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ABSTRACT 

A Self-Repairing Adder Design using Fault Localization 

Muhammad Ali Akbar 

Advisor: Prof. Jeong‐A Lee 

Department of Computer Engineering  

Graduate School of Chosun University 

 Advanced microelectronics technologies caused the current digital systems 

to become more vulnerable to faults. It has been observed that the problem of 

single-event upset in digital systems has become more prominent with the 

increasing complexity of system on a chip, along with decreasing clock cycles 

to obtain high operating frequency. Moreover, the increasing complexity of 

digital system also increases the cost of repairing. Therefore, the existence of 

fault detection without recovery cannot fulfill the demand of reliable execution 

in current digital system. Thus, the built-in self-repair is becoming the need of 

current semiconductor technology.  

 In this thesis, we propose a self-repairing adder that can repair multiple 

faults and identify the particular faulty full adder. Fault detection and recovery 

has been carried out using self-checking full adders that can diagnose the fault 

based on internal functionality, independent of a fault propagated through carry. 

The idea was motivated by the common design problem of fault propagation 

due to carry in various approaches by self-checking adders. Such a fault can 

create problems in detecting the particular faulty full adder, and we need to 

replace the entire adder when an error is detected. We apply our self-checking 

full adder to a carry-select adder (CSeA) and show that the resulting self-
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checking CSeA consumes 15% less area compared to the previously proposed 

self-checking CSeA approach without fault localization. After observing fault 

localization with reduced area overhead, we utilize the self-checking full adder 

in constructing a self-repairing adder. It has been observed that our proposed 

self-repairing 16-bit adder can handle up to four faults effectively, with an 80% 

probability of error recovery compared to triple modular redundancy, which 

can handle only a single fault at a time. 
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한 글 요 약 

오류의 국지화를 이용한 효율적인 자가오류회복 가산기 설계 

 아크바르 무하마드 알리 

 지도 교수: 이 정 아  

 컴퓨터공학과 

대학원, 조선대학교 

 

 

향상된 마이크로 전자 기술은 현재의 디지털 시스템을 오류에 더 취약하게 

만들었다. 감소 된 클럭사이클과 함께 시스템의 복잡도가 증가하여 

시스템이 오류발생에 취약하게 되었다. 일상생활에서 활용되는 디지털 

시스템이 증가됨에 따라 하드웨어가 안정적으로 작동되는 것이 요구된다. 

위성, 수술시스템과 자동차의 자동 브레이크 시스템 등에서 디지털 

시스템이 오류를 발생핛 시 경제와 안전에 치명적인 영향을 끼칠 수 있다. 

따라서 오류복구가 없이 오류검출만 하는 것은 현재의 디지털 시스템의 

안정적인 실행이라는 요구사항을 충족시킬 수 없다. 그러므로 현대의 

반도체기술은자가오류회복기술을 내장핛 필요가 있다. 
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본 논문에서는, 우리는 다수의 오류를 복구하거나 특정핚 오류를 검출핛 수 

있는 ‘자가 복구 전가산기’를 제안핚다. 오류의 검출과 복구는 내부 함수에 

기초핚 ‘자가 복구 전가산기’를 사용하여 수행되지만, 이러핚 방법은 

가산기의 캐리전달에 의핚 오류와는 독립적으로 수행된다. 이 아이디어는 

자가 복구 가산기에 의핚 다양핚 접근법들 중, 캐리 전달에 의해 발생하는 

오류 전송의 공통된 설계 문제 해결에 기인핚다. 캐리전달에 따른 

오류탐지는 특정핚 오류가 있는 전가산기를 찾는 데에 문제를 야기핛 수 

있으며, 에러가 발생핛 경우 모든 전가산기를 교체해야만 핚다. 우리는 

우리의 ‘자가 복구 전가산기’를 Carry-Select Adder(CSeA)에 적용하고, 그 

결과 오류가 발생핚 가산기를 찾을 수 없는 이전의 CSeA 에 비해 15%의 

오버헤드 공간 감소 효과가 있음을 확인하였다. 오류의 국지화를 통하여 

면적 오버헤드 감소가 가능하였고, 본 논문에서는 ‘자가 검사 전가산기’를 

‘자가 복구 가산기’를 설계하는 데 활용하였으며, 우리가 제안핚 16bit 의 

자가 복구 가산기는 하나의 오류만을 복구핛 수 있었던 Triple modular 

redundancy 방식에 비해 80% 확률로 4 개의 오류까지 복구핛 수 있음을 

확인하였다. 
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I. Introduction 

 Research Overview A.

Advanced microelectronics technologies caused the current digital systems to 

become more vulnerable to faults. It has been observed that the problem of 

single-event upset in digital systems has become more prominent with the 

increasing complexity of system on a chip, along with decreasing clock cycles 

to obtain high operating frequency [1, 2]. The design of a compact circuit on a 

chip is advantageous in terms of noise but creates various problems in terms of 

reliability [3, 4]. Researchers agree that reduction in hardware size will increase 

hardware failures in future processors [5]. Thermal cycling, dielectric behavior 

and biasing of digital integrated circuits have also caused many transient and 

permanent faults [6]. 

In order to deal with the above-mentioned problems, the concepts of self-

checking and fault tolerance have been introduced. A system will be fault 

secure if it remains unaffected by a fault or if it indicates a fault as soon as it 

occurs [7]. A system will be self-testing if it produces a non-coded output in 

response to every generated fault [8]. A system will be totally self-checking 

(TSC) if it is both faults secure and self-testing [7].  The concept of TSC is used 

in different applications, like self-healing networks [9], self-checking 

arithmetic logic units (ALUs) [10], etc.  

However, the increasing complexity of digital system also increases the cost of 

repairing [20]. Therefore, the existence of fault detection without recovery 

cannot fulfill the demand of current digital system. Thus, the built-in self-repair 

(BISR) is becoming the need of current semiconductor technology [21]. 



2 

 

Adder is one of the essential elements present in almost all digital devices [22, 

15]. Therefore, the introduction of BISR in adder can play a vital role in digital 

industry. Many approaches have already been proposed for self-checking adder 

design. However, very few work has been found related to the self-repairing 

with reduced hardware overhead. Most of the self-checking approaches require 

re-execution of instructions for fault recovery [11]. However, the re-execution 

process affects system performance because all operations connected directly or 

indirectly to the faulty module should be re-executed. Furthermore, re-

execution cannot guarantee fault recovery, especially if there is a permanent 

fault or wear-out problem. Therefore, on-line detection and self–repairing is 

required in a highly dependable system architecture [12]. 

 Research Motivation B.

The common design problem in various approaches for self-checking adders is 

fault propagation due to carry. Such a fault can misdirect the system, 

preventing it from detecting the particular faulty region in a module because a 

propagated error can make the correct region of a module appear to be faulty, 

as well.  

A duplex system is shown in Fig. 1, in which each module has three full adders. 

Let us assume that an error occurs in the carry generation portion of the first 

full adder. The propagated error will indicate the second and third full adders as 

faulty modules, whereas the first full adder will be deemed a fault-free module. 

Therefore, in order to achieve recovery, we will repair the second and third 

modules, and hence, the faulty module is not recovered. Similarly, if we detect 

that a module having five full adders generates faulty output, then by most of 

the current approaches we cannot detect which of the five full adders is faulty. 

Hence, if a fault is indicated in any region of a large module, we need to 
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replace the whole module in order to accomplish the recovery process. This 

kind of replacement approach will waste resources because the properly 

functioning block has also been replaced. 

We observed that most design approaches deal with error detection, but little 

work has currently been done on the self-repair side. The general consideration 

for designing a self-checking adder is that the recovery process can be feasible 

after detection of faults. However, the cost for self-repair is too high to be 

adoptable for most self-checking approaches. If we consider DMR and TMR, 

then instead of replacing a single module, we have to replace the whole system 

to achieve recovery. This will introduce a huge area overhead of more than 300% 

to the actual system, as well as an increase in power consumption. Our 

proposed design in this thesis considers both the facts of self-checking and the 

recovery. Because of the fault localization property present in our design, the 

system is only required to replace the faulty region, without disturbing the 

whole system. 

 

Figure 1: Fault propagation through carry 
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 Contribution C.

In this research, a self-checking full adder has been proposed which can detect 

the fault based on its internal functionality and independent of the propagated 

carry. Even the error propagated through carry will not create a fault indication 

in subsequent full adders because all full adders are self-checking with respect 

to their individual functionality. We then proposed a self-repairing adder by 

using the fault localization property present in our proposed self-checking full 

adder. The designed self-repairing adder can provide reliable output for more 

than one fault, with reduced area overhead. This is because, instead of replacing 

the whole system of adders, we replace the particular faulty full adder only. The 

main contributions of this thesis are as follows: 

1) All full-adders present in adder module are self-checking with respect to 

their individual functionality. 

2) Self-checking Carry Select Adder (CSeA) with fault localization whose 

area overhead almost similar to the conventional CSeA without self-

checking. 

3) A reliable carry propagation chain has been designed using dedicated 

self-checking adder for replacements 

4) Possibility of recovering multiple fault at run-time 

5) Number of faults recovered is dependent on the adder size 

 Thesis Organization D.

The thesis is organized as follows. Chapter 2 discusses the previous work and 

common design problem (i.e., the fault propagation problem due to carry). In 

chapter 3 we discuss the basic principle, fault coverage of our proposed design 

approach for a self-checking full adder and its application to CSeA. In chapter 

4 we present the concept and comparison of our proposed self-repairing adder 
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approach. The comparison in terms of area and reliability covers in chapter 5. 

Our research work is concluded in chapter 6.  
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II. RELATED WORKS AND LIMITATIONS 

 Self-checking systems require redundancy, which can be broadly classified as 

time- and hardware-based redundancy. We will discuss both of them briefly, 

along with related works, in this section. 

 Hardware Redundancy A.

The basic idea for this approach is to use more than one hardware to produce 

either the same, inverted or coded output. The comparison between the outputs 

of the actual and the redundant hardware will be used to indicate the fault. This 

approach can be further classified into duplication of the existing hardware and 

output predictor block.  

1. Duplication of Hardware 

In the duplication of hardware scheme, the two most commonly used 

approaches are double modular redundancy (DMR) and triple modular 

redundancy (TMR) shown in Fig. 2. In a duplex system (i.e., DMR) the same 

hardware is repeated once, whereas TMR requires three modules with which to 

vote to determine the final output.  

The major problem with this concept is that instead of detecting faults in 

individual modules, it can detect the overall fault of a system. This kind of 

checking creates many complexities in terms of fault recovery, because we 

cannot detect which individual block is faulty. The other drawback of this 

approach is that straightforward implementation will create an area overhead of 

more than 100% [3, 13]. Secondly, it cannot detect a common mode failure in 

which both modules experience the same set of errors [14].  
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(a) (b) 

Figure 2: Hardware Redundancy: (a) TMR (b) DMR 

The advantage of TMR over DMR is the probability of obtaining reliable 

output. It can easily be recognized that by using the TMR technique, the area 

overhead will increase up to 300% compared to the original design without 

self-checking. The second problem with this kind of design approach becomes 

apparent when two modules have the same faulty result at the same time, and 

then the correct module is treated as faulty because the output is dependent on a 

voter circuit that decides on the basis of majority [10].  

In a CSeA design, two adders are working in parallel for a complemented value 

of initial carry-input, Cin, and the final output will depends on the actual value 

of Cin. The benefit of having two adders at a time was realized by Vasudevan et 

al. [15], and they introduced a fault-tolerant capability without excessive 

hardware overhead. However, the problems of common mode failure and a 

high area overhead requirement for fault recovery still remained unsolved. The 

fault in carry generation is allowed to propagate and cannot be detected with its 

first occurrence. Hence, this approach also suffers in terms of determining the 

defective full adder modules. 
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2. Concurrent Error Detecting Codes 

This approach also requires an extra functioning module and is similar to DMR. 

However, in contrast to duplicated hardware approach, the extra module will 

generate encoded output with encoded inputs, as shown in Fig. 3. The resulting 

output from normal module will be encoded further and compared with the 

encoded output of the extra module. The advantage of this approach is diversity 

which can encounter the problem of common mode failure.   

 

Figure 3: Concurrent Error detection scheme 

 Time Redundancy B.

The basic concept of time redundancy is that the same hardware will perform a 

single operation in different intervals of time, and we can detect an error by 

comparing the two outputs obtained at different time instances. 

Khedhiri et al. [13] designed a self-checking full adder circuit based on the 

concept of time variation. The single full adder will work such that it is used 

twice to perform the same computation by following different logical paths, 

and the comparison of the final results will indicate the presence of a fault. The 
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ALU Code Generator 
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key features of the authors’ design are diversity and a decrease in area overhead 

by using different paths for a single operation in each time interval. Moreover, 

in order for system performance or speed to remain unaffected, it has been 

argued that the result will be propagated after the first computation. Hence, if 

the first computed result is faulty, then before detecting the fault, that result will 

be used for other computations. The propagated fault will also cause faulty 

results in other modules. 
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III. SELF-CHECKING ADDER DESIGN 

 Basic Principle A.

The presence of carry propagation chain in adder cannot be ignored during self-

checking and fault localization. In order to avoid the problem of fault 

propagation due to carry one possible approach is to adapt carry-free adder. 

However, the complexity and area overhead of carry free adder without self-

checking is almost equal to the duplex system. Another approach is to make 

self-checking independent of the propagated carry. We utilize the following 

relations to achieve the goal of fault localization: 

1) The Sum and Carry-out bit will be equal to each other when all three 

inputs are equal.   

2) The Sum and Carry-out bit will be complemented when any of the three 

inputs is different. 

By using the above two relations, a full adder can be self-checked with only the 

expense of an equivalence tester (Eqt), as shown in Fig. 4. The purpose of the 

equivalence tester is to check the equivalence of all inputs. Hence, apart from 

the Sum and Carry bits calculation, we have to compute logic for the 

equivalence tester, and the expression for that purpose is in Eq. (3.3). The 

functional block Eqt has been designed to produce an active low output so that 

we can use the fault-secure Exclusive-NOR logical function (XNOR) gate for 

comparison. 

                                               (3.1) 

             (   )                                   (3.2) 
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                   (   )  (  ̅ ̅   ̅̅ ̅̅       )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅        (3.3) 

      (  )                         (3.4) 

 

Figure 4: Proposed self-checking full adder 

The final fault is computed by using two XNOR gates. The purpose of the first 

XNOR gate (G1) is to check whether the Sum and Cout bits are equal or 

complemented. We need a second XNOR gate (G2) because of the previously 

mentioned observation that Sum and Cout will always complement each other 

except when all inputs are equal. Thus, the output of G1 will indicate the 

equality or difference of Sum and Cout, and G2 will verify the output of G1 by 

comparing it with an equivalence tester, and thus generate the final error 

indication. When Eqt is zero, the output of G1 and G2 should be logic 1 and 0, 

respectively. On the other hand, if Eqt indicates logic 1, then both XNOR gates 

should generate logic 0 (i.e., It =0 and Ef =0), and in any other case, a fault will 

be indicated. 
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 Self-Checking Carry Select Adder (CSeA) B.

1. Proposed Approach 

Carry Select Adder (CSeA) is one of the most common types of adder which 

pre-compute Sum bits using two parallel blocks of Ripple Carry Adder (RCA) 

with complemented values of initial Cin and the final Sum bit will be generated 

after receiving the actual value of Cin. The presence of two parallel RCA is 

advantageous for introducing Self-checking ability with the reduced hardware 

overhead. The self-checking CSeA shown in Fig. 5 was proposed by 

Vasudevan et al. [15], where two adders and a 2-pair-2-rail checker, along with 

some combinational logic, are used for self-checking. 

We design a self-checking CSeA with single adder, assuming the initial Cin to 

be zero and where the individual full adder has been replaced by our proposed 

self-checking full adders. We then generate Sum and Carry output for the initial 

Cin equal to one using the following relation, where   
 
 and   

  represent the     

position of the Sum and Carry bits, and   is either 0 or 1, indicating the value of 

the initial Cin: 

1)   
  is always a complement of   

 , i.e.   
    

 ̅̅ ̅. 

2)   
  depends on   

 ,   
 : 

If (  
 =0) then   

  =   
 ; 

If (  
 =1) then   

     
 ̅̅ ̅. 

3)   
  depends on   

 
,   
 

 and   
 

: 

If (  
 =1 OR   

    
 =1) then   

 = 1; 
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The above relationships can be summarized in Eq. (3.5), Eq. (3.6) and Eq. (3.7). 

An exclusive OR (XOR) operation is performed in Eq. (3.6) to generate   
  

because   
  is not always a complement to   

 . Moreover, since both 

  
        

    
  cannot equal 1 at the same time, we used the XOR gate in Eq. 

(3.7) because a self-checking XOR gate was presented by Belgacem et al. [16]. 

The two-bit proposed self-checking CSeA is shown in Fig. 6. The design 

consumes less area compared to the self-checking CSeA approach of 

Vasudevan et al. [15], shown in Fig. 5.  

    
  =   

 ̅̅ ̅                         (3.5)  

            
  =  

      
              (3.6) 

  
 =   

    (  
     

 )                                      (3.7) 

Thus, for arbitrary number of bits we found that except for the least significant 

bit (LSB),   
  and   

  has the following relation:  

Except for the LSB, the Sum bit computed when carry-in equals 0 will be a 

complement to the corresponding Sum bit with carry-in equal to 1, only when 

all the lower Sum bits are equal to logic 1. 

 In general we can say that: 

   (  
    

    
    (   )

   ) 

      (  
     

 ̅̅ ̅)  

      (  
     

 )   
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where j indicates the bit position. Thus, in order to design an n-bit CSeA, the 

generalized Boolean equations have been shown in Eq. (3.8), Eq. (3.9) and Eq. 

(3.10). The design module shown in Fig. 7 will be used to extend the 2-bit 

CSeA design to an n-bit CSeA design. All the intermediate Sum bits between 

the LSB and final Cout can be generated using the module shown in Fig. 7. The 

LSB and module for final Cout (MOFC) design in Fig. 6 can be used to 

complete the n-bit self-checking CSeA.  

  
  =   

 ̅̅ ̅                                                   (3.8) 

  
  =  

    (  
    

    
    (   )

 )                              (3.9) 

  
 =   

    (  
    

    
    (   )

 )                    (3.10) 

 

Figure 5: Self-testing carry-select adder [15] 
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Figure 6: Proposed design of two-bit self-testing carry-select adder 

 

Figure 7: Designed module required for n-bit extension 
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checking is only valid for 2-bit CSeA, and the 6-bit CSeA shown in the paper 

cannot provide self-checking. We argue the failure of their design model and 

present a correct self-checking CSeA design based on two-rail encoding. We 

show that the transistor overhead of the correct model is higher than the one 

claimed by Vasudevan et al. [15]. 

The property used by Vasudevan et al. [15] for a pair of full adders can be 

generalized as follows:  

The relation between sum bits calculated with identical inputs is only 

dependent on the carry-input, and for complemented values of carry-input, we 

will obtain complemented sum bits (keeping other pairs of input bits identical). 

For example, if the sum bits   
 and   

  are generated by using intermediate carry 

   
  and   

 , respectively, then according to the above-mentioned statements: 

   (  
     

 ̅̅̅̅ )        

         
                

 ̅̅ ̅ 

 Where, i indicates the bit position, while 1 and 0 in the superscript represent 

the initial value of Cin. If we analyze the CSeA design, then the above 

statements are only valid for the least significant sum bit of a particular CSeA 

block. This is because the first full-adder in every CSeA block is the only one 

that will get the complemented values of the carry-input. The remaining full 

adders will depend on the propagated carry, which may or may not be 

complementary to each other. Therefore, we cannot say whether the generated 

sum bits, other than the first full adder, will be inverted to each other or not.   
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 The possibility of having equal values of propagated carry by the two 

corresponding adders in a CSeA was neglected by Vasudevan et al. Therefore, 

the approach in [15] fails for CSeA with more than two bits, as shown in Fig. 9 

[15]. Note that the initial carries, C1 and C2, always complementary to each 

other because of the design requirement of CSeA, while the intermediate 

carries, Ca and Cb, may or may not be complementary to each other, depending 

on the conditions of carry propagation. Thus, Sa and Sb will not always be 

complementary to each other. Therefore, comparing Sa and Sb directly using 2-

pair-2-rail-checker (TTRC) will give the wrong indication of faults. Even if 

there is no fault, the TTRC will indicate a fault. Since the problem in their 

approach starts from Ca and Cb, we do not discuss the intermediate carries Cx 

and Cy. Let us consider the binary addition of 3-bit numbers as illustrated in 

Fig.8. It can easily be seen from Fig. 8(a) and (b) that the most significant bits 

may or may not be complementary to each other.  

  

0        1     0        1 

0 0 1 

 

0 0 1   0 0 1  0 0 1 

0 0 1 

 

0 0 1   1 1 0  1 1 0 

       

         

0 1 0 

 

0 1 1   1 1 1  0 0 0 

   (a)         (b)    

Figure 8: Examples of 3-bit addition (a)   
     

  (b)   
     

  

A carry-select adder pre-computes sum bits using two parallel ripple-carry 

adders (RCAs), with complemented values of the initial Cin, and the actual 

value of the Cin will be used to determine the final sum bit. Vasudevan et al. 

utilized both RCAs to obtain the complementary behavior of the corresponding 

sum bits. However, it is possible to perform a logical operation such that one of 

the RCA blocks should always provide inverted sum bits with respect to the 
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opponent block for checking purposes only. This will provide a more simplified 

and systematic design, which can be extended easily.  

 

Figure 9: Faulty design of 4-bit self-testing carry-select adder [15] 
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In general, we can say that: 

   (  
    

    
    (   )

   ) 

        
                 ̅̅ ̅  

        
                

    

 

Figure 10: Corrected design of self-testing carry-select adder with two rail encoding 
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In other cases, if any of the (n-1)
th

 sum bits at Cin=0 are equal to logic-0, then 

we take the inverse of   
 , so it equals to the complement of   

 . Therefore, in 

Eq. (3.11) we performed an XNOR operation between   
  and the product of all 

lower sum bits computed at the initial Cin=0, such that the resultant K will 

always be equal to    . The design module shown in Fig. 10 will be used to 

implement the 4-bit self-checking CSeA. 

    
    ( (   )

     
    

    
 )                     (3.11) 

We applied the same technology and implementation used by Vasudevan et al. 

[15] for comparison. A standard complementary metal-oxide semiconductor–

based AND gate with 6 transistors was used for area computation and the 

transistor count for full-adder, multiplexer (MUX), XNOR gate and TTRC was 

taken from Vasudevan et al. [15], as given below: 

• Full adder – 28 transistors; 

• MUX – 12 transistors; 

• XNOR – 10 transistors; 

• TTRC – 8 transistors. 

For an n-bit self-checking CSeA, we required (n-2) number of AND gates, (n-1) 

number of XNOR gates, (n+1) number of MUX, (2n) number of full adders and 

(n-1) number of TTRC, respectively. We can see from Table 1 that the 

difference in transistor overhead for 4- to 64-bit self-checking CSeAs varies 

from 22 to 682, compared to the faulty self-checking CSeA design by 

Vasudevan et al. [15]. Moreover, the transistor overhead of the corrected self-

checking CSeA, as compared to CSeA without self-checking, was found to be 
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23.2% to 34.5%, whereas in the faulty approach presented by Vasudevan et al. 

[15], the overhead was 15.49% to 18.84%. 

Table 1: Comparison of CSeA with Self-Checking CSeA Before and After correction of Vasudevan 

et al. [15] 

No. of 

bits 

CSeA 

without 

self-

checking 

Vasudevan et al. faulty design [15] Corrected self-checking CSeA 

 Transistor 

required 
[15] 

Trans. 

required 

Trans. 

overhead 

% Trans. 

overhead 

Trans. 

required 

Trans. 

overhead 

% Trans. 

overhead 

4-bit 284 328 44 15.49% 350 66 23.2% 

6-bit 420 490 70 16.66% 534 114 27.14% 

8-bit 556 652 96 17.26% 718 162 29.14% 

16-bit 1100 1300 200 18.18% 1454 354 32.18% 

32-bit 2188 2596 408 18.65% 2926 738 33.73% 

64-bit 4364 5188 824 18.88% 5870 1506 34.5% 

 

 Fault Coverage C.

The condition for fault coverage of our design has been summarized in Table 2. 

The logic-high of the final error (Ef) will indicate a fault. We can easily see that 

the designed approach guarantees self-checking only when any one of the Sum, 

Cout or Eqt lines becomes faulty. If two of them have a fault at the same time, 

then that fault cannot be detected. The assumption of having a single fault at 

one time becomes valid because the fault-secure property assumes that between 

two consecutive faults, we have enough time to detect the error at its first 

occurrence [16]. Moreover, unlike other techniques, like DMR and TMR, etc., 

we are testing a very small module of a single full adder. The probability of 

having two faults at one time in a small module is much lower than with a large 

module.  
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For example: A=1, B=0 and Cin=1 are three respective inputs in our proposed 

full adder. The corresponding outputs for these inputs without fault are: Sum=0, 

Carry=1 and Eqt =1. Let us assume that the Sum bit flips from 0 to 1, and the 

outputs, after the fault, will thus become Sum=1, Carry=1 and Eqt =1. This 

condition has been indicated as a fault in Table 2. 

Table 2 Conditions For Fault Coverage 

CONDITIONS STATUS 

IF ((      )     (         )) NO FAULT 

IF ((      )     (         ̅̅ ̅̅ ̅̅ ))  NO FAULT 

IF ((       )     (        )) FAULT 

IF ((      )     (        )̅̅ ̅̅ ̅̅ ̅) FAULT 

With our proposed approach for a self-checking adder, a fault generated in any 

full adder can be detected individually. Even if the generated carry has a fault, 

it will not create a fault indication in subsequent full adders because all the full 

adders are self-checking with respect to their individual functionality and are 

independent on their carry input. Hence, the faulty propagated carry will not 

create a problem in self-checking in any subsequent full adder. The benefit of 

this approach is that if we want to recover from the fault, then instead of 

replacing all full adders present in the complete module, we replace only 

particular full adders.   

Moreover, Sum and Cout of a full adder are not sharing any logic, so the 

problem of transient faults can be overcome. For example, consider a single full 

adder in which both the final Sum and Cout share the Sum bit of the first half-

adder. Let a, b and Cin be the three input bits in the full adder, with values equal 

to 0, 0 and 1, respectively. With these inputs the correct outputs for the final 

Sum and Cout are 1 and 0. Assume that the Sum bit of the first half adder (a b) 
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flips from 0 to 1. Then this bit flipping can generate a fault in both Sum and 

Cout because of logic sharing and can thus create a problem in detection. 

Therefore, in our proposed idea, the Sum and Cout modules work without logic 

sharing, as shown in Fig. 11, and any fault occurring within the internal logic of 

an individual module will make that particular module faulty, and thus can be 

detected easily on comparison.      

 

Figure 11: Full-adder without logic sharing 

In addition to a self-checking full adder, we need to have a self-checking XOR 

gate and multiplexer (MUX). The self-checking XOR gate was proposed by 

Belgacem et al. [16] using a pass-transistor–based differential pair as shown in 

Fig. 12(a). The self-checking MUX design, however, was presented by 

Vasudevan et al. [15] in which the complementary outputs SN and   ̅̅ ̅̅  will be 

used to detect the presence or absence of faults and is shown in Fig. 12 (b). 
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(a) 

 

(b) 

Figure 12: Self-Checking (a) XOR gate [16] (b) MUX [15] 
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IV. SELF-REPAIRING ADDER DESIGN 

 Previous Design Approaches A.

TMR is a well-known approach for obtaining reliable output with more than 

300% area overhead. However, reliability can only be assured for a single 

faulty module at a time. This is because the faulty module has not been 

replaced with a correctly functioning module, and as a result, a triple modular 

system changes into a duplex system. Koal et al. [18] proposed a self-replacing 

approach for TMR, but the resulting design required more than 500% area 

overhead along with at least 5 clock cycles to replace the particular faulty 

module. Moreover, system complexity due to a switching mechanism between 

input and output rendered the design far beyond practical implementation.       

Fazeli et al. [11] proposed a self-checking and self-reliable adder using the 

concept of narrow width value (NWV). The overall approach deals with a 

processor design property whereby most of the data coming into the ALU 

consists of NWVs. Therefore, the individual arithmetic and logic operations 

can be split into two parts: one is used to perform normal operations while the 

unused part is used to provide redundant computation, like a duplex system. 

Consider the case of a 64-bit adder in which (most of the time) a 32-bit adder 

will be used for addition while the other 32-bit adder remains unused because 

of NWV. This unused 32-bit adder has been made equivalent to the other 32-bit 

portion. Thus, a duplex system with minimum hardware overhead is obtained. 

Furthermore, the concept of TMR has also been used to provide reliable output. 

Fazeli et al. [11] proposed that a third 32-bit adder module for TMR can be 

obtained from the multiplier block, because the module of the multiplier is a 

combination of add and shift operations.  
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The problems associated with this approach led us to propose our design. First, 

the reason for using NWV in processor design is to simplify computational 

complexity and to reduce energy consumption [11]. However, adaptation of 

their approach will remove both those benefits. In addition, the problem of 

common mode failure and fault propagation due to carry has not been 

considered. Moreover, the possibility of two faulty modules can result in failure 

of their approach. Furthermore, correct output on a single fault will only be 

achieved when both the operands are narrow width values. In other cases, the 

proposed adder can only detect the error using a duplex concept. Thus, beyond 

hardware complexity and overhead due to the MUXs, the system reliability will 

only depend on the NWV, and according to their calculation based on the ARM 

processor, the probability of having NWV in addition is only 56% [11]. 

Therefore, there is only a 56% probability of obtaining reliable output for a 

single fault. This will raise the problem of system diagnoses, as to whether the 

output is reliable or not, along with precautions if the system fails to recover. 

Also, the MUXs are used without considering their reliability issues.   

 Design Challenges and Solutions B.

Along with the area, power consumption and other limitations for a self-reliable 

adder, there is one important challenging factor that is also related to carry 

propagation. Although our proposed self-checking adder is independent of fault 

propagation due to carry, for fault recovery at run time, the propagated carry is 

crucial. If a fault is detected in any full adder, then because of fault propagation 

due to carry, we cannot trust the output of the corresponding full adders. 

Therefore, if we replace the particular faulty module, we need to re-execute all 

addition processes to get true and reliable output. However, this whole process 

will increase processing time.  
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In our proposed design, we provide a solution for this problem by designing a 

reliable carry propagation chain using a dedicated self-checking adder for 

replacements. If both the adders are faulty at the same time, this will be 

indicated as a critical situation. It is possible to have two faults at a time, like 

the above-mentioned problem, but there is a low probability of the fault being 

at the same adder position. 

 Proposed Self-Repairing Adder C.

The design approach requires two proposed self-checking adders working at 

one time on the same input bits, as shown in Fig. 13(a). The operation of the 

proposed design is such that one adder behaves as a normal adder (indicated by 

Adder-0) while the second adder will work for recovery at run time (indicated 

by Adder-0e). The suffix “e” indicates an “extra” adder used for fault recovery. 

The MUX will only be dependent on the fault of the normal adder (i.e., Adder-

0). If any fault occurs in the normal adder, then the MUX will export the Sum 

and Carry-out from the extra adder module (i.e., Adder-0e), as shown in Fig. 

13(b). If both adders become faulty, this will be indicated as a worst situation. 

Also, there is a very low possibility of more than one fault in a single full adder 

because of a negligible area, as opposed to the complete adder module. 

Therefore, multiple faults in the individual full adder have not been considered 

in this research.  

The final Carry-out obtained from the MUX will be fed to both full adders 

present in order to compute the next Sum bit, as shown in Fig. 13(a). The MUX 

in Fig. 13(a) consists of two internal MUXs, as shown in Fig. 13(b). Both 

MUXs are designed according to the proposed self-checking MUX design by 

Vasudevan et al. [15].   
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Figure 13: (a) Proposed design for self-repairing adder (b) MUX structure 
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V. AREA AND RELIABILITY COMPARISON 

 Area Comparison A.

The area overhead can be compared in different ways, such as transistor count, 

gate count and technology dependence. In this section, we will compare our 

proposed self-checking full adder with DMR and TMR. Also, our designed 

self-checking CSeA will be compared with the conventional CSeA and self-

checking CSeA from Vasudevan et al. [15]. The area overhead in both cases 

was computed in terms of transistor count. The transistor count for 

implementing a full adder and MUX was taken from Vasudevan et al. [15] 

while the transistor count for the self-checking XOR gate was taken from 

Belgacem et al. [16]. The final transistor count for individual modules is shown 

in Table 3.    

Table 3: Transistor Count for Individual module Implementation 

Modules Required Transistors 

for Implementation 

AND                   6 

XOR                  4       [16] 

MUX                12       [15] 

ADDER                28       [15] 

EQUIVALENCE TESTER (   ) (Eq. 3)                 12     

CHECKER (2-XOR)                  8 

MODULE FOR FINAL COUT (MOFC) 

 ( shown in Fig. 6) 

                16 
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1. Area Compared To DMR And TMR 

Single-bit adder implementation using DMR required two adders and a single 

XOR gate for comparison. For TMR, we need three adders and one majority 

voter for selecting the correct output. In order to compute transistor count for 

voter circuitry, we used the fault secure voter design proposed by Kshirsagar 

and Patrikar [17]. 

The comparison result of our designed self-checking full adder with DMR and 

TMR is shown in Table 4. We see that our designed self-checking full adder 

requires an overhead of 20 transistors compared to a full adder without self-

checking, whereas DMR and TMR have an overhead of 32 and 96 transistors, 

respectively. Hence, our designed self-checking full adder requires 25% fewer 

transistors than DMR and 158% fewer than TMR. Moreover, our self-checking 

full adder, without creating a time penalty, has 20.8% more area efficiency than 

a self-checking full adder using the time-redundancy approach of Khedhiri et al. 

[13]. 

Table 4: Comparison with Time-Redundancy based Self-Checking Adder, DMR and TMR 

 Individual 

Transistor Count 

Total # of 

Transistors 

Transistor 

overhead 

Proposed 

full-adder 

ADDER 

EQT 

CHECKER 

28 

12 

8 

48 20 

DMR ADDER 

XOR 

56 

4 
60 32 

TMR 
ADDER 

Voter [17] 

84 

40 
124 96 

Self-checking 

adder [13] 
- - 58 30 
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2. Area Compared To self-checking CSeA 

The transistor count for our proposed self-checking CSeA with multiple bit data 

is presented in Table 5. The transistor count for a conventional CSeA with and 

without self-checking was presented by Vasudevan et al. [15]. It is seen from 

Table 6 that our designed self-checking CSeA has only negligible area 

overhead compared to a normal CSeA design and also requires a 15% to 16% 

lower transistor count compared to the self-checking CSeA proposed by 

Vasudevan et al. [15].  

A graphical representation is shown in Fig. 14. We can see that our proposed 

self-checking CSeA design shows the same trend compared to a CSeA without 

self-checking, whereas the percentage increase in area overhead of the self-

checking CSeA proposed by Vasudevan et al. [15] shows considerable 

increment compared to a normal CSeA. 

Table 5: Transistor Count for Different Data Size 

 4-bit 6-bit 8-bit 16-bit 32-bit 64-bit 

AND 3 5 7 15 31 63 

XOR 3 5 7 15 31 63 

MUX 4 6 8 16 32 64 

Full Adder 4 6 8 16 32 64 

Equivalence 

Tester 
4 6 8 16 32 64 

Checker  

(Pass Trans. 

Based) 

4 6 8 16 32 64 

MOFC 1 1 1 1 1 1 

       

Total 

Transistor 

Required 

286 426 566 1126 2246 4486 
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Table 6: Comparison with Other Approaches Using CSeA 

 

 

Figure 14: Comparison with CSeA: our proposed design and self-checking CSeA[15] 

 Reliability Comparison B.

The problem associated with TMR reliability is that if two single full adders 

associated with different modules become faulty one after the other, then the 

TMR will fail to provide reliable output. This is due to the absence of self-

checking and self-replacement in TMR, because the purpose of the voter circuit 

is to provide reliable output based on majority agreement without indicating the 

presence of a particular fault in the modules. In order to make TMR self-

checking, we need to increase hardware overhead as mentioned by Majumdar 

et al. [10]. However, the absence of a recovery process will further increase the 

probability of more than one fault. Thus, TMR is sensitive to a single adder of 
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Transistors  

required [15] 
Transistors 

required 

Transistor 

overhead 

Transistors 

required 

Transistor 

overhead 

4-bit 284 286 2 328 44 

6-bit 420 426 6 490 70 

8-bit 556 566 10 652 96 

16-bit 1100 1126 26 1300 200 

32-bit 2188 2246 58 2596 408 

64-bit 4364 4486 122 5188 824 
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each module. To reduce this sensitivity, we propose the concept of dedicated 

replacement for individual adders, as shown in Fig. 15. 

 

Figure 15: Our proposed 4-bit self-repairing adder 

In TMR, all three modules are sensitive with respect to the faults in the 

individual full adders. Therefore, we can use the concept of simple 

combinational probability without replacement to compute the probability of 

fault recovery, as shown in Eq. (5.2). In our proposed design, all full adders are 

sensitive with respect to their individual replacement full adder modules. If we 

compute the probability of a critical situation in which two adders at the same 

position become faulty, then our approach can be the same as two modules 

having n full adders. Each module has full adders with numbers 1 to n 

sequentially, such that two full adders of the same number cannot be present in 

a single module. If we introduced r random faults, then the probability of 

having faults in at least 2 full adders at the same position without replacement 

can be computed with Eq. (5.1), where N is the total number of full adders in 

both modules. 
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(  )
                         (5.1) 
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adder. Hence, the probability of fault recovery in our proposed self-repairing 

adder can be computed by subtracting Eq. (5.1) from 1 as shown in Eq. (5.3). 

                        
(  )  

(  )
                            (5.2) 

                               − (
(      )  

(  )
)          (5.3) 

where n indicates the number of full adders in a single module, and N shows 

the total number of full adders in all modules. The total number of faults is 

represented by the term r. 

Considering we have three identical modules of 4-bit adders working in parallel, 

there is an equal probability of a first fault in any single module. If a second 

fault occurs, there is a 73% probability that the fault will occur in any one of 

the remaining modules that were not affected by the first fault. Therefore, if 

two faults occur in a TMR-based 4-bit adder, there is only a 27% possibility of 

error recovery. Hence, TMR can efficiently handle only a single fault at a time.  

Let us consider the same 4-bit adder with dedicated adders for run-time 

replacement, as shown in Fig. 15. Suppose that the first fault occurs in Adder-0; 

then there is only a 14% probability that the next fault will occur in Adder-0e, 

which is the dedicated repair module for Adder-0. Therefore, if two faults occur 

in our proposed 4-bit adder, there is about a 86% probability of error recovery. 

The probability of having a second fault in the dedicated adder for the first 

infected adder will decrease further with the increase in number of bits. Hence, 

our designed adder is more reliable against multiple faults, compared to TMR.   

It can be seen from Table 7 that the reliability of our proposed design increases 

with an increase in the number of bits. For a 4-bit adder design, our proposed 
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approach can sustain up to two faults efficiently. But for a 16-bit adder, our 

design can handle a minimum of 4 faults effectively, with an 80% probability 

of error recovery.  With TMR, if any two modules go faulty, the whole TMR 

may fail to provide reliable output. It can also be seen from Table 7 that the 

reliability of TMR has no significant improvement with respect to the number 

of bits. 

Fazeli et al. [11] adapted the TMR mechanism for fault recovery, which is only 

possible when input bits are NWV. According to their calculations, based on an 

ARM processor, there is only a 56% probability of NWV. Therefore, the adder 

is only 56% reliable for a single possible fault. Furthermore, if input bits are 

NWV, then the possible error recovery for multiple faults is equal to the TMR.  

Moreover, the dominance of our proposed solution, compared to the TMR and 

NWV can be visualized clearly for 16-bit adder design. The reliability will 

increase further for higher order adders. 
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Table 7: Comparison of System Failure in NWVA, TMR and Our Proposed Design Approach 

 M. Fazeli et al. [11] TMR Proposed Design 
Approach 

Fault Recovery 
Fault correction 
requires three 
conditions to be 
fulfilled: 
1) Both the operands 

should be NWV. 

2) No more than one 

module should be 

faulty. 

3) None of the MUXs 

or other extra 

circuitry goes faulty, 

because there is no 

self-checking in their 

design. 

Fault recovery is 
possible when no 
more than one 
module goes 
faulty at a time. 
 
Totally self-
reliable voter 
circuit is required 

Multiple-fault 
recovery is possible, 
providing both 
corresponding 
adders do not go 
faulty at one time 

Output Reliability 
on Single fault 

56% 100% 100% 

4-Bit Adder 

Output Reliability 
on  2nd Faults 

(Input bits are NWV) 
27% 

27% 85.82% 

Output Reliability 
on  3rd Faults 

5% 5% 42.8% 

16-Bit Adder 

Output Reliability 
on  2nd Faults 

(Input bits are NWV) 
31% 

31% 96.7% 

Output Reliability 
on  3rd Faults 

9.7% 9.7% 90.3% 

Output Reliability 
on  4th Faults 

2.8% 2.8% 80% 

Output Reliability 
on  5th Faults 0.7% 0.7% 67% 
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VI.  CONCLUSION 

With our proposed design of a self-checking full adder, a fault generated in any 

full adder can be detected individually. Even the error propagated through carry 

will not create a fault indication in subsequent full adders because all full 

adders are self-checking with respect to their individual functionality. We then 

proposed a self-repairing adder by using the fault localization property present 

in our proposed self-checking full adder. The designed self-repairing adder can 

provide reliable output for more than one fault, with reduced area overhead. 

This is because, instead of replacing the whole system of adders, we replace the 

particular faulty full adder only. Moreover, our proposed 16-bit self-repairing 

adder can repair up to 4 faults with 80% probability of error recovery.  

The self-checking full adder proposed in this thesis is 25% more area efficient 

than DMR. We applied our self-checking full adder to CSeA to observe the 

performance and area overhead compared with CSeA without self-checking. It 

was observed that our designed self-checking carry-select adder has negligible 

area overhead compared to a normal CSeA without self-checking. Also, our 

designed self-checking CSeA consumes 15% less area overhead compared to 

the self-checking CSeA approach without fault localization presented by 

Vasudevan et al. [15]. 
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