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and cycling. Likewise, movement sensing complements HR monitoring as it 

allows differentiation between increased HR caused by physical activity and 

that caused by non-exercise related influences.   

   Finally, this study has shown that an incremental CFCM-based RBFN is 

effective in estimating EE. A significant advantage of this model is that it 

begins from the LR model and is then refined by adding granular patches, 

which is considerably different from the preliminary version of the linear 

model. The other important design element is that the CFCM clustering is 

applied for calculating the center values, which can reduce the number of 

iterations, thereby optimizing the network structure. The output space can 

be optimized by selecting the appropriate number of contexts and the 

appropriate number of clusters. The experimental results are compared with 

those of the LM, RBFN, and RBFN-CFCM. This comparison indicates that 

the sensor module based on the incremental CFCM-based RBFN has the 

ability to estimate EE during walking and running under both laboratory and 

free-living conditions (average RMSE = 0.78). Moreover, in a future work, 

the same approach of incremental modeling could be explored in other 

domains such as pattern recognition and classification, which could be 

particularly applied to the field of e-health monitoring.
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