D

E
LICH.

!

=

S

ive

5
MZEXE HAIGHA OF

O N

o
[

2|

M

creat
commons

—

[—

t

[¢]

LICt:

O M
st

)

C
MNERLEAlL A

ZHE Metor

—
=
=

R0 5 A

i 0 <4 15
o) B¢ 53 o0
) E[o} o
) = 7
&3 10 ol 00
< il R
jum] J—

ol 0~ =
il 3 o on
) X Rr
Rr S =

%_ =B s
r o m._ -
o o O
_ Rr RO
% R of
o © o il
—_ jum]

1] N ol =
R iS ol =
= T Uo gwo
) RE] S
1 ° s =
o) K —
= TR mrr
&= o

ol Kl <. KM
80 ol JIJ =
Ee) W =)
©

X ESLICH

I 2t

tOd

ot |

[¢]

H

=

[¢

o]
lection

=

=

Disclaimer
O

5

FAI LEEHLH O OF
E2FH 29

¢}
X

=

]

0l N2 0| =3 & 72 (Legal Code)

HEAH0l [E 0l8Ke als 2o ol o

http://creativecommons.org/licenses/by-nc-sa/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-sa/2.0/kr/

[UCI]1804: 24011- 200000276168

August 2014
Master’'s Degree Thesis

A Self-Repairing Adder with
Fault Localization

Graduate School of Chosun University

Department of Computer Engineering

Muhammad Ali Akbar

A Self-Repairing Adder with
Fault Localization

oo FARE o 88 FEH AL FH S
7Ha7] A7)

August 25, 2014

Graduate School of Chosun University

Department of Computer Engineering

Muhammad Ali Akbar

Collection @ chosun

A Self-Repairing Adder with
Fault Localization

Advisor: Prof. Jeong-A Lee, PhD

A thesis submitted in partial fulfillment of the
requirements for a Master’s degree

April 2014

Graduate School of Chosun University

Department of Computer Engineering

Muhammad Ali Akbar

Collection @ chosun

o3 HIZ2 £ c
250
StOE e|

Jol0
KK
ol
ol
OH
H1
of

—

jol

-

Jor

of

Jor

Jor

2014 45 &

mlr__._
mf_l.
K
jol
.13 |

Kd

“ICollection @ chosun

Table of Contents

TABLE OF CONTENTS. ... I
LIST OF FIGURES.. ... Il
LIST OF TABLES........c e v
ABSTRACT L. e V
OF 2 B O ViI
I. INTRODUCTION ...oiiiiiiiiiii i 1
A. RESEARCH OVERVIEWccciiiiiiiiiieeiieesieeesieeesteeesnteeesnteeesnaeeasseeesssnesansnessnsns 1
B. RESEARCH MOTIVATION.....uuttiiiiiiiieeiiiieeessireeesssisseessssseeeessssaneessnssneesssnsnenas 2
C. CONTRIBUTION ...otiiiientesiiesteeste et steesteaseesie et sssesbeesbeesbesseenbeebesssesbeebesneenneas 4
D. THESIS ORGANIZATION ...cetieiiiiiesieeteaieesieeste st sbee b sseesbeebesieesbeesbe e neeeeesnes 4
1. RELATED WORKS AND LIMITATIONSccccce v 6
A. HARDWARE REDUNDANCY ...cciiiiiiiiiiieiiiiesieeesiieeessieessnreessssesssssessssessnsnessnsnas 6
1. Duplication of HArdware.............ccccoeiiiiiiie i, 6

2. Concurrent Error Detecting COUEScccoviriiiiiiiieieie e 8

B. TIME REDUNDANCY ...otiiiiiiiiiie ettt e et e e e e e e s e e e e snnneeas 8
I1l. SELF-CHECKING ADDER DESIGNccccoovviiviiiiiiieeenn, 10
A, BASICPRINCIPLEceiiii ettt sttt et e e e et e e e st e e e e nnnneeas 10
B. SELF-CHECKING CARRY SELECT ADDER (CSEA)cciiiiiiirieniiisiesieiee 12
1. Proposed APPrOaChccociiiiiiiie e 12

2. Correction of Previous APproach.........ccccevveiieiieeiie i 15

C. FAULT COVERAGEcctvieitit ettt stee st e st et e sne et e s nnta e nnee e s nnaeenneas 21

Collection @ chosun'

V. SELF-REPAIRING ADDER DESIGN.......c.ccccciiiiiiiiiinnn, 25

A. PREVIOUS DESIGN APPROACHES.iiiiieiiieeetiiieseeeeeeeeetati s s e e s s eeeaabia e s e e 25
B. DESIGN CHALLENGES AND SOLUTIONS ...uuttiiieiiiiirireriresesssssssssreresesssssssssnns 26
C. PROPOSED SELF-REPAIRING ADDERccooiiiettteiiieiesssssiirareesseessssssssssssessss 27
V. AREA AND RELIABILITY COMPARISON.......ccooeeveeenne. 29
A. AREA COMPARISON ...oocuvvtviiiieeesiiiitireresseesssssssrssrsssesssssssssresssssesssssssrssessses 29

1. Area Compared To DMR ANd TMR.......ccooiiiiiiiieie e 30

2. Area Compared To self-checking CSeA..........ccooiiieiiiii i, 31

B. RELIABILITY COMPARISON ...uuuuuuuiuititieneniseniassessesasaeesasnsssnsnsnensssnsnsnsnsnnnnnnnnns 32
VI, CONCLUSION. ...ttt e e e e e s 37
BIBLIOGRAPHY oottt 38
ACKNOWLEDGEMENT ..ot a e 41

Collection @ chosun"

List of Figures

Figure 1: Fault propagation through Carryccccceevieie i 3
Figure 2: Hardware Redundancy: (2) TMR (b) DMRccccooveiviieveeie e 7
Figure 3: Concurrent Error detection SCheme ..o 8
Figure 4: Proposed self-checking full adderccccoviiiiiiiiiiinecee, 11
Figure 5: Self-testing carry-select adder [15]cccocveveiieiieeiiie e 14
Figure 6: Proposed design of two-bit self-testing carry-select adder 15
Figure 7: Designed module required for n-bit eXtensioncccoovvvierinecienen, 15
Figure 8: Examples of 3-bit addition (a) §9 = §3 (b) S = S_% 17
Figure 9: Faulty design of 4-bit self-testing carry-select adder [15]ccccveneee. 18
Figure 10: Corrected design of self-testing carry-select adder with two rail
0010l [T USSR PP VTPV PRURPRRPRPRIR 19
Figure 11: Full-adder without 10giC SNArNGccccoviiiriniiieie e, 23
Figure 12: Self-Checking (a) XOR gate [16] (b) MUX [15]c.ccoevveiieiieiciienn, 24
Figure 13: (a) Proposed design for self-repairing adder (b) MUX structure........... 28
Figure 14: Comparison with CSeA: our proposed design and self-checking
CSBA[LD] ittt r e a e ars 32
Figure 15: Our proposed 4-bit self-repairing addercccccooveviveveiiieiicce e, 33

Collection @ chosun”

List of Tables

Table 1: Comparison of CSeA with Self-Checking CSeA Before and After

correction of Vasudevan et al. [15]....cccccevviiieiiiiiiiccecce e 21
Table 2 Conditions For Fault COVErage.........cccooviiiiiiiinieieice e 22
Table 3: Transistor Count for Individual module Implementation......................... 29
Table 4. Comparison with Time-Redundancy based Self-Checking Adder, DMR
ANA TIMR Lttt bbbt 30
Table 5: Transistor Count for Different Data Size..........ccccoeveveieiencninicece 31
Table 6: Comparison with Other Approaches Using CSeAcccovviriiiiienenn, 32

Table 7: Comparison of System Failure in NWVA, TMR and Our Proposed Design
N o] 0] (0 (o o RSP SSPSI 36

Collection @ chosun”

ABSTRACT

A Self-Repairing Adder Design using Fault Localization

Muhammad Ali Akbar
Advisor: Prof. Jeong-A Lee
Department of Computer Engineering

Graduate School of Chosun University

Advanced microelectronics technologies caused the current digital systems
to become more vulnerable to faults. It has been observed that the problem of
single-event upset in digital systems has become more prominent with the
increasing complexity of system on a chip, along with decreasing clock cycles
to obtain high operating frequency. Moreover, the increasing complexity of
digital system also increases the cost of repairing. Therefore, the existence of
fault detection without recovery cannot fulfill the demand of reliable execution
in current digital system. Thus, the built-in self-repair is becoming the need of

current semiconductor technology.

In this thesis, we propose a self-repairing adder that can repair multiple
faults and identify the particular faulty full adder. Fault detection and recovery
has been carried out using self-checking full adders that can diagnose the fault
based on internal functionality, independent of a fault propagated through carry.
The idea was motivated by the common design problem of fault propagation
due to carry in various approaches by self-checking adders. Such a fault can
create problems in detecting the particular faulty full adder, and we need to
replace the entire adder when an error is detected. We apply our self-checking

full adder to a carry-select adder (CSeA) and show that the resulting self-

Collection @ chosun’

checking CSeA consumes 15% less area compared to the previously proposed
self-checking CSeA approach without fault localization. After observing fault
localization with reduced area overhead, we utilize the self-checking full adder
in constructing a self-repairing adder. It has been observed that our proposed
self-repairing 16-bit adder can handle up to four faults effectively, with an 80%
probability of error recovery compared to triple modular redundancy, which

can handle only a single fault at a time.

Collection @ chosun”

2RO IX|gE 0|8t S EXQ At FRIE 7HiI] 24

O3 HIZ F5I0LE |
K| &= == 0] 7 Of

SFAE Ofo|32 HAF 7|52 #MO| CIXY AAHS QR0 Of 2ot
BHSQICE 24 E 2AOEM B AAHO EYEIH Bt

AMAGO| 2F 20| FofstA Eiict. LddEo E8E= CX[E

>

>

m
o
N

H1
=2
fif]
Ot

o
=)
N
rQ

>
Hu
Bl
Ofn
mn
rir
PO
=)
0]
-4
rn
i}

M2t QEET} Q0] @EZAED0E 8= {2 Six|o| CIX|E A|AHIQ|

oHgHel 2dolEts FAEE SFAZ + gt g2z

Collection @ chosun”

N
Pt

|Z=%F A7 S5 WIRIIE ARESHY "X ol YE2

Ztekz1el FHE|HEO oot LFtE SN2 A EICE O] Of0|L|0 &

rir

AZF S5 7tebolof ofet Ciyet M2 RS & 72l =0 Qs 2dst

°F Hzo 35 *

Mz
X
MO
=
s
X
=2
Al
ro
2
il

He|HEo mE
LEEAE St 277 UAs HIHVIE e Ho 2ME o
A2n, o217t 2de d2 Z= ™IHI[E DMSHOFRE othh. f2[=

29| 'Kt7t 7 H™IF4AI|'E Carry-Select Adder(CSeA)d| M3, 1

QHYE S o 27 AFE 2RASRALE LR IX|2HE SO0
HY QU E a7t 7SS, & =E0Me A2F AR HIHEI1E

A2 =T 7HEVI'E 2A5kE O E85tRen, 227t M etet 16bit o

v
(2]

A7t 27 JhATIE djLtel QB0 2Rg 4 UUH Triple modular

redundancy A0 H|SH 80% =HEE 4712 LFINA| S5+ = AUS

mjo

2tOISHSI LT

—_

Collection @ chosunf™

l. Introduction

A. Research Overview

Advanced microelectronics technologies caused the current digital systems to
become more vulnerable to faults. It has been observed that the problem of
single-event upset in digital systems has become more prominent with the
increasing complexity of system on a chip, along with decreasing clock cycles
to obtain high operating frequency [1, 2]. The design of a compact circuit on a
chip is advantageous in terms of noise but creates various problems in terms of
reliability [3, 4]. Researchers agree that reduction in hardware size will increase
hardware failures in future processors [5]. Thermal cycling, dielectric behavior
and biasing of digital integrated circuits have also caused many transient and
permanent faults [6].

In order to deal with the above-mentioned problems, the concepts of self-
checking and fault tolerance have been introduced. A system will be fault
secure if it remains unaffected by a fault or if it indicates a fault as soon as it
occurs [7]. A system will be self-testing if it produces a non-coded output in
response to every generated fault [8]. A system will be totally self-checking
(TSC) if it is both faults secure and self-testing [7]. The concept of TSC is used
in different applications, like self-healing networks [9], self-checking
arithmetic logic units (ALUs) [10], etc.

However, the increasing complexity of digital system also increases the cost of
repairing [20]. Therefore, the existence of fault detection without recovery
cannot fulfill the demand of current digital system. Thus, the built-in self-repair
(BISR) is becoming the need of current semiconductor technology [21].

Collection @ chosun®

Adder is one of the essential elements present in almost all digital devices [22,
15]. Therefore, the introduction of BISR in adder can play a vital role in digital
industry. Many approaches have already been proposed for self-checking adder
design. However, very few work has been found related to the self-repairing
with reduced hardware overhead. Most of the self-checking approaches require
re-execution of instructions for fault recovery [11]. However, the re-execution
process affects system performance because all operations connected directly or
indirectly to the faulty module should be re-executed. Furthermore, re-
execution cannot guarantee fault recovery, especially if there is a permanent
fault or wear-out problem. Therefore, on-line detection and self-repairing is

required in a highly dependable system architecture [12].

B. Research Motivation

The common design problem in various approaches for self-checking adders is
fault propagation due to carry. Such a fault can misdirect the system,
preventing it from detecting the particular faulty region in a module because a
propagated error can make the correct region of a module appear to be faulty,

as well.

A duplex system is shown in Fig. 1, in which each module has three full adders.
Let us assume that an error occurs in the carry generation portion of the first
full adder. The propagated error will indicate the second and third full adders as
faulty modules, whereas the first full adder will be deemed a fault-free module.
Therefore, in order to achieve recovery, we will repair the second and third
modules, and hence, the faulty module is not recovered. Similarly, if we detect
that a module having five full adders generates faulty output, then by most of
the current approaches we cannot detect which of the five full adders is faulty.

Hence, if a fault is indicated in any region of a large module, we need to

Collection @ chosun®

replace the whole module in order to accomplish the recovery process. This
kind of replacement approach will waste resources because the properly

functioning block has also been replaced.

We observed that most design approaches deal with error detection, but little
work has currently been done on the self-repair side. The general consideration
for designing a self-checking adder is that the recovery process can be feasible
after detection of faults. However, the cost for self-repair is too high to be
adoptable for most self-checking approaches. If we consider DMR and TMR,
then instead of replacing a single module, we have to replace the whole system
to achieve recovery. This will introduce a huge area overhead of more than 300%
to the actual system, as well as an increase in power consumption. Our
proposed design in this thesis considers both the facts of self-checking and the
recovery. Because of the fault localization property present in our design, the
system is only required to replace the faulty region, without disturbing the

whole system.

A=
(0]
M
o
A
R
' O
l’ T
add2 ¥ ',' 0
C.. wFault /’ R ‘ Fault
Add3 ‘ ‘ ‘ ONoFauIt

Figure 1: Fault propagation through carry

Collection @ chosun®

C. Contribution

In this research, a self-checking full adder has been proposed which can detect
the fault based on its internal functionality and independent of the propagated
carry. Even the error propagated through carry will not create a fault indication
in subsequent full adders because all full adders are self-checking with respect
to their individual functionality. We then proposed a self-repairing adder by
using the fault localization property present in our proposed self-checking full
adder. The designed self-repairing adder can provide reliable output for more
than one fault, with reduced area overhead. This is because, instead of replacing
the whole system of adders, we replace the particular faulty full adder only. The

main contributions of this thesis are as follows:

1) All full-adders present in adder module are self-checking with respect to
their individual functionality.

2) Self-checking Carry Select Adder (CSeA) with fault localization whose
area overhead almost similar to the conventional CSeA without self-
checking.

3) A reliable carry propagation chain has been designed using dedicated
self-checking adder for replacements

4) Possibility of recovering multiple fault at run-time

5) Number of faults recovered is dependent on the adder size

D. Thesis Organization

The thesis is organized as follows. Chapter 2 discusses the previous work and
common design problem (i.e., the fault propagation problem due to carry). In
chapter 3 we discuss the basic principle, fault coverage of our proposed design
approach for a self-checking full adder and its application to CSeA. In chapter

4 we present the concept and comparison of our proposed self-repairing adder

Collection @ chosun*

approach. The comparison in terms of area and reliability covers in chapter 5.

Our research work is concluded in chapter 6.

Collection @ chosun®

II. RELATED WORKS AND LIMITATIONS

Self-checking systems require redundancy, which can be broadly classified as
time- and hardware-based redundancy. We will discuss both of them briefly,

along with related works, in this section.

A. Hardware Redundancy

The basic idea for this approach is to use more than one hardware to produce
either the same, inverted or coded output. The comparison between the outputs
of the actual and the redundant hardware will be used to indicate the fault. This
approach can be further classified into duplication of the existing hardware and

output predictor block.
1. Duplication of Hardware

In the duplication of hardware scheme, the two most commonly used
approaches are double modular redundancy (DMR) and triple modular
redundancy (TMR) shown in Fig. 2. In a duplex system (i.e., DMR) the same
hardware is repeated once, whereas TMR requires three modules with which to

vote to determine the final output.

The major problem with this concept is that instead of detecting faults in
individual modules, it can detect the overall fault of a system. This kind of
checking creates many complexities in terms of fault recovery, because we
cannot detect which individual block is faulty. The other drawback of this
approach is that straightforward implementation will create an area overhead of
more than 100% [3, 13]. Secondly, it cannot detect a common mode failure in

which both modules experience the same set of errors [14].

Collection @ chosun®

| Add module 2
5;\‘ ‘
Voter et
Y v
Outout
Error
(a) (b)

Figure 2: Hardware Redundancy: (a) TMR (b) DMR

The advantage of TMR over DMR is the probability of obtaining reliable
output. It can easily be recognized that by using the TMR technique, the area
overhead will increase up to 300% compared to the original design without
self-checking. The second problem with this kind of design approach becomes
apparent when two modules have the same faulty result at the same time, and
then the correct module is treated as faulty because the output is dependent on a

voter circuit that decides on the basis of majority [10].

In a CSeA design, two adders are working in parallel for a complemented value
of initial carry-input, Ci,, and the final output will depends on the actual value
of Cin. The benefit of having two adders at a time was realized by Vasudevan et
al. [15], and they introduced a fault-tolerant capability without excessive
hardware overhead. However, the problems of common mode failure and a
high area overhead requirement for fault recovery still remained unsolved. The
fault in carry generation is allowed to propagate and cannot be detected with its
first occurrence. Hence, this approach also suffers in terms of determining the

defective full adder modules.

Collection @ chosun’

2. Concurrent Error Detecting Codes

This approach also requires an extra functioning module and is similar to DMR.
However, in contrast to duplicated hardware approach, the extra module will
generate encoded output with encoded inputs, as shown in Fig. 3. The resulting
output from normal module will be encoded further and compared with the
encoded output of the extra module. The advantage of this approach is diversity

which can encounter the problem of common mode failure.

Code Generator

Encoder

Figure 3: Concurrent Error detection scheme

B. Time Redundancy

The basic concept of time redundancy is that the same hardware will perform a
single operation in different intervals of time, and we can detect an error by
comparing the two outputs obtained at different time instances.

Khedhiri et al. [13] designed a self-checking full adder circuit based on the
concept of time variation. The single full adder will work such that it is used
twice to perform the same computation by following different logical paths,
and the comparison of the final results will indicate the presence of a fault. The

Collection @ chosun®

key features of the authors’ design are diversity and a decrease in area overhead
by using different paths for a single operation in each time interval. Moreover,
in order for system performance or speed to remain unaffected, it has been
argued that the result will be propagated after the first computation. Hence, if
the first computed result is faulty, then before detecting the fault, that result will
be used for other computations. The propagated fault will also cause faulty

results in other modules.

Collection @ chosun’

I11. SELF-CHECKING ADDER DESIGN

A. Basic Principle

The presence of carry propagation chain in adder cannot be ignored during self-
checking and fault localization. In order to avoid the problem of fault
propagation due to carry one possible approach is to adapt carry-free adder.
However, the complexity and area overhead of carry free adder without self-
checking is almost equal to the duplex system. Another approach is to make
self-checking independent of the propagated carry. We utilize the following

relations to achieve the goal of fault localization:

1) The Sum and Carry-out bit will be equal to each other when all three
inputs are equal.
2) The Sum and Carry-out bit will be complemented when any of the three

inputs is different.

By using the above two relations, a full adder can be self-checked with only the
expense of an equivalence tester (Eq), as shown in Fig. 4. The purpose of the
equivalence tester is to check the equivalence of all inputs. Hence, apart from
the Sum and Carry bits calculation, we have to compute logic for the
equivalence tester, and the expression for that purpose is in Eg. (3.3). The
functional block Eq has been designed to produce an active low output so that
we can use the fault-secure Exclusive-NOR logical function (XNOR) gate for

comparison.
Sum =A@ B C, (3.2)

Cout =A*B+Cip s (A+ B) (3.2)

Collection @ chosun®

Equivalence Tester (Ey;) = (ABC,, + ABC,;,) (3.3)

Error (Ef) =Sum © Coyur © Eg¢ (3.4)

i ¢

A 4 A 4 y

Full Adder Equivalence tester
Sum C_ (E,)

)
|

I
Initial testing

ey,
Q
Error (Ef)

Figure 4: Proposed self-checking full adder

The final fault is computed by using two XNOR gates. The purpose of the first
XNOR gate (G1) is to check whether the Sum and C,, bits are equal or
complemented. We need a second XNOR gate (G2) because of the previously
mentioned observation that Sum and C,: will always complement each other
except when all inputs are equal. Thus, the output of G1 will indicate the
equality or difference of Sum and C, and G2 will verify the output of G1 by
comparing it with an equivalence tester, and thus generate the final error
indication. When Eg; is zero, the output of G1 and G2 should be logic 1 and 0,
respectively. On the other hand, if E indicates logic 1, then both XNOR gates
should generate logic O (i.e., I; =0 and E; =0), and in any other case, a fault will
be indicated.

Collection @ chosun

B. Self-Checking Carry Select Adder (CSeA)

1. Proposed Approach

Carry Select Adder (CSeA) is one of the most common types of adder which
pre-compute Sum bits using two parallel blocks of Ripple Carry Adder (RCA)
with complemented values of initial Ci, and the final Sum bit will be generated
after receiving the actual value of Cj,. The presence of two parallel RCA is
advantageous for introducing Self-checking ability with the reduced hardware
overhead. The self-checking CSeA shown in Fig. 5 was proposed by
Vasudevan et al. [15], where two adders and a 2-pair-2-rail checker, along with

some combinational logic, are used for self-checking.

We design a self-checking CSeA with single adder, assuming the initial C;, to
be zero and where the individual full adder has been replaced by our proposed

self-checking full adders. We then generate Sum and Carry output for the initial
Cin equal to one using the following relation, where Sji and Cji represent the j¢"

position of the Sum and Carry bits, and i is either 0 or 1, indicating the value of
the initial Cj,:

1) S¢ is always a complement of S0, i.e. S3 = S.
2) Si dependson S, S?:

If (50=0) then S = S?;
If (50=1) then S} = S0

3) C} dependson ¢ SQand SY.

If (C2=1 OR SQ « S?=1) then Ci=1;

Collection @ chosun®

The above relationships can be summarized in Eq. (3.5), Eq. (3.6) and Eq. (3.7).
An exclusive OR (XOR) operation is performed in Eqg. (3.6) to generate Si
because SI is not always a complement to SY . Moreover, since both
CY and S9 « SP cannot equal 1 at the same time, we used the XOR gate in Eq.
(3.7) because a self-checking XOR gate was presented by Belgacem et al. [16].
The two-bit proposed self-checking CSeA is shown in Fig. 6. The design
consumes less area compared to the self-checking CSeA approach of

Vasudevan et al. [15], shown in Fig. 5.

Sy=59 (3.5)
S51=S5 @ S7 (3.6)
Cl=CP @ (s9+ S9) (37)

Thus, for arbitrary number of bits we found that except for the least significant
bit (LSB), S and S/ has the following relation:

Except for the LSB, the Sum bit computed when carry-in equals 0 will be a
complement to the corresponding Sum bit with carry-in equal to 1, only when

all the lower Sum bits are equal to logic 1.

In general we can say that:
If (SP ¢ S9e89....50 1y =1)
Then (S} == S);

Else (S} == S);

Collection @ chosun’

where j indicates the bit position. Thus, in order to design an n-bit CSeA, the
generalized Boolean equations have been shown in Eqg. (3.8), Eg. (3.9) and Eg.
(3.10). The design module shown in Fig. 7 will be used to extend the 2-bit
CSeA design to an n-bit CSeA design. All the intermediate Sum bits between
the LSB and final C, can be generated using the module shown in Fig. 7. The
LSB and module for final Co (MOFC) design in Fig. 6 can be used to
complete the n-bit self-checking CSeA.

1_¢0
S1=50 (3.8)
SE=SS D (S eSY ¢SyS0_1) (3.9)
n n 1 2 3 e (n-1) '
1— 0 0 0 0 0
Cr=Cp @ (5?598980 1 (3.10)
B1 Al B0 A0
cop—Y o MV
Full adder & Full adder &=
s 9
——— ———
B1 Al BO A0
ct N Y cl A4 A4 c=1
Full adder € Full adder Ie
st s}
Icm
O mux’ ® mux'
S
Cout
x1 vyl x0 y0
2-pair-2-rail checker
v v
z1 22

Figure 5: Self-testing carry-select adder [15]

Collection @ chosun"

B1 Al BO A0

- mmm s e — I I
Module . A Y ﬁ

1 -
i for final 9, Proposed col Proposed C'é'o
. S [T | Fulladder Full adder

I (MOFO)[

. _ .

I s ot |> Er So |> Efo
I Lr A

Co sum bit 1 sum bit 0
Figure 6: Proposed design of two-bit self-testing carry-select adder

e

E CO CO
L—i (-1

: Full adder [€—
g s? b E¢i

. X

gx
|
\-_(x(s—'

|

i-1

th
i bitof sum

Figure 7: Designed module required for n-bit extension

2. Correction of Previous Approach

Vasudevan et al. in [15] presented one Self-checking carry-select adder (CSeA)
with reduced area overhead scheme. The proposed design seemed to be
promising for self-checking CSeA, however, we find that the claim for self-

Collection @ chosun®

checking is only valid for 2-bit CSeA, and the 6-bit CSeA shown in the paper
cannot provide self-checking. We argue the failure of their design model and
present a correct self-checking CSeA design based on two-rail encoding. We
show that the transistor overhead of the correct model is higher than the one

claimed by Vasudevan et al. [15].

The property used by Vasudevan et al. [15] for a pair of full adders can be

generalized as follows:

The relation between sum bits calculated with identical inputs is only
dependent on the carry-input, and for complemented values of carry-input, we

will obtain complemented sum bits (keeping other pairs of input bits identical).

For example, if the sum bits S}and S? are generated by using intermediate carry

C} and C}, respectively, then according to the above-mentioned statements:
If (C} == CP);
Then S} is equal to SO

Where, i indicates the bit position, while 1 and 0 in the superscript represent
the initial value of Cj, If we analyze the CSeA design, then the above
statements are only valid for the least significant sum bit of a particular CSeA
block. This is because the first full-adder in every CSeA block is the only one
that will get the complemented values of the carry-input. The remaining full
adders will depend on the propagated carry, which may or may not be
complementary to each other. Therefore, we cannot say whether the generated

sum bits, other than the first full adder, will be inverted to each other or not.

Collection @ chosun®

The possibility of having equal values of propagated carry by the two
corresponding adders in a CSeA was neglected by Vasudevan et al. Therefore,
the approach in [15] fails for CSeA with more than two bits, as shown in Fig. 9
[15]. Note that the initial carries, C; and C,, always complementary to each
other because of the design requirement of CSeA, while the intermediate
carries, C, and C,, may or may not be complementary to each other, depending
on the conditions of carry propagation. Thus, S, and S, will not always be
complementary to each other. Therefore, comparing S, and S, directly using 2-
pair-2-rail-checker (TTRC) will give the wrong indication of faults. Even if
there is no fault, the TTRC will indicate a fault. Since the problem in their
approach starts from C, and C;,, we do not discuss the intermediate carries Cy
and Cy. Let us consider the binary addition of 3-bit numbers as illustrated in
Fig.8. It can easily be seen from Fig. 8(a) and (b) that the most significant bits

may or may not be complementary to each other.

0 « Cp—» 1 0 «Cp— 1
001 00 1 001 00 1
001 00 1 110 11 0
010 01 1 111 00 O

(@) (b)

Figure 8: Examples of 3-bit addition (a) 59 = S} (b) S = 51

A carry-select adder pre-computes sum bits using two parallel ripple-carry
adders (RCAs), with complemented values of the initial Ci,, and the actual
value of the C;, will be used to determine the final sum bit. Vasudevan et al.
utilized both RCAs to obtain the complementary behavior of the corresponding
sum bits. However, it is possible to perform a logical operation such that one of

the RCA blocks should always provide inverted sum bits with respect to the

Collection @ chosun’

opponent block for checking purposes only. This will provide a more simplified

and systematic design, which can be extended easily.

B3 A3 B2 A2 BL Al BO A0
vV vV c XV . MV .
FA € Al FA |[€= FA |&!

[S ——— ——— ———

R AR R A2

R R A
vV u;k N e — c,—¥ c,
FA < FA FA < FA k
Ci
—? —?
0 MUX 1 \ 0 MUX1 \ nMUX ! 0 MUX‘I RV

4L 2 J L
g3 K /T S S2 S S1 K j 0]
c. L— ? S b T
X \" X \' X \" X)
2-pair-2-rail checker 2-pair-2-rail checker
Z2 Z1 Z2
Z1 J A 4 }
X v X y
2-pair-2-rail checker
v v
Z1 Z2

Figure 9: Faulty design of 4-bit self-testing carry-select adder [15]

In this theis, we will discuss only one possible way in which the sum bits
calculated at initial Ci, = 0 are altered, such that they become complementary to

the sum bits calculated at an initial Cj, = 1 for comparison.

After close observation, we found that:

Except for the least significant bit, the sum bit computed when initial carry-in
equals 0 will be complementary to the corresponding sum bit with an initial

carry-in equal to 1 only when all the lower sum bits are equal to logic-1.

Collection @ chosun®

In general, we can say that:
If (SP ¢S50 eS9....50_y=1)
Then S} is equal to S1;
Else S is equal to S} ;

Al BO a0

B3 A3 B2 A2 Bl
co ‘1’ ‘1’ 0 N4 \ 4 0 \4 ‘1’ 0 ‘1’ v o
3 C, (o8 Co C =0
<——T FAO FA-0 FA-0 FA-0 |jt—
0 0 0
B3 a3 |S3 B2 A2 Sz BL Al S1 B0 A So
C(3) \l/ C% cl u cl \ C=1
< FA1 FA-1 L FAlL 4 FAl -
" *
plwlp -
C-in
MUX I
b MUX
s sum3 \I/ S Sum2 Sl MmO S

2-Pair 2-Rail Checker

I 71 72
71 22 W r
2-Pair 2-Rail Checker

v v

71 72

Figure 10: Corrected design of self-testing carry-select adder with two rail encoding
Thus, in order to apply TTRC for n-bit CSeA, we need to have S} along with

its complement, and S2 will not always equal to S_,% If all the (n-1)™ sum bits at

Cin=0 are equal to logic-1, then the value S? is equal to the complement of S..

Collection @ chosun’®

In other cases, if any of the (n-1)™ sum bits at Ci,=0 are equal to logic-0, then
we take the inverse of S2, so it equals to the complement of S.. Therefore, in
Eq. (3.11) we performed an XNOR operation between S2 and the product of all

lower sum bits computed at the initial Ci,=0, such that the resultant K will

always be equal to S_}l The design module shown in Fig. 10 will be used to

implement the 4-bit self-checking CSeA.

K=S2 @ (S0 1) 5955 eS? (3.11)

We applied the same technology and implementation used by Vasudevan et al.
[15] for comparison. A standard complementary metal-oxide semiconductor—
based AND gate with 6 transistors was used for area computation and the
transistor count for full-adder, multiplexer (MUX), XNOR gate and TTRC was

taken from Vasudevan et al. [15], as given below:

e Full adder — 28 transistors;
e MUX —12 transistors;
e XNOR - 10 transistors;

e TTRC — 8 transistors.

For an n-bit self-checking CSeA, we required (n-2) number of AND gates, (n-1)
number of XNOR gates, (n+1) number of MUX, (2n) number of full adders and
(n-1) number of TTRC, respectively. We can see from Table 1 that the
difference in transistor overhead for 4- to 64-bit self-checking CSeAs varies
from 22 to 682, compared to the faulty self-checking CSeA design by
Vasudevan et al. [15]. Moreover, the transistor overhead of the corrected self-

checking CSeA, as compared to CSeA without self-checking, was found to be

Collection @ chosurt®

23.2% to 34.5%, whereas in the faulty approach presented by Vasudevan et al.
[15], the overhead was 15.49% to 18.84%.

Table 1: Comparison of CSeA with Self-Checking CSeA Before and After correction of Vasudevan
etal. [15]

No. of CSeA Vasudevan et al. faulty design [15] Corrected self-checking CSeA

bits without
self-
checking
Transistor Trans. Trans. % Trans. Trans. Trans. % Trans.
required required gyerhead ©verhead required overhead overhead
[15]
4-bit 284 328 44 15.49% 350 66 23.2%
6-bit 420 490 70 16.66% 534 114 27.14%
8-bit 556 652 96 17.26% 718 162 29.14%
16-bit 1100 1300 200 18.18% 1454 354 32.18%
32-bit 2188 2596 408 18.65% 2926 738 33.73%
64-bit 4364 5188 824 18.88% 5870 1506 34.5%

C. Fault Coverage

The condition for fault coverage of our design has been summarized in Table 2.
The logic-high of the final error (Ef) will indicate a fault. We can easily see that
the designed approach guarantees self-checking only when any one of the Sum,
Cout or Ey lines becomes faulty. If two of them have a fault at the same time,
then that fault cannot be detected. The assumption of having a single fault at
one time becomes valid because the fault-secure property assumes that between
two consecutive faults, we have enough time to detect the error at its first
occurrence [16]. Moreover, unlike other techniques, like DMR and TMR, etc.,
we are testing a very small module of a single full adder. The probability of
having two faults at one time in a small module is much lower than with a large

module.

Collection @ chosurt®

For example: A=1, B=0 and C;,=1 are three respective inputs in our proposed
full adder. The corresponding outputs for these inputs without fault are: Sum=0,
Carry=1 and Ey =1. Let us assume that the Sum bit flips from 0 to 1, and the
outputs, after the fault, will thus become Sum=1, Carry=1 and Ey =1. This

condition has been indicated as a fault in Table 2.

Table 2 Conditions For Fault Coverage

CONDITIONS STATUS

IF (Eqe == 0) AND (Sum == C,,,)) ~ NOFAULT
IF (E; == 1) AND (Sum == C,,,;)) NOFAULT
IF ((E;e == 0) AND (Sum # C,,,)) FAULT
IF ((E;; == 1) AND (Sum # C,,,)) FAULT

With our proposed approach for a self-checking adder, a fault generated in any
full adder can be detected individually. Even if the generated carry has a fault,
it will not create a fault indication in subsequent full adders because all the full
adders are self-checking with respect to their individual functionality and are
independent on their carry input. Hence, the faulty propagated carry will not
create a problem in self-checking in any subsequent full adder. The benefit of
this approach is that if we want to recover from the fault, then instead of
replacing all full adders present in the complete module, we replace only

particular full adders.

Moreover, Sum and C,, of a full adder are not sharing any logic, so the
problem of transient faults can be overcome. For example, consider a single full
adder in which both the final Sum and Cg share the Sum bit of the first half-
adder. Let a, b and Cj, be the three input bits in the full adder, with values equal
to 0, 0 and 1, respectively. With these inputs the correct outputs for the final
Sum and Cycare 1 and 0. Assume that the Sum bit of the first half adder (ad@b)

Collection @ chosurt’

flips from 0 to 1. Then this bit flipping can generate a fault in both Sum and
Cout because of logic sharing and can thus create a problem in detection.
Therefore, in our proposed idea, the Sum and C,,; modules work without logic
sharing, as shown in Fig. 11, and any fault occurring within the internal logic of
an individual module will make that particular module faulty, and thus can be

detected easily on comparison.

Figure 11: Full-adder without logic sharing

In addition to a self-checking full adder, we need to have a self-checking XOR
gate and multiplexer (MUX). The self-checking XOR gate was proposed by
Belgacem et al. [16] using a pass-transistor—based differential pair as shown in
Fig. 12(a). The self-checking MUX design, however, was presented by
Vasudevan et al. [15] in which the complementary outputs SN and SN will be

used to detect the presence or absence of faults and is shown in Fig. 12 (b).

Collection @ chosurt®

— |

p ——O P1 N —
. P2_ |o—_ b
X=adhb X=a®b
N1 N2 |—
|
a
(a)
[
VCC
i 1
son —
CS —17 — SN —— SN
v a1 et il
- P '

(b)
Figure 12: Self-Checking (a) XOR gate [16] (b) MUX [15]

Collection @ chosurt”

V. SELF-REPAIRING ADDER DESIGN

A. Previous Design Approaches

TMR is a well-known approach for obtaining reliable output with more than
300% area overhead. However, reliability can only be assured for a single
faulty module at a time. This is because the faulty module has not been
replaced with a correctly functioning module, and as a result, a triple modular
system changes into a duplex system. Koal et al. [18] proposed a self-replacing
approach for TMR, but the resulting design required more than 500% area
overhead along with at least 5 clock cycles to replace the particular faulty
module. Moreover, system complexity due to a switching mechanism between

input and output rendered the design far beyond practical implementation.

Fazeli et al. [11] proposed a self-checking and self-reliable adder using the
concept of narrow width value (NWV). The overall approach deals with a
processor design property whereby most of the data coming into the ALU
consists of NWVs. Therefore, the individual arithmetic and logic operations
can be split into two parts: one is used to perform normal operations while the
unused part is used to provide redundant computation, like a duplex system.
Consider the case of a 64-bit adder in which (most of the time) a 32-bit adder
will be used for addition while the other 32-bit adder remains unused because
of NWV. This unused 32-bit adder has been made equivalent to the other 32-bit
portion. Thus, a duplex system with minimum hardware overhead is obtained.
Furthermore, the concept of TMR has also been used to provide reliable output.
Fazeli et al. [11] proposed that a third 32-bit adder module for TMR can be
obtained from the multiplier block, because the module of the multiplier is a
combination of add and shift operations.

Collection @ chosur®

The problems associated with this approach led us to propose our design. First,
the reason for using NWV in processor design is to simplify computational
complexity and to reduce energy consumption [11]. However, adaptation of
their approach will remove both those benefits. In addition, the problem of
common mode failure and fault propagation due to carry has not been
considered. Moreover, the possibility of two faulty modules can result in failure
of their approach. Furthermore, correct output on a single fault will only be
achieved when both the operands are narrow width values. In other cases, the
proposed adder can only detect the error using a duplex concept. Thus, beyond
hardware complexity and overhead due to the MUXs, the system reliability will
only depend on the NWV, and according to their calculation based on the ARM
processor, the probability of having NWV in addition is only 56% [11].
Therefore, there is only a 56% probability of obtaining reliable output for a
single fault. This will raise the problem of system diagnoses, as to whether the
output is reliable or not, along with precautions if the system fails to recover.
Also, the MUXs are used without considering their reliability issues.

B. Design Challenges and Solutions

Along with the area, power consumption and other limitations for a self-reliable
adder, there is one important challenging factor that is also related to carry
propagation. Although our proposed self-checking adder is independent of fault
propagation due to carry, for fault recovery at run time, the propagated carry is
crucial. If a fault is detected in any full adder, then because of fault propagation
due to carry, we cannot trust the output of the corresponding full adders.
Therefore, if we replace the particular faulty module, we need to re-execute all
addition processes to get true and reliable output. However, this whole process

will increase processing time.

Collection @ chosurt®

In our proposed design, we provide a solution for this problem by designing a
reliable carry propagation chain using a dedicated self-checking adder for
replacements. If both the adders are faulty at the same time, this will be
indicated as a critical situation. It is possible to have two faults at a time, like
the above-mentioned problem, but there is a low probability of the fault being

at the same adder position.

C. Proposed Self-Repairing Adder

The design approach requires two proposed self-checking adders working at
one time on the same input bits, as shown in Fig. 13(a). The operation of the
proposed design is such that one adder behaves as a normal adder (indicated by
Adder-0) while the second adder will work for recovery at run time (indicated
by Adder-0e). The suffix “e” indicates an “extra” adder used for fault recovery.
The MUX will only be dependent on the fault of the normal adder (i.e., Adder-
0). If any fault occurs in the normal adder, then the MUX will export the Sum
and Carry-out from the extra adder module (i.e., Adder-Oe), as shown in Fig.
13(b). If both adders become faulty, this will be indicated as a worst situation.
Also, there is a very low possibility of more than one fault in a single full adder
because of a negligible area, as opposed to the complete adder module.
Therefore, multiple faults in the individual full adder have not been considered

in this research.

The final Carry-out obtained from the MUX will be fed to both full adders
present in order to compute the next Sum bit, as shown in Fig. 13(a). The MUX
in Fig. 13(a) consists of two internal MUXs, as shown in Fig. 13(b). Both
MUXs are designed according to the proposed self-checking MUX design by
Vasudevan et al. [15].

Collection @ chosurt’

Fault-Oe
C tOe { C 0Oe
Adder-1e Adder-Oe c,final < 35 o
[— S o0l c,0
. x SumOe
C,final 5
2 gouto
< Adder-0 ~ 1] Sumoe
Adder-1 Sumbit0 <« 5
SumoO Ql4. SumO

SUM bit 0 Fault-0
Fault-0

(a) (b)

Figure 13: (a) Proposed design for self-repairing adder (b) MUX structure

Collection @ chosur®

V. AREA AND RELIABILITY COMPARISON

A. Area Comparison

The area overhead can be compared in different ways, such as transistor count,
gate count and technology dependence. In this section, we will compare our
proposed self-checking full adder with DMR and TMR. Also, our designed
self-checking CSeA will be compared with the conventional CSeA and self-
checking CSeA from Vasudevan et al. [15]. The area overhead in both cases
was computed in terms of transistor count. The transistor count for
implementing a full adder and MUX was taken from Vasudevan et al. [15]
while the transistor count for the self-checking XOR gate was taken from
Belgacem et al. [16]. The final transistor count for individual modules is shown
in Table 3.

Table 3: Transistor Count for Individual module Implementation

Modules Required Transistors

for Implementation

AND 6
XOR 4 [16]
MUX 12 [15]
ADDER 28 [15]
EQUIVALENCE TESTER (E,) (Eq. 3) 12
CHECKER (2-XOR) 8
MODULE FOR FINAL Cour (MOFC) 16

(shown in Fig. 6)

Collection @ chosurt®

1. Area Compared To DMR And TMR

Single-bit adder implementation using DMR required two adders and a single
XOR gate for comparison. For TMR, we need three adders and one majority
voter for selecting the correct output. In order to compute transistor count for
voter circuitry, we used the fault secure voter design proposed by Kshirsagar
and Patrikar [17].

The comparison result of our designed self-checking full adder with DMR and
TMR is shown in Table 4. We see that our designed self-checking full adder
requires an overhead of 20 transistors compared to a full adder without self-
checking, whereas DMR and TMR have an overhead of 32 and 96 transistors,
respectively. Hence, our designed self-checking full adder requires 25% fewer
transistors than DMR and 158% fewer than TMR. Moreover, our self-checking
full adder, without creating a time penalty, has 20.8% more area efficiency than
a self-checking full adder using the time-redundancy approach of Khedbhiri et al.
[13].

Table 4: Comparison with Time-Redundancy based Self-Checking Adder, DMR and TMR

Individual Total # of Transistor
Transistor Count Transistors overhead
Proposed ADDER 28 48 20
full-adder Eor 12
CHECKER 8
DMR ADDER 56
XOR 4 60 82
ADDER 84
TMR 124 96
Voter [17] 40
Self-checking - - 58 30
adder [13]

Collection @ chosun®

2. Area Compared To self-checking CSeA

The transistor count for our proposed self-checking CSeA with multiple bit data
is presented in Table 5. The transistor count for a conventional CSeA with and
without self-checking was presented by Vasudevan et al. [15]. It is seen from
Table 6 that our designed self-checking CSeA has only negligible area
overhead compared to a normal CSeA design and also requires a 15% to 16%
lower transistor count compared to the self-checking CSeA proposed by
Vasudevan et al. [15].

A graphical representation is shown in Fig. 14. We can see that our proposed
self-checking CSeA design shows the same trend compared to a CSeA without
self-checking, whereas the percentage increase in area overhead of the self-
checking CSeA proposed by Vasudevan et al. [15] shows considerable
increment compared to a normal CSeA.

Table 5: Transistor Count for Different Data Size

4-bit 6-bit 8-bit 16-bit 32-bit 64-bit

AND 3 5 7 15 31 63
XOR 3 5 7 15 31 63
MUX 4 6 8 16 32 64
Full Adder 4 6 8 16 32 64
Equivalence 4 6 8 - 2 »
Tester

Checker 4 6 o 16 » o
(Pass Trans.

Based)

Total

Transistor 286 426 566 1126 2246 4486

Required

Collection @ chosun

Table 6: Comparison with Other Approaches Using CSeA

Number CSeA without Our proposed CSeA design CSeA Design proposed by [15]

of self-checking

bits Transistors Transistors Transistor Transistors Transistor

required [15] required overhead required overhead

4-bit 284 286 2 328 44
6-bit 420 426 6 490 70
8-bit 556 566 10 652 96
16-bit 1100 1126 26 1300 200
32-bit 2188 2246 58 2596 408
64-bit 4364 4486 122 5188 824

Comparison of transistor overhead

1400
1200 —
1000
800
600
400
200

M normal CSA

M our design

Required transistor

P.K.Lala Design

4 6 8 16
Number of bits

Figure 14: Comparison with CSeA: our proposed design and self-checking CSeA[15]

B. Reliability Comparison

The problem associated with TMR reliability is that if two single full adders
associated with different modules become faulty one after the other, then the
TMR will fail to provide reliable output. This is due to the absence of self-
checking and self-replacement in TMR, because the purpose of the voter circuit
is to provide reliable output based on majority agreement without indicating the
presence of a particular fault in the modules. In order to make TMR self-
checking, we need to increase hardware overhead as mentioned by Majumdar
et al. [10]. However, the absence of a recovery process will further increase the
probability of more than one fault. Thus, TMR is sensitive to a single adder of

Collection @ chosun”

each module. To reduce this sensitivity, we propose the concept of dedicated

replacement for individual adders, as shown in Fig. 15.

C . le
H FA-le
—

FA-1

Fault-0
. SUM bit 0
Fault-2 SUM bit 1 Fault-1

SUM bit3 Fault-3 SUM bit 2

Figure 15: Our proposed 4-bit self-repairing adder

In TMR, all three modules are sensitive with respect to the faults in the
individual full adders. Therefore, we can use the concept of simple
combinational probability without replacement to compute the probability of
fault recovery, as shown in Eq. (5.2). In our proposed design, all full adders are
sensitive with respect to their individual replacement full adder modules. If we
compute the probability of a critical situation in which two adders at the same
position become faulty, then our approach can be the same as two modules
having n full adders. Each module has full adders with numbers 1 to n
sequentially, such that two full adders of the same number cannot be present in
a single module. If we introduced r random faults, then the probability of
having faults in at least 2 full adders at the same position without replacement
can be computed with Eq. (5.1), where N is the total number of full adders in

both modules.

(@)=Y
@) G

In our proposed design, two full adders at the same position becoming faulty is

the worst situation. Therefore, Eq. (5.1) represents the failure condition of our

Collection @ chosun®

adder. Hence, the probability of fault recovery in our proposed self-repairing

adder can be computed by subtracting Eq. (5.1) from 1 as shown in Eq. (5.3).

(2)+3
Pfault recovery in TMR = ™ (5.2)
(G=2)n
Pfault recovery in our design — 1- (T(N)) (53)

where n indicates the number of full adders in a single module, and N shows
the total number of full adders in all modules. The total number of faults is
represented by the termr.

Considering we have three identical modules of 4-bit adders working in parallel,
there is an equal probability of a first fault in any single module. If a second
fault occurs, there is a 73% probability that the fault will occur in any one of
the remaining modules that were not affected by the first fault. Therefore, if
two faults occur in a TMR-based 4-bit adder, there is only a 27% possibility of

error recovery. Hence, TMR can efficiently handle only a single fault at a time.

Let us consider the same 4-bit adder with dedicated adders for run-time
replacement, as shown in Fig. 15. Suppose that the first fault occurs in Adder-0;
then there is only a 14% probability that the next fault will occur in Adder-Oe,
which is the dedicated repair module for Adder-0. Therefore, if two faults occur
in our proposed 4-bit adder, there is about a 86% probability of error recovery.
The probability of having a second fault in the dedicated adder for the first
infected adder will decrease further with the increase in number of bits. Hence,

our designed adder is more reliable against multiple faults, compared to TMR.

It can be seen from Table 7 that the reliability of our proposed design increases

with an increase in the number of bits. For a 4-bit adder design, our proposed

Collection @ chosun”

approach can sustain up to two faults efficiently. But for a 16-bit adder, our
design can handle a minimum of 4 faults effectively, with an 80% probability
of error recovery. With TMR, if any two modules go faulty, the whole TMR
may fail to provide reliable output. It can also be seen from Table 7 that the
reliability of TMR has no significant improvement with respect to the number
of bits.

Fazeli et al. [11] adapted the TMR mechanism for fault recovery, which is only
possible when input bits are NWV. According to their calculations, based on an
ARM processor, there is only a 56% probability of NWV. Therefore, the adder
is only 56% reliable for a single possible fault. Furthermore, if input bits are

NWV, then the possible error recovery for multiple faults is equal to the TMR.

Moreover, the dominance of our proposed solution, compared to the TMR and
NWV can be visualized clearly for 16-bit adder design. The reliability will

increase further for higher order adders.

Collection @ chosun”®

Table 7: Comparison of System Failure in NWVA, TMR and Our Proposed Design Approach

M. Fazeli et al. [11] TMR Proposed Design
Approach
il bl Fault correction Fault recovery is Multiple-fault
requires three possible when no recovery is possible,
conditions to be more than one providing both

Output Reliability
on Single fault

4-Bit Adder

Output Reliability
on 2" Faults

Output Reliability
on 3" Faults

16-Bit Adder

Output Reliability
on 2™ Faults

Output Reliability
on 3" Faults

Output Reliability
on 4" Faults
Output Reliability
on 5" Faults

fulfilled:

1) Both the operands
should be NWV.

2) No more than one
module should be
faulty.

3) None of the MUXs
or other extra
circuitry goes faulty,
because there is no
self-checking in their
design.

56%

(Input bits are NWV)
27%

5%

(Input bits are NWV)
31%

9.7%

2.8%

0.7%

module goes
faulty at a time.

Totally self-
reliable voter
circuit is required

100%

27%

5%

31%

9.7%

2.8%

0.7%

corresponding
adders do not go
faulty at one time

100%

85.82%

42.8%

96.7%

90.3%

80%

67%

Collection @ chosun®

VI. CONCLUSION

With our proposed design of a self-checking full adder, a fault generated in any
full adder can be detected individually. Even the error propagated through carry
will not create a fault indication in subsequent full adders because all full
adders are self-checking with respect to their individual functionality. We then
proposed a self-repairing adder by using the fault localization property present
in our proposed self-checking full adder. The designed self-repairing adder can
provide reliable output for more than one fault, with reduced area overhead.
This is because, instead of replacing the whole system of adders, we replace the
particular faulty full adder only. Moreover, our proposed 16-bit self-repairing

adder can repair up to 4 faults with 80% probability of error recovery.

The self-checking full adder proposed in this thesis is 25% more area efficient
than DMR. We applied our self-checking full adder to CSeA to observe the
performance and area overhead compared with CSeA without self-checking. It
was observed that our designed self-checking carry-select adder has negligible
area overhead compared to a normal CSeA without self-checking. Also, our
designed self-checking CSeA consumes 15% less area overhead compared to
the self-checking CSeA approach without fault localization presented by
Vasudevan et al. [15].

Collection @ chosun”

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

BIBLIOGRAPHY

N. Mehdizadeh, M. Shokrolah-Shirazi, and S. G. Miremadi, "Analyzing
fault effects in the 32-bit OpenRISC 1200 microprocessor”, Third
International Conference on Availability, Reliability and Security, pp. 648-
52, 2008.

A. Meixner, M. E. Bauer, and D. J. Sorin, "Argus: Low-cost,
comprehensive error detection in simple cores”, 40th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 210-22, 2007.

M. Nicolaidis, "On-line testing for VLSI: state of the art and trends.”
Integration, the VLSI Journal, vol. 26, no. 1, pp. 197-209, 1998.

H. Psaier and S. Dustdar, "A survey on self-healing systems: approaches
and systems", Computing, vol. 91, no. 1, pp. 43-73, 2011.

A. Pellegrini, R. Smolinski, L. Chen, X. Fu, S. K. S. Hari, J. Jiang, S. V.
Adve, T. Austin, and V. Bertacco, "CrashTest'ing SWAT: Accurate, gate-
level evaluation of symptom-based resiliency solutions™, Proceedings of the
Conference on Design, Automation and Test in Europe, pp. 1106-9, 2012.
S. Hong, and S. Kim, "Lizard: Energy-efficient hard fault detection,
diagnosis and isolation in the ALU", IEEE International Conference on
Computer Design (ICCD), pp. 342-9, 2010.

J. E. Smith and P. Lam, "A theory of totally self-checking system
design”, IEEE Trans. Comput., vol. C-32, pp.831 -44, 1983.

N. K. Jha and S.-J. Wang, "Design and synthesis of self-checking VLSI
circuits”, IEEE Trans. Comput.-Aided Des. Integr. Cicuits Syst., vol. 12, no.
6, pp.878-87, 1993.

Collection @ chosun®

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T. Angskun, G. Fagg, G. Bosilca, J. Pjesivac-Grbovic, and J. Dongarra.
"Self-healing network for scalable fault-tolerant runtime environments”,
Future Generation Computer Systems, vol. 26, no. 3, pp. 479-85, 2010.

A. Majumdar, S. Nayyar, and J. S. Sengar. "Fault Tolerant ALU System",
2012 International Conference on Computing Sciences (ICCS), pp. 255-60,
2012.

M. Fazeli, A. Namazi, S.G. Miremadi, and A. Haghdoost, "Operand
Width Aware Hardware Reuse: A low cost fault-tolerant approach to ALU
design in embedded processors”, Microelectronics Reliability, vol. 51, no.
12, pp.2374-87, 2011.

T. Koal, D. Scheit, M. Scholzel, H.T. Vierhaus, “On the Feasibility of
Built-in Self Repair for Logic Circuits,” IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems, pp. 316-
24, 2011.

C. Khedhiri, M. Karmani, B. Hamdi. "Concurrent Error Detection Adder
Based on Two Paths Output Computation”, 2011 Ninth IEEE International
Symposium on Parallel and Distributed Processing with Applications
Workshops (ISPAW), pp. 27-32, 2011.

S. Mitra and E. J. McCluskey. "Which concurrent error detection scheme to
choose?”, Proc. International Test Conference, pp. 985-94. IEEE, 2000.

D. P. Vasudevan , P. K. Lala and J. P. Parkerson "Self-checking carry-
select adder design based on two-rail encoding”, IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 54, no. 12, pp.2696 -2705, 2007.

H. Belgacem, K. Chiraz, and T. Rached. "Pass Transistor Based Self-
Checking Full Adder"”, International Journal of Computer Theory and

Engineering, vol. 3, no.5, 2011.

Collection @ chosun”®

[17]

[18]

[19]

[20]

[21]

[22]

RV Kshirsagar, RM Patrikar, “Design of a novel fault-tolerant voter circuit
for TMR implementation to improve reliability in digital circuits”,
Microelectronics Reliability, vol. 49, no. 12, pp.1573-77, 2009.

T. Koal, M. Ulbricht and H.T. Vierhaus, “Vitual TMR Scheme Combining
Fault Tolerance and Self Repair”, in 16th Euromicro Conference on Digital
System Design(DSD 2013), IEEE, pp. 235-42, 2013.

T. Ban and L. Naviner, "A simple fault-tolerant digital voter circuit in tmr
nanoarchitectures,” in 8th IEEE International Northeast Workshop on
Circuits and Systems Conference (NEWCAS 2010), pp. 269-72, 2010.

A.G. Ganek and T.A. Corbi, “The dawning of the autonomic computing
era”, IBM Systems Journal , vol. 42, no. 1, pp. 5-18, 2003.

T. Koal, D. Schiet, H. T. Vierhaus, “A Concept for Logic Self Repair”, 12th
Euromicro Conference on Digital System Design, Architectures, Methods
and Tools, pp. 621-624, Aug. 2009.

V. Ocheretnij, D. Marienfeld, E.S. Sogomonyan, M. Gossel, "Self-checking
code-disjoint carry-select adder with low area overhead by use of addl-
circuits”, 10th IEEE International On-Line Testing Symposium, pp. 31-36,
July 2004.

Collection @ chosun®

http://www.sciencedirect.com/science/article/pii/S0026271409003114

ACKNOWLEDGEMENT

I would first of all thank Allah Almighty Who enabled me to carry out this
project with full devotion and consistency. Surely, it is only because of His

blessings that | could find my way up to the completion of this task.

Next, I would like to express my sincerest gratitude to my supervisor Prof.
Jeong-A Lee for her excellent guidance, caring and patience and providing me
with comfortable research environment. Her sincere encouragement to pursue
my master’s degree at CS (Computer System) Lab and continuous support has
been a great assistance to achieve a milestone in my career. She is the

friendliest, easy going and encouraging advisor that anyone could wish for.

| would also like to show appreciation to all members of the thesis examining
committee Prof. Seokjoo Shin and Prof. Kwang-Suk Choi for their valuable
advices and insight throughout my research. In addition, I would like to thank
Department of Computer Engineering, Chosun University, to provide me the

atmosphere to augment my knowledge.

| also pay esteem regards to MKE (Ministry of Knowledge Economy) Korea
under the Global IT Talents Program supervised by NIPA (National IT Industry
Promotion Agency), for its financial support during the period of my Master

studies.

Finally 1 would like to thanks to my whole family for their kind love and
prayers which always play a vital role in my success. | dedicate this thesis to
my beloved parents Firdous Parveen and Ghulam Akbar Khan and also, to my

elder sister Fouzia Akbar, as a reward to their efforts for building my career.

Collection @ chosun*

	I. INTRODUCTION
	II. RELATED WORKS AND LIMITATIONS
	III. SELF-CHECKING ADDER DESIGN
	IV. SELF-REPAIRING ADDER DESIGN
	V. AREA AND RELIABILITY COMPARISON
	VI. CONCLUSION
	BIBLIOGRAPHY
	ACKNOWLEDGEMENT

<startpage>14
I. INTRODUCTION 1
II. RELATED WORKS AND LIMITATIONS 6
III. SELF-CHECKING ADDER DESIGN 10
IV. SELF-REPAIRING ADDER DESIGN 25
V. AREA AND RELIABILITY COMPARISON 29
VI. CONCLUSION 37
BIBLIOGRAPHY 38
ACKNOWLEDGEMENT 41
</body>

