

저 시-비 리-동 조건 경허락 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

l 차적 저 물 성할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 허락조건
 확하게 나타내어야 합니다.

l 저 터 허가를 러한 조건들 적 지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 적 할 수 없습니다.

동 조건 경허락. 하가 저 물 개 , 형 또는 가공했 경
에는, 저 물과 동 한 허락조건하에서만 포할 수 습니다.

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

August 2014
Master’s Degree Thesis

A Self-Repairing Adder with
Fault Localization

Graduate School of Chosun University

Department of Computer Engineering

 Muhammad Ali Akbar

[UCI]I804:24011-200000276168

A Self-Repairing Adder with
Fault Localization

오류의 국지화를 이용한 효율적인 자가오류회복

가산기 설계

August 25, 2014

Graduate School of Chosun University

Department of Computer Engineering

Muhammad Ali Akbar

A Self-Repairing Adder with
Fault Localization

Advisor: Prof. Jeong-A Lee, PhD

A thesis submitted in partial fulfillment of the
requirements for a Master’s degree

April 2014

Graduate School of Chosun University

Department of Computer Engineering

Muhammad Ali Akbar

i

Table of Contents

TABLE OF CONTENTS .. I

LIST OF FIGURES.. III

LIST OF TABLES.. IV

ABSTRACT ... V

한 글 요 약 ... VII

I. INTRODUCTION ... 1

 RESEARCH OVERVIEW ... 1 A.

 RESEARCH MOTIVATION .. 2 B.

 CONTRIBUTION .. 4 C.

 THESIS ORGANIZATION .. 4 D.

II. RELATED WORKS AND LIMITATIONS 6

 HARDWARE REDUNDANCY .. 6 A.

1. Duplication of Hardware .. 6

2. Concurrent Error Detecting Codes .. 8

 TIME REDUNDANCY ... 8 B.

III. SELF-CHECKING ADDER DESIGN 10

 BASIC PRINCIPLE ... 10 A.

 SELF-CHECKING CARRY SELECT ADDER (CSEA) .. 12 B.

1. Proposed Approach .. 12

2. Correction of Previous Approach ... 15

 FAULT COVERAGE ... 21 C.

ii

IV. SELF-REPAIRING ADDER DESIGN 25

 PREVIOUS DESIGN APPROACHES .. 25 A.

 DESIGN CHALLENGES AND SOLUTIONS .. 26 B.

 PROPOSED SELF-REPAIRING ADDER .. 27 C.

V. AREA AND RELIABILITY COMPARISON 29

 AREA COMPARISON ... 29 A.

1. Area Compared To DMR And TMR .. 30

2. Area Compared To self-checking CSeA .. 31

 RELIABILITY COMPARISON .. 32 B.

VI. CONCLUSION ... 37

BIBLIOGRAPHY .. 38

ACKNOWLEDGEMENT ... 41

iii

List of Figures

Figure 1: Fault propagation through carry .. 3

Figure 2: Hardware Redundancy: (a) TMR (b) DMR .. 7

Figure 3: Concurrent Error detection scheme ... 8

Figure 4: Proposed self-checking full adder ... 11

Figure 5: Self-testing carry-select adder [15] ... 14

Figure 6: Proposed design of two-bit self-testing carry-select adder 15

Figure 7: Designed module required for n-bit extension .. 15

Figure 8: Examples of 3-bit addition (a)

 (b)

 17

Figure 9: Faulty design of 4-bit self-testing carry-select adder [15] 18

Figure 10: Corrected design of self-testing carry-select adder with two rail

encoding .. 19

Figure 11: Full-adder without logic sharing ... 23

Figure 12: Self-Checking (a) XOR gate [16] (b) MUX [15] 24

Figure 13: (a) Proposed design for self-repairing adder (b) MUX structure 28

Figure 14: Comparison with CSeA: our proposed design and self-checking

CSeA[15] .. 32

Figure 15: Our proposed 4-bit self-repairing adder .. 33

iv

List of Tables

Table 1: Comparison of CSeA with Self-Checking CSeA Before and After

correction of Vasudevan et al. [15] ... 21

Table 2 Conditions For Fault Coverage .. 22

Table 3: Transistor Count for Individual module Implementation 29

Table 4: Comparison with Time-Redundancy based Self-Checking Adder, DMR

and TMR ... 30

Table 5: Transistor Count for Different Data Size .. 31

Table 6: Comparison with Other Approaches Using CSeA 32

Table 7: Comparison of System Failure in NWVA, TMR and Our Proposed Design

Approach ... 36

v

ABSTRACT

A Self-Repairing Adder Design using Fault Localization

Muhammad Ali Akbar

Advisor: Prof. Jeong‐A Lee

Department of Computer Engineering

Graduate School of Chosun University

 Advanced microelectronics technologies caused the current digital systems

to become more vulnerable to faults. It has been observed that the problem of

single-event upset in digital systems has become more prominent with the

increasing complexity of system on a chip, along with decreasing clock cycles

to obtain high operating frequency. Moreover, the increasing complexity of

digital system also increases the cost of repairing. Therefore, the existence of

fault detection without recovery cannot fulfill the demand of reliable execution

in current digital system. Thus, the built-in self-repair is becoming the need of

current semiconductor technology.

 In this thesis, we propose a self-repairing adder that can repair multiple

faults and identify the particular faulty full adder. Fault detection and recovery

has been carried out using self-checking full adders that can diagnose the fault

based on internal functionality, independent of a fault propagated through carry.

The idea was motivated by the common design problem of fault propagation

due to carry in various approaches by self-checking adders. Such a fault can

create problems in detecting the particular faulty full adder, and we need to

replace the entire adder when an error is detected. We apply our self-checking

full adder to a carry-select adder (CSeA) and show that the resulting self-

vi

checking CSeA consumes 15% less area compared to the previously proposed

self-checking CSeA approach without fault localization. After observing fault

localization with reduced area overhead, we utilize the self-checking full adder

in constructing a self-repairing adder. It has been observed that our proposed

self-repairing 16-bit adder can handle up to four faults effectively, with an 80%

probability of error recovery compared to triple modular redundancy, which

can handle only a single fault at a time.

vii

한 글 요 약

오류의 국지화를 이용한 효율적인 자가오류회복 가산기 설계

 아크바르 무하마드 알리

 지도 교수: 이 정 아

 컴퓨터공학과

대학원, 조선대학교

향상된 마이크로 전자 기술은 현재의 디지털 시스템을 오류에 더 취약하게

만들었다. 감소 된 클럭사이클과 함께 시스템의 복잡도가 증가하여

시스템이 오류발생에 취약하게 되었다. 일상생활에서 활용되는 디지털

시스템이 증가됨에 따라 하드웨어가 안정적으로 작동되는 것이 요구된다.

위성, 수술시스템과 자동차의 자동 브레이크 시스템 등에서 디지털

시스템이 오류를 발생핛 시 경제와 안전에 치명적인 영향을 끼칠 수 있다.

따라서 오류복구가 없이 오류검출만 하는 것은 현재의 디지털 시스템의

안정적인 실행이라는 요구사항을 충족시킬 수 없다. 그러므로 현대의

반도체기술은자가오류회복기술을 내장핛 필요가 있다.

viii

본 논문에서는, 우리는 다수의 오류를 복구하거나 특정핚 오류를 검출핛 수

있는 ‘자가 복구 전가산기’를 제안핚다. 오류의 검출과 복구는 내부 함수에

기초핚 ‘자가 복구 전가산기’를 사용하여 수행되지만, 이러핚 방법은

가산기의 캐리전달에 의핚 오류와는 독립적으로 수행된다. 이 아이디어는

자가 복구 가산기에 의핚 다양핚 접근법들 중, 캐리 전달에 의해 발생하는

오류 전송의 공통된 설계 문제 해결에 기인핚다. 캐리전달에 따른

오류탐지는 특정핚 오류가 있는 전가산기를 찾는 데에 문제를 야기핛 수

있으며, 에러가 발생핛 경우 모든 전가산기를 교체해야만 핚다. 우리는

우리의 ‘자가 복구 전가산기’를 Carry-Select Adder(CSeA)에 적용하고, 그

결과 오류가 발생핚 가산기를 찾을 수 없는 이전의 CSeA 에 비해 15%의

오버헤드 공간 감소 효과가 있음을 확인하였다. 오류의 국지화를 통하여

면적 오버헤드 감소가 가능하였고, 본 논문에서는 ‘자가 검사 전가산기’를

‘자가 복구 가산기’를 설계하는 데 활용하였으며, 우리가 제안핚 16bit 의

자가 복구 가산기는 하나의 오류만을 복구핛 수 있었던 Triple modular

redundancy 방식에 비해 80% 확률로 4 개의 오류까지 복구핛 수 있음을

확인하였다.

1

I. Introduction

 Research Overview A.

Advanced microelectronics technologies caused the current digital systems to

become more vulnerable to faults. It has been observed that the problem of

single-event upset in digital systems has become more prominent with the

increasing complexity of system on a chip, along with decreasing clock cycles

to obtain high operating frequency [1, 2]. The design of a compact circuit on a

chip is advantageous in terms of noise but creates various problems in terms of

reliability [3, 4]. Researchers agree that reduction in hardware size will increase

hardware failures in future processors [5]. Thermal cycling, dielectric behavior

and biasing of digital integrated circuits have also caused many transient and

permanent faults [6].

In order to deal with the above-mentioned problems, the concepts of self-

checking and fault tolerance have been introduced. A system will be fault

secure if it remains unaffected by a fault or if it indicates a fault as soon as it

occurs [7]. A system will be self-testing if it produces a non-coded output in

response to every generated fault [8]. A system will be totally self-checking

(TSC) if it is both faults secure and self-testing [7]. The concept of TSC is used

in different applications, like self-healing networks [9], self-checking

arithmetic logic units (ALUs) [10], etc.

However, the increasing complexity of digital system also increases the cost of

repairing [20]. Therefore, the existence of fault detection without recovery

cannot fulfill the demand of current digital system. Thus, the built-in self-repair

(BISR) is becoming the need of current semiconductor technology [21].

2

Adder is one of the essential elements present in almost all digital devices [22,

15]. Therefore, the introduction of BISR in adder can play a vital role in digital

industry. Many approaches have already been proposed for self-checking adder

design. However, very few work has been found related to the self-repairing

with reduced hardware overhead. Most of the self-checking approaches require

re-execution of instructions for fault recovery [11]. However, the re-execution

process affects system performance because all operations connected directly or

indirectly to the faulty module should be re-executed. Furthermore, re-

execution cannot guarantee fault recovery, especially if there is a permanent

fault or wear-out problem. Therefore, on-line detection and self–repairing is

required in a highly dependable system architecture [12].

 Research Motivation B.

The common design problem in various approaches for self-checking adders is

fault propagation due to carry. Such a fault can misdirect the system,

preventing it from detecting the particular faulty region in a module because a

propagated error can make the correct region of a module appear to be faulty,

as well.

A duplex system is shown in Fig. 1, in which each module has three full adders.

Let us assume that an error occurs in the carry generation portion of the first

full adder. The propagated error will indicate the second and third full adders as

faulty modules, whereas the first full adder will be deemed a fault-free module.

Therefore, in order to achieve recovery, we will repair the second and third

modules, and hence, the faulty module is not recovered. Similarly, if we detect

that a module having five full adders generates faulty output, then by most of

the current approaches we cannot detect which of the five full adders is faulty.

Hence, if a fault is indicated in any region of a large module, we need to

3

replace the whole module in order to accomplish the recovery process. This

kind of replacement approach will waste resources because the properly

functioning block has also been replaced.

We observed that most design approaches deal with error detection, but little

work has currently been done on the self-repair side. The general consideration

for designing a self-checking adder is that the recovery process can be feasible

after detection of faults. However, the cost for self-repair is too high to be

adoptable for most self-checking approaches. If we consider DMR and TMR,

then instead of replacing a single module, we have to replace the whole system

to achieve recovery. This will introduce a huge area overhead of more than 300%

to the actual system, as well as an increase in power consumption. Our

proposed design in this thesis considers both the facts of self-checking and the

recovery. Because of the fault localization property present in our design, the

system is only required to replace the faulty region, without disturbing the

whole system.

Figure 1: Fault propagation through carry

Fault C
out

Fault C
out

Add2

Add1

Add3

Add2

Add3

C
O
M
P
A
R
A
T
O
R

No Fault

Fault

4

 Contribution C.

In this research, a self-checking full adder has been proposed which can detect

the fault based on its internal functionality and independent of the propagated

carry. Even the error propagated through carry will not create a fault indication

in subsequent full adders because all full adders are self-checking with respect

to their individual functionality. We then proposed a self-repairing adder by

using the fault localization property present in our proposed self-checking full

adder. The designed self-repairing adder can provide reliable output for more

than one fault, with reduced area overhead. This is because, instead of replacing

the whole system of adders, we replace the particular faulty full adder only. The

main contributions of this thesis are as follows:

1) All full-adders present in adder module are self-checking with respect to

their individual functionality.

2) Self-checking Carry Select Adder (CSeA) with fault localization whose

area overhead almost similar to the conventional CSeA without self-

checking.

3) A reliable carry propagation chain has been designed using dedicated

self-checking adder for replacements

4) Possibility of recovering multiple fault at run-time

5) Number of faults recovered is dependent on the adder size

 Thesis Organization D.

The thesis is organized as follows. Chapter 2 discusses the previous work and

common design problem (i.e., the fault propagation problem due to carry). In

chapter 3 we discuss the basic principle, fault coverage of our proposed design

approach for a self-checking full adder and its application to CSeA. In chapter

4 we present the concept and comparison of our proposed self-repairing adder

5

approach. The comparison in terms of area and reliability covers in chapter 5.

Our research work is concluded in chapter 6.

6

II. RELATED WORKS AND LIMITATIONS

 Self-checking systems require redundancy, which can be broadly classified as

time- and hardware-based redundancy. We will discuss both of them briefly,

along with related works, in this section.

 Hardware Redundancy A.

The basic idea for this approach is to use more than one hardware to produce

either the same, inverted or coded output. The comparison between the outputs

of the actual and the redundant hardware will be used to indicate the fault. This

approach can be further classified into duplication of the existing hardware and

output predictor block.

1. Duplication of Hardware

In the duplication of hardware scheme, the two most commonly used

approaches are double modular redundancy (DMR) and triple modular

redundancy (TMR) shown in Fig. 2. In a duplex system (i.e., DMR) the same

hardware is repeated once, whereas TMR requires three modules with which to

vote to determine the final output.

The major problem with this concept is that instead of detecting faults in

individual modules, it can detect the overall fault of a system. This kind of

checking creates many complexities in terms of fault recovery, because we

cannot detect which individual block is faulty. The other drawback of this

approach is that straightforward implementation will create an area overhead of

more than 100% [3, 13]. Secondly, it cannot detect a common mode failure in

which both modules experience the same set of errors [14].

7

(a) (b)

Figure 2: Hardware Redundancy: (a) TMR (b) DMR

The advantage of TMR over DMR is the probability of obtaining reliable

output. It can easily be recognized that by using the TMR technique, the area

overhead will increase up to 300% compared to the original design without

self-checking. The second problem with this kind of design approach becomes

apparent when two modules have the same faulty result at the same time, and

then the correct module is treated as faulty because the output is dependent on a

voter circuit that decides on the basis of majority [10].

In a CSeA design, two adders are working in parallel for a complemented value

of initial carry-input, Cin, and the final output will depends on the actual value

of Cin. The benefit of having two adders at a time was realized by Vasudevan et

al. [15], and they introduced a fault-tolerant capability without excessive

hardware overhead. However, the problems of common mode failure and a

high area overhead requirement for fault recovery still remained unsolved. The

fault in carry generation is allowed to propagate and cannot be detected with its

first occurrence. Hence, this approach also suffers in terms of determining the

defective full adder modules.

Voter

circuit

Output

Add1

INPUT

Add2 Add3

O/P

Checker

Error

Add
Add module 2

INPUT

8

2. Concurrent Error Detecting Codes

This approach also requires an extra functioning module and is similar to DMR.

However, in contrast to duplicated hardware approach, the extra module will

generate encoded output with encoded inputs, as shown in Fig. 3. The resulting

output from normal module will be encoded further and compared with the

encoded output of the extra module. The advantage of this approach is diversity

which can encounter the problem of common mode failure.

Figure 3: Concurrent Error detection scheme

 Time Redundancy B.

The basic concept of time redundancy is that the same hardware will perform a

single operation in different intervals of time, and we can detect an error by

comparing the two outputs obtained at different time instances.

Khedhiri et al. [13] designed a self-checking full adder circuit based on the

concept of time variation. The single full adder will work such that it is used

twice to perform the same computation by following different logical paths,

and the comparison of the final results will indicate the presence of a fault. The

Output Encoded

Output

ALU Code Generator

Inputs

Encoder

=

9

key features of the authors’ design are diversity and a decrease in area overhead

by using different paths for a single operation in each time interval. Moreover,

in order for system performance or speed to remain unaffected, it has been

argued that the result will be propagated after the first computation. Hence, if

the first computed result is faulty, then before detecting the fault, that result will

be used for other computations. The propagated fault will also cause faulty

results in other modules.

10

III. SELF-CHECKING ADDER DESIGN

 Basic Principle A.

The presence of carry propagation chain in adder cannot be ignored during self-

checking and fault localization. In order to avoid the problem of fault

propagation due to carry one possible approach is to adapt carry-free adder.

However, the complexity and area overhead of carry free adder without self-

checking is almost equal to the duplex system. Another approach is to make

self-checking independent of the propagated carry. We utilize the following

relations to achieve the goal of fault localization:

1) The Sum and Carry-out bit will be equal to each other when all three

inputs are equal.

2) The Sum and Carry-out bit will be complemented when any of the three

inputs is different.

By using the above two relations, a full adder can be self-checked with only the

expense of an equivalence tester (Eqt), as shown in Fig. 4. The purpose of the

equivalence tester is to check the equivalence of all inputs. Hence, apart from

the Sum and Carry bits calculation, we have to compute logic for the

equivalence tester, and the expression for that purpose is in Eq. (3.3). The

functional block Eqt has been designed to produce an active low output so that

we can use the fault-secure Exclusive-NOR logical function (XNOR) gate for

comparison.

 (3.1)

 () (3.2)

11

 () (̅ ̅ ̅̅ ̅̅)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (3.3)

 () (3.4)

Figure 4: Proposed self-checking full adder

The final fault is computed by using two XNOR gates. The purpose of the first

XNOR gate (G1) is to check whether the Sum and Cout bits are equal or

complemented. We need a second XNOR gate (G2) because of the previously

mentioned observation that Sum and Cout will always complement each other

except when all inputs are equal. Thus, the output of G1 will indicate the

equality or difference of Sum and Cout, and G2 will verify the output of G1 by

comparing it with an equivalence tester, and thus generate the final error

indication. When Eqt is zero, the output of G1 and G2 should be logic 1 and 0,

respectively. On the other hand, if Eqt indicates logic 1, then both XNOR gates

should generate logic 0 (i.e., It =0 and Ef =0), and in any other case, a fault will

be indicated.

Full Adder

A B
C

in

Equivalence tester

(E
qt

)

G1

C
out

 Sum

Error (E
f
)

Initial testing

(I)
G2

12

 Self-Checking Carry Select Adder (CSeA) B.

1. Proposed Approach

Carry Select Adder (CSeA) is one of the most common types of adder which

pre-compute Sum bits using two parallel blocks of Ripple Carry Adder (RCA)

with complemented values of initial Cin and the final Sum bit will be generated

after receiving the actual value of Cin. The presence of two parallel RCA is

advantageous for introducing Self-checking ability with the reduced hardware

overhead. The self-checking CSeA shown in Fig. 5 was proposed by

Vasudevan et al. [15], where two adders and a 2-pair-2-rail checker, along with

some combinational logic, are used for self-checking.

We design a self-checking CSeA with single adder, assuming the initial Cin to

be zero and where the individual full adder has been replaced by our proposed

self-checking full adders. We then generate Sum and Carry output for the initial

Cin equal to one using the following relation, where

 and

 represent the

position of the Sum and Carry bits, and is either 0 or 1, indicating the value of

the initial Cin:

1)
 is always a complement of

 , i.e.

 ̅̅ ̅.

2)
 depends on

 ,
 :

If (
 =0) then

 =
 ;

If (
 =1) then

 ̅̅ ̅.

3)
 depends on

,

 and

:

If (
 =1 OR

 =1) then

 = 1;

13

The above relationships can be summarized in Eq. (3.5), Eq. (3.6) and Eq. (3.7).

An exclusive OR (XOR) operation is performed in Eq. (3.6) to generate

because
 is not always a complement to

 . Moreover, since both

 cannot equal 1 at the same time, we used the XOR gate in Eq.

(3.7) because a self-checking XOR gate was presented by Belgacem et al. [16].

The two-bit proposed self-checking CSeA is shown in Fig. 6. The design

consumes less area compared to the self-checking CSeA approach of

Vasudevan et al. [15], shown in Fig. 5.

 =

 ̅̅ ̅ (3.5)

 =

 (3.6)

 =

 (

) (3.7)

Thus, for arbitrary number of bits we found that except for the least significant

bit (LSB),
 and

 has the following relation:

Except for the LSB, the Sum bit computed when carry-in equals 0 will be a

complement to the corresponding Sum bit with carry-in equal to 1, only when

all the lower Sum bits are equal to logic 1.

 In general we can say that:

 (

 ()

)

 (

 ̅̅ ̅)

 (

)

14

where j indicates the bit position. Thus, in order to design an n-bit CSeA, the

generalized Boolean equations have been shown in Eq. (3.8), Eq. (3.9) and Eq.

(3.10). The design module shown in Fig. 7 will be used to extend the 2-bit

CSeA design to an n-bit CSeA design. All the intermediate Sum bits between

the LSB and final Cout can be generated using the module shown in Fig. 7. The

LSB and module for final Cout (MOFC) design in Fig. 6 can be used to

complete the n-bit self-checking CSeA.

 =

 ̅̅ ̅ (3.8)

 =

 (

 ()

) (3.9)

 =

 (

 ()

) (3.10)

Figure 5: Self-testing carry-select adder [15]

 MUX

0 1

𝑺𝟏
𝟎

Full adder

2-pair-2-rail checker

Full adder

Full adder Full adder

C
in

= 0 𝐶

MUX

C
in

S1

𝐶

C
in

= 1 𝐶

𝐶

S0

y0 x0 y1 x1

Z1 Z2

MUX

A0 B0 B1 A1

A0 B0 B1 A1

𝑺𝟎
𝟎

𝑺𝟎
𝟏

𝑺𝟏
𝟏

1 1 0 0

C
out

15

Figure 6: Proposed design of two-bit self-testing carry-select adder

Figure 7: Designed module required for n-bit extension

2. Correction of Previous Approach

Vasudevan et al. in [15] presented one Self-checking carry-select adder (CSeA)

with reduced area overhead scheme. The proposed design seemed to be

promising for self-checking CSeA, however, we find that the claim for self-

MUX

1 0

AND2

inst8

𝑺𝟎
𝟏

A0 B0 A1 B1

Proposed
Full adder

Proposed
Full adder

C
in

= 0 𝐶0
0 𝐶

0

𝑺𝟎
𝟎 𝑺𝟏

𝟎

MUX

C
in

sum bit 0 sum bit 1

𝑬𝒇𝟎 𝑬𝒇𝟏

Module

for final

C
out

(MOFC)

MUX

𝑺𝟏
𝟏 𝑺𝟏

𝟎 𝑺𝟎
𝟎

0 0 1 1

𝑪𝟏
𝟏 𝑪𝟏

𝟎

C
out

AND2

inst8

𝑺𝒊
𝟏

A
i
 B

i

Full adder

𝐶(𝑖−)
0

i
th

 bit of sum

𝐶𝑖
0

X
i

X
i-1

𝑬𝒇𝒊

MUX

𝑺𝒊
𝟎

𝑺𝒊
𝟎

0 1

16

checking is only valid for 2-bit CSeA, and the 6-bit CSeA shown in the paper

cannot provide self-checking. We argue the failure of their design model and

present a correct self-checking CSeA design based on two-rail encoding. We

show that the transistor overhead of the correct model is higher than the one

claimed by Vasudevan et al. [15].

The property used by Vasudevan et al. [15] for a pair of full adders can be

generalized as follows:

The relation between sum bits calculated with identical inputs is only

dependent on the carry-input, and for complemented values of carry-input, we

will obtain complemented sum bits (keeping other pairs of input bits identical).

For example, if the sum bits
 and

 are generated by using intermediate carry

 and

 , respectively, then according to the above-mentioned statements:

 (

 ̅̅̅̅)

 ̅̅ ̅

 Where, i indicates the bit position, while 1 and 0 in the superscript represent

the initial value of Cin. If we analyze the CSeA design, then the above

statements are only valid for the least significant sum bit of a particular CSeA

block. This is because the first full-adder in every CSeA block is the only one

that will get the complemented values of the carry-input. The remaining full

adders will depend on the propagated carry, which may or may not be

complementary to each other. Therefore, we cannot say whether the generated

sum bits, other than the first full adder, will be inverted to each other or not.

17

 The possibility of having equal values of propagated carry by the two

corresponding adders in a CSeA was neglected by Vasudevan et al. Therefore,

the approach in [15] fails for CSeA with more than two bits, as shown in Fig. 9

[15]. Note that the initial carries, C1 and C2, always complementary to each

other because of the design requirement of CSeA, while the intermediate

carries, Ca and Cb, may or may not be complementary to each other, depending

on the conditions of carry propagation. Thus, Sa and Sb will not always be

complementary to each other. Therefore, comparing Sa and Sb directly using 2-

pair-2-rail-checker (TTRC) will give the wrong indication of faults. Even if

there is no fault, the TTRC will indicate a fault. Since the problem in their

approach starts from Ca and Cb, we do not discuss the intermediate carries Cx

and Cy. Let us consider the binary addition of 3-bit numbers as illustrated in

Fig.8. It can easily be seen from Fig. 8(a) and (b) that the most significant bits

may or may not be complementary to each other.

0 1 0 1

0 0 1

0 0 1 0 0 1 0 0 1

0 0 1

0 0 1 1 1 0 1 1 0

0 1 0

0 1 1 1 1 1 0 0 0

 (a) (b)

Figure 8: Examples of 3-bit addition (a)

 (b)

A carry-select adder pre-computes sum bits using two parallel ripple-carry

adders (RCAs), with complemented values of the initial Cin, and the actual

value of the Cin will be used to determine the final sum bit. Vasudevan et al.

utilized both RCAs to obtain the complementary behavior of the corresponding

sum bits. However, it is possible to perform a logical operation such that one of

the RCA blocks should always provide inverted sum bits with respect to the

18

opponent block for checking purposes only. This will provide a more simplified

and systematic design, which can be extended easily.

Figure 9: Faulty design of 4-bit self-testing carry-select adder [15]

In this theis, we will discuss only one possible way in which the sum bits

calculated at initial Cin = 0 are altered, such that they become complementary to

the sum bits calculated at an initial Cin = 1 for comparison.

After close observation, we found that:

Except for the least significant bit, the sum bit computed when initial carry-in

equals 0 will be complementary to the corresponding sum bit with an initial

carry-in equal to 1 only when all the lower sum bits are equal to logic-1.

MUX

0 1

C
out

FA

2-pair-2-rail checker

FA

FA

FA

2-pair-2-rail checker

MUX

Ci

n

S1 S0

y
0

x

0
y

1
x

1

Z1 Z2

MUX

y

0
x
0

y

1
x

1

Z1 Z2

A0 B0 B1 A1

A
0

B

B

A1

1 1 0 0

FA

2-pair-2-rail checker

FA

FA

FA

MUX

S3 S2

y

0
x
0

y
1

x
1

Z1 Z2

MUX

A2 B2 B3 A3

A2 B

B

A3

1 1 0 0

C
x
 C

a

C
b

C
1

C
2
 C

y

S
a
 S

b

19

In general, we can say that:

 (

 ()

)

 ̅̅ ̅

Figure 10: Corrected design of self-testing carry-select adder with two rail encoding

Thus, in order to apply TTRC for n-bit CSeA, we need to have
 along with

its complement, and
 will not always equal to . If all the (n-1)

th
 sum bits at

Cin=0 are equal to logic-1, then the value
 is equal to the complement of

 .

FA-0 FA-0 FA-0

FA-1 FA-1

2-Pair 2-Rail Checker

FA-1

2-Pair 2-Rail Checker

FA-1

FA-0
C

in
= 0

C
in

= 1

A0 B0 A1 B1
A2 B2 A3 B3

A0 B0 A1 B1 A2 B2 A3 B3

𝐶0
0 𝐶

0 𝐶2
0

𝐶0
 𝐶

 𝐶2

𝑺𝟎

𝑺𝟎
 𝑺𝟏

 𝑺𝟐
 𝑺𝟑

𝑺𝟎
𝟎 𝑺𝟏

𝟎 𝑺𝟐
𝟎 𝑺𝟑

𝟎

𝑺𝟏
𝟏 𝑺𝟐

𝟏 𝑺𝟑
𝟏

Z1 Z2
Z1 Z2

AND2

inst8

AND2

inst8

𝑺𝟎
 𝑺𝟏

 𝑺𝟐
 𝑺𝟑

Sum0 Sum1

Sum2

Sum3

Sum3

C-in

𝐶3
0

𝐶3
0

2-Pair 2-Rail Checker

Z1 Z2

MUX
1 0

 MUX
1 0

 MUX
1 0

 MUX

0 1

20

In other cases, if any of the (n-1)
th

 sum bits at Cin=0 are equal to logic-0, then

we take the inverse of
 , so it equals to the complement of

 . Therefore, in

Eq. (3.11) we performed an XNOR operation between
 and the product of all

lower sum bits computed at the initial Cin=0, such that the resultant K will

always be equal to . The design module shown in Fig. 10 will be used to

implement the 4-bit self-checking CSeA.

 (()

) (3.11)

We applied the same technology and implementation used by Vasudevan et al.

[15] for comparison. A standard complementary metal-oxide semiconductor–

based AND gate with 6 transistors was used for area computation and the

transistor count for full-adder, multiplexer (MUX), XNOR gate and TTRC was

taken from Vasudevan et al. [15], as given below:

• Full adder – 28 transistors;

• MUX – 12 transistors;

• XNOR – 10 transistors;

• TTRC – 8 transistors.

For an n-bit self-checking CSeA, we required (n-2) number of AND gates, (n-1)

number of XNOR gates, (n+1) number of MUX, (2n) number of full adders and

(n-1) number of TTRC, respectively. We can see from Table 1 that the

difference in transistor overhead for 4- to 64-bit self-checking CSeAs varies

from 22 to 682, compared to the faulty self-checking CSeA design by

Vasudevan et al. [15]. Moreover, the transistor overhead of the corrected self-

checking CSeA, as compared to CSeA without self-checking, was found to be

21

23.2% to 34.5%, whereas in the faulty approach presented by Vasudevan et al.

[15], the overhead was 15.49% to 18.84%.

Table 1: Comparison of CSeA with Self-Checking CSeA Before and After correction of Vasudevan

et al. [15]

No. of

bits

CSeA

without

self-

checking

Vasudevan et al. faulty design [15] Corrected self-checking CSeA

 Transistor

required
[15]

Trans.

required

Trans.

overhead

% Trans.

overhead

Trans.

required

Trans.

overhead

% Trans.

overhead

4-bit 284 328 44 15.49% 350 66 23.2%

6-bit 420 490 70 16.66% 534 114 27.14%

8-bit 556 652 96 17.26% 718 162 29.14%

16-bit 1100 1300 200 18.18% 1454 354 32.18%

32-bit 2188 2596 408 18.65% 2926 738 33.73%

64-bit 4364 5188 824 18.88% 5870 1506 34.5%

 Fault Coverage C.

The condition for fault coverage of our design has been summarized in Table 2.

The logic-high of the final error (Ef) will indicate a fault. We can easily see that

the designed approach guarantees self-checking only when any one of the Sum,

Cout or Eqt lines becomes faulty. If two of them have a fault at the same time,

then that fault cannot be detected. The assumption of having a single fault at

one time becomes valid because the fault-secure property assumes that between

two consecutive faults, we have enough time to detect the error at its first

occurrence [16]. Moreover, unlike other techniques, like DMR and TMR, etc.,

we are testing a very small module of a single full adder. The probability of

having two faults at one time in a small module is much lower than with a large

module.

22

For example: A=1, B=0 and Cin=1 are three respective inputs in our proposed

full adder. The corresponding outputs for these inputs without fault are: Sum=0,

Carry=1 and Eqt =1. Let us assume that the Sum bit flips from 0 to 1, and the

outputs, after the fault, will thus become Sum=1, Carry=1 and Eqt =1. This

condition has been indicated as a fault in Table 2.

Table 2 Conditions For Fault Coverage

CONDITIONS STATUS

IF (() ()) NO FAULT

IF (() (̅̅ ̅̅ ̅̅)) NO FAULT

IF (() ()) FAULT

IF (() ()̅̅ ̅̅ ̅̅ ̅) FAULT

With our proposed approach for a self-checking adder, a fault generated in any

full adder can be detected individually. Even if the generated carry has a fault,

it will not create a fault indication in subsequent full adders because all the full

adders are self-checking with respect to their individual functionality and are

independent on their carry input. Hence, the faulty propagated carry will not

create a problem in self-checking in any subsequent full adder. The benefit of

this approach is that if we want to recover from the fault, then instead of

replacing all full adders present in the complete module, we replace only

particular full adders.

Moreover, Sum and Cout of a full adder are not sharing any logic, so the

problem of transient faults can be overcome. For example, consider a single full

adder in which both the final Sum and Cout share the Sum bit of the first half-

adder. Let a, b and Cin be the three input bits in the full adder, with values equal

to 0, 0 and 1, respectively. With these inputs the correct outputs for the final

Sum and Cout are 1 and 0. Assume that the Sum bit of the first half adder (a b)

23

flips from 0 to 1. Then this bit flipping can generate a fault in both Sum and

Cout because of logic sharing and can thus create a problem in detection.

Therefore, in our proposed idea, the Sum and Cout modules work without logic

sharing, as shown in Fig. 11, and any fault occurring within the internal logic of

an individual module will make that particular module faulty, and thus can be

detected easily on comparison.

Figure 11: Full-adder without logic sharing

In addition to a self-checking full adder, we need to have a self-checking XOR

gate and multiplexer (MUX). The self-checking XOR gate was proposed by

Belgacem et al. [16] using a pass-transistor–based differential pair as shown in

Fig. 12(a). The self-checking MUX design, however, was presented by

Vasudevan et al. [15] in which the complementary outputs SN and ̅̅ ̅̅ will be

used to detect the presence or absence of faults and is shown in Fig. 12 (b).

a

b

𝐶𝑖𝑛

AND2

inst8

OR2

inst11

AND2

inst8

OR2

inst11

Sum

Cout

24

(a)

(b)

Figure 12: Self-Checking (a) XOR gate [16] (b) MUX [15]

𝑿 𝐚 𝒃

𝐚

𝐛

𝐚

𝐛

𝐗 𝐚 𝒃

P1

N1 N2

P2

SN

VCC

 N

CS

S0N

S1N

 CS

A C

B D

25

IV. SELF-REPAIRING ADDER DESIGN

 Previous Design Approaches A.

TMR is a well-known approach for obtaining reliable output with more than

300% area overhead. However, reliability can only be assured for a single

faulty module at a time. This is because the faulty module has not been

replaced with a correctly functioning module, and as a result, a triple modular

system changes into a duplex system. Koal et al. [18] proposed a self-replacing

approach for TMR, but the resulting design required more than 500% area

overhead along with at least 5 clock cycles to replace the particular faulty

module. Moreover, system complexity due to a switching mechanism between

input and output rendered the design far beyond practical implementation.

Fazeli et al. [11] proposed a self-checking and self-reliable adder using the

concept of narrow width value (NWV). The overall approach deals with a

processor design property whereby most of the data coming into the ALU

consists of NWVs. Therefore, the individual arithmetic and logic operations

can be split into two parts: one is used to perform normal operations while the

unused part is used to provide redundant computation, like a duplex system.

Consider the case of a 64-bit adder in which (most of the time) a 32-bit adder

will be used for addition while the other 32-bit adder remains unused because

of NWV. This unused 32-bit adder has been made equivalent to the other 32-bit

portion. Thus, a duplex system with minimum hardware overhead is obtained.

Furthermore, the concept of TMR has also been used to provide reliable output.

Fazeli et al. [11] proposed that a third 32-bit adder module for TMR can be

obtained from the multiplier block, because the module of the multiplier is a

combination of add and shift operations.

26

The problems associated with this approach led us to propose our design. First,

the reason for using NWV in processor design is to simplify computational

complexity and to reduce energy consumption [11]. However, adaptation of

their approach will remove both those benefits. In addition, the problem of

common mode failure and fault propagation due to carry has not been

considered. Moreover, the possibility of two faulty modules can result in failure

of their approach. Furthermore, correct output on a single fault will only be

achieved when both the operands are narrow width values. In other cases, the

proposed adder can only detect the error using a duplex concept. Thus, beyond

hardware complexity and overhead due to the MUXs, the system reliability will

only depend on the NWV, and according to their calculation based on the ARM

processor, the probability of having NWV in addition is only 56% [11].

Therefore, there is only a 56% probability of obtaining reliable output for a

single fault. This will raise the problem of system diagnoses, as to whether the

output is reliable or not, along with precautions if the system fails to recover.

Also, the MUXs are used without considering their reliability issues.

 Design Challenges and Solutions B.

Along with the area, power consumption and other limitations for a self-reliable

adder, there is one important challenging factor that is also related to carry

propagation. Although our proposed self-checking adder is independent of fault

propagation due to carry, for fault recovery at run time, the propagated carry is

crucial. If a fault is detected in any full adder, then because of fault propagation

due to carry, we cannot trust the output of the corresponding full adders.

Therefore, if we replace the particular faulty module, we need to re-execute all

addition processes to get true and reliable output. However, this whole process

will increase processing time.

27

In our proposed design, we provide a solution for this problem by designing a

reliable carry propagation chain using a dedicated self-checking adder for

replacements. If both the adders are faulty at the same time, this will be

indicated as a critical situation. It is possible to have two faults at a time, like

the above-mentioned problem, but there is a low probability of the fault being

at the same adder position.

 Proposed Self-Repairing Adder C.

The design approach requires two proposed self-checking adders working at

one time on the same input bits, as shown in Fig. 13(a). The operation of the

proposed design is such that one adder behaves as a normal adder (indicated by

Adder-0) while the second adder will work for recovery at run time (indicated

by Adder-0e). The suffix “e” indicates an “extra” adder used for fault recovery.

The MUX will only be dependent on the fault of the normal adder (i.e., Adder-

0). If any fault occurs in the normal adder, then the MUX will export the Sum

and Carry-out from the extra adder module (i.e., Adder-0e), as shown in Fig.

13(b). If both adders become faulty, this will be indicated as a worst situation.

Also, there is a very low possibility of more than one fault in a single full adder

because of a negligible area, as opposed to the complete adder module.

Therefore, multiple faults in the individual full adder have not been considered

in this research.

The final Carry-out obtained from the MUX will be fed to both full adders

present in order to compute the next Sum bit, as shown in Fig. 13(a). The MUX

in Fig. 13(a) consists of two internal MUXs, as shown in Fig. 13(b). Both

MUXs are designed according to the proposed self-checking MUX design by

Vasudevan et al. [15].

28

Figure 13: (a) Proposed design for self-repairing adder (b) MUX structure

Adder-0

Adder-0e

 Adder-1

Adder-1e

SUM bit 0

C
out

-final

Fault-0

C
out

0e

Sum0e

Sum0

0

1

Fault-0e

C
out

0

(a)

M
U

X

Fault-0

(b)

 0

1

M
u

x1

Sum0e

Sum0

0

1

M
u

x2

C
out

0e

C
out

0
C

out
-final

Sum bit 0

29

V. AREA AND RELIABILITY COMPARISON

 Area Comparison A.

The area overhead can be compared in different ways, such as transistor count,

gate count and technology dependence. In this section, we will compare our

proposed self-checking full adder with DMR and TMR. Also, our designed

self-checking CSeA will be compared with the conventional CSeA and self-

checking CSeA from Vasudevan et al. [15]. The area overhead in both cases

was computed in terms of transistor count. The transistor count for

implementing a full adder and MUX was taken from Vasudevan et al. [15]

while the transistor count for the self-checking XOR gate was taken from

Belgacem et al. [16]. The final transistor count for individual modules is shown

in Table 3.

Table 3: Transistor Count for Individual module Implementation

Modules Required Transistors

for Implementation

AND 6

XOR 4 [16]

MUX 12 [15]

ADDER 28 [15]

EQUIVALENCE TESTER () (Eq. 3) 12

CHECKER (2-XOR) 8

MODULE FOR FINAL COUT (MOFC)

 (shown in Fig. 6)

 16

30

1. Area Compared To DMR And TMR

Single-bit adder implementation using DMR required two adders and a single

XOR gate for comparison. For TMR, we need three adders and one majority

voter for selecting the correct output. In order to compute transistor count for

voter circuitry, we used the fault secure voter design proposed by Kshirsagar

and Patrikar [17].

The comparison result of our designed self-checking full adder with DMR and

TMR is shown in Table 4. We see that our designed self-checking full adder

requires an overhead of 20 transistors compared to a full adder without self-

checking, whereas DMR and TMR have an overhead of 32 and 96 transistors,

respectively. Hence, our designed self-checking full adder requires 25% fewer

transistors than DMR and 158% fewer than TMR. Moreover, our self-checking

full adder, without creating a time penalty, has 20.8% more area efficiency than

a self-checking full adder using the time-redundancy approach of Khedhiri et al.

[13].

Table 4: Comparison with Time-Redundancy based Self-Checking Adder, DMR and TMR

 Individual

Transistor Count

Total # of

Transistors

Transistor

overhead

Proposed

full-adder

ADDER

EQT

CHECKER

28

12

8

48 20

DMR ADDER

XOR

56

4
60 32

TMR
ADDER

Voter [17]

84

40
124 96

Self-checking

adder [13]
- - 58 30

31

2. Area Compared To self-checking CSeA

The transistor count for our proposed self-checking CSeA with multiple bit data

is presented in Table 5. The transistor count for a conventional CSeA with and

without self-checking was presented by Vasudevan et al. [15]. It is seen from

Table 6 that our designed self-checking CSeA has only negligible area

overhead compared to a normal CSeA design and also requires a 15% to 16%

lower transistor count compared to the self-checking CSeA proposed by

Vasudevan et al. [15].

A graphical representation is shown in Fig. 14. We can see that our proposed

self-checking CSeA design shows the same trend compared to a CSeA without

self-checking, whereas the percentage increase in area overhead of the self-

checking CSeA proposed by Vasudevan et al. [15] shows considerable

increment compared to a normal CSeA.

Table 5: Transistor Count for Different Data Size

 4-bit 6-bit 8-bit 16-bit 32-bit 64-bit

AND 3 5 7 15 31 63

XOR 3 5 7 15 31 63

MUX 4 6 8 16 32 64

Full Adder 4 6 8 16 32 64

Equivalence

Tester
4 6 8 16 32 64

Checker

(Pass Trans.

Based)

4 6 8 16 32 64

MOFC 1 1 1 1 1 1

Total

Transistor

Required

286 426 566 1126 2246 4486

32

Table 6: Comparison with Other Approaches Using CSeA

Figure 14: Comparison with CSeA: our proposed design and self-checking CSeA[15]

 Reliability Comparison B.

The problem associated with TMR reliability is that if two single full adders

associated with different modules become faulty one after the other, then the

TMR will fail to provide reliable output. This is due to the absence of self-

checking and self-replacement in TMR, because the purpose of the voter circuit

is to provide reliable output based on majority agreement without indicating the

presence of a particular fault in the modules. In order to make TMR self-

checking, we need to increase hardware overhead as mentioned by Majumdar

et al. [10]. However, the absence of a recovery process will further increase the

probability of more than one fault. Thus, TMR is sensitive to a single adder of

0

200

400

600

800

1000

1200

1400

4 6 8 16

R
e
q

u
ir

e
d

 t
r
a

n
si

st
o

r

Number of bits

Comparison of transistor overhead

normal CSA

our design

P.K.Lala Design

Number

of

bits

CSeA without

self-checking

Our proposed CSeA design CSeA Design proposed by [15]

Transistors

required [15]
Transistors

required

Transistor

overhead

Transistors

required

Transistor

overhead

4-bit 284 286 2 328 44

6-bit 420 426 6 490 70

8-bit 556 566 10 652 96

16-bit 1100 1126 26 1300 200

32-bit 2188 2246 58 2596 408

64-bit 4364 4486 122 5188 824

33

each module. To reduce this sensitivity, we propose the concept of dedicated

replacement for individual adders, as shown in Fig. 15.

Figure 15: Our proposed 4-bit self-repairing adder

In TMR, all three modules are sensitive with respect to the faults in the

individual full adders. Therefore, we can use the concept of simple

combinational probability without replacement to compute the probability of

fault recovery, as shown in Eq. (5.2). In our proposed design, all full adders are

sensitive with respect to their individual replacement full adder modules. If we

compute the probability of a critical situation in which two adders at the same

position become faulty, then our approach can be the same as two modules

having n full adders. Each module has full adders with numbers 1 to n

sequentially, such that two full adders of the same number cannot be present in

a single module. If we introduced r random faults, then the probability of

having faults in at least 2 full adders at the same position without replacement

can be computed with Eq. (5.1), where N is the total number of full adders in

both modules.

{()(

)}

()
 (5.1)

In our proposed design, two full adders at the same position becoming faulty is

the worst situation. Therefore, Eq. (5.1) represents the failure condition of our

FA-0

FA-0e

Fault-0

C
out

 0e

Sum0e

Sum0

0

1

C
out

 0 M
U

X

FA-1

FA-1e

Fault-1

C
out

 1e

Sum1e

Sum1

0

1

C
out

 1 M
U

X

FA-2

FA-2e

Fault-2

C
out

 2e

Sum2e

Sum2

0

1

C
out

 2 M
U

X

FA-3

FA-3e

Fault-3

C
out

3e

Sum3e

Sum3

0

1

C
out

3 M
U

X
 C

out

C
out

C

out

SUM bit 0
SUM bit 1 SUM bit 2 SUM bit 3

34

adder. Hence, the probability of fault recovery in our proposed self-repairing

adder can be computed by subtracting Eq. (5.1) from 1 as shown in Eq. (5.3).

()

()
 (5.2)

 − (
()

()
) (5.3)

where n indicates the number of full adders in a single module, and N shows

the total number of full adders in all modules. The total number of faults is

represented by the term r.

Considering we have three identical modules of 4-bit adders working in parallel,

there is an equal probability of a first fault in any single module. If a second

fault occurs, there is a 73% probability that the fault will occur in any one of

the remaining modules that were not affected by the first fault. Therefore, if

two faults occur in a TMR-based 4-bit adder, there is only a 27% possibility of

error recovery. Hence, TMR can efficiently handle only a single fault at a time.

Let us consider the same 4-bit adder with dedicated adders for run-time

replacement, as shown in Fig. 15. Suppose that the first fault occurs in Adder-0;

then there is only a 14% probability that the next fault will occur in Adder-0e,

which is the dedicated repair module for Adder-0. Therefore, if two faults occur

in our proposed 4-bit adder, there is about a 86% probability of error recovery.

The probability of having a second fault in the dedicated adder for the first

infected adder will decrease further with the increase in number of bits. Hence,

our designed adder is more reliable against multiple faults, compared to TMR.

It can be seen from Table 7 that the reliability of our proposed design increases

with an increase in the number of bits. For a 4-bit adder design, our proposed

35

approach can sustain up to two faults efficiently. But for a 16-bit adder, our

design can handle a minimum of 4 faults effectively, with an 80% probability

of error recovery. With TMR, if any two modules go faulty, the whole TMR

may fail to provide reliable output. It can also be seen from Table 7 that the

reliability of TMR has no significant improvement with respect to the number

of bits.

Fazeli et al. [11] adapted the TMR mechanism for fault recovery, which is only

possible when input bits are NWV. According to their calculations, based on an

ARM processor, there is only a 56% probability of NWV. Therefore, the adder

is only 56% reliable for a single possible fault. Furthermore, if input bits are

NWV, then the possible error recovery for multiple faults is equal to the TMR.

Moreover, the dominance of our proposed solution, compared to the TMR and

NWV can be visualized clearly for 16-bit adder design. The reliability will

increase further for higher order adders.

36

Table 7: Comparison of System Failure in NWVA, TMR and Our Proposed Design Approach

 M. Fazeli et al. [11] TMR Proposed Design
Approach

Fault Recovery
Fault correction
requires three
conditions to be
fulfilled:
1) Both the operands

should be NWV.

2) No more than one

module should be

faulty.

3) None of the MUXs

or other extra

circuitry goes faulty,

because there is no

self-checking in their

design.

Fault recovery is
possible when no
more than one
module goes
faulty at a time.

Totally self-
reliable voter
circuit is required

Multiple-fault
recovery is possible,
providing both
corresponding
adders do not go
faulty at one time

Output Reliability
on Single fault

56% 100% 100%

4-Bit Adder

Output Reliability
on 2nd Faults

(Input bits are NWV)
27%

27% 85.82%

Output Reliability
on 3rd Faults

5% 5% 42.8%

16-Bit Adder

Output Reliability
on 2nd Faults

(Input bits are NWV)
31%

31% 96.7%

Output Reliability
on 3rd Faults

9.7% 9.7% 90.3%

Output Reliability
on 4th Faults

2.8% 2.8% 80%

Output Reliability
on 5th Faults 0.7% 0.7% 67%

37

VI. CONCLUSION

With our proposed design of a self-checking full adder, a fault generated in any

full adder can be detected individually. Even the error propagated through carry

will not create a fault indication in subsequent full adders because all full

adders are self-checking with respect to their individual functionality. We then

proposed a self-repairing adder by using the fault localization property present

in our proposed self-checking full adder. The designed self-repairing adder can

provide reliable output for more than one fault, with reduced area overhead.

This is because, instead of replacing the whole system of adders, we replace the

particular faulty full adder only. Moreover, our proposed 16-bit self-repairing

adder can repair up to 4 faults with 80% probability of error recovery.

The self-checking full adder proposed in this thesis is 25% more area efficient

than DMR. We applied our self-checking full adder to CSeA to observe the

performance and area overhead compared with CSeA without self-checking. It

was observed that our designed self-checking carry-select adder has negligible

area overhead compared to a normal CSeA without self-checking. Also, our

designed self-checking CSeA consumes 15% less area overhead compared to

the self-checking CSeA approach without fault localization presented by

Vasudevan et al. [15].

38

BIBLIOGRAPHY

[1] N. Mehdizadeh, M. Shokrolah-Shirazi, and S. G. Miremadi, "Analyzing

fault effects in the 32-bit OpenRISC 1200 microprocessor", Third

International Conference on Availability, Reliability and Security, pp. 648-

52, 2008.

[2] A. Meixner, M. E. Bauer, and D. J. Sorin, "Argus: Low-cost,

comprehensive error detection in simple cores", 40th Annual IEEE/ACM

International Symposium on Microarchitecture, pp. 210-22, 2007.

[3] M. Nicolaidis, "On-line testing for VLSI: state of the art and trends."

Integration, the VLSI Journal, vol. 26, no. 1, pp. 197-209, 1998.

[4] H. Psaier and S. Dustdar, "A survey on self-healing systems: approaches

and systems", Computing, vol. 91, no. 1, pp. 43-73, 2011.

[5] A. Pellegrini, R. Smolinski, L. Chen, X. Fu, S. K. S. Hari, J. Jiang, S. V.

Adve, T. Austin, and V. Bertacco, "CrashTest'ing SWAT: Accurate, gate-

level evaluation of symptom-based resiliency solutions", Proceedings of the

Conference on Design, Automation and Test in Europe, pp. 1106-9, 2012.

[6] S. Hong, and S. Kim, "Lizard: Energy-efficient hard fault detection,

diagnosis and isolation in the ALU", IEEE International Conference on

Computer Design (ICCD), pp. 342-9, 2010.

[7] J. E. Smith and P. Lam , "A theory of totally self-checking system

design", IEEE Trans. Comput., vol. C-32, pp.831 -44, 1983.

[8] N. K. Jha and S.-J. Wang, "Design and synthesis of self-checking VLSI

circuits", IEEE Trans. Comput.-Aided Des. Integr. Cicuits Syst., vol. 12, no.

6, pp.878 -87, 1993.

39

[9] T. Angskun, G. Fagg, G. Bosilca, J. Pjesivac-Grbovic, and J. Dongarra.

"Self-healing network for scalable fault-tolerant runtime environments",

Future Generation Computer Systems, vol. 26, no. 3, pp. 479-85, 2010.

[10] A. Majumdar, S. Nayyar, and J. S. Sengar. "Fault Tolerant ALU System",

2012 International Conference on Computing Sciences (ICCS), pp. 255-60,

2012.

[11] M. Fazeli, A. Namazi, S.G. Miremadi, and A. Haghdoost, "Operand

Width Aware Hardware Reuse: A low cost fault-tolerant approach to ALU

design in embedded processors”, Microelectronics Reliability, vol. 51, no.

12, pp.2374-87, 2011.

[12] T. Koal, D. Scheit, M. Schölzel, H.T. Vierhaus, “On the Feasibility of

Built-in Self Repair for Logic Circuits,” IEEE International Symposium on

Defect and Fault Tolerance in VLSI and Nanotechnology Systems, pp. 316-

24, 2011.

[13] C. Khedhiri, M. Karmani, B. Hamdi. "Concurrent Error Detection Adder

Based on Two Paths Output Computation", 2011 Ninth IEEE International

Symposium on Parallel and Distributed Processing with Applications

Workshops (ISPAW), pp. 27-32, 2011.

[14] S. Mitra and E. J. McCluskey. "Which concurrent error detection scheme to

choose?”, Proc. International Test Conference, pp. 985-94. IEEE, 2000.

[15] D. P. Vasudevan , P. K. Lala and J. P. Parkerson "Self-checking carry-

select adder design based on two-rail encoding", IEEE Trans. Circuits Syst.

I, Reg. Papers, vol. 54, no. 12, pp.2696 -2705, 2007.

[16] H. Belgacem, K. Chiraz, and T. Rached. "Pass Transistor Based Self-

Checking Full Adder", International Journal of Computer Theory and

Engineering, vol. 3, no.5, 2011.

40

[17] RV Kshirsagar, RM Patrikar, “Design of a novel fault-tolerant voter circuit

for TMR implementation to improve reliability in digital circuits”,

Microelectronics Reliability, vol. 49, no. 12, pp.1573-77, 2009.

[18] T. Koal, M. Ulbricht and H.T. Vierhaus, “Vitual TMR Scheme Combining

Fault Tolerance and Self Repair”, in 16th Euromicro Conference on Digital

System Design(DSD 2013), IEEE, pp. 235-42, 2013.

[19] T. Ban and L. Naviner, "A simple fault-tolerant digital voter circuit in tmr

nanoarchitectures," in 8th IEEE International Northeast Workshop on

Circuits and Systems Conference (NEWCAS 2010), pp. 269-72, 2010.

[20] A.G. Ganek and T.A. Corbi, “The dawning of the autonomic computing

era”, IBM Systems Journal , vol. 42, no. 1, pp. 5-18, 2003.

[21] T. Koal, D. Schiet, H. T. Vierhaus, “A Concept for Logic Self Repair”, 12th

Euromicro Conference on Digital System Design, Architectures, Methods

and Tools, pp. 621-624, Aug. 2009.

[22] V. Ocheretnij, D. Marienfeld, E.S. Sogomonyan, M. Gossel, "Self-checking

code-disjoint carry-select adder with low area overhead by use of add1-

circuits", 10th IEEE International On-Line Testing Symposium, pp. 31-36,

July 2004.

http://www.sciencedirect.com/science/article/pii/S0026271409003114

41

ACKNOWLEDGEMENT

I would first of all thank Allah Almighty Who enabled me to carry out this

project with full devotion and consistency. Surely, it is only because of His

blessings that I could find my way up to the completion of this task.

 Next, I would like to express my sincerest gratitude to my supervisor Prof.

Jeong-A Lee for her excellent guidance, caring and patience and providing me

with comfortable research environment. Her sincere encouragement to pursue

my master’s degree at CS (Computer System) Lab and continuous support has

been a great assistance to achieve a milestone in my career. She is the

friendliest, easy going and encouraging advisor that anyone could wish for.

I would also like to show appreciation to all members of the thesis examining

committee Prof. Seokjoo Shin and Prof. Kwang-Suk Choi for their valuable

advices and insight throughout my research. In addition, I would like to thank

Department of Computer Engineering, Chosun University, to provide me the

atmosphere to augment my knowledge.

I also pay esteem regards to MKE (Ministry of Knowledge Economy) Korea

under the Global IT Talents Program supervised by NIPA (National IT Industry

Promotion Agency), for its financial support during the period of my Master

studies.

Finally I would like to thanks to my whole family for their kind love and

prayers which always play a vital role in my success. I dedicate this thesis to

my beloved parents Firdous Parveen and Ghulam Akbar Khan and also, to my

elder sister Fouzia Akbar, as a reward to their efforts for building my career.

	I. INTRODUCTION
	II. RELATED WORKS AND LIMITATIONS
	III. SELF-CHECKING ADDER DESIGN
	IV. SELF-REPAIRING ADDER DESIGN
	V. AREA AND RELIABILITY COMPARISON
	VI. CONCLUSION
	BIBLIOGRAPHY
	ACKNOWLEDGEMENT

<startpage>14
I. INTRODUCTION 1
II. RELATED WORKS AND LIMITATIONS 6
III. SELF-CHECKING ADDER DESIGN 10
IV. SELF-REPAIRING ADDER DESIGN 25
V. AREA AND RELIABILITY COMPARISON 29
VI. CONCLUSION 37
BIBLIOGRAPHY 38
ACKNOWLEDGEMENT 41
</body>

