

2014년 2월

박사학위 논문

발파공 사이의 지연시차와 기폭위치가 지반진동에 미치는 영향

조선대학교 대학원

에너지자원공학과

류 복 현

발파공 사이의 지연시차와 기폭위치가 지반진동에 미치는 영향

Influence of delay time and priming location on the blast-induced ground vibration

2014년 2월 25일

조선대학교 대학원

에너지자원공학과

류 복 현

발파공 사이의 지연시차와 기폭위치가 지반진동에 미치는 영향

지도교수 강 추 원

이 논문을 공학박사학위신청 논문으로 제출함

2013년 10월

조선대학교 대학원

에너지자원공학과

류 복 현

류복현의 박사학위논문을 인준함

2013년 12월

조선대학교 대학원

< 목 차 >

List of Tables	····· vi
List of Figures	x
Abstract	XV
1. 서론	1
2. 이론적 배경	6
2.1 진동의 기초 이론	6
2.1.1 진동의 기본용어	6
2.1.2 진동의 물리적인 크기	10
2.1.3 지반진동의 특징	12
2.1.4 진동량의 표현	12
2.2 발파에 의한 암석파쇄이론	
2.2.1 Crater ······	14
2.2.2 기체 팽창	14
2.2.3 반사파	15
2.2.4 충격파와 가스압	15
2.3 파동의 전파 이론	
2.3.1 파동의 중첩과 간섭	
2.4 지반진동의 발생과 전파	
2.4.1 지반진동의 발생 특성	19
2.4.2 지반진동의 전파 특성	

2.5 Langefors 시차이론
2.6 지반진동의 예측방법
2.6.1 환산거리의 유도
2.6.2 95% 신뢰식의 결정
2.7 기폭방법
2.7.1 정기폭
2.7.2 역기폭
2.7.3 중간기폭
3. 현상실험
3.1 실험지역의 지형 및 지질
3.2 실내물성실험
3.2.1 실내물성실험의 종류
3.2.2 실내물성실험에 의한 결과분석
3.3 현장실험개요
3.4 현장실험 방법 및 결과
3.4.1 실험 방법
3.4.2 현장실험의 계측42
3.4.3 현장실험 계측 결과46
4. 분석
4.1 지연시차가 Oms이고 정기폭(Case No. 1)의
회귀분석 및 예측
4.1.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측50
4.1.2 PPV와 PVS의 회귀분석 및 예측
— ii —

4.2 지연시차가 0ms이고 중간기폭(Case No. 2)의

4.2.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측55 4.3 지연시차가 0ms이고 역기폭(Case No. 3)의 회귀분석 및 예측 ……………………………………………………………60 4.3.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측 ………60 4.3.2 PPV와 PVS의 회귀분석 및 예측 …………………………63 4.4 지연시차가 20ms이고 정기폭(Case No. 4)의 4.4.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측65 4.4.2 PPV와 PVS의 회귀분석 및 예측68 4.5 지연시차가 20ms이고 중간기폭(Case No. 6)의 4.5.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측70 4.6 지연시차가 20ms이고 역기폭(Case No. 6)의 4.6.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측75 4.7 지연시차가 25ms이고 정기폭(Case No. 7)의 회귀분석 및 예측 ………………………………………………………………80

4.7.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측 ………80 4.7.2 PPV와 PVS의 회귀분석 및 예측 ………83

4.8 지연시차가 25ms이고 중간기폭(Case No. 8)의

회귀분석 및 예측 ………85 4.8.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측 ………85 4.8.2 PPV와 PVS의 회귀분석 및 예측 ………88 4.9 지연시차가 25ms이고 역기폭(Case No. 9)의

5. 지연시차와 기폭위치에 따른 지반진동 예측

5.1 성분별(T, V, L) 입자속도에 의한 지반진동 예측 …… 95 5.1.1 Case No. 1(지연시차 0ms, 정기폭) …… 95 5.1.2 Case No. 2(지연시차 0ms, 중간기폭) …… 100 5.1.3 Case No. 3(지연시차 0ms, 역기폭) …… 105 5.1.4 Case No. 4(지연시차 20ms, 정기폭) …… 110 5.1.5 Case No. 5(지연시차 20ms, 중간기폭) …… 115 5.1.6 Case No. 5(지연시차 20ms, 역기폭) …… 120 5.1.7 Case No. 6(지연시차 25ms, 정기폭) …… 125 5.1.8 Case No. 8(지연시차 25ms, 중간기폭) …… 125 5.1.8 Case No. 8(지연시차 25ms, 중간기폭) …… 130 5.1.9 Case No. 9(지연시차 25ms, 역기폭) …… 135 5.1.10 지연시차, 기폭위치에 따른 성분별 지반진동 예측 비교 …… 140 5.2 최대입자속도(PPV)와 최대벡터합(PVS)에 의한

5.2.2 최대벡터합(PVS)에 의한 지반진동 예측16'
5.3 표준발파공법을 통한 발파방법 적용에 대한 고찰173
5.4 파쇄입도 분석을 통한 발파방법 적용에 대한 고찰18(
6. 결론
참 고 문 헌
Appendix ······191

< List of Tables >

Table 2.1 Vibration unit12
Table 2.2 The shock wave value of total energy16
Table 2.3 Comparison of ground vibration and earthquake22
Table 2.4 Parameters which influence ground motion23
Table 2.5 Variable considered in a dimensional analysis of explosion
phenomena ······29
Table 3.1 Results of rock property tests
Table 3.2 Experimental conditions 39
Table 3.3 Instrument specifications
Table 4.1 Case conditions49
Table 4.2 Prediction equation of ground vibration for component
velocity(Case No. 1)51
Table 4.3 Prediction equation of ground vibration for peak particle
velocity(PPV) and peak vector sum(PVS)(Case No. 1)53
Table 4.4 Prediction equation of ground vibration for component
velocity(Case No. 2)
Table 4.5 Prediction equation of ground vibration for peak particle
Table 46 Designation equation of mound withoution for component
velocity(Case No. 3)
Table 4.7 Prediction equation of ground vibration for neak particle
velocity(PPV) and peak vector sum(PVS)(Case No. 3) 63
Table 4.8 Prediction equation of ground vibration for component
velocity(Case No. 4) ···································

Table 4.9 Prediction equation of ground vibration for peak particle velocity(PPV) and peak vector sum(PVS)(Case No. 4) 68

Table 4.10 Prediction equation of ground vibration for componentvelocity(Case No. 5)71

Table 4.11 Prediction equation of ground vibration for peak particle velocity(PPV) and peak vector sum(PVS)(Case No. 5) 73

Table 4.12 Prediction equation of ground vibration for componentvelocity(Case No. 6)76

Table 4.13 Prediction equation of ground vibration for peak particle velocity(PPV) and peak vector sum(PVS)(Case No. 6) 78

Table 4.14 Prediction equation of ground vibration for componentvelocity(Case No. 7)81

Table 4.15 Prediction equation of ground vibration for peak particle velocity(PPV) and peak vector sum(PVS)(Case No. 7) 83

 Table 4.16 Prediction equation of ground vibration for component

 velocity(Case No. 8)

 86

Table 4.17 Prediction equation of ground vibration for peak particle velocity(PPV) and peak vector sum(PVS)(Case No. 8) 88

 Table 4.18 Prediction equation of ground vibration for component

 velocity(Case No. 9)

 91

Table 4.19 Prediction equation of ground vibration for peak particle velocity(PPV) and peak vector sum(PVS)(Case No. 9) 93

Table 5.4 Maximum ratio of increase on rate of velocity
components for Case No. 2103
Table 5.5 The influence of charge per delay on the predicted
ground vibration velocity for Case No. 3107
Table 5.6 Maximum ratio of increase on rate of velocity
components for Case No. 3108
Table 5.7 The influence of charge per delay on the predicted
ground vibration velocity for Case No. 4
Table 5.8 Maximum ratio of increase on rate of velocity
components for Case No. 4113
Table 5.9 The influence of charge per delay on the predicted
ground vibration velocity for Case No. 5117
Table 5.10 Maximum ratio of increase on rate of velocity
components for Case No. 5118
Table 5.11 The influence of charge per delay on the predicted
ground vibration velocity for Case No. 6
Table 5.12 Maximum ratio of increase on rate of velocity
components for Case No. 6
Table 5.13 The influence of charge per delay on the predicted
ground vibration velocity for Case No. 7
Table 5.14 Maximum ratio of increase on rate of velocity
components for Case No. 7128
Table 5.15 The influence of charge per delay on the predicted
ground vibration velocity for Case No. 8
Table 5.16 Maximum ratio of increase on rate of velocity
components for Case No. 8
Table 5.17 The influence of charge per delay on the predicted
ground vibration velocity for Case No. 9137

Table 5.18 Maximum ratio of increase on rate of velocity
components for Case No. 9138
Table 5.19 Advantage components by distance according to
Case No.(charge per delay=0.5kg)142
Table 5.20 Advantage components by distance according to
Case No.(charge per delay=1.6kg)145
Table 5.21 Advantage components by distance according to
Case No.(charge per delay=5kg)148
Table 5.22 Advantage components by distance according to
Case No.(charge per delay=15kg)151
Table 5.23 The influence of charge per delay on the predicted
ground vibration velocity for PPV163
Table 5.24 Maximum ratio of increase on rate of velocity
components for PPV164
Table 5.25 The influence of charge per delay on the predicted
ground vibration velocity for PVS
Table 5.26 Maximum ratio of increase on rate of velocity
components for PVS
Table 5.27 The influence of charge per delay on the predicted
ground vibration velocity for all Case No. $(T_{\rm WDO} = 0.000)$
(Type in and W) 170
ground vibration velocity for all Case No.
(Type V and V) ~ 107
Table 5.29 Result of fragmentation analysis (delay time=20ms) 181
Table 5.30 Result of fragmentation analysis (delay time=25ms) 182
Taste close frequit of fragmentation analysis (actay time doms) 100

< List of Figures >

Figure	2.1	Harmonic oscillation9
Figure	2.2	The size of sine wave vibration9
Figure	2.3	Body wave and Rayleigh wave17
Figure	2.4	Vertical displacement component of P wave, S wave and
		Rayleigh wave in a short duration period17
Figure	2.5	Constructive interference
Figure	2.6	Destructive interference 19
Figure	2.7	Schematic of the fracturing and deformation around an
		explosion in rock20
Figure	2.8	Measuring direction of ground vibration21
Figure	2.9	Ground vibration from five different charge and with
		delays 0~100ms26
Figure	2.10) Position of primer
Figure	3.1	Site map of study area33
Figure	3.2	Geological map of study area34
Figure	3.3	Geology genealogy of study area35
Figure	3.4	Blasting pattern41
Figure	3.5	Foreground of study area44
Figure	3.6	Measurements of study area45
Figure	3.7	Ground vibration time history of measurement result $\cdots 47$
Figure	4.1	Relationship between T, V, L component velocity and scaled distance(Case No. 1)52
Figure	4.2	Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 1)54

Figure 4.3 Relationship between T, V, L component velocity and scaled distance (Case No. 2) -----57 Figure 4.4 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 2)59 Figure 4.5 Relationship between T, V, L component velocity and scaled distance (Case No. 3) -----62 Figure 4.6 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 3)64 Figure 4.7 Relationship between T, V, L component velocity and scaled distance (Case No. 4) -----67 Figure 4.8 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 4)69 Figure 4.9 Relationship between T, V, L component velocity and scaled distance (Case No. 5) -----72 Figure 4.10 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 5)74 Figure 4.11 Relationship between T, V, L component velocity and scaled distance (Case No. 6) -----77 Figure 4.12 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 6)79 Figure 4.13 Relationship between T, V, L component velocity and scaled distance (Case No. 7) ------82 Figure 4.14 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 7)84 Figure 4.15 Relationship between T, V, L component velocity and scaled distance (Case No. 8) -----87 Figure 4.16 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 8)89

- Figure 4.17 Relationship between T, V, L component velocity and scaled distance (Case No. 9) ------92
- Figure 4.18 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 9)94

- Figure 5.3 Relationship between predicted ground vibration velocity (component) and distance for Case No. 2104
- Figure 5.4 Relationship between ratio of increase and distance for Case No. 2 (component velocity)104
- Figure 5.5 Relationship between predicted ground vibration velocity (component) and distance for Case No. 3109
- Figure 5.6 Relationship between ratio of increase and distance for Case No. 3(component velocity)109
- Figure 5.8 Relationship between ratio of increase and distance for Case No. 4 (component velocity) -------114

- Figure 5.11 Relationship between predicted ground vibration velocity (component) and distance for Case No. 6 124
- Figure 5.12 Relationship between ratio of increase and distance for Case No. 6 (component velocity)124

Figure 5.13 Relationship between predicted ground vibration
velocity(component) and distance for Case No. 7129
Figure 5.14 Relationship between ratio of increase and distance for
Case No. 7 (component velocity)129
Figure 5.15 Relationship between predicted ground vibration
velocity(component) and distance for Case No. 8134
Figure 5.16 Relationship between ratio of increase and distance for
Case No. 8 (component velocity)134
Figure 5.17 Relationship between predicted ground vibration
velocity(component) and distance for Case No. 9139
Figure 5.18 Relationship between ratio of increase and distance for
Case No. 9 (component velocity)139
Figure 5.19 Comparison to ratio of increase by Case No.
(charge per delay=0.5kg)143
Figure 5.20 Comparison to ratio of increase by Case No.
(charge per delay=1.6kg)146
Figure 5.21 Comparison to ratio of increase by Case No.
(charge per delay=5kg)149
Figure 5.22 Comparison to ratio of increase by Case No.
(charge per delay=15kg)152
Figure 5.23 Overall comparison of Case No. based on the scaled
distance
Figure 5.24 Comparison to predicted ground vibration velocity by
Case No.(PPV)157
Figure 5.25 Comparison to predicted ground vibration velocity by
Case No.(PVS)159
Figure 5.26 Relationship between predicted ground vibration
velocity(PPV) and distance for different delay time and

priming location165
Figure 5.27 Relationship between ratio of increase and distance for
different delay time and priming location(PPV)166
Figure 5.28 Relationship between predicted ground vibration
velocity(PVS) and distance for different delay time and
priming location
Figure 5.29 Relationship between ratio of increase and distance for
different delay time and priming location(PVS)172
Figure 5.30 Relationship between charge per delay and monitoring
distance where the two levels of peak particle velocity
from Case No. 7 and Case No. 9 are reversed
(all Case No.)178
Figure 5.31 Relationship between charge per delay and monitoring
distance where the two levels of peak particle velocity
from Case No. 5 and Case No. 6 are reversed
(only 20ms delay time)179
Figure 5.32 Digital image processing of fragmentation
(delay time=20ms)181
Figure 5.33 Digital image processing of fragmentation
(delay time=25ms)182

ABSTRACT

Influence of delay time and priming location on the blast-induced ground vibration

Ryu, Bok Hyun

Advisor : Prof. Kang, Choo Won, Ph.D. Department. of Energy & Resource Engineering, Graduate School of Chosun University

Due to population growth and industrial upgrading of ports, social infrastructure, such as dams and highways, railways, subways and other transportation networks are expanded. This continued to increase in the construction site for the excavation of rock, depending on the strength of explosive has been widely used as essential.

In the past, rock blasting work for excavation work on the ground was limited. In recent years, a large building from the mountains wallpaper Dig site and construction of apartments for redevelopment for housing and crowded around the existing structures within the city center is underway. Furthermore, the underground reserve base, development of underground space has been expanded to in deep underground is increasing the demand.

This specialization of blasting construction, enlargement, depending on the national scene with a large blast on the rise, and the use of explosives is increasing each year.

Today, our society through the process of industrialization continued growth comes during a highly neglected environmental problems, especially in the field of construction noise and vibration issues are rapidly emerging in recent years. This quantitative growth to qualitative growth in the pursuit of change is the situation. In addition, the government, like in reality, considering the environmental impact of the regulatory environment, as a means of dispute conciliation committee established by the permanent organization is operating the sleep. So blasting operations are subject to the more stringent regulations.

Blasting engineers compared to conventional blasting methods are looking for effective vibration control methods. And when the blasting was designed they considered a top priority to safety in efficiency, reliability and safety of design variables.

Determinings the propagation characteristics of ground vibration factor are location and blasting conditions. Location means that the blasting site and the geometric shape of the structure, the target of rocks and geological features include the mechanical properties. Blasting conditions means that the type of using explosives, weight per delay, composition charging, blasting method, tamping condition, number of free face, distance.

This study was carried out to identify the characteristics of the rock in laboratory experiments. For the experiment, the samples were collected in the study area. In order to identify the characteristics of the propagation depending on delay time(0, 20, 25ms) and priming location(top priming, middle priming, bottom priming), test blasts were carried out a total of 37 times using different spacing, burden, drilling length, charge per delay and was derived the formula to predict blast vibration.

This study investigated the characteristics of vibration by analysis of the nomogram and prediction of ground vibration about component(transverse, vertical, longitudinal) particle velocity, peak particle velocity(PPV), peak vector sum(PVS) from delay time and priming location by the formula to predict ground vibration. And it analyzed the trends of vibration damping by standards charge 0.5, 1.6, 5, 15kg. Standards charge is "Blasting design and construction guidelines to road construction" by the Ministry of Land, Transport and Maritime Affairs. Depending on the charge in favor of vibration control method is proposed. Thus, when the design was to be used as a variable.

The result of this study can be summerized as follows

(1) Vibration velocity were predicted by an average ground vibration prediction

equation of particle(T, V, L) at 5~200m distance.

- Case No. 1 : The case of longitudinal component of vibration level from charge within 0.6kg were predicted higher. More than 0.6kg, vibration level of vertical component in the near distance was predicted higher and vibration level of longitudinal component in the long distance were predicted higher. The case of transverse component were predicted the lowest vibration level.
- Case No. 2 : The case of longitudinal component were predicted the highest vibration level. And the case of transverse component and vertical component depending on charge within 1.8kg reversal of the two components were tend to be different, but vibration level of vertical component in the near distance were predicted higher and vibration level of transverse component in the long distance was predicted higher. More than 1.8kg, vertical component of the vibration level is higher than the transverse component of the vibration levels are predicted.
- Case No. 3 : The case of longitudinal component and vertical component depending on charge within 4.3kg reversal of the two components were tend to be different, but vibration level of vertical component in the near distance were predicted higher and vibration level of longitudinal component in the long distance was predicted higher. More than 4.3kg, longitudinal component of the vibration level is higher than the vertical component of the vibration levels are predicted. The case of transverse component were predicted the lowest vibration level.
- Case No. 4 : The case of transverse component and vertical component reversal of the two components were tend to be different, but vibration level of vertical component in the near distance were predicted higher and vibration level of transverse component in the long distance was predicted higher. The case of longitudinal component in the long distance were predicted the lowest vibration level.
- Case No. 5 : The case of longitudinal component and transverse component depending on charge within 19kg reversal of the two components were tend to be different, but vibration level of longitudinal component in the near distance

were predicted higher and vibration level of transverse component in the long distance was predicted higher. More than 19kg, longitudinal component of the vibration level is higher than the transverse component of the vibration levels are predicted. The vibration level of vertical component of the vibration level is higher than the transverse component of the vibration levels in the near distance and the vibration level of vertical component of the vibration level is lower than the transverse component of the vibration level is lower than the transverse component of the vibration levels in the long distance.

- Case No. 6 : The case of longitudinal component and transverse component depending on charge within 20.7kg reversal of the two components were tend to be different, but vibration level of longitudinal component in the near distance were predicted higher and vibration level of transverse component in the long distance was predicted higher. More than 20.7kg, longitudinal component of the vibration level is higher than the transverse component of the vibration levels are predicted. The vibration level of vertical component of the vibration level is higher than the transverse component of the vibration level is higher than the transverse component of the vibration level is higher than the transverse component of the vibration level is higher than the transverse component of the vibration level is lower than the transverse component of the vibration levels in the long distance.
- Case No. 7 : The case of transverse component and vertical component reversal of the two components were tend to be different, but vibration level of vertical component in the near distance were predicted higher and vibration level of transverse component in the long distance was predicted higher. The vibration level of longitudinal component of the vibration level is higher than the transverse component of the vibration levels in the near distance and the vibration level of longitudinal component of the vibration level is lower than the transverse component of the vibration levels in the near distance and the vibration level of longitudinal component of the vibration level is lower than the transverse component of the vibration levels in the long distance.
- Case No. 8 : The case of transverse components, vertical component and longitudinal component reversal of the three components were tend to be different. In near distance, the case of vertical component were predicted the highest vibration level and the case of transverse component were predicted

the lowest vibration level. In long distance, the case of transverse component were predicted the highest vibration level and the case of vertical component were predicted the lowest vibration level.

- Case No. 9 : The case of transverse components, vertical component and longitudinal component reversal of the three components were tend to be different, but vibration level of longitudinal component in the near distance were predicted higher and vibration level of transverse component in the long distance was predicted higher. Charge increases, the case of vertical components compared to the other components were expected to increase the damping

(2) Vibration velocity were predicted from an average ground vibration prediction equation of peak particle velocity(PPV) depending on the delay time and priming location at $5\sim200$ m distance. As a result, in less than 2.6kg, Case No. 7(delay time=25ms, top priming) in the near distance were predicted the lowest vibration level and Case No. 9(delay time=25ms, bottom priming) in the long distance were predicted the lowest vibration level. More than 3.0kg, Case No. 7(delay time=25ms, top priming) were predicted the lowest vibration level.

(3) Vibration velocity were predicted from an average ground vibration prediction equation of peak vector sum(PVS) depending on the delay time and priming location at $5\sim200$ m distance. As a result, in less than 2.6kg, Case No. 7(delay time=25ms, top priming) in the near distance were predicted the lowest vibration level and Case No. 9(delay time=25ms, bottom priming) in the long distance were predicted the lowest vibration level. More than 2.6kg, Case No. 7(delay time=25ms, top priming) were predicted the lowest vibration level.

(4) With a low level of vibration blasting method Case No. 7 and 9 is used vibration levels are reversed depending on the charge, the cross point of one expression was calculated as follows; $Y = 10^{(2.05631+0.50174logX)}$. Where, X is a charge per delay(kg/delay), Y is a cross point(m) of vibration levels are reversed. The former cross point Case No. 7, cross point after the Case No. 9 the ground vibration level is low in terms of favorable ground vibration control method.

1. 서론

인구증가와 산업의 고도화로 인하여 항만, 댐 등의 사회간접시설과 고속도로, 철도, 지 하철 등의 교통망 확충되고 있다. 이로 인해 지속적으로 건설현장의 증가에 따라 암반의 굴착작업을 위한 화약의 힘이 필수적으로 널리 이용되고 있다.

과거에는 암반굴착작업을 위한 발파작업이 지상에서 국한되었으나 근래에는 산간벽지 에서부터 대형빌딩 터파기 현장이나 도심 재개발을 위한 아파트 건설공사를 위하여 기존 구조물 주변과 주거시설이 밀집한 도심 내에서도 진행되고 있다. 게다가 지하비축기지, 지하공간개발 등으로 지하심부에 까지 확대되었으며 그 수요가 증가하고 있는 실정이다. 최근 들어 발파공사의 전문화, 대형화에 따라 대규모 발파 현장이 전국적으로 증가 추 세에 있으며, 그에 따른 화약의 사용 또한 매년 증가하고 있다.

오늘날 우리사회는 산업화 과정을 통하여 고도의 성장을 지속해오는 동안에 등한시 되 었던 환경문제, 특히 건설 분야에서는 소음·진동 문제가 최근에는 급속히 부상되고 있다. 이는 양적인 성장에서 질적인 성장으로 변화를 추구하고 있는 상황이다. 또한, 정부차원 에서도 이와 같은 현실을 고려하여 환경피해의 규제를 위한 수단으로 환경 분쟁 조정위 원회를 상설기구로 발족시켜 운영하고 있는 실정이다. 그래서 발파 작업은 더욱 엄격한 규제를 받게 되었다.

포괄적인 의미의 건설 소음·진동이라 하면 항타기, 브레이커 등의 대형장비에 의한 것 과 암반굴착을 위한 발파 소음·진동을 포함하고 있다. 지금까지는 일반적으로 발파에 의 한 소음·진동은 별개로 취급되어 왔다. 그러나 위에서 언급한 바와 같이 최근 들어 환경 문제가 극심한 사회문제로 대두되기 시작하자, 발파작업에 의한 소음·진동의 경우도 일 반 소음·진동 규제법에 의하여 준용되고 있는 경우가 많다.

이러한 상황에 의해 발파에 의한 작업은 더욱 규제를 받게 되었고, 발파기술자들은 종 래의 발파방법보다 효과적인 진동제어 방법을 찾고 있으며, 발파설계를 실시할 때 효율 성, 안정성 및 안전성 등의 설계변수들 중에서도 안전성을 가장 우선적인 기준으로 고려 하고 있다.

발파로 인해 발생하는 발파재해들 중 지반진동의 저감을 위한 방법으로 동시에 기폭되 는 화약량인 지발당 장약량을 줄임으로써 발파지점에서 발생하는 지반진동을 저감시키 는 방법과 라인드릴링이나 프리스플리팅 등의 조절발파법을 이용하여 지반진동을 진동 전파 경로상에서 차단하는 방법이 널리 적용되고 있다. 그러나 발파작업의 시공성과 경 제성을 고려할 때 지발당 장약량을 줄임으로써 지반진동을 제어하는 데는 한계가 있고, 진동 전파 경로 상에서 지반진동을 차단하는 방법은 정량적인 진동저감 효과를 제시할 수 있을 만큼의 충분한 연구결과가 제시되어있지 못한 설정이다.

발파지점에서 발생하는 지반진동의 크기에는 지발당 장약량 이외에도 암반상태, 사용 화약, 천공패턴, 발파공 직경과 폭약 직경과의 비, 기폭방법, 전색상태 등 많은 변수들이 영향을 미치게 된다.

지반진동의 전파 특성을 결정짓는 인자는 크게 입지조건과 발파조건으로 나눌 수 있다. 입지조건은 발파부지와 인근 구조물의 기하학적 형태, 대상암반의 지질학적 특징 및 역학적 성질 등을 예로 들 수 있으며, 발파조건은 사용하는 폭약의 종류, 지발당 장약량, 기폭방법, 전색상태, 자유면의 수, 발파유형, 폭원과 측점간의 거리 등을 가리킨다.

지반진동의 전과특성에 관한 연구로 안명석 등(1999)은 대구 규장암 지역에서 지반 진동을 측정하여 K 및 n의 변화 추이에 대해 연구한 결과 K 및 n의 차이는 풍화 및 절리가 비교적 많고 강도가 비교적 약한 상부 풍화암 내지 연암층에서 풍화 및 절리가 비교적 적으며 강도가 강한 하부 암반으로 발파가 진행되면서 진동전파에 따라 나타나 는 감쇠현상 때문이라 언급하였고, 안명석(2000)은 영남지역 일대의 주요암반을 대상으 로 충격성 지반진동, 소음, 비산먼지 측정 자료를 토대로 굴진 깊이에 따른 암질의 변 화가 지반진동상수 및 감쇠지수에 미치는 변화를 연구하였다. 그리고 양형식 등(2010) 은 제주도에 분포하는 스코리아층에서의 암반 발파 특성연구를 실시한 결과 스코리아 층은 발파로 인해 생긴 진동을 멀리 전파하고 감쇠가 줄어드는 특성이 나타났고, 최형 빈 등(2010)은 소량의 폭약으로 인위적인 진동에너지를 발생시키는 발파시험에 전자뇌 관을 처음 적용하였다. 시험장소인 도심지 특정지역에서 전자뇌관을 이용한 시추공 발 파시험 결과 얻어진 진동추정식으로 민원이 발생하는 특정장소에서 진동속도 예측이 가능토록 하였으며, 또한 전기뇌관과 전자뇌관 지연시차의 상관관계, 국내 문헌 연구결 과 얻어진 시추공 발파 PPV의 상관관계를 비교·분석하여 시추공 발파의 유용성 및 중요성에 대해 연구하였다.

주파수로 인한 지반진동의 특성을 고려한 연구로 강추원 등(2005)은 협동장약과 주파 수의 관계를 규명하기 위하여 측정된 자료를 60Hz미만의 경우와 60Hz이상의 경우로 분 리하여 분석하였으며, 고주파 성분의 특성을 고려하기 위하여 70Hz이상의 측정 자료에 대해서도 분리하여 분석하였다. 그 결과 근거리의 경우가 원거리의 경우보다 고주파수가 우세하기 때문에 파형의 분리가 잘 이루어 졌다. 결정계수는 60Hz 미만과 70Hz 이상으 로 분리하여 분석한 결과 상대적으로 높은 주파수에 따른 협동장약의 특성을 잘 설명해 주었다. 60Hz~70Hz 대역으로 측정된 진동속도들은 증폭과 감쇄의 차가 커서 측정 자료 를 분산시킨 결과로 판단된다. 주주파수를 고려한 협동장약 특성에 관한 연구에 의하면 지반진동은 거리와 주파수 정도에 따라 파의 간섭정도가 상이하며 이 간섭의 정도는 지 반진동의 크기에 영향을 준다고 하였고, 강추원 등(2005)은 40ms 간격으로 분리되어 기 폭되는 MS 지발 발파의 협동장약 특성을 고찰하고 MS지발 발파에서 지반진동의 협력 을 최소화 할 수 있는 주파수에 따른 시차 설계 방법을 제시하고 MS 지발발파의 협동장 약 특성을 연구하였다. 주파수에 따른 회귀분석결과에 의하면 모든 주파수가 진동을 증 폭시키지는 않으며 또 모든 고주파가 진동을 감쇄시키지는 않는 것으로 보여 지발 시차 가 진동의 증감에 대단히 큰 부분을 차지하는 것으로 결론지었다.

강추원 등(2006)은 중첩 모델링을 통한 지반진동의 특성에 관한 연구를 위해 측정된 진동파형을 토대로 다른 발파공들로부터 간섭을 받지 않은 단일공의 진동파형을 분리 하여 이를 FFT 주파수 분석을 통하여 우세 주파수를 분석하였다. 진동의 지속시간과 발파공수가 PPV에 미치는 영향을 검토하기 위해 분리된 진동파형을 2~15공으로 발 파공수를 조절하면서 1ms의 간격으로 지연시차에 변화를 주며 지반진동에 중첩 모델 링을 실시한 결과 진동의 지속시간이 길어질수록 다른 발파공들로부터 간섭받지 않기 위한 지연시차 또한 길어졌고, 동일 지연시차 내에서의 발파공수에 관한 영향은 크게 나타나지 않는다고 하였고, 정두성 등(2010)은 지연시차에 따른 주파수 특성을 예측하 기 위하여 단일공 파형 중첩모델링을 하여 FFT 분석을 통한예측모델링과 현장에서 계측된 실제 데이터의 FFT분석의 결과에 따른 주 주파수를 비교 검토한 결과, 지연시 차 부여에 따른 발파에서는 예측모델링과 대부분 근소한 차이를 보이거나 같은 값을 보였다. 많은 차이를 보인 데이터는 동일뇌관이라 하더라도 뇌관의 기폭오차, 암반내 불연속면과 지질적 구조의 복잡성으로 인한 진동전파의 차이, 상쇄·보강 간섭 등의 교 란으로 인한 차이라 판단된다고 하였다.

본 연구와 유사한 연구인 지반진동의 전파 특성을 결정짓는 인자 중 기폭방법과 지연 시차에 관한 연구로 문창일(2000)은 장공발파에서 정기폭, 역기폭으로의 기폭위치를 설 정하여 시험한 결과 발파 효율면에서는 역기폭을 이용하는 것이 좋으나, 지반진동으로 전달되는 진동속도를 제어하기위한 목적일 때는 정기폭의 이용이 더 효율적이라는 결과 를 얻음으로써 계단 발파에서 기폭약(primer)의 위치가 지반진동에 영향을 미침을 보였 다. 그러나 이 연구에서는 암반의 특성이나 지질학적 고려가 이루어지지 않았고, 기폭위 치는 정기폭과 역기폭만을 연구하여 시험발파가 이루어진 현장에서의 결과로만 국한 되

- 3 -

는 것으로 보이며, 일반적인 발파 설계 시 이용되는 데에는 한계가 있을 것으로 보인다 고 하였고, 손석범 등(2011)은 기폭위치에 따라 지반진동의 주파수 특성을 파악하기 위해 단일공 시험발파를 실시하여 FFT를 통한 주주파수를 결정하고 기폭위치에 따라 어떤 변화가 있는지 분석하였는데, 기폭위치에 따른 주파수 대역과 경향을 분석 해 본 결과 정기폭은 낮은 주파수 대역과 거리가 증가함에 따라 주파수 값이 감소, 역기폭은 높은 주파수 대역과 거리가 증가함에 따라 주파수 값이 증가하였다. 중간기폭은 대체로 골고 루 분포됨을 알 수 있다고 하였다. 그리고 김재웅 등(2012)은 기폭위치에 따라 지반진동 의 전파 특성을 파악하기 위해 공간격, 저항선, 천공장, 장약량 등을 달리하여 지반진동 예측식을 도출하였다. 도출된 지반진동 예측식으로 기폭위치에 따른 최대입자속도의 노 모그램 분석을 통한 진동특성을 규명하였고, 기폭위치별 진동 감쇠경향을 비교분석하였 다.

두준기(2000)는 전기식 지발뇌관을 이용하여 지발뇌관 자체의 초시와 다단발파기에 의해 조정된 초시를 이용하여 발파패턴을 설계할 때에는 선 발파공과 후 발파공의 초 시가 뒤바뀌거나 8ms 이내의 중복시차가 나타나지 않도록 뇌관배열에 세심한 주의를 기울이지 않으면 발파설계에서 규정한 허용진동 값보다 큰 지반진동이 발생될 수 있다 고 하였고, 송영석 등(2004)은 국내 석회석 광산에 적용되는 지발시차는 20ms나 25ms 로 한정되어 있으며 기폭시차의 오차에 따른 진동 예측의 불확실성 및 파쇄입도의 불 군일 등의 한계점에 당면했다고 한다. 따라서 기폭 시스템보다는 발과 규모를 줄이고 있는 실정이다. 이는 환경적인 측면에 맞추기 위하여 기술적인 측면을 고려하지 못하 는 방법으로 발파가 이루어지고 있기 때문에, 이를 개선하고 보다 더 효과적인 발파를 시행하기 위하여 정확한 초시의 전자뇌관을 적용하여 현장에 경제성을 향상시키고, 환 경적인 측면에서도 만족할 수 있는 최적의 기폭시차에 대해 연구하였다. 그리고 윤지 선 등(2008)은 진동제어가 절실히 필요한 상황에서 진동제어에 효과가 있는 전자뇌관 을 이용하여 불쾌감을 주던 발파음을 쾌적한 발파음으로 전환하고자 연주식 발파공법 개발에 대한 연구가 진행되어왔으며, 리듬감 구현에 중점을 두고 실험을 실시하였다. 그 결과 실험 현장의 최적지연초시는 34ms를 나타내었고, 50ms 이상에서는 수렴하는 경향을 보인다고 하였다.

Zhenyu Wang 등(2012)은 진동데이터의 시간 이력곡선에서 정보를 추출하는데 효과 적인 시간-주파수 분해 방법인 WT(Wavelet Transform)와 HHT(Hibert Haung Transform)를 사용하였다. 이 방법을 사용하여 MS발파에서 진동 에너지 분석에 의해 지연시차 확인하는 비교연구를 수행하였다. 그 결과 진동데이터의 노이즈 제거 뿐만

- 4 -

아니라 MS 발파의 진동감쇠 메커니즘을 조사하는데 매우 유용하다고 하였다.

이와 같이 지금까지 이루어진 연구들을 살펴보면 지반진동의 복합적인 원인에 반하여 단편적인 연구로 진행되거나 적용범위가 연구가 이루어진 해당 현장만으로 국한적으로 나타나며 발파설계 인자로서 이용되는 데 한계를 보였다. 그로 인해 환경적인 측면을 맞 추기 위하여 발파 규모를 줄이는 등의 방법을 통해 발파설계를 실시하고 있다. 이에 발 파현장의 경제성을 향상시키고, 환경적인 측면에서도 만족할 수 있는 기술적인 측면의 발파방법 개발이 절실히 요구되고 있다.

이에 본 연구는 연구지역의 암반 특성을 파악하기 위해 암석샘플을 채취하여 실내암석 실험을 실시하였고, 발파공 사이의 지연시차(20ms, 25ms)와 기폭위치(정기폭, 중간기폭, 역기폭)에 따라 발파에 의한 진동의 전파 특성을 파악하기 위해서 공간격, 저항선, 천공 장 그리고 장약량 등을 달리하여 총 37회의 시험발파(1~3공)를 실시하여 지반진동 예측 식을 도출하였다. 그리고 도출된 평균(50%) 지반진동 예측식을 이용하여 발파공간 지연 시차와 기폭위치에 따른 성분별(transverse, vertical, longitudinal component) 입자속도, 최대입자속도(PPV) 및 최대백터합(PVS)의 노모그램 분석과 지반진동 예측을 통해 진동 특성을 규명하였고, 국토해양부의 "도로공사 노천발파 설계 시공 지침 및 요령"에 제시 된 표준발파공법의 공법별 경계 기준 장약량인 0.5, 1.6, 5, 15kg을 적용하여 지연시차와 기폭위치에 따른 진동 증가율을 비교분석하였다. 그리하여 장약량에 따라 진동제어에 유 리한 발파방법을 제안하여 발파설계의 인자로 사용할 수 있도록 하였다.

2. 이론적 배경

2.1 진동의 기초 이론

진동이란 구조물이나 지반 등이 동적인 외력의 영향을 받아 운동적 평형위치로부터 시 간의 경과와 함께 반복 위치가 변화하는 운동현상을 말한다. 구조물의 대부분은 탄성체 이기 때문에 어떤 작용에 의하여 크고 작은 진동을 받는 것은 말할 필요도 없다. 이러한 진동에 의하여 구조물은 부분적인 파손을 일으키거나, 유해한 소음을 발생하거나 하여, 흔들림에 의한 불쾌감을 초래하게 된다.

발파에 의한 지반진동은 암반 중에 밀폐된 상태로 놓인 폭약이 폭굉하여 발생되는 폭 약의 폭굉압은 기폭 후 수 µsec에서 최고치에 달하고 그 압력은 5~20만 기압으로 추정 되며, 이 값은 주위의 암반 강도보다 훨씬 높다.

이와 같은 초고압의 충격하중을 받은 암석은 그 충격점 가까이에 있어서는 유동적 성 격을 나타내고 이 유동파는 전파와 함께 감쇠하고 탄성파에 가까운 충격파로 이행한다. 파쇄영역을 통과해서 주위 암반에 3차원적으로 방사된 파동은 암반에 균열을 주면서 전파해가지만 거리에 따라 그 감쇠가 현저하며 암반에 대한 파괴작용조차 없는 탄성파로 된다. 여기까지의 영역을 소성영역이라고 하며, 그 후 탄성파가 전파해 가는 영역을 탄성 영역이라고 한다.

한편, 장약공 내의 폭약의 폭발로 인하여 발생한 총 에너지 중 대부분은 주위 암석을 파괴, 이동시키지만 이 에너지 중 0.5~20%는 탄성파로 변화되어 암반을 전파해 감으로 써 폭원으로부터 떨어진 지점에서 암석 또는 지표면에서 진폭과 주기는 갖는 진동으로 나타난다.

2.1.1 진동의 기본용어

진동에서 가장 단순한 것은 시간의 경과와 함께 동일한 형상이 반복되는 것이다. 그러 나 일반적으로 진동이 반복되는 간격은 항상 일정시간 간격은 아니고 동일형상이라도 모 두 같은 상태가 반복되는 것은 아니다. 이 일정한 시간간격에 동일한 형상이 반복되는 진동을 정상진동이라 하고 그렇지 않은 것을 비정상진동이라 한다. 일정한 회전수로 회 전하는 기계에 의한 진동은 정상진동이며 지진에 의한 진동은 비정상진동이다.

공해진동이라고 불리는 진동에는 정상진동의 것도 있지만 비정상진동인 것이 많다. 진 동현상을 나타내는 물리량을 진동량이라 하며 변위, 속도, 가속도가 사용된다. 진동하고 있는 점 A의 위치가 시간적으로 ±X의 사이에서 반복운동을 되풀이하는 경우를 고려해 보자. 어떤 시간 t에 있어서 점 A의 위치 X가 시간적으로 정현 변화한다고 가정하면 x의 관계를 다음 식 (2.1)으로 표현된다.

$$\mathbf{x} = \mathbf{X}\sin(\omega \mathbf{t} + \phi) \tag{2.1}$$

여기서, x는 변위, X는 평형위치로부터의 최대변위를 나타내며 변위진폭이라 부른다. 또한 ω(rad/s)는 각속도이고, φ(rad)는 위상각이라 부른다. 식 (2.1)로 나타낸 진동은 정 현진동 또는 조화진동이라 부르며 일정한 시간적 변동을 반복하는 정상적인 진동 중에서 가장 중요하고 기본적인 진동이다.

진동의 운동은 주기적으로 반복되는데 어떠한 운동의 반복에 의한 시간을 주기라 부른 다. 또한 1주기가 완결하는 운동을 Cycle이라 하고 1초간에 반복되는 cycle수를 진동수 또는 주파수라 한다. 주기는 초(sec) 등의 시간으로 나타내고 진동수는 cycle(c/s) 또는 Hz로 나타낸다. 진동수(f)와 주기(T)사이에는 식 (2.2)의 관계가 있다.

$$f = \frac{1}{T}$$
(2.2)

전술의 정현진동의 경우 어느 시간 t₁ 으로부터 2π/ω만 경과하면 변위 x는 식 (2.3)으로 되며 시간 t₁의 변위는 완전히 동일한 위치에 되돌아오기 때문에 주기(T)는 식 (2.4)로 되 고 또 진동수(f)는 식 (2.5)로 된다.

$$x = X \sin \left[\omega \left(t_1 + \frac{2\pi}{\omega} \right) + \phi \right]$$

$$= X \sin \left(\omega t_1 + 2\pi + \phi \right)$$

$$= X \sin \left(\omega t_1 + \phi \right)$$

$$T = \frac{2\pi}{\omega}$$
(2.4)

$$f = \frac{1}{T} = \frac{\omega}{2\pi}$$
(2.5)

따라서, ω는 2π시간 사이에 x가 몇 회 동일한 상태로 되돌아오는가를 나타내는 횟수를 나타내며 단진동수 또는 각진동수라 부른다. 시간적으로 변화하는 진동현상을 표현하는 데는 변위 외에 속도와 가속도가 있다. 속도는 변위의 시간에 대한 변화의 비율이고, 가 속도는 속도의 시간적 변화의 비율이다. 따라서 속도 *v*는 변위 x를 시간 t로 미분해서 얻어진다. 정현진동의 경우는 식 (2.1)에 의해 식 (2.6)과 같이 된다.

$$v = \frac{\mathrm{dx}}{\mathrm{dt}} = \omega \mathrm{X} \cos\left(\omega t + \phi\right) = \omega \mathrm{X} \sin\left(\omega t + \phi + \frac{\pi}{2}\right) \tag{2.6}$$

ωX는 이때의 최대치로 속도 진폭이라 부른다. 또 가속도 α는 속도 *v*를 시간 t로 미분 하여 얻어지는데 식 (2.6)에 의해 식 (2.7)과 같이 되며 ω²X는 가속도진폭이라 부른다.

$$\alpha = \frac{\mathrm{d}v}{\mathrm{d}t} = -\omega^2 \mathrm{X} \sin(\omega t + \phi) = \omega^2 \mathrm{X} \sin(\omega t + \phi + \pi)$$
(2.7)

Figure 2.1은 정현진동의 경우 변위, 속도 및 가속도의 파형을 나타낸다. 위상각 ∳는 0 의 경우이다.

Figure 2.1에서 알 수 있듯이 속도의 파형은 변위의 파형에 비해 90° 진행해 있다. 이것 을 위상이 90° 나아갔다고 한다. 이것은 식 (2.1)과 식 (2.6)에 명확히 나타나 있다. 마찬 가지로 가속도의 위상은 속도의 위상보다 90° 더 진행하고 있고 가속도의 위상은 변위의 위상보다 180° 진행하고 있음을 알 수 있다.

이들 변위, 속도, 가속도, 상호간의 진폭 및 위상에 관한 관계는 정현진동에 대해서만 성립하므로 비 조화진동에서는 성립하지 않는다.

그런데 변위 진폭, 속도 진폭 및 가속도 진폭의 값은 어느 순간에서 최대치(peak)가 되는데 진동에서는 이들을 진폭 자신으로 나타내어 실효치로 표현하는 경우가 많다. 실효 치란 순간에 있어서 진동치를 자승하여 주기에 대하여 평균한 평방근이다. 상기의 정현 진동의 경우 실효치 Pe는 식 (2.8)과 같다.

$$P_{e} = \sqrt{\frac{1}{T}} \int_{0}^{T} [X \sin(\omega t + \phi)]^{2} dt = \sqrt{\frac{\omega}{2\pi}} \int_{0}^{\frac{2\pi}{\omega}} [X \sin(\omega t + \phi)]^{2} dt$$
$$= \frac{X}{\sqrt{2}} \approx 0.707 X$$
(2.8)

Figure 2.1 Harmonic oscillation.

peak value(0 to peak) = A virtual value(r.m.s) = 0.707A P-P value(peak to peak) = 2A

Figure 2.2 The size of sine wave vibration.

주기적이 아닌 경우는 식 (2.8)의 T 대신 적당한 시간의 길이를 취한다. 실효치의 물리 적 의미는 예를 들면, 실효치 100V의 교류전압은 직류전압 100V의 효과와 같게 되는 최 대치를 갖는 전압이라는 것과 마찬가지로 변동하는 진동량을 일정하게 연속된 효과로서 나타낸 값(Figure 2.2의 사선부분)이다.

진동의 크기를 나타낼 경우 Peak치(0 to Peak)나 실효치 외에 P-P치(Peak to Peak)가 있으며 Figure 2.2에 정현진동의 경우 그들 관계를 나타낸 것이다. 이들은 변위, 속도, 가 속도의 어느 것에 대해서도 같은 관계가 된다.

2.1.2 진동의 물리적인 크기

진동변위(displacement)는 정지상태로부터 움직인 폭을 표시하며, 전체진폭(peak to peak치)과 편진폭(0 to peak치)이 있다. 일반적으로 진폭은 편진폭을 의미한다. 단위는 m 이지만, 실제의 진폭은 매우 작아 µm(1/1,000mm)를 사용한다. 공해진동에 있어서는 대 부분 500µm 이하의 변위를 대상으로 한다. 지반진동을 정현과 진동으로 가정하면 지표 면에서의 변위는 식 (2.9)와 같다.

 $\mathbf{X} = \mathbf{A}_{0} \sin\left(\omega t\right) \tag{2.9}$

여기서, *X*는 변위진폭, *A*₀는 변위진폭의 최대치, *ω*는 각진동수, *t*는 시간을 나타낸다. 진동속도(velocity)란 단위 시간당의 변위량으로, 단위는 m/s이며, 표기 기호는 일반적 으로 *v*로 나타낸다. 진동속도는 변위진폭을 미분함에 의해 구할 수 있으며, 식 (2.10)과 같으며, 이로부터 진동 속도 최대치(peak치)는 *A*₀*ω*임을 알 수 있다.

 $\mathbf{v} = \mathbf{A}_0 \omega \cos\left(\omega t\right)$

(2.10)

단위 시간당 속도 변위량을 진동가속도(acceleration)라고 하며, 단위는 m/s²(gal=cm/s², g=9.8m/s²)이며, 중력가속도는 980gal(1G)이다. 지진에 의해 피해가 발생한 경우는 200~ 300gal정도가 되며, 공해진동에서는 30gal(많은 사람이 진동을 느낌) 전후를 대상으로 하고 있다. 진동가속도 a는 식 (2.11)과 같다.

식 (2.11)로부터 진동가속도 최대치(peak치)는 A₀₀₀²임을 알 수 있다.

피크-피크값(peak to peak치, 2A₀)은 전체 진폭을 말하며, 일반적으로 진폭이라 표기하 며, 짧은 시간의 충격 등을 크기로 나타내기에 특히 유용하다. 이 값은 단지 최대값만을 표시할 뿐이며 시간에 대한 변화량은 나타나지 않는다.

그리고, 최대값(peak치, A₀)은 편진폭을 말하며, 일반적으로 진폭이라 표기하며, 짧은 시간의 충격 등을 크기로 나타내기에 특히 유용하다. 이 값은 단지 최대 값만을 표시할 뿐이며 시간에 대한 변화량은 나타나지 않는다.

평균값(2A₀/π)은 파의 시간에 대한 변화량을 표시하지만 어떤 유용한 물리적 양과는 직접 관련이 없기에 실제적으로 사용범위가 국한되어 있다.

시간에 대한 변화량을 고려하고 진동의 파괴적 능력을 나타내는 에너지양과 직접 관련 된 진폭을 표시하는 실효치(RMS값, A₀/2^{0.5})는 진동크기의 표현에 가장 적절하다.

진동가속도레벨(Vibration acceleration level, VAL)은 측정대상 진동의 가속도 실효치 를 Ar(m/s²), 기준진동의 가속도 실효치를 A₀(10⁻⁵m/s²)라 하면, 진동가속도 레벨 L_a(dB) 은 식 (2.12)로 표시된다.

$$L_a = 20 \log(A_r/A_0)$$
 (dB) (2.12)

인체에 느껴지는 약한 진동의 진동 가속도 레벨을 60dB, 진도 4정도의 진동가속도 레 벨은 94dB이다. 인체에 느껴지는 가장 약한 진동의 가속도레벨은 0dB이 아니며, 약 50dB정도이다.

진동레벨(Vibration level, VL)이란 단순한 물리량인 진동가속도레벨을 진동평가시 이 값에 인체진동감각에 따른 주파수보정을 하여 평가(합산)한 것을 진동레벨이라 하며, 식 (2.13)과 같다.

$$VL = VAL + W_n \quad (dB(V)) \tag{2.13}$$

여기서, Wn은 인체감각에 따른 주파수 보정치이다.

2.1.3 지반진동의 특징

발파에 의해 발생한 지반진동은 어느 점에서 생각하면 시간경과와 함께 항상 진동의 크기가 변화하고 있지만 지반운동은 일반적으로 변위(displacement: D), 입자속도 (particle velocity: V), 가속도(acceleration: A) 3성분과 주파수(frequency: f)로 표시된다. 지반을 따라 전파되는 지반진동으로 인해 구조물과 인체에 대하여 미치는 영향이 문제 가 되고 있으며, 발파재해의 대부분은 지반진동이 점하고 있다.

발파소음에 대해서는 발파작업에 따라 발생하는 파동의 문제란 점에서 지반진동과 유 사한 현상이지만 심리적인 것에 한정된다. 최근 문제시되고 있는 저주파 소음의 경우 발 파규모, 발파 형태에 의해 파생되는 경향이 심하므로, 충분한 대책을 필요로 한다.

발파에 의해 발생하는 폭풍압은 공기의 압력파로써 구조물의 운동을 일으켜 벽의 균열 과 창문파괴를 유발할 수 있으며, 인간에게 미치는 영향을 정량적으로 분석하기에는 매 우 어려운 점이 있다.

2.1.4 진동량의 표현

진동의 강도 또는 크기는 지금까지 서술한 바와 같이 변위, 속도, 가속도로 나타내고 그 단위로 변위는 cm, 속도는 cm/s, 가속도는 cm/s²(gal)등이 사용되고 있으나 취급하는 진동의 크기에 따라 편의상 Table 2.1에 나타내는 각종 단위들도 사용된다.

Classification	Basic unit	The others
Displacement	cm	$\mu = 10^{-3} \text{mm} = 10^{-4} \text{cm}$
		$mm=10^{-1}cm$
		$m=10^2 cm$
Velocity	cm/s	mm/s=10 ⁻¹ cm/s
		Kine=1cm/s
		$m/s=10^2 cm/s$
Acceleration	cm/s ² (gal)	$gal=1cm/s^2$
		g=980cm/s ² =1000gal
		$m/s^2 = 10^2 cm/s^2$

Table 2.1 Vibration unit
정현진동의 경우 식 (2.1), (2.6), (2.7)에서 알 수 있는 바와 같이 변위, 속도, 가속도 각 각의 진폭과 진동수와의 사이에는 식 (2.9)와 (2.10)과 같은 관계가 있다.

속도 진폭	$\mathbf{V} = \omega \mathbf{X} = 2\pi \mathbf{f} \mathbf{X}$	(2.9)
가속도 진폭	$\mathbf{A} = \omega \mathbf{V} = \omega^2 \mathbf{X} = (2\pi \mathbf{f})^2 \mathbf{X}$	(2.10)

따라서, 변위, 속도, 가속도의 각 진폭을 상호 환산할 수 있다.

진동의 크기를 나타내는 cm, cm/s, cm/s²라는 단위는 직선 척도에서 숫자로서는 쉽게 알 수 있지만 실제로는 알기 어려운 것도 있다. 또, 인간의 감각에 관계되는 양은 그 양 이 2배로 되어도 사람의 감각의 정도는 2배로 되지 않고 Weber·Fefiner의 법칙에 의하 여 등차 급수적으로 대응한다. 즉, 대수 척도에 대응한다. 이와 같은 사고로부터 음향 쪽 에서는 일찍부터 대수척도인 dB(decibel)이 사용되어 왔다. 공해진동에서도 최초에는 속 도의 Peak치로 규제하는 방법이 널리 사용되었으나 최근 dB이 우리나라에서 공식으로 사용되게 되었다.

가속도 레벨은 진동가속도를 dB단위로 나타낸 것으로서 식 (2.11)로 정의된다.

가속도 레벨
$$L = 20 \log_{10} \frac{A}{A_0} (dB)$$
 (2.11)

여기서, A는 측정치의 가속도 실효치(m/s²), A₀는 기준치(10⁻⁵m/s²)를 나타낸다.

그 외에 속도, 변위에 대해서도 식 (2.11)과 같은 모양의 표시법에서 속도에 대해서는 20log₁₀(v/v₀)(v₀=10⁻⁶kine), 변위에 대해서는 20log₁₀(d/d₀)(d₀=10⁻¹¹m)로 나타낸다. 그런데 가속도 레벨은 대수 표시이기 때문에 가속도가 원래 가속도의 2배로 되어도 가속도 레벨 은 2배로 되지 않고 가속도 레벨은 20log₁₀2≒6dB만 증가하게 된다.

식 (2.11)로 정의된 가속도 레벨은 인체감각 등에는 관계없는 물리량의 표시인데 진동 이 인체 또는 건물 등에 미치는 영향은 진폭과 진동수에 의존하며 또, 연직운동과 수평 진동에서는 감지방법이 다르다. 그래서 ISO(국제표준화기구)의 인체의 진동에 대한 진동 폭로기준에 의하여 전기의 가속도 레벨에 주파수에 의한 인간의 진동감각에 보정한 것을 진동레벨(보정가속도 레벨)이라 한다.

연직방향에 대하여 진동레벨을 식으로 정의하면 식 (2.11)에 있어서 A₀를 식 (2.12)와 같이 주파수마다 보정한 것이 된다.

$$1 \le f \le 4 A_0 = 2 \times 10^{-5} f^{-\frac{1}{2}} (m/sec^2)
4 \le f \le 8 A_0 = 10^{-5} (m/sec^2) (2.12)
8 \le f \le 90 A_0 = 0.125 \times 10^{-5} f(m/sec^2)$$

예를 들면, 인체감각의 하한 한계치를 진동레벨로서 계산해 보면 다음과 같다.

$$20\log_{10}\left(\frac{10^{-2}}{10^{-5}}\right) = 60dB \tag{2.13}$$

즉, 한계치는 연직진동의 4~8Hz 및 수평진동의 1~2Hz에 대하여 1gal(10⁻²m/s²)정도 로서 식 (2.13)과 같다.

2.2 발파에 의한 암석파쇄이론

발파에 의한 암반 파쇄 현상의 이론적 규명은 발파 기구의 복잡성에 기인하여 아직까 지 완전히 규명되지 못했다. 그러나 다음과 같은 이론들이 일반적으로 받아들여지고 있 으며 기존의 이론들에 새로운 해석들이 추가, 수정되고 있다.

2.2.1 Crater

가장 전통적인 이론으로 장약량, 최소저항선 등과 같은 인자들 간의 관계를 crater 발 파에서의 경험에 의해 규명한 경험이론이다. 최소저항선을 이용하여 장약량을 결정하고 전색 길이(stemming length), 발파공간의 거리(spacing) 등을 계산하여 표준 발파의 장 약량을 산출한다. crater 발파는 발파공과 수직한 방향으로 한 개의 자유면을 지니고, 파 쇄 결과 원추형의 crater를 형성한다(Chiappetta et al., 1983; Pit Slope Manual, 1977).

2.2.2 기체 팽창

발파에 의해 발파공에 작용하는 압력은 기체 팽창에 의한 가스압의 절반 정도의 크기

이며, 충격파의 형태로 주변 암반에 전달된다. 충격파에 의한 분쇄대는 발파공 반경의 약 2배 거리까지 형성되고, 그 이후 방향성이 나타나는 몇 개의 방사상 균열이 형성된다. 충 격파가 자유면에 도달하면 균열들에 가스압이 작용하여 균열이 성장하며, 이러한 균열의 성장이 자유면에 이르면 암석은 그때까지 남아 있는 가스압에 의한 변위가 발생한다. 화약의 폭발에 의해 발생한 에너지는 폭광압과 가스압의 두 가지 형태로 암반에 역학 적인 일을 수행한다. 폭광압은 발파공에 인접한 줍은 지역에 국부적이고 한정적으로 작 용하며 짧은 시간 동안 작용하기 때문에 주된 파쇄는 가스압에 의해 이루어진다. 압축응 력을 받은 후, 인장응력에 의해서 공의 주위에서 부터 균열이 형성되며, 균열 첨단에 변 형에너지(strain energy)가 가해지는 동안 계속해서 균열은 성장하게 된다. 이 때, 자유면 에서의 변형에너지 반사에 의한 파쇄는 고려하지 않는다. 그리고 가스압에 의해 압열 파 쇄(flexural rupture)가 일어나고 이것에 의해 저항선(burden)의 휨변형(bending)이 나타 난다(Persson, et al., 1970; Ash, 1973; Johansson, et al., 1970).

2.2.3 반사파

반사 응력파에 의한 암석 파쇄의 용이성은 인장강도와 압축강도를 사용하여 나타내는 데, 그 비를 파쇄용이 계수(blastability coefficient)라 한다. 암석은 인장력에 약하므로 파 쇄용이 계수가 클수록 파쇄가 쉽게 된다. 파쇄용이 계수는 10에서 100사이의 값을 지닌 다. 반사파 이론은 암반이 인장 파쇄에 약하기에 주된 에너지원을 자유면에서 반사된 인 장파로 보고 암반의 응력 상태와 파괴조건식을 비교하여 설명하는 이론이다. 발파공에 인접한 지역에서는 압축응력파에 의한 파쇄가, 바깥 지역은 인장응력파에 의한 파쇄가 주로 이루어진다. 이 이론에 의하면, 폭광파가 자유면이나 물리적인 성질이 다른 매질 경 계에 도달하면 암반에 강한 충격을 주고 그 결과 새로운 응력파가 발생하여 내부로 전달 되어 암석이 판의 형태로 파쇄(spalling, scabbing or slabbing)되고 또다시 새로운 자유 면이 형성되는 과정이 반복하여 일어난다고 파쇄 기구를 정의한다(Obert, et al., 1949, 1950; Hino, 1956; Duvall, et al., 1962, 1963).

2.2.4 충격파와 가스압

Kutter and Fairhurst(1971)는 충격파와 가스압 중 하나를 파쇄기구의 주된 에너지원으

로 설명하는 기존의 이론에 대해 파쇄는 두 가지 에너지원의 복합적인 작용으로 이루어 진다고 실험에 의해 밝혔다. 이 이론에 의하면 짧은 시간에 막대한 크기로 생성된 폭굉 파는 주변 매질로 전달되나, 그 지속 시간이 비교적 긴 가스압이 준정적거동 상태를 유 지하며 이미 형성된 균열을 확장, 전진시킨다는 것이다.

이외에도 Torque theory(Atlas Powder Company, 1987), Nuclei theory(Barker, et al., 1978; Winzer, et al., 1979; Fourney, et al., 1983; Adams, et al., 1983; McHugh, 1983) 등 의 파쇄기구 설명 이론이 있으나 일반적으로 충격파가 균열을 형성하고 가스압이 균열을 확장, 전진시킨다는 것이 일반적으로 받아들여지고 있다. Table 2.2는 전체 에너지 중에 서 충격파가 차지하는 비를 나타내며, 약 15% 내외이다. 또한 가스압이 20~40%이며 그 이외의 에너지는 비역학적인 일로 손실된 에너지이다.

Researcher	Percentage of shock wave
Langefors	5~15%
Fogelson	9%
Vutton 9 Fridamet	10~18%(granite)
Kutter & Faimurst	2~4%(sandstone)
Konya & Walter	15%

Table 2.2 The shock wave value of total energy

2.3 파동의 전파 이론

짧은 지속시간을 갖는 충격파가 탄성 공간의 표면 어느 지점에서 발생하면 입체파는 Figure 2.3과 같이 반원형의 파면을 그리면서 전파된다. 충격지점으로부터 일정한 거리 에 떨어진 지점에서는 전달된 파동에 의해 수직 변위가 지표에서 발생한다. 이때 종파가 가장 빠른 전달속도를 가지므로 가장 먼저 도달하고, 다음이 횡파, Rayleigh파의 순서로 도달하게 되며, 이것을 그림으로 표현하면 Figure 2.4와 같다.

지반운동에 관한 문제는 지반을 전파하는 파동문제에 귀착되며 자연의 지반은 정적인 큰 힘에 대해서 소성체로써의 성질을 나타내지만 변화하는 속도가 빠른 동적인 미소변위 에 대해서는 탄성체의 성질을 나타낸다. 그러므로 지반을 반무한 탄성체로 간주할 경우 종파, 횡파, Rayleigh파 등의 파가 존재한다.

R파에 의한 입자운동은 회귀성타원의 경로를 따르고, 전단방향의 변위가 없으므로 종 파와 유사한 성질을 갖는다. P파, S파, R파의 운동모양은 폭발위치가 깊지 않거나 암반 이 대단히 균질한 경우가 아니면 입체파는 보통 방출에너지의 절반 이하로 작게 나타나 고 나머지는 암석의 표면이나 내부의 자유면을 따라 이동하는 표면파가 된다. 그러므로 지표 부근에서 실시한 발파작업에 의한 진동에는 입체파보다 표면파에 더 많은 에너지가 작용한다. 반면 진동을 측정하는 지점이 발파 지점에서 가까우면 이러한 모든 파는 구분 되지 않고 합성되어 함께 복합파 형태로 나타난다. 특히 지하철 건설을 위한 터널굴착과 같은 도심지에서의 발파는 지반진동 문제를 야기하는 지점이 수십 미터 이내이며 여러 가지 파들이 도달하는 시간이 동시에 이루어지기 때문에 기록상으로 분별하기 어려운 단 점이 있다.

Figure 2.3 Body wave and Rayleigh wave.

Figure 2.4 Vertical displacement component of P wave, S wave and Rayleigh wave in a short duration period.

2.3.1 파동의 중첩과 간섭

자연에 존재하는 많은 재미있는 파동 현상들을 움직이는 파동 하나만 가지고 기술하기 란 불가능하다. 그 대신 두 개 또는 그 이상의 파동이 공간의 동일한 영역을 통과할 때 어떤 일이 발생하는지에 대해서 분석할 수 있어야 한다. 그러한 분석을 위하여 중첩의 원리(principle of superposition)를 이용할 수 있다.

둘 또는 그 이상의 진행 파동이 매질을 통과할 경우, 그 결과 생기는 파동은 각 지점에 서 각 파동의 변위를 서로 합함으로써 얻어지는데 이것을 중첩의 원리라고 한다. 그러나 중첩의 원리는 각 파동의 변위의 진폭이 작을 경우에만 중첩의 원리가 타당하다. 즉, 아 주 큰 변위가 발생하는 발파공 주위에서는 이 중첩의 원리가 성립되지 않고 서로 통과할 수 있다는 것이다. 예를 들면, 돌 두 개를 연못에 던질 때, 퍼져나가는 원형 파동은 서로 파괴하지는 않는다. 사실 잔물결들도 서로 통과한다. 마찬가지로 두 음원에서 나온 음파 들이 공기를 통과할 때, 그들은 서로를 통과한다. 주어진 위치에서 듣는 소리는 두 음파 에 의한 교란의 결과이다.

Figure 2.5(a)와 2.5(b)는 같은 진폭과 진동수를 갖는 두 파동을 보여 준다. 어느 순간 이들 두 음파가 공간의 같은 영역을 통과하려 한다면, 그 순간의 결과로서 생기는 파동 은 Figure 2.5(c)와 같은 형태를 갖게 될 것이다. 예를 들어 이들 파동의 진폭이 1m인 수 면파라고 가정해 보자. 마루가 마루를 만나고 골을 만나 중첩하는 순간, 그 결과 생기는 파동은 2m의 진폭을 갖는다.

이와 같은 경우의 "파동은 위상이 같다"라고 하고 "보강간섭(constructive interference) 을 일으킨다"라고 한다.

반면, Figure 2.6(a)와 2.6(b)는 두 개의 유사한 파동을 보여주지만 한 파동의 마루가 다 른 파동의 골과 일치한다. 즉, 한 파동은 다른 파동과 역으로 관련되어 있으며, 그 결과 생기는 파동은 Figure 2.6(c)와 같이 완전히 상쇄된 상태를 보인다. 이들이 함께 진행하 는 수면파라고 하면, 두 파동 중의 한 파동은 물방울을 위로 당기려 하며, 같은 순간 다 른 파동은 아래로 당기려고 한다. 이러한 상황에서 "두 파동은 180° 위상이 어긋났다"라 고 하며 "상쇄간섭(destructive interference)을 일으킨다"라고 한다.

Figure 2.5 Constructive interference

Figure 2.6 Destructive interference

2.4 지반진동의 발생과 전파

2.4.1 지반진동의 발생 특성

폭약이 장약공 내에서 폭굉하면 그 폭약은 기폭 후 수 µsec에서 최고치에 달하고 그 압 력은 5~20만 기압에 달하는 강력한 충격압과 연소된 화약에 의한 가스압 및 3000℃ 이 상의 고온이 발생한다. 이 때 Figure 2.7과 같이 충격압과 고온에 의해 발파공에서 수~ 수십 mm 이내에 인접한 암반은 녹아내리거나 잘게 파쇄되어 파쇄대를 형성하고, 연속되 는 가스압과 충격파의 전달로 인해 파쇄대 외부의 암반에는 균열이 발생되어 전파되는 균열대를 형성하게 된다. 이렇게 폭원으로부터 전파된 3차원적 충격압에 의한 충격파는 거리에 따라 현저히 감쇠되어 발파에 의한 에너지의 0.5~20%가 탄성파의 형태로 균열 대 외부의 암반 중에 전파되어 간다. 이렇게 전달된 탄성파는 암반 중에 전파되어 가면 서 지반의 진동을 발생시키게 되는데, 이를 지반진동(ground vibration)이라 한다.

암반 중으로 전달되는 탄성파는 암반내부로 전달되는 입체파(P파, S파)와 물체의 표면 을 따라 이동하는 표면파(Rayleigh파, Love파)로 나뉜다. 이러한 탄성파가 암반 중을 전 파하면서 지반진동을 일으키게 되는데 한 점에서 지면의 운동은 진폭과 주기를 갖는 진 동으로 나타난다. 이와 같은 발파에 의한 지반진동은 입자변위(particle displacement), 입 자속도(particle velocity), 입자가속도(particle acceleration)의 3종류로 표시되고 있다.

Figure 2.7 Schematic of the fracturing and deformation around an explosion in rock (Dupont, 1980).

2.4.2 지반진동의 전파 특성

발파에 의해 발생되는 파들은 P파(primary wave; 압축파, 종파,), S파(secondary wave; 전단파, 횡파,) 및 표면파(Rayleigh wave)의 세 가지 범부에서 나눌 수 있으며, 지표 진동에서 가장 영향이 크게 작용되는 것은 표면파이다. P파와 S파는 실체파 또는 물체파(body wave)라고 한다.

실체파들은 발파 시 가까운 거리에서 주로 나타나며, 이러한 실체파들은 매질의 특성이 다른 암석이나 토양층, 지표면과 같은 경계를 만날 때까지 외부를 향해 구상으로 전파되 고, 실체파가 전파 도중 다양한 경계면을 만나면 반사, 굴절이 일어나 표면파가 생성된 다.

가까운 거리에서는 세 개의 파가 모두 함께 도달하여 파의 형태를 구별하기가 대단히 복잡하지만, 먼 거리에서는 느리게 전파되는 전단파와 표면파가 압축파로부터 분리되기 시작하여 구분된다.

지반진동의 측정은 그 방향에 따라 Figure 2.8과 같이 폭원으로부터 측점을 향하는 평 면상파의 진행방향성분(longitudinal 혹은 radial component), 진행방향에 직교하는 수직 방향성분(vertical component), 이들 두 방향과 직각을 이루는 접선방향성분(transverse component)의 세 방향으로 이루어진다.

지반진동은 진행방향에는 종파(P파)가 우세하며, 접선성분에는 횡파(S파)가 수직성분 에는 표면파(Rayleigh파)가 우세하며, 이 3성분은 크기 및 진동주파수가 각각 다르고 복 합파이기 때문에 운동하는 모양이 대단히 불규칙하고 복잡하다. 따라서 3 성분 중 각각 단일성분(V, T, L)에 대한 크기와 우월성분의 최대치가 원하는 계측 위치에서 측정될 수 있어야 한다.

Figure 2.8 Measuring direction of ground vibration.

이러한 탄성파의 파형은 매우 복잡하여 폭원으로부터 근거리에서는 육안상 구분되지 않고 복합파의 형태로 나타나며, 비교적 원거리에서는 전파속도가 느린 표면파가 지배적 인 것으로 알려져 있다.

한편 발파에 의한 지반진동을 단순조화진동(simple harmonic motion)으로 보면 입자변 위(D), 입자속도(V), 입자가속도(A)의 표시법 사이에는 식 (2.14)와 식 (2.15)와 같은 관 계가 성립한다.

 $V = 2\pi f \cdot D$ (2.14) $A = 2\pi f \cdot V$ (2.15)

여기서, f는 최대 진폭에서의 진동주파수이다.

지반진동의 크기를 표시하거나 허용수준을 설정하려면 지반진동 크기를 비교할 수 있 는 척도가 필요하며, 그 크기정도를 입자변위·입자속도·입자가속도의 3가지 형태로 표시 할 수 있다.

Table 2.3과 같이 지진동(earthquake vibration)은 지반진동에 비해 그 주파수가 작고

지속시간이 길며 진원이 깊은 지중이어서 종파, 횡파, 표면파가 분리되어 지표 중에 도달 하나, 지반진동은 발파원이 측점에 가까워 이들 각각의 파가 측점에 동시에 도달하고, 또 고주파인 관계로 쉽게 감쇠가 일어나며 지진에 비하여 파형이 비교적 단순하다.

현재까지 세계적으로 연구된 결과에 의하면 주파수가 수십에서 수백 Hz 범위인 지반 진동에서 주로 주거 구조물의 피해 정도는 진동변위속도에 비례한다. 따라서 그 규제기 준을 진동속도로 삼고 있다.

Sort	Ground vibration	Earthquake	
Focal depth	Ground or	Over underground 10km	
	inside of close ground		
Vibration	Several 10 to several	1 Hz of below	
frequency	100Hz	1 112 OF DEIOW	
Vibration	Within 01a	Over 10s,	
duration	Within 0.15	minute unit(a big earthquake)	
Vibration	Simple	Complex	
waveform	Simple	Complex	

Table 2.3 Comparison of ground vibration and earthquake

폭약이 폭발할 때 발파에 필요한 최대의 효과를 얻기 위해서는 충분한 에너지가 전달 되어야 한다. 폭약의 종류와 특성, 자유면의 수와 크기, 암반의 구조(절리, 층리, 박리 및 균열), 천공경과 천공간격, 장약량과 장약공법, 전색의 정도, 발파공의 배치, 기폭시차 배 열 등에 따라 발파효과가 좌우된다.

이 때 암석의 강도에 비하여 폭력이 약하고 전색이 불완전하면 기대한 발파효과를 얻 기 어려우며 이때는 대상 암반의 발파에 대한 저항선과 여러 가지 폭약이 가지는 발파 영향 요소 등에 대해서도 충분한 검토를 하여야 한다.

지반진동의 전파특성을 결정하는 조건은 크게 입지조건과 발파조건으로 나눌 수 있다. 입지조건은 발파부지와 인근 구조물의 기하학적 형태, 대상암반의 지질학적 특성 및 역 학적 성질 등을 말하며, 발파조건은 사용하는 폭약, 장약량, 기폭방법, 폭원과의 거리 등 을 말한다.

이 중에서 발파조건은 조절 가능한 변수로, 입지조건은 조절 불가능한 변수로 구분 가

능하며, 지반진동의 영향을 최소한으로 하기 위해서는 조절 가능한 변수들을 잘 파악하 여 이를 적극 활용하여야 한다.

Table 2.4는 지반진동 변수에 대한 영향을 나타내었다.

Table	2.4	Parameters	which	influence	ground	motion
rabic	<i>2.</i> -	1 arameters	winch	minuciice	ground	mouon

D	T	Influence on ground motion			
Parameter	Items	Significant	Moderately signif.	Insignif.	
	A. Delay interval	0			
	B. Charge weight per delay	0			
	C. Explosives type	0			
Controllable parameters	D. Burden and spacing		0		
	E. Hole diameter and drilling angle		0		
	F. Stemming			0	
	G. Direction of initiation			0	
	H. Charge weight per blasting			0	
	A. Distance of blast site and structure	0			
Uncontrollable parameters	B. Geography		0		
	C. Soil type and layer depth		0		
	D. Rock condition		0		
	E. Atmospheric condition			0	

2.5 Langefors 시차이론

Langefors에 의해 지연시차의 서로 다른 인자인 공수, 주파수가 지반진동에 얼마나 영 향을 미치는가에 대한 최종적인 결론이 제시되었다. 간섭의 영향은 지연시차(τ)가 주기 (T)만큼 크거나 정수의 곱으로 적용될 때 얻어지고, 진동의 협동은 서로 다른 지연시차 에서 진동이 합해짐으로서 발생한다. 이것은 H가 정수의 비율일 때 적용된다(Langefors and Kihlstrőm, 1978). 그 관계는 식 (2.16)과 같다.

 $\tau = HT$

(2.16)

(2.17)

다른 한편으로 H는 서로 다른 파를 단절시키거나 또 다른 것을 약화(상쇄간섭)시키는 반값의 기수이다. 이것은 거의 완벽하게 H가 1/2일 때 발생한다. 그러나 H 값이 5/2보다 더 높은 값이면 보강이나 상쇄간섭에 의해 규정된 영향은 이 규칙을 따르지 않는다.

연속하여 기폭하는 공의 간섭은 다른 방법으로 얻을 수 있다. 일반적인 상태의 K는 정 수이지만, K와 n사이의 비율은 정수가 아니다. 다시 말해서, K/n≠1, 2, 3,…이다. 그 관 계는 식 (2.17)과 같이 표현할 수 있다.

 $n\tau = KT$

여기서, n은 지발 수(단수)를 나타내며, nτ는 1회 발파의 전체 시간을 가리킨다. 이것은 실제적인 적용에 있어 중요한 의미를 갖는다. 앞의 간단한 간섭 상태에 의하면 정확한 단차는 주파수가 요구되지만, 식 (2.17)에 따른 간섭 상태는 매우 광범위한 범위 내에서 이루어질 수 있다.

지발의 수가 증가하면 지반진동의 진폭이 감소한다는 결과가 많은 문헌에 나타나 있다 (Dowding, 1984). 또한 지발 수가 증가하면 K값이 정수에 근접하게 되는 것은 위에서 나 타나는 명확한 결과이다. Figure 2.9는 5공의 발파에서 K값의 변화에 따른 진동의 정도 를 보이며 K값이 정수(1과 2)일 때 진폭이 가장 낮음을 알 수 있다.

지연시차가 주기만큼 길거나 또는 값이 두 배가 될 경우(r=T or 2T), 서로 다른 장약 공으로부터 진동의 협동을 피하는 것이 불가능 하다. 만약, 1회의 발파가 수 많은 지연단 수를 가진다면 3T나 그 이상의 상대적인 시간거리에 놓인 지연시차를 갖는 발파공은 일 반적으로 비협동(non-cooperative)이라는 것을 예상할 수 있으며 상쇄간섭을 포함한다면 서로 다른 단차 간의 협동은 τ>2.5T일 때에 일어나지 않는다고 추측할 수 있다.

즉, Langefors의 시차이론에 의하면 지발당 장약량은 2.5T 내로 기폭되는 공의 총 장약 량으로 평가될 수 있다. 그러나 지반에 따라 변화되는 주파수를 모두 고려하기란 불가능 하며 고려한다 할지라도 상쇄나 보강간섭을 모두 포함하므로 자료처리가 더 난해해 질 수 있다. 그러므로 Langefors의 시차이론에 의한 지발당 장약량의 규정이 더 정량적이라 할지라도 환산거리 식의 지발당 장약량의 적용에는 불가능 할 것으로 사료된다.

현재 국내에서 사용하고 있는 환산거리 식의 지발당 장약량은 진동의 예측과 관리, 평 가의 신뢰성이 요구되는 단순화를 추구하는데 그 중요성을 가지고 있다. 8ms 기준을 사 용하는 환산거리식에 의한 지반진동의 예측과 관리, 평가에 있어서 대두되는 문제점은 지반조건, 발파방법 등을 따라 변하는 주파수 특성을 고려하여 지반진동을 예측하는 방 법도 조정해야 한다.

Figure 2.9 Ground vibrations from five different charge and with delays $0 \sim 100 ms$ (Langefors and Kihlstrőm, 1978).

2.6 지반진동의 예측방법

지반진동을 예측하는 대표적인 두 가지 방법은 환산거리 방식(Duvall, et al., 1963; Devine, 1966; Bicholls, et al., 1971; Bollinger, 1971; Ash, 1973; Archibald, 1976; Dupont, 1980; Calvin, et al., 1990)과 장약레벨 방식(Langefors, 1978)을 들 수 있다. 환산 거리 방식은 거리와 장약량의 자승근 혹은 삼승근 관계인 환산거리(scaled distance) 개 넘에 의한 지반진동의 예측방법이며, Langefors의 장약레벨 방식은 각각의 장약레벨과 거리와의 관계인 장약레벨(charge levels) 개념에 의해 진동속도를 예측한다. 국내에서는 이들 방법 중 환산거리 개념에 의한 지반진동의 예측이 일반화되어 있다.

2.6.1 환산거리의 유도

환산거리는 지발당 장약량(W)과 거리(D)가 변화할 때 최대 입자속도를 예측하는데 필 요한 것이다. 가장 보편적인 두 가지 환산거리는 자승근 환산거리(D/W^{1/2})와 삼승근 환 산거리(D/W^{1/3})이다. Hendron(1969)은 지반진동을 조절하는데 Table 2.5의 변수들이 중 요한 의미를 갖는 것으로 생각하였다.

발파에 의한 진동과 이것이 구조물에 미치는 영향으로는 Buckingham Pi 무차원 해석 이론(Langhaar, 1951)에 의하면 발파현상과 관련되는 6개의 독립변수와 무차원 변수가 있고 이들 변수는 u/D, u/c, üD/c², ft, tc/D 및 W/pc²D³이다. 처음 4개는 종속변수이고 나 중 2개는 독립변수들이 조합된 것이다. 앞의 변수들은 어떤 멱승을 하거나 서로 곱해질 수 있고 하나의 무차원 변수는 다른 무차원 변수의 함수일 수 있다.

암석의 밀도(ρ)나 탄성파속도(c)는 암종에 따라 큰 변화가 있는 것이 아니기 때문에 지 발당 장약량(W)이나 폭원으로부터의 거리(D)의 변화는 중요한 의미를 가진다.

구조물의 피해에 크게 영향을 미치는 요인은 입자의 변위, 속도 및 가속도와 주파수 등 네 개의 종속변수로 좁혀지고, 여러 계측결과에 의하면 진동속도와 가장 밀접한 관계가 있다.

발파에 의해 발생한 지반진동의 크기는 폭원으로부터 계측지점까지의 거리에 반비례하고, 1회 발파 당 동시에 폭발하는 장약량에 비례하므로(Devine, 1966) 거리와 장약량의 함수관계를 환산거리로 표기하며, 이것은 지발당 장약량과 거리가 변화할 때 최대진동속 도를 예측하는데 필요한 것이다. 환산거리에 의한 지반진동 예측식은 다음 식 (2.18)과 같다.

$$V = K (SD)^n$$
(2.18)

여기서, V는 진동속도, K는 입지상수, n은 감쇠상수, SD는 환산거리로써 발파원과 수 진점과의 거리(D)와 지발당 장약량(W)의 관계로 다음 식 (2.19), (2.20)과 같이 각각 자승 근 및 삼승근으로 표시된다.

$$SD = \frac{D}{\sqrt{W}}$$
(2.19)
$$SD = \frac{D}{\sqrt[3]{W}}$$
(2.20)

K와 n은 장약량과 거리를 제외한 모든 인자를 반영하며, 통칭으로 입지상수(site constant)라고 한다. 식에서 진동속도는 환산거리와 거리에 대해서는 반비례, 장약량에 대해서는 비례하는 것을 알 수 있다.

환산거리식은 두 변수를 분리하고 지수계수를 달리하면 적합도가 더 높은 일반식 (2.21)이 얻어진다.

$$V = K W^{a} D^{b}$$
(2.21)

a와 b는 각각 지수계수와 감쇠계수이다. 일반식 (2.21)은 높은 적합도에도 불구하고 설계의 어려움 때문에 많이 적용되고 있지 않고 있다.

식 (2.18)과 (2.21)로 구해지는 진동수준은 평균 진동 수준이므로 발파설계에 직접 이용 할 수 없다. 따라서 정규분포의 특성을 이용하여 신뢰수준 95% 지반진동 예측식을 구하 고 현장여건에 맞는 허용 진동수준으로부터 허용 환산거리를 산출하게 된다.

Parameters	Symbol	Dimension*
Independent		
Energy (per delay)	W	FL
Distance	D	L
Seismic velocity	С	LT^{-1}
Density of rock mass	ρ	$\mathrm{Ft}^{2}\mathrm{L}^{-4}$
Time	t	t
Dependent		
Ground displacement	u	L
Ground particle velocity	ů	LT^{-1}
Ground acceleration	ü	LT^{-2}
Frequency	f	t^{-1}

Table 2.5 Variable considered in a dimensional analysis of explosion phenomena (Ambraseys and Hendron, 1968)

* F : force, L : length, t : time

2.6.2 95% 신뢰식의 결정

발파설계를 위해서는 대상 지역의 시험발파를 통한 K, n 상수 값을 정의하는 것이 중 요하며, K, n값이 결정되고, 허용 진동속도가 주어지면 지반진동식에서 폭원으로부터 거 리와 지발당 장약량과의 관계를 나타내는 노모그램을 작성할 수 있다.

입지상수의 결정방법은 측정 자료처리를 로그-로그 그래프 상에서 최소자승법에 의해 최적 적합식(best fit line)을 구하며 이를 50% 신뢰식이라고 한다.

입지상수 K의 50% 값을 K₀라 하고 95%, 99%의 K값을 각각 K₁, K₂라 하면 K₀, K₁, K₂ 값은 로그 정규분포의 특성을 이용하여 식 (2.22), (2.23), (2.24)와 같이 구할 수 있다.

$K_0 = \exp A_0$	(2.22)
$\mathbf{K}_1 = \exp(A_0 + 1.645\sigma)$	(2.23)
$\mathbf{K}_2 = \exp(A_0 + 2.326\sigma)$	(2.24)

여기서, o는 표준편차이다. 또한 신뢰식의 기울기 n은 동일하다.

2.7 기폭방법

MAHA(The Mine Safety Health Administration of U.S.A)는 기폭약(Primer)을 다른 폭약이나 발파제를 기폭시키는 데 이용되는 뇌관으로 기폭 가능한 폭약장치로 정의한다. 기폭약(primer)에는 뇌관이나 다른 기폭장치, 즉 도폭선이 포함된다.

기폭약(primer)은 높은 폭속과 높은 폭발력을 가진 뇌관으로 기폭이 가능하도록 만들 어져야 한다. 기폭약(primer)은 장전된 폭약의 폭발파가 이동될 방향을 향하는 위치에 설 치될 때 더욱 효과적이다. 이것을 directional priming이라한다. 따라서 전장약을 향하는 기폭약(primer)에 기폭장치를 설치하는 것이 가장 좋다. 먼저 공구를 향하는 뇌관을 가진 기폭약(primer)을 공에 설치한다. 뇌관을 포함한 기폭약(primer)이 공구와 전장약을 향하 는 공저에 설치될 때 이것이 역기폭방법(bottom priming)으로 알려져 있다. 반면에 뇌관 을 포함한 기폭약(primer)이 공저를 향하며, 공구나 공구부근에 설치될 때 이것은 정기폭 (top priming)으로 알려져 있다. 기폭약(primer)의 적절한 위치는 안정성과 효율성 둘 다 의 관점에서 중요하다.

노천에서의 대발과 방식은 그 응용에 따라 다변화가 가능하며 기폭방법에도 도폭선, 전 기뇌관, 비전기뇌관 등을 이용할 수 있고, 최근에는 plasma와 같이 충격파이론에 의한 발파방식도 고안되어 발전하고 있다.

Figure 2.10은 기폭약(primer)의 장전위치에 따른 기폭방법을 나타낸 그림이다.

2.7.1 정기폭(Top priming)

뇌관을 포함한 기폭약이 공저를 향하며, 공구나 공구부근에 설치될 때 이것은 정기폭이 라고 한다(Figure 2.10(a)). 정기폭은 대구경의 시추공에서는 넓은 공간으로 인해 별 문제가 없지만 좁은 간격의 소구경 시추공에서는 공의 윗부분에서 지반운동으로 인해 cut off가 발생될지도 모른다. 때문에 정기폭은 역기폭을 사용하기에는 안전에 부적절한 고려사항이 있을 때 사용한다. 발파공의 입구 쪽에 기폭점을 두는 것이 안쪽에 두는 것보다 충격파가 자유면에 도달 하는 시간이 빠르기 때문에 자유면에서 반사하는 반사파의 세기가 크다는 점으로부터 정 기폭이 역기폭보다 발파위력이 크다고 주장되고 있으며, 순폭성에 있어서도 정기폭이 우 수하다고 보고되고 있다. 기술적으로도 역기폭일 때는 폭발력이 주변에 크게 미쳐서 파 쇄를 조장하게 됨에 따라 폭약이 5% 절약되는 경향도 보고되고 있다.

2.7.2 역기폭(Bottom priming)

뇌관을 포함한 기폭약이 공구와 전체 장약을 향하는 공저에 설치될 때 이것이 역기폭 이라고 한다(Figure 2.10(b)).

역기폭은 팽창가스가 더 오래 지속되고 그 결과 밀거나 작용하는 힘이 더 오래 지속된 다. 역기폭은 암반변위가 중요한 요소인 지반굴착, 절하발파, 고속도로 굴착 등 다중열 발파에서 적용될 수 있다.

관점에 따라 여러 견해와 주장이 엇갈리고 있으나, 시추공의 cut off 감소, 공저에서 약 포의 불폭 감소, 많은 암반변위 발생, 막힌 공으로부터 전폭약을 재장약의 가능 등의 이 유로 역기폭이 널리 이용된다.

일반적으로 역기폭은 각선의 길이가 비경제적이며 폭약을 다져 넣는데도 주의해야 하 지만 정기폭일 경우에는 폭약을 다져 넣는데 비교적 안전하다.

단발발파로부터 장약의 cut off에 장약분리의 위험이 있을 때나 지연뇌관을 사용하는 근접공에서 유리하다. 기폭점이 안쪽에 있으므로 발파위력이 내부에 더욱 크게 작용하여 잔류공을 남기는 일은 없다. 일반적으로 장공을 발파할 때에는 역기폭으로 장전하는 것 이 효과적이다.

2.7.3 중간기폭(Middle priming)

기폭점을 공입구와 공저의 중간부분에 두는 것(Figure 2.10(c))으로 장약의 길이가 길 경우에 많이 사용된다. 비교적 둔감한 초유폭약을 이용하여 긴 장약을 기폭 할 경우에는 끝부분에 전폭약을 설치할 수도 있다.

Figure 2.10 Position of primer

3. 현장실험

3.1 연구지역의 지형 및 지질

본 연구지역은 군산시 성산면 성덕리 산 2-1번지로 장항~군산간 29번 국도상의 당선 리와 금강하구둑을 지나 요동에서 북동측으로 분지된 709호선 지방도를 따라 약 4km지 점에 위치한다. 노령산맥과 차령산맥 남서연장부에 해당하며 실험지역 일대에는 북동방향 의 능선(망해산 230.3m~취성산 205.0m~용천산 141.0m)과 남북 방향의 오성산(227.7m) 능선이 발달한 지역이다(Figure 3.1).

연구지역의 지질은 광역적으로 살펴보면, 함열도폭(1:50000) 남동부일대에는 고생대 편 마암류를 포함한 변성퇴적암류를 기반암으로 하고 중생대 쥬라기로 추정되는 편마암류 와 후기에 이들을 관입한 백악기 관입암류(섬록암, 석영반암, 암맥) 등으로 구성된다. 석 영반암은 중생대 백악기 관입암류로 함열도폭 북부에 주로 발달했다. 편암은 함열도폭 북서부 구릉지대에 주로 분포하고, 하부로부터 편암류, 함라산층, 규암층 순으로 구성된 다(Figure 3.2, 3.3).

Figure 3.1 Site map of study area.

Kad : Acidic dyke(Cretaceous period of mesozoic era)

- Psc : Schist tribe(Paleozoic era)
- Pq : Quartzite(Paleozoic era)
- ign : Silica layer(Paleozoic era)
- $\ensuremath{\mathsf{Qa}}$: Diluvium and Alluvium(Quarternary period of cenozoic era)
- PCEgn : Granite gneiss

Figure 3.2 Geological map of study area.

Figure 3.3 Geology genealogy of study area.

3.2 실내물성실험

3.2.1 실내물성실험의 종류

연구지역에서 블록 시험편을 채취하여 코어 천공기를 사용하여 NX 크기의 코어 시험 편을 시추하였다. 다양한 실내물성실험을 위해 ISRM 규정에 맞도록 시험편을 성형·제작 하였다. 실내물성실험의 종류는 비중, 공극률, 탄성파 전파속도, 일축압축강도이며, 실내 물성실험은 각 5회씩 실시하였다.

위에 열거한 각 시험은 ISRM(International Society for Rock Mechanics)의 제안방법 과 ASTM(American Society for Testing Materials)의 표준시험법에 의거하여 실시하였 다.

3.2.2 실내물성실험에 의한 결과분석

비중, 공극률은 METTLER TOLEDO사의 AG Balance, Desiccator 및 건조오븐을 사 용하여 구하였다. 그 결과 연구지역의 비중은 2.497~2.576g/cm³ 범위로 분포하며 평균 2.546g/cm³이고, 공극률은 2.032~3.471% 범위로 분포하며 평균 2.648%로 측정되었다.

탄성파 전파속도(P파 속도)는 OYO사의 New Sonicviewer로 P파 속도를 구하였다. 그 결과 연구지역의 P파 속도는 3288~3827m/s 범위로 분포하며 평균 3581m/s로 측정되었 다.

일축압축강도는 만능재료시험기(Universal Testing Machine, UTM, Model No. KPUT-100)를 사용하여 구하였다. 그 결과 연구지역의 일축압축강도는 64.53~75.71MPa 범위로 분포하며 평균 719MPa로 측정되었다.

탄성계수는 일축압축시험 시 구한 강도와 일축시험편에 부착한 CAS사의 스트레인 게 이지를 통해 VISHAY사의 Portable strain indicator에서 읽은 축 방향 변형률로 나누어 구하였다. 그 결과 연구지역의 탄성계수는 2.60~2.91×10⁴MPa 범위로 분포하며 평균 2.764×10⁴MPa로 측정되었다.

다음 Table 3.1은 조사지역의 주요 실내실험 결과를 나타내었다.

Physical properties	No.	Results
	1	2.572
	2	2.564
Specific gravity	3	2.521
(g/cm^3)	4	2.497
	5	2.576
	Average	2.546
	1	2.467
	2	3.471
Porosity	3	3.234
(%)	4	2.036
	5	2.032
	Average	2.648
	1	3827
	2	3288
P-wave velocities	3	3756
(m/s)	4	3474
	5	3562
	Average	3581
	1	70.90
	2	75.71
Uniaxial compressive strength	3	68.74
(MPa)	4	64.53
	5	72.67
	Average	70.51
	1	2.91
	2	2.76
Young's modulus	3	2.83
$(\times 10^4 MPa)$	4	2.60
	5	2.72
	Average	2.764

Table 3.1 Results of rock property tests

3.3 현장실험개요

발파공간 지연시차와 기폭위치에 따라 발파에 의한 진동의 전파 특성을 파악하기 위해 서는 정해진 공간격, 저항선, 천공장, 그리고 장약량 등에 따라 실규모 시험발파를 하고 이때에 발생하는 지반진동을 계측기를 사용하여 측정 한다. 그리고 측정된 자료를 분석 하여 발파공간 지연시차와 기폭위치에 따라 발생할 수 있는 진동정도를 예측하여 지연시 차와 기폭위치에 따른 지반진동의 전파 특성을 규명한다. 본 연구에서는 지연시차와 기 폭위치에 따른 1~3공 발파를 통해 진동을 계측하는 방식으로 현장실험을 진행하였다.

3.4 현장실험 방법 및 결과

3.4.1 실험 방법

본 연구의 현장실험지역은 전라북도 군산시 성산면 성덕리 산 2-1번지에 위치한 연구 지역에서 총 37회 발파에 대한 현장실험을 실시하였다.

실험 조건은 Table 3.2와 같다. 1~3, 5~13, 15~16, 19, 22, 25, 27, 29, 31, 33, 35, 37회 발파는 공경 Φ76mm, 공간격 3.0m, 저항선 2.7m, 천공장 9.0m, 그리고 지발당 장약량 14kg, 4, 14, 17~18, 20~21, 23~24, 26, 28, 30, 32, 34, 36회 발파는 공경 Φ76mm, 공간격 2.0m, 저항선 1.8m, 천공장 6.0m, 그리고 지발당 장약량 6.4kg을 사용하여 1~3공 시험발 파를 실시하였다.

폭약은 약경이 Φ50mm인 에멀젼 폭약을 사용하였고, 뇌관은 순발 전기뇌관을 사용하였다. 그리고 발파공간의 지연시차는 지발뇌관의 발화오차를 배제하기 위해 다단식 발파 기를 사용하여 지연시차를 부여하였고, 발파패턴은 Figure 3.4와 같다.

Table 3.2 Experimental conditions

Blasting No.	1	2	3	5	6	7	8	9, 10	11, 12, 13	15, 16	19, 27, 33	22, 29, 35	25, 31, 37
Explosive diameter (mm)		Emulsion type Φ50											
Detonator									DS Detonat	or			
Diameter (mm)		Φ76											
Drilling Length (m)		9.0											
Spacing (m)		3.0											
Burden (m)		2.7											
Charge per hole (kg)		14											
Charge per delay (kg)		14											
Priming location	Тор					Middle			Bot	tom	Тор	Middle	Bottom
Delay time (ms)	20	20	25	0	20	20	20	25	20	25	0	0	0
Blasting holes (ea)	2	3	3	1	2	3	2	2	2	2	1	1	1

Table 3.2 Continued

Case	4	14	17	18, 20, 26, 32	21, 23, 28, 34	24, 30, 36			
Explosive diameter (mm)		Emulsion type Φ50							
Detonator			DS D	etonator					
Diameter (mm)		Φ76							
Drilling Length (m)		6.0							
Spacing (m)	2.0								
Burden (m)	1.8								
Charge per hole (kg)	6.4								
Charge per delay (kg)		6.4							
Priming location	Тор	Bottom	Bottom	Тор	Middle	Bottom			
Delay time (ms)	25	20	25	0	0	0			
Blasting holes (ea)	2	2	2	1	1	1			

(a) Blasting pattern for holes of Blasting No.
1~3, 5~13, 15~16, 19, 22, 25, 27, 29, 31, 33, 35, 37

(b) Blasting pattern for holes of Blasting No.
4, 14, 17~18, 20~21, 23~24, 26, 28, 30, 32, 34, 36

Figure 3.4 Blasting pattern

3.4.2 현장실험의 계측

현장실험의 계측은 PMT사의 eXAD-8 6대와 Instantel사의 Blastmate II, III 30대의 계측기기를 사용하여 계측을 실시하였다. 실험 계측에 사용된 eXAD-8와 Blastmate II, III는 현장의 발파 및 건설장비 등을 이용한 작업 시 발생되는 소음, 진동 등을 계측하여 진행, 접선, 수직 및 주파수 등을 현장에서 인쇄하여 진동 계측 값을 손쉽게 확인할 수 있으며, 지발당 장약량(charge weight per delay)과 거리(distance)를 수동으로 입력하면 이를 환산거리(scaled distance)로 자동으로 계산하는 기능뿐만 아니라, 진동측정의 주파 수 및 시간이력 등을 상세히 보여주는 국내에서 가장 널리 사용되고 있는 진동 측정기기 라 할 수 있다.

eXAD-8와 Blastmate II, III의 진동측정 범위는 0.013~25.4cm/s이다. 주파수 분석을 수행하고자 할 때 모두 ZC(Zero Cross Frequency)와 고속 푸리에 변환(FFT, Fast Fourier Transform)이 가능하며 USBM/OSMRE와 DIN 4150 주파수 분석이 가능하다. Table 3.3은 사용된 계측기기의 특성을 나타낸다.

Figure 3.5는 현장 실험장소를 보여주며, Figure 3.6은 계측 장면이다.

	Section	Specifications		
	Max. range	Up to 254mm/s		
	Trigger level	0.13~253.9mm/s step of 0.1mm/s		
Seismic	Peak acceleration	$0.01 \sim 30$ g calculated		
	Peak displacement	0.0025~38.1mm calculated		
	Frequency analysis	USBM/OSMRE & DIN 4150		
Linear & C	Range	88 to 142dB(0.5~250Pa)		
weight air	Trigger levels	100, 102, 104 & 105~142dB in step of 1dB		
	Range	55 to 110dB		
A weight sound	Trigger levels	55.0~110.0dB in step of 0.2dB		
Sound	Frequency response	0.5~8KHz, impulse filtering		
Encartonary	Sampling rate	1,024samples/s		
Frequency	Frequency response	Seismic & linear air 1.5~250Hz		
Full	Record modes	Manual, single shot, continuous, auto		
waveform recording	Fixed record time	1 to 10sec, selectable in 1 sec increments +0.25 pretrigger		
	Record method	Record to memory & to protter output		
Strip chart	Intervals	5sec, 15sec, 1min., selectable		
recording	Analysis	Frequency of peak & peak vector sum for each interval		

Table 3.3 Instrument specifications

(a) Study area I

(b) Study area II

Figure 3.5 Foreground of study area

(a) Study area I

(b) Study area II

Figure 3.6 Measurements of study area

3.4.3 현장실험 계측 결과

Table 3.2의 발파조건과 Figure 3.4의 발파패턴으로 37회에 걸쳐 실시된 지반진동 계측 결과 총 1025개의 자료를 획득하였으며 계측된 자료는 부록에 첨부하였다. 그리고 지반 진동의 계측은 Figure 3.6과 같이 10~36대의 계측기를 사용하여 발파 지점과 7~227m 의 거리에서 행해 졌다.

부록에 첨부된 현장실험 계측결과표에 따르면 접선성분(Transverse component) 입자 속도의 경우 0.127~112mm/s, 수직성분(Vertical component) 입자속도의 경우 0.127~ 188mm/s, 진행성분(Longitudinal component) 입자속도의 경우 0.1278~206mm/s, 최대 입자속도(Peak Particle Velocity, PPV)의 경우 0.191~206mm/s, 최대벡터합(Peak Vector Sum, PVS) 입자속도의 경우 0.197~234mm/s로 계측되었다.

Figure 3.7은 각각의 지연시차, 기폭위치 그리고 이격거리에 따른 대표적인 지반진동 세 성분의 파형을 나타내었다.

Figure 3.7 Ground vibration time history of measurement result:

(a) delay time=20ms, priming location=top, distance=82m, (b) 25ms, top, 64m, (c) 25ms, top, 60m, (d) 25ms, middle, 82m, (e) 20ms, bottom, 127m, (f) 20ms, bottom, 130m, (g) 20ms, bottom, 135m, (h) 25ms, bottom, 138m, (i) 25ms, bottom, 143m, (j) 0ms, top, 98m, (k) 20ms, middle, 102m, (l) 20ms, middle, 106m, (m) 20ms, middle, 110m, (n) 25ms, middle, 114m

4. 분석

지표상에 도달하는 복합파의 성분은 측정하는 방향에 따라 크게 3가지로 접선방향 (transverse), 수직방향(vertical), 진행방향(longitudinal)의 성분으로 나뉜다. 지반진동에 서 접선성분의 경우 S파(횡파)가, 수직성분에는 R파(표면파)가 진행성분의 경우 P파(종 파)가 우세하며 이 3성분은 크기 및 진동주파수가 각각 다르고 복합파이기 때문에 운동 하는 모양이 대단히 불규칙화고 복잡하다.

R파에 의한 입자운동은 회귀성타원의 경로를 따르고, 전단방향의 변위가 없으므로 종 파와 유사한 성질을 갖는다. P파, S파, R파의 운동모양은 폭발위치가 깊지 않거나 암반 이 대단히 균질한 경우가 아니면 입체파는 보통 방출에너지의 절반 이하로 작게 나타나 고 나머지 암석의 표면이나 내부의 자유면을 따라 이동하는 표면파가 된다. 그러므로 지 표 부근에서 실시한 발파작업에 의한 지반진동에는 입체파보다 표면파에 더 많은 에너지 가 작용한다. 반면 지반진동을 측정하는 지점이 발파 지점에서 가까우면 이러한 모든 파 는 구분되지 않고 합성되어 함께 복합파 형태로 나타난다.

이에 본 장에서는 최대입자속도(PPV)와 최대벡터합(PVS) 분석뿐만 아니라 PPV와 PVS에 영향을 미치는 성분별 입자속도의 분석을 통해 지연시차와 기폭위치에 따른 우 세 성분을 예측하였다.

현장실험을 통해 계측된 지반진동 데이터(부록 참고)에서 지연시차와 기폭위치별로 성 분별(T, V, L) 진동데이터와 최대입자속도(Peak Particle Velocity, PPV)와 최대벡터합 (Peak Vector Sum, PVS) 데이터를 이용하여 회귀분석을 실시하였다. 입지상수 K와 n을 구하기 위하여 진동속도와 환산거리의 로그-로그 그래프 상에서 1차 상관관계를 보이는 특성을 이용하였다. 그리고 통계처리하여 지반진동 예측식을 구하였다. 지반진동 데이터 의 전산처리는 TunDesignTM 4의 보조프로그램인 TDTestBlast를 사용하였다.

Case별로 분석한 지연시차, 기폭위치의 조건은 Table 4.1과 같다.
Case No.	Delay time (ms)	Priming location	Applied Blasting No.	Number of data
1	0	top	5, 18~20, 26~27, 32~33	184
2	0	middle	21~23, 28~29, 34~35	156
3	0	bottom	24~25, 30~31, 36~37	141
4	20	top	1~2	68
5	20	middle	6~8	102
6	20	bottom	11~14	136
7	25	top	3~4	68
8	25	middle	9~10	68
9	25	bottom	15~17	102

Table 4.1 Case conditions

4.1 지연시차가 0ms이고 정기폭(Case No. 1)의

회귀분석 및 예측

4.1.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측

Table 4.2는 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 0ms이고, 정기폭 에서 각 성분별 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이다.

Table 4.2의 성분별 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과는 Figure 4.1과 같다. 여기서, V_T는 접선방향성분의 진동속도, V_v는 수직방향성분의 진동 속도, V_L은 진행방향성분의 진동속도이다.

SRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/2} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 6.0까지는 수직방향 성분이 가장 크게, 접선방향 성분이 가장 작게, 6.0에서 65.1까지는 진행방향 성 분이 가장 크게, 접선방향 성분이 가장 작게, 65.1에서 100까지는 진행방향 성분이 가장 크게, 수직방향 성분이 가장 작게 예측되었다.

$1.0 \leq SD < 6.0 kg/w^{1/2}$	$V_V > V_L > V_T$
$6.0 \leq SD < 65.1 kg/w^{1/2}$	$V_L \ > \ V_V \ > \ V_T$
$65.1 \leq \text{SD} \leq 100 \text{kg/w}^{1/2}$	$V_L \ > \ V_T \ > \ V_V$

CRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/3} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 6.4까지는 수직방향 성분이 가장 크게, 접선방향 성분이 가장 작게, 6.4에서 100까지는 진행방향 성 분이 가장 크게, 수직방향 성분이 가장 작게 예측되었다.

1.0	\leq	SD ·	<	$6.4 \text{kg/w}^{1/3}$	$V_{\rm V}$	>	V_{L}	>	V_{T}
6.4	\leq	SD ·	<	$100 \text{kg/w}^{1/3}$	V_{L}	>	V_V	>	V_{T}

Transverse component velocity				
Square root method	Prediction	50%	$V_{50} = 72.03 \left(\frac{D}{\sqrt{W}}\right)^{-1.85}$	
	equation	95%	$V_{95} = 200.58 \left(\frac{D}{\sqrt{W}}\right)^{-1.85}$	
	R		0.832	
	Prediction	50%	$V_{50} = 133.52 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.82}$	
Cube root method	equation	95%	$V_{95} = 390.05 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.82}$	
	R		0.831	
	Verti	cal compone	nt velocity	
	Prediction	50%	$V_{50} = 88.75 \left(\frac{D}{\sqrt{W}}\right)^{-1.90}$	
Square root method	equation	95%	$V_{95} = 220.82 \left(\frac{D}{\sqrt{W}}\right)^{-1.90}$	
	R		0.878	
	Prediction	50%	$V_{50} = 161.27 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.86}$	
method	equation	95%	$V_{95} = 415.10 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.86}$	
	R		0.872	
	Longitu	idinal compo	nent velocity	
	Prediction	50%	$V_{50} = 76.92 \left(\frac{D}{\sqrt{W}}\right)^{-1.82}$	
Square root method	equation	95%	$V_{95} = 195.76 \left(\frac{D}{\sqrt{W}}\right)^{-1.82}$	
	R		0.882	
Cube meet	Prediction	50%	$V_{50} = 139.04 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.78}$	
Cube root method	equation	95%	$V_{95} = 330.09 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.78}$	
	R		0.879	

Table 4.2 Prediction equation of ground vibration for component velocity(Case No. 1)

Figure 4.1 Relationship between T, V, L component velocity and scaled distance(Case No. 1).

4.1.2 PPV와 PVS의 회귀분석 및 예측

Table 4.3은 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 0ms이고, 정기폭 에서 PPV와 PVS 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이다. Table 4.3의 PPV와 PVS의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과 는 Figure 4.2와 같다. 여기서, V_{PPV}는 최대입자속도, V_{PVS}는 최대벡터합이다.

	•				
	Peak particle velocity				
	Prediction	50%	$V_{50} = 104.47 \left(\frac{D}{\sqrt{W}}\right)^{-1.85}$		
Square root method	equation	95%	$V_{95} = 257.03 \left(\frac{D}{\sqrt{W}}\right)^{-1.85}$		
	R		0.895		
	Prediction	50%	$V_{50} = 194.31 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.82}$		
Cube root method	equation	95%	$V_{95} = 498.85 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.82}$		
	R		0.894		
		Peak vector	sum		
	Prediction	50%	$V_{50} = 124.50 \left(\frac{D}{\sqrt{W}}\right)^{-1.86}$		
Square root method	equation	95%	$V_{95} = 286.85 \left(\frac{D}{\sqrt{W}}\right)^{-1.86}$		
	R		0.900		
Cube root method	Prediction	50%	$V_{50} = 228.41 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.83}$		
	equation	95%	$V_{95} = 567.71 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.83}$		
	R		0.897		

Table 4.3 Prediction equation of ground vibration for peak particle velocity(PPV) and peak vector sum(PVS)(Case No. 1)

Figure 4.2 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 1).

4.2 지연시차가 0ms이고 중간기폭(Case No. 2)의

회귀분석 및 예측

4.2.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측

Table 4.4는 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 Oms이고, 중간기 폭에서 각 성분별 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이다. Table 4.4의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과는 Figure 4.3과 같다. 여기서, V_T는 접선방향성분의 진동속도, V_V는 수직방향성분의 진동속도, V_L은 진 행방향성분의 진동속도이다.

SRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/2} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과 수직방향 성분의 진동이 가장 크게, 접선방향 성분의 진동이 작게 예측되었다.

$$1.0 \leq SD < 100 \text{kg/w}^{1/2}$$
 $V_L > V_V > V_T$

CRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/3} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과 진행방향 성분의 진동이 가장 크게, 접선방향 성분의 진동이 작게 예측되었다.

$$1.0 \leq SD < 100 \text{kg/w}^{1/3}$$
 $V_L > V_V > V_T$

Transverse component velocity				
Square root method	Prediction	50%	$V_{50} = 60.70 \left(\frac{D}{\sqrt{W}}\right)^{-1.78}$	
	equation	95%	$V_{95} = 134.58 \left(\frac{D}{\sqrt{W}}\right)^{-1.78}$	
	R		0.899	
	Prediction	50%	$V_{50} = 126.31 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.80}$	
Cube root method	equation	95%	$V_{95} = 300.52 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.80}$	
	R		0.893	
	Verti	cal compone	nt velocity	
	Prediction	50%	$V_{50} = 74.21 \left(\frac{D}{\sqrt{W}}\right)^{-1.82}$	
Square root method	equation	95%	$V_{95} = 147.96 \left(\frac{D}{\sqrt{W}}\right)^{-1.82}$	
	R		0.922	
	Prediction	50%	$V_{50} = 154.73 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.84}$	
method	equation	95%	$V_{95} = 342.12 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.84}$	
	R		0.913	
	Longitu	idinal compo	nent velocity	
	Prediction	50%	$V_{50} = 79.40 \left(\frac{D}{\sqrt{W}}\right)^{-1.77}$	
Square root method	equation	95%	$V_{95} = 187.56 \left(\frac{D}{\sqrt{W}}\right)^{-1.77}$	
	R		0.908	
	Prediction	50%	$V_{50} = 168.89 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.81}$	
method	equation	95%	$V_{95} = 414.26 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.81}$	
	R		0.906	

Table 4.4 Prediction equation of ground vibration for component velocity(Case No. 2)

Figure 4.3 Relationship between T, V, L component velocity and scaled distance(Case No. 2).

4.2.2 PPV와 PVS의 회귀분석 및 예측

Table 4.5는 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 0ms이고, 중간기 폭에서 PPV와 PVS 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이 다.

Table 4.5의 PPV와 PVS의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과 는 Figure 4.4와 같다. 여기서, V_{PPV}는 최대입자속도, V_{PVS}는 최대벡터합이다.

Table 4.5 Prediction equation of ground vibration for peak particle velocity(PPV) and peak vector sum(PVS)(Case No. 2)

Peak particle velocity				
	Prediction	50%	$V_{50} = 107.84 \left(\frac{D}{\sqrt{W}}\right)^{-1.83}$	
Square root method	equation	95%	$V_{95} = 231.42 \left(\frac{D}{\sqrt{W}}\right)^{-1.83}$	
	R		0.934	
Cube root method	Prediction	50%	$V_{50} = 234.62 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.86}$	
	equation	95%	$V_{95} = 473.85 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.86}$	
	R		0.931	
		Peak vector	sum	
	Prediction	50%	$V_{50} = 120.50 \left(\frac{D}{\sqrt{W}}\right)^{-1.82}$	
Square root method	equation	95%	$V_{95} = 245.24 \left(\frac{D}{\sqrt{W}}\right)^{-1.82}$	
	R		0.937	
Cube root method	Prediction	50%	$V_{50} = 258.77 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.85}$	
	equation	95%	$V_{95} = 525.77 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.85}$	
	R		0.933	

Figure 4.4 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 2).

4.3 지연시차가 0ms이고 역기폭(Case No. 3)의

회귀분석 및 예측

4.3.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측

Table 4.6은 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 0ms이고, 역기폭에서 각 성분별 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이다.

Table 4.6의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과는 Figure 4.5와 같다. 여기서, V_T는 접선방향성분의 진동속도, V_V는 수직방향성분의 진동속도, V_L은 진 행방향성분의 진동속도이다.

SRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/2} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 2.4까지는 수직방향 성분이 가장 크게, 접선방향 성분이 가장 작게, 2.4에서 100까지는 진행방향 성 분이 가장 크게, 접선방향 성분이 가장 작게 예측되었다.

SRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/3} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 1.2까지는 수직방향 성분의 진동이 가장 크게, 진행방향 성분의 진동이 작게, 1.2에서 4.1까지는 수 직방향 성분이 가장 크게, 접선방향 성분이 가장 작게, 4.1에서 100까지는 진행방향 성분 이 가장 크게, 접선방향 성분이 가장 작게 예측되었다.

$1.0 \leq SD < 1.2 kg/w^{1/3}$	$V_V \ > \ V_T \ > \ V_L$
$1.2 \leq \mathrm{SD} < 4.1 \mathrm{kg/w}^{1/3}$	$V_V \ > \ V_L \ > \ V_T$
$4.1 \leq \text{SD} \leq 100 \text{kg/w}^{1/3}$	$V_L \ > \ V_V \ > \ V_T$

Transverse component velocity				
Square root method	Prediction	50%	$V_{50} = 66.55 \left(\frac{D}{\sqrt{W}}\right)^{-1.90}$	
	equation	95%	$V_{95} = 162.43 \left(\frac{D}{\sqrt{W}}\right)^{-1.90}$	
	R		0.906	
	Prediction	50%	$V_{50} = 143.74 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.92}$	
Cube root method	equation	95%	$V_{95} = 358.96 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.92}$	
	R		0.901	
	Verti	cal compone	nt velocity	
	Prediction	50%	$V_{50} = 75.32 \left(\frac{D}{\sqrt{W}}\right)^{-1.91}$	
Square root method	equation	95%	$V_{95} = 195.04 \left(\frac{D}{\sqrt{W}}\right)^{-1.91}$	
	R		0.904	
Culturent	Prediction	50%	$V_{50} = 162.73 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.92}$	
method	equation	95%	$V_{95} = 455.52 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.92}$	
	R		0.899	
	Longitu	idinal compo	nent velocity	
	Prediction	50%	$V_{50} = 69.04 \left(\frac{D}{\sqrt{W}}\right)^{-1.81}$	
Square root method	equation	95%	$V_{95} = 165.43 \left(\frac{D}{\sqrt{W}}\right)^{-1.81}$	
	R		0.904	
Cube root method	Prediction	50%	$V_{50} = 141.53 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.82}$	
	equation	95%	$V_{95} = 346.22 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.82}$	
	R		0.897	

Table 4.6 Prediction equation of ground vibration for component velocity(Case No. 3)

Figure 4.5 Relationship between T, V, L component velocity and scaled distance(Case No. 3).

4.3.2 PPV와 PVS의 회귀분석 및 예측

Table 4.7은 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 0ms이고, 역기폭 에서 PPV와 PVS 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이다. Table 4.7의 PPV와 PVS의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과 는 Figure 4.6과 같다. 여기서, V_{PPV}는 최대입자속도, V_{PVS}는 최대벡터합이다.

Peak particle velocity				
	Prediction	50%	$V_{50} = 92.79 \bigg(\frac{D}{\sqrt{W}}\bigg)^{-1.86}$	
Square root method	equation	95%	$V_{95} = 204.95 \left(\frac{D}{\sqrt{W}}\right)^{-1.86}$	
	R		0.921	
	Prediction	50%	$V_{50} = 197.55 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.88}$	
method	equation	95%	$V_{95} = 441.78 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.88}$	
	R		0.915	
		Peak vector	sum	
	Prediction	50%	$V_{50} = 115.85 \left(\frac{D}{\sqrt{W}}\right)^{-1.90}$	
Square root method	equation	95%	$V_{95} = 238.70 \left(\frac{D}{\sqrt{W}}\right)^{-1.90}$	
	R		0.929	
Cube root method	Prediction	50%	$V_{50} = 249.75 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.91}$	
	equation	95%	$V_{95} = 557.42 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.91}$	
	R		0.923	

Table 4.7 Prediction equation of ground vibration for peak particle velocity(PPV) and peak vector sum(PVS)(Case No. 3)

Figure 4.6 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 3).

4.4 지연시차가 20ms이고 정기폭(Case No. 4)의

회귀분석 및 예측

4.4.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측

Table 4.8은 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 20ms이고, 정기 폭에서 각 성분별 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이다. Table 4.8의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과는 Figure 4.7과 같다. 여기서, V_T는 접선방향성분의 진동속도, V_V는 수직방향성분의 진동속도, V_L은 진 행방향성분의 진동속도이다.

SRSD의 성분별 평균(50%) 지반진동 예측식에서 1.0~100kg/w^{1/2} 범위의 환산거리에 따라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 21.7까 지는 수직방향 성분의 진동이 가장 크게, 접선방향 성분의 진동이 작게, 21.7에서 29.1까 지는 수직방향 성분이 가장 크게, 진행방향 성분이 가장 작게, 29.1에서 31.2까지는 접선 방향 성분이 가장 크게, 진행방향 성분이 가장 작게, 31.2에서 100까지는 접선방향 성분 이 가장 크게, 수직방향 성분이 가장 작게 예측되었다.

$1.0 \leq SD < 21.7 kg/w^{1/2}$	$V_V > V_L > V_T$
$21.7 \leq SD < 29.1 \text{kg/w}^{1/2}$	$V_V \ > \ V_T \ > \ V_L$
$29.1 \leq SD < 31.2 \text{kg/w}^{1/2}$	$V_T \ > \ V_V \ > \ V_L$
$31.2 \leq \text{SD} \leq 100 \text{kg/w}^{1/2}$	$V_T \ > \ V_L \ > \ V_V$

CRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/3} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 32.9까지 는 수직방향 성분의 진동이 가장 크게, 접선방향 성분의 진동이 작게, 32.9에서 45.1까지 는 수직방향 성분이 가장 크게, 진행방향 성분이 가장 작게, 45.1에서 48.7까지는 접선방 향 성분이 가장 크게, 진행방향 성분이 가장 작게, 48.7에서 100까지는 접선방향 성분이 가장 크게, 수직방향 성분이 가장 작게 예측되었다.

$1.0 \leq \text{SD} < 32.9 \text{kg/w}^{1/3}$	$V_V \ > \ V_L \ > \ V_T$
$32.9 \leq SD < 45.1 \text{kg/w}^{1/3}$	$V_V \ > \ V_T \ > \ V_L$
$45.1 \leq \text{SD} < 48.7 \text{kg/w}^{1/3}$	$V_T \ > \ V_V \ > \ V_L$
$48.7 \leq \text{SD} \leq 100 \text{kg/w}^{1/3}$	$V_T \ > \ V_L \ > \ V_V$

Transverse component velocity				
	Prediction	50%	$V_{50} = 104.35 \left(\frac{D}{\sqrt{W}}\right)^{-1.56}$	
Square root method	equation	95%	$V_{95} = 223.85 \left(\frac{D}{\sqrt{W}}\right)^{-1.56}$	
	R		0.851	
	Prediction	50%	$V_{50} = 207.60 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.56}$	
method	equation	95%	$V_{95} = 445.33 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.56}$	
	R		0.851	
Vertical component velocity				
	Prediction	50%	$V_{50} = 712.00 \left(\frac{D}{\sqrt{W}}\right)^{-2.13}$	
Square root method	equation	95%	$V_{95} = 1561.32 \left(\frac{D}{\sqrt{W}}\right)^{-2.13}$	
	R		0.891	
Culturent	Prediction	50%	$V_{50} = 1820.02 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.13}$	
method	equation	95%	$V_{95} = 3991.06 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.13}$	
	R		0.891	
	Longitu	idinal compo	nent velocity	
	Prediction	50%	$V_{50} = 146.37 \left(\frac{D}{\sqrt{W}}\right)^{-1.67}$	
Square root method	equation	95%	$V_{95} = 264.65 \left(\frac{D}{\sqrt{W}}\right)^{-1.67}$	
	R		0.918	
Cube rest	Prediction	50%	$V_{50} = 304.87 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.67}$	
method	equation	95%	$V_{95} = 551.23 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.67}$	
	R		0.918	

Table 4.8 Prediction equation of ground vibration for component velocity(Case No. 4)

Figure 4.7 Relationship between T, V, L component velocity and scaled distance(Case No. 4).

4.4.2 PPV와 PVS의 회귀분석 및 예측

Table 4.9는 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 20ms이고, 정기 폭에서 PPV와 PVS 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이 다.

Table 4.9의 PPV와 PVS의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과 는 Figure 4.8과 같다. 여기서, V_{PPV}는 최대입자속도, V_{PVS}는 최대벡터합이다.

Table 4.9 Prediction equation of ground vibration for peak particle velocity(PPV) and peak vector sum(PVS)(Case No. 4)

Peak particle velocity			
	Prediction	50%	$V_{50} = 369.86 \left(\frac{D}{\sqrt{W}}\right)^{-1.84}$
Square root method	equation	95%	$V_{95} = 667.23 \left(\frac{D}{\sqrt{W}}\right)^{-1.84}$
	R		0.917
	Prediction	50%	$V_{50} = 831.99 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.84}$
method	equation	95%	$V_{95} = 1500.93 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.84}$
	R		0.917
Peak vector sum			
	Prediction	50%	$V_{50} = 409.94 \left(\frac{D}{\sqrt{W}}\right)^{-1.83}$
Square root method	equation	95%	$V_{95} = 710.28 \left(\frac{D}{\sqrt{W}}\right)^{-1.83}$
	R		0.917
	Prediction	50%	$V_{50} = 918.69 \bigg(\frac{D}{\sqrt[3]{W}}\bigg)^{-1.83}$
Cube root method	equation	95%	$V_{95} = 1591.78 \left(rac{D}{\sqrt[3]{W}} ight)^{-1.83}$

Figure 4.8 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 4).

4.5 지연시차가 20ms이고 중간기폭(Case No. 5)의

회귀분석 및 예측

4.5.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측

Table 4.10은 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 20ms이고, 중간 기폭에서 각 성분별 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이다. Table 4.10의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과는 Figure 4.9 와 같다. 여기서, V_T는 접선방향성분의 진동속도, V_v는 수직방향성분의 진동속도, V_L은 진행방향성분의 진동속도이다.

SRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/2} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 44.2까지 는 진행방향 성분의 진동이 가장 크게, 접선방향 성분의 진동이 작게, 44.2에서 46.0까지 는 진행방향 성분이 가장 크게, 수직방향 성분이 가장 작게, 46.0에서 100까지는 접선방 향 성분이 가장 크게, 수직방향 성분이 가장 작게 예측되었다.

$1.0 \leq SD < 44.2 \text{kg/w}^{1/2}$	$V_L \ > \ V_V \ > \ V_T$
$44.2 \leq \text{SD} < 46.0 \text{kg/w}^{1/2}$	$V_L \ > \ V_T \ > \ V_V$
$46.0 \leq \text{SD} < 100 \text{kg/w}^{1/2}$	$V_T > V_L > V_V$

CRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/3} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 68.4까지 는 진행방향 성분의 진동이 가장 크게, 접선방향 성분의 진동이 작게, 68.4에서 71.0까지 는 진행방향 성분이 가장 크게, 수직방향 성분이 가장 작게, 71.0에서 100까지는 접선방 향 성분이 가장 크게, 수직방향 성분이 가장 작게 예측되었다.

$1.0 \leq SD < 68.4 kg/w^{1/3}$	V_L >	>	V_V 2	>	V_{T}
$68.4 ~\leq~ {\rm SD}~<~71.0 {\rm kg/w}^{1/3}$	VL >	>	V _T 2	>	$V_{\rm V}$
$71.0 \leq SD < 100 \text{kg/w}^{1/3}$	V _T 2	>	V _L :	>	$V_{\rm V}$

Transverse component velocity				
	Prediction	50%	$V_{50} = 37.12 \left(\frac{D}{\sqrt{W}}\right)^{-1.55}$	
Square root method	equation	95%	$V_{95} = 78.37 \left(\frac{D}{\sqrt{W}}\right)^{-1.55}$	
	R		0.847	
	Prediction	50%	$V_{50} = 73.46 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.55}$	
method	equation	95%	$V_{95} = 155.10 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.55}$	
	R		0.847	
Vertical component velocity				
	Prediction	50%	$V_{50} = 162.56 \left(\frac{D}{\sqrt{W}}\right)^{-1.94}$	
Square root method	equation	95%	$V_{95} = 417.44 \left(\frac{D}{\sqrt{W}}\right)^{-1.94}$	
	R		0.815	
	Prediction	50%	$V_{50} = 381.53 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.94}$	
method	equation	95%	$V_{95} = 979.71 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.94}$	
	R		0.815	
	Longitu	idinal compo	nent velocity	
C t	Prediction	50%	$V_{50} = 178.36 \left(\frac{D}{\sqrt{W}}\right)^{-1.96}$	
Square root method	equation	95%	$V_{95} = 388.39 \left(\frac{D}{\sqrt{W}}\right)^{-1.96}$	
	R		0.849	
Cube rest	Prediction	50%	$V_{50} = 421.68 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.96}$	
method	equation	95%	$V_{95} = 918.25 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.96}$	
	R		0.849	

Table 4.10 Prediction equation of ground vibration for component velocity(Case No. 5)

Figure 4.9 Relationship between T, V, L component velocity and scaled distance(Case No. 5).

4.5.2 PPV와 PVS의 회귀분석 및 예측

Table 4.11은 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 20ms이고, 중간 기폭에서 PPV와 PVS 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식 이다.

Table 4.11의 PPV와 PVS의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과는 Figure 4.10과 같다. 여기서, V_{PPV}는 최대입자속도, V_{PVS}는 최대벡터합이다.

Table 4.11 Prediction equation of ground vibration for peak particle velocity(PPV) and peak vector sum(PVS)(Case No. 5)

Peak particle velocity			
	Prediction	50%	$V_{50} = 225.36 \left(\frac{D}{\sqrt{W}}\right)^{-1.97}$
Square root method	equation	95%	$V_{95} = 464.52 \left(\frac{D}{\sqrt{W}}\right)^{-1.97}$
	R		0.875
	Prediction	50%	$V_{50} = 534.91 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.97}$
method	equation	95%	$V_{95} = 1102.60 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.97}$
	R		0.875
Peak vector sum			
-			
	Prediction	50%	$V_{50} = 273.33 \left(\frac{D}{\sqrt{W}}\right)^{-1.98}$
Square root method	Prediction equation	50% 95%	$V_{50} = 273.33 \left(\frac{D}{\sqrt{W}}\right)^{-1.98}$ $V_{95} = 577.20 \left(\frac{D}{\sqrt{W}}\right)^{-1.98}$
Square root method	Prediction equation R	50% 95%	$V_{50} = 273.33 \left(\frac{D}{\sqrt{W}}\right)^{-1.98}$ $V_{95} = 577.20 \left(\frac{D}{\sqrt{W}}\right)^{-1.98}$ 0.881
Square root method	Prediction equation R Prediction	50% 95% 50%	$V_{50} = 273.33 \left(\frac{D}{\sqrt{W}}\right)^{-1.98}$ $V_{95} = 577.20 \left(\frac{D}{\sqrt{W}}\right)^{-1.98}$ 0.881 $V_{50} = 652.03 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.98}$
Square root method Cube root method	Prediction equation R Prediction equation	50% 95% 50% 95%	$V_{50} = 273.33 \left(\frac{D}{\sqrt{W}}\right)^{-1.98}$ $V_{95} = 577.20 \left(\frac{D}{\sqrt{W}}\right)^{-1.98}$ 0.881 $V_{50} = 652.03 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.98}$ $V_{95} = 1376.88 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.98}$

Figure 4.10 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 5).

4.6 지연시차가 20ms이고 역기폭(Case No. 6)의

회귀분석 및 예측

4.6.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측

Table 4.12는 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 20ms이고, 역기 폭에서 각 성분별 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이다. Table 4.12의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과는 Figure 4.11 과 같다. 여기서, V_T는 접선방향성분의 진동속도, V_V는 수직방향성분의 진동속도, V_L은 진행방향성분의 진동속도이다.

SRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/2} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 25.8까지 는 진행방향 성분의 진동이 가장 크게, 접선방향 성분의 진동이 작게, 25.8에서 44.0까지 는 진행방향 성분이 가장 크게, 수직방향 성분이 가장 작게, 44.0에서 100까지는 접선방 향 성분이 가장 크게, 수직방향 성분이 가장 작게 예측되었다.

$1.0 \leq SD < 25.8 kg/w^{1/2}$	$V_L \ > \ V_V \ > \ V_T$
$25.8 ~\leq~ {\rm SD}~<~44.0 {\rm kg/w}^{1/2}$	$V_L \ > \ V_T \ > \ V_V$
$44.0 \leq \text{SD} \leq 100 \text{kg/w}^{1/2}$	$V_T > V_L > V_V$

CRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/3} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 39.9까지 는 진행방향 성분의 진동이 가장 크게, 접선방향 성분의 진동이 작게, 39.9에서 60.7까지 는 진행방향 성분이 가장 크게, 수직방향 성분이 가장 작게, 60.7에서 100까지는 접선방 향 성분이 가장 크게, 수직방향 성분이 가장 작게 예측되었다.

$1.0 \leq SD < 39.9 \text{kg/w}^{1/3}$	V _L >	>	V_V 2	>	V_{T}
$39.9 \leq SD < 60.7 kg/w^{1/3}$	VL 2	>	V _T 2	>	$V_{\rm V}$
$60.7 \leq SD \leq 100 \mathrm{kg/w}^{1/3}$	V _T 2	>	V_L :	>	$V_{\rm V}$

Transverse component velocity				
	Prediction	50%	$V_{50} = 43.01 \left(\frac{D}{\sqrt{W}}\right)^{-1.57}$	
Square root method	equation	95%	$V_{95} = 76.40 \left(\frac{D}{\sqrt{W}}\right)^{-1.57}$	
	R		0.849	
	Prediction	50%	$V_{50} = 75.36 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.55}$	
method	equation	95%	$V_{95} = 140.10 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.55}$	
	R		0.799	
Vertical component velocity				
	Prediction	50%	$V_{50} = 96.93 \left(\frac{D}{\sqrt{W}}\right)^{-1.82}$	
Square root method	equation	95%	$V_{95} = 194.02 \left(\frac{D}{\sqrt{W}}\right)^{-1.82}$	
	R		0.858	
	Prediction	50%	$V_{50} = 189.36 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.80}$	
method	equation	95%	$V_{95} = 403.44 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.80}$	
	R		0.810	
	Longitu	idinal compo	nent velocity	
	Prediction	50%	$V_{50} = 102.68 \left(\frac{D}{\sqrt{W}}\right)^{-1.80}$	
Square root method	equation	95%	$V_{95} = 194.51 \left(\frac{D}{\sqrt{W}}\right)^{-1.80}$	
	R		0.890	
Cube rest	Prediction	50%	$V_{50} = 210.34 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.80}$	
method	equation	95%	$V_{95} = 421.98 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.80}$	
	R		0.846	

Table 4.12 Prediction equation of ground vibration for component velocity(Case No. 6)

Figure 4.11 Relationship between T, V, L component velocity and scaled distance(Case No. 6).

4.6.2 PPV와 PVS의 회귀분석 및 예측

Table 4.13은 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 20ms이고, 역기 폭에서 PPV와 PVS 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이 다.

Table 4.13의 PPV와 PVS의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과는 Figure 4.12와 같다. 여기서, V_{PPV}는 최대입자속도, V_{PVS}는 최대벡터합이다.

Table 4.13 Prediction equation of ground vibration for peak particle velocity(PPV) and peak vector sum(PVS)(Case No. 6)

Peak particle velocity				
	Prediction	50%	$V_{50} = 135.78 \left(\frac{D}{\sqrt{W}}\right)^{-1.82}$	
Square root method	equation	95%	$V_{95} = 221.65 \left(\frac{D}{\sqrt{W}}\right)^{-1.82}$	
	R		0.926	
	Prediction	50%	$V_{50} = 286.81 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.82}$	
method	equation	95%	$V_{95} = 497.14 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.82}$	
	R		0.883	
Peak vector sum			sum	
	Prediction	50%	$V_{50} = 143.37 \left(\frac{D}{\sqrt{W}}\right)^{-1.79}$	
Square root method	equation	95%	$V_{95} = 228.33 \left(\frac{D}{\sqrt{W}}\right)^{-1.79}$	
	R		0.923	
	Prediction	50%	$V_{50} = 296.98 \left(\frac{D}{\sqrt[3]{W}} \right)^{-1.79}$	
method	equation	95%	$V_{95} = 501.36 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.79}$	

Figure 4.12 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 6).

4.7 지연시차가 25ms이고 정기폭(Case No. 7)의

회귀분석 및 예측

4.7.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측

Table 4.14는 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 25ms이고, 정기 폭에서 각 성분별 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이다. Table 4.14의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과는 Figure 4.13 과 같다. 여기서, V_T는 접선방향성분의 진동속도, V_v는 수직방향성분의 진동속도, V_L은 진행방향성분의 진동속도이다.

SRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/2} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 24.3까지 는 수직방향 성분의 진동이 가장 크게, 접선방향 성분의 진동이 작게, 24.3에서 25.6까지 는 수직방향 성분이 가장 크게, 진행방향 성분이 가장 작게, 25.6에서 26.4까지는 접선방 향 성분이 가장 크게, 진행방향 성분이 가장 작게, 26.4에서 100까지는 접선방향 성분이 가장 크게, 수직방향 성분이 가장 작게 예측되었다.

$1.0 \leq \text{SD} < 24.3 \text{kg/w}^{1/2}$	$V_V > V_L > V_T$
$24.3 \leq SD < 25.6 kg/w^{1/2}$	$V_V \ > \ V_T \ > \ V_L$
$25.6 \leq SD < 26.4 \text{kg/w}^{1/2}$	$V_T \ > \ V_V \ > \ V_L$
$26.4 \leq \text{SD} \leq 100 \text{kg/w}^{1/2}$	$V_T \ > \ V_L \ > \ V_V$

CRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/3} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 32.6까지 는 수직방향 성분의 진동이 가장 크게, 접선방향 성분의 진동이 작게, 32.6에서 33.8까지 는 수직방향 성분이 가장 크게, 진행방향 성분이 가장 작게, 33.8에서 34.5까지는 접선방 향 성분이 가장 크게, 진행방향 성분이 가장 작게, 34.5에서 100까지는 접선방향 성분이 가장 크게, 수직방향 성분이 가장 작게 예측되었다.

$1.0 \leq \text{SD} < 32.6 \text{kg/w}^{1/3}$	$V_V > V_L > V_T$
$32.6 \leq SD < 33.8 \text{kg/w}^{1/3}$	$V_V \ > \ V_T \ > \ V_L$
$33.8 \leq SD < 34.5 kg/w^{1/3}$	$V_T \ > \ V_V \ > \ V_L$
$34.5 \leq \mathrm{SD} \leq 100 \mathrm{kg/w}^{1/3}$	$V_T \ > \ V_L \ > \ V_V$

	Transv	verse compoi	nent velocity		
Square root method	Prediction	50%	$V_{50} = 28.38 \left(\frac{D}{\sqrt{W}}\right)^{-1.52}$		
	equation	95%	$V_{95} = 58.66 \left(\frac{D}{\sqrt{W}}\right)^{-1.52}$		
	R		0.879		
Cube root method	Prediction	50%	$V_{50} = 47.83 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.50}$		
	equation	95%	$V_{95} = 108.36 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.50}$		
	R		0.838		
Vertical component velocity					
Square root method	Prediction	50%	$V_{50} = 91.07 \left(\frac{D}{\sqrt{W}}\right)^{-1.88}$		
	equation	95%	$V_{95} = 207.81 \left(\frac{D}{\sqrt{W}}\right)^{-1.88}$		
	R		0.882		
Cube root method	Prediction	50%	$V_{50} = 182.10 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.88}$		
	equation	95%	$V_{95} = 471.41 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.88}$		
	R		0.846		
Longitudinal component velocity					
Square root method	Prediction	50%	$V_{50} = 44.35 \left(\frac{D}{\sqrt{W}}\right)^{-1.66}$		
	equation	95%	$V_{95} = 89.13 \left(\frac{D}{\sqrt{W}}\right)^{-1.66}$		
	R		0.900		
Cube root method	Prediction	50%	$V_{50} = 80.66 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.65}$		
	equation	95%	$V_{95} = 179.97 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.65}$		
	R		0.862		

Table 4.14 Prediction equation of ground vibration for component velocity(Case No. 7)

Figure 4.13 Relationship between T, V, L component velocity and scaled distance(Case No. 7).

4.7.2 PPV와 PVS의 회귀분석 및 예측

Table 4.15는 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 25ms이고, 정기 폭에서 PPV와 PVS 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이 다.

Table 4.15의 PPV와 PVS의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과는 Figure 4.14와 같다. 여기서, V_{PPV}는 최대입자속도, V_{PVS}는 최대벡터합이다.

Table 4.15 Prediction equation of ground vibration for peak particle velocity(PPV) and peak vector sum(PVS)(Case No. 7)

Peak particle velocity				
Square root method	Prediction	50%	$V_{50} = 93.64 \left(\frac{D}{\sqrt{W}}\right)^{-1.79}$	
	equation	95%	$V_{95} = 169.84 \left(\frac{D}{\sqrt{W}}\right)^{-1.79}$	
	R		0.937	
Cube root method	Prediction	50%	$V_{50} = 188.09 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.80}$	
	equation	95%	$V_{95} = 379.35 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.80}$	
	R		0.905	
Peak vector sum				
Square root method	Prediction	50%	$V_{50} = 96.13 \bigg(\frac{D}{\sqrt{W}}\bigg)^{-1.76}$	
	equation		$(D)^{-1.76}$	
method	equation	95%	$V_{95} = 180.82 \left(\frac{D}{\sqrt{W}}\right)$	
method	R	95%	$V_{95} = 180.82 \left(\frac{D}{\sqrt{W}}\right)$ 0.937	
	R Prediction	95% 50%	$V_{95} = 180.82 \left(\frac{D}{\sqrt{W}}\right)$ 0.937 $V_{50} = 189.66 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.76}$	
Cube root method	R Prediction equation	95% 50% 95%	$V_{95} = 180.82 \left(\frac{D}{\sqrt{W}}\right)$ 0.937 $V_{50} = 189.66 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.76}$ $V_{95} = 401.28 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.76}$	

Figure 4.14 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 7).
4.8 지연시차가 25ms이고 중간기폭(Case No. 8)의

회귀분석 및 예측

4.8.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측

Table 4.16은 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 25ms이고, 중간 기폭에서 각 성분별 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이다. Table 4.16의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과는 Figure 4.15 와 같다. 여기서, V_T는 접선방향성분의 진동속도, V_V는 수직방향성분의 진동속도, V_L은 진행방향성분의 진동속도이다.

SRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/2} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 9.5까지는 수직방향 성분의 진동이 가장 크게, 접선방향 성분의 진동이 작게, 9.5에서 37.0까지는 진 행방향 성분이 가장 크게, 접선방향 성분이 가장 작게, 37.0에서 40.4까지는 진행방향 성 분이 가장 크게, 수직방향 성분이 가장 작게, 40.4에서 100까지는 접선방향 성분이 가장 크게, 수직방향 성분이 가장 작게 예측되었다.

$1.0 \leq SD < 9.5 kg/w^{1/2}$	$V_V > V_L > V_T$
$9.5 \leq SD < 37.0 kg/w^{1/2}$	$V_L \ > \ V_V \ > \ V_T$
$37.0 \leq SD < 40.4 \text{kg/w}^{1/2}$	$V_L \ > \ V_T \ > \ V_V$
$40.4 \leq \text{SD} \leq 100 \text{kg/w}^{1/2}$	$V_T \ > \ V_L \ > \ V_V$

CRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/3} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 2.2까지는 수직방향 성분의 진동이 가장 크게, 접선방향 성분의 진동이 작게, 2.2에서 57.4까지는 진 행방향 성분이 가장 크게, 접선방향 성분이 가장 작게, 57.4에서 100까지는 진행방향 성 분이 가장 크게, 수직방향 성분이 가장 작게 예측되었다.

$1.0 \leq SD < 2.2 kg/w^{1/3}$	$V_V > V_L > V_T$
$2.2~\leq~\mathrm{SD}~<~57.4 \mathrm{kg/w}^{1/3}$	$\mathrm{V}_{\mathrm{L}} > \mathrm{V}_{\mathrm{V}} > \mathrm{V}_{\mathrm{T}}$
$57.4 \leq SD < 100 \text{kg/w}^{1/3}$	$V_L \ > \ V_T \ > \ V_V$

Transverse component velocity						
	Prediction	50%	$V_{50} = 99.32 \left(\frac{D}{\sqrt{W}}\right)^{-1.57}$			
Square root method	equation	95%	$V_{95} = 247.45 \left(\frac{D}{\sqrt{W}}\right)^{-1.57}$			
	R		0.767			
	Prediction	50%	$V_{50} = 198.30 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.57}$			
Cube root method	equation	95%	$V_{95} = 494.04 \left(\frac{D}{\sqrt[3]{W}}\right)^{-1.57}$			
	R		0.767			
	Verti	cal compone	nt velocity			
	Prediction	50%	$V_{50} = 1917.17 \left(\frac{D}{\sqrt{W}}\right)^{-2.39}$			
Square root method	equation	95%	$V_{95} = 4017.70 \left(\frac{D}{\sqrt{W}}\right)^{-2.39}$			
	R		0.924			
Culturent	Prediction	50%	$V_{50} = 5484.18 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.39}$			
method	equation	95%	$V_{95} = 11492.90 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.39}$			
	R		0.924			
	Longitu	idinal compo	nent velocity			
	Prediction	50%	$V_{50} = 1713.45 \left(\frac{D}{\sqrt{W}}\right)^{-2.34}$			
Square root method	equation	95%	$V_{95} = 3124.15 \left(\frac{D}{\sqrt{W}}\right)^{-2.34}$			
	R		0.935			
Cube rest	Prediction	50%	$V_{50} = 4804.28 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.34}$			
method	equation	95%	$V_{95} = 8759.68 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.34}$			
	R		0.935			

Table 4.16 Prediction equation of ground vibration for component velocity(Case No. 8)

Figure 4.15 Relationship between T, V, L component velocity and scaled distance(Case No. 8).

4.8.2 PPV와 PVS의 회귀분석 및 예측

Table 4.17은 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 25ms이고, 중간 기폭에서 PPV와 PVS 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식 이다.

Table 4.17의 PPV와 PVS의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과는 Figure 4.16과 같다. 여기서, V_{PPV}는 최대입자속도, V_{PVS}는 최대벡터합이다.

Table 4.17 Prediction equation of ground vibration for peak particle velocity(PPV) and peak vector sum(PVS)(Case No. 8)

Peak particle velocity						
	Prediction	50%	$V_{50} = 1409.32 \left(\frac{D}{\sqrt{W}}\right)^{-2.22}$			
Square root method	equation	95%	$V_{95} = 2492.01 \left(\frac{D}{\sqrt{W}}\right)^{-2.22}$			
	R		0.932			
	Prediction	50%	$V_{50} = 3749.41 \left(rac{D}{\sqrt[3]{W}} ight)^{-2.22}$			
Cube root method	equation	95%	$V_{95} = 6629.83 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.22}$			
	R		0.932			
		Peak vector	sum			
	Prediction	50%	$V_{50} = 1802.38 \left(\frac{D}{\sqrt{W}}\right)^{-2.25}$			
Square root method	equation	95%	$V_{95} = 3480.49 \left(\frac{D}{\sqrt{W}}\right)^{-2.25}$			
	R		0.926			
	Prediction	50%	$V_{50} = 4849.85 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.25}$			
Cube root method	equation	95%	$V_{95} = 9365.31 \left(rac{D}{\sqrt[3]{W}} ight)^{-2.25}$			
	R		0.926			

Figure 4.16 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 8).

4.9 지연시차가 25ms이고 역기폭(Case No. 9)의

회귀분석 및 예측

4.9.1 성분별(T, V, L) 지반진동 속도의 회귀분석 및 예측

Table 4.18은 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 25ms이고, 역기 폭에서 각 성분별 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이다. Table 4.18의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과는 Figure 4.17 과 같다. 여기서, V_T는 접선방향성분의 진동속도, V_V는 수직방향성분의 진동속도, V_L은 진행방향성분의 진동속도이다.

SRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/2} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 24.6까지 는 진행방향 성분의 진동이 가장 크게, 수직방향 성분의 진동이 작게, 24.6에서 65.5까지 는 접선방향 성분이 가장 크게, 수직방향 성분이 가장 작게, 65.5에서 100까지는 접선방 향 성분이 가장 크게, 진행방향 성분이 가장 작게 예측되었다.

$1.0 \leq SD < 24.6 kg/w^{1/2}$	$V_L \ > \ V_T \ > \ V_V$
$24.6 \leq SD < 65.5 kg/w^{1/2}$	$V_T \ > \ V_L \ > \ V_V$
$65.5 \leq \mathrm{SD} \leq 100 \mathrm{kg/w}^{1/2}$	$V_T \ > \ V_V \ > \ V_L$

CRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/3} 범위의 환산거리에 따 라 성분별 진동성분의 경향을 예측하였다. 그 결과는 환산거리 범위가 1.0에서 28.3까지 는 진행방향 성분의 진동이 가장 크게, 수직방향 성분의 진동이 작게, 28.3에서 100까지 는 접선방향 성분이 가장 크게, 수직방향 성분이 가장 작게 예측되었다.

$1.0 \leq SD < 28.3 \text{kg/w}^{1/3}$	V_{L}	>	V_T	>	V_V
$28.3 \leq \text{SD} < 100 \text{kg/w}^{1/3}$	V_{T}	>	V_{L}	>	V_V

Transverse component velocity						
	Prediction	50%	$V_{50} = 332.08 \left(\frac{D}{\sqrt{W}}\right)^{-2.08}$			
Square root method	equation	95%	$V_{95} = 704.55 \left(\frac{D}{\sqrt{W}}\right)^{-2.08}$			
	R		0.883			
	Prediction	50%	$V_{50} = 987.64 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.14}$			
Cube root method	equation	95%	$V_{95} = 2317.96 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.14}$			
	R		0.851			
	Verti	cal compone	nt velocity			
	Prediction	50%	$V_{50} = 268.23 \left(\frac{D}{\sqrt{W}}\right)^{-2.05}$			
Square root method	equation	95%	$V_{95} = 530.94 \left(\frac{D}{\sqrt{W}}\right)^{-2.05}$			
	R		0.887			
Culturent	Prediction	50%	$V_{50} = 819.18 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.12}$			
method	equation	95%	$V_{95} = 1747.32 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.12}$			
	R		0.859			
	Longitu	idinal compo	nent velocity			
	Prediction	50%	$V_{50} = 443.01 \left(\frac{D}{\sqrt{W}}\right)^{-2.17}$			
Square root method	equation	95%	$V_{95} = 949.75 \left(\frac{D}{\sqrt{W}}\right)^{-2.17}$			
	R		0.869			
Cube rest	Prediction	50%	$V_{50} = 1167.19 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.19}$			
method	equation	95%	$V_{95} = 2771.15 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.19}$			
	R		0.821			

Table 4.18 Prediction equation of ground vibration for component velocity(Case No. 9)

Figure 4.17 Relationship between T, V, L component velocity and scaled distance(Case No. 9).

4.9.2 PPV와 PVS의 회귀분석 및 예측

Table 4.19는 현장실험을 통해 계측된 지반진동 데이터 중 지연시차가 25ms이고, 역기 폭에서 PPV와 PVS 데이터만 수집하여 회귀분석을 실시한 50, 95% 지반진동 예측식이 다.

Table 4.19의 PPV와 PVS의 지반진동 예측식을 이용하여 노모그램 분석을 실시한 결과는 Figure 4.18과 같다. 여기서, V_{PPV}는 최대입자속도, V_{PVS}는 최대벡터합이다.

Table 4.19 Prediction equation of ground vibration for peak particle velocity(PPV) and peak vector sum(PVS)(Case No. 9)

Peak particle velocity						
	Prediction	50%	$V_{50} = 594.67 \left(\frac{D}{\sqrt{W}}\right)^{-2.18}$			
Square root method	equation	95%	$V_{95} = 1130.71 \left(\frac{D}{\sqrt{W}}\right)^{-2.18}$			
	R		0.927			
	Prediction	50%	$V_{50} = 1889.20 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.25}$			
Cube root method	equation	95%	$V_{95} = 4031.93 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.25}$			
	R		0.894			
Peak vector sum						
		Peak vector	sum			
	Prediction	Peak vector	sum $V_{50} = 625.44 \left(\frac{D}{\sqrt{W}}\right)^{-2.15}$			
Square root method	Prediction equation	Peak vector 50% 95%	sum $V_{50} = 625.44 \left(\frac{D}{\sqrt{W}}\right)^{-2.15}$ $V_{95} = 1206.05 \left(\frac{D}{\sqrt{W}}\right)^{-2.15}$			
Square root method	Prediction equation R	Peak vector 50% 95%	sum $V_{50} = 625.44 \left(\frac{D}{\sqrt{W}}\right)^{-2.15}$ $V_{95} = 1206.05 \left(\frac{D}{\sqrt{W}}\right)^{-2.15}$ 0.932			
Square root method	Prediction equation R Prediction	Peak vector 50% 95% 50%	sum $V_{50} = 625.44 \left(\frac{D}{\sqrt{W}}\right)^{-2.15}$ $V_{95} = 1206.05 \left(\frac{D}{\sqrt{W}}\right)^{-2.15}$ 0.932 $V_{50} = 1954.70 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.22}$			
Square root method Cube root method	Prediction equation R Prediction equation	Peak vector 50% 95% 50% 95%	sum $V_{50} = 625.44 \left(\frac{D}{\sqrt{W}}\right)^{-2.15}$ $V_{95} = 1206.05 \left(\frac{D}{\sqrt{W}}\right)^{-2.15}$ 0.932 $V_{50} = 1954.70 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.22}$ $V_{95} = 4164.90 \left(\frac{D}{\sqrt[3]{W}}\right)^{-2.22}$			

Figure 4.18 Relationship between peak particle velocity(PPV), peak vector sum(PVS) and scaled distance(Case No. 9).

지연시차와 기폭위치에 따른 지반진동 예측 및 고찰

본 지반진동 예측에 사용된 지발당 장약량은 국토해양부의 "도로공사 노천발파 설계시 공 지침 및 요령"에 제시된 표준발파공법의 공법별 경계 기준 장약량인 0.5, 1.6, 5, 15kg 을 적용하여 지연시차와 기폭위치별로 성분별(T, V, L) 입자속도, 최대입자속도(PPV) 및 최대벡터합(PVS)을 비교분석하였다.

5.1 성분별(T, V, L) 입자속도에 의한 지반진동 예측

5.1.1 Case No. 1(지연시차 0ms, 정기폭)

Case No. 1의 SRSD의 성분별(T, V, L) 평균(50%) 지반진동 예측식은 Table 4.2와 같다. 지반진동 예측 결과 접선성분(T)은 수직성분(V)보다 발파원과 거리가 가까운 경우에 는 진동이 적게 발생되나 감쇠가 적어 멀리 전파하므로 수직성분(V)보다 발파원과 거리 가 먼 경우에는 진동은 크게 발생된다. 수직성분(V)은 다른 성분에 비해 발파원과 거리 가 가까운 경우에는 진동이 크게 발생되나 감쇠가 가장 커서 멀리 전파하지 못하므로 발 파원과 거리가 먼 경우에는 진동은 가장 적게 발생된다. 진행성분(L)은 수직성분(V)보다 발파원과 거리가 가까운 경우에는 진동이 적게 발생된다 다른 성분에 비해 감쇠가 가장 적어 가장 멀리 전파하므로 발파원과 거리가 먼 경우에는 진동은 가장 크게 발생된다 (Figure 4.1(a)).

Case No. 1의 성분별(T, V, L) 지반진동을 예측하기 위해 SRSD의 평균 지반진동 예측 식으로 거리에 따른 예측 진동치를 Figure 5.1과 같이 도시하였다.

Table 5.1은 Case No. 1에서 거리에 따른 성분별(T, V, L) 예측진동치와 증감율를 나타낸 표이다.

Case No. 1에서 성분별(T, V, L) 입자속도의 평균 지반진동 예측식을 통한 5~200m의 이격거리에서 진동속도를 예측한 결과 장약량이 0.6kg 이내에서는 진행성분의 진동수준 이 높게 예측되었고, 0.6kg 이상에서 발파원과 거리가 가까운 경우에는 수직성분 진동수 준이 발파원과 거리가 먼 경우에는 진행성분의 진동수준이 높게 예측되었다. 그리고 접 선성분은 가장 낮은 진동수준이 예측되었다.

(1) 지발당 장약량이 0.5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 46m 구간에서는 최대 10.50% 높게 예측되었고, 47~200m 구간에서는 최대 7.63% 낮게 예측되었다. 그리고 진행성분 예측진동속도에 비해 최소 1.35%에서 최대 36.14% 낮게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 최소 13.24%에서 최대 26.49% 낮게 예측되었다(Table 5.2, Figure 5.2).

(2) 지발당 장약량이 1.6kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 82m 구간에서는 최대 13.07% 높게 예측되었고, 83~200m 구간에서는 최대 4.54% 낮게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~7m 구간에서는 최대 3.26% 높게 예측되었고, 8~200m 구간에서는 최대 29.95% 낮게 예측되었다. 접선성분 예측진동속도 는 진행성분 예측속도에 비해 최소 11.28%에서 최대 24.31% 낮게 예측되었다(Table 5.2, Figure 5.2).

(3) 지발당 장약량이 5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 145m 구간에서는 최대 15.51% 높게 예측되었고, 146~200m 구간에서는 최대 1.61% 낮 게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~13m 구간에서는 최대 7.57% 높게 예측되었고, 14~200m 구간에서는 최대 24.16% 낮게 예측되었다. 접선성분 예측진 동속도는 진행성분 예측속도에 비해 최소 9.40%에서 최대 22.20% 낮게 예측되었다 (Table 5.2, Figure 5.2).

(4) 지발당 장약량이 15kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 최 대 17.80%에서 최소 1.15% 높게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~ 23m 구간에서는 최대 11.54% 높게 예측되었고, 24~200m 구간에서는 최대 18.83% 낮게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 최소 7.61%에서 최대 20.20% 낮게 예측되었다(Table 5.2, Figure 5.2).

Distance	Charge	Predicte	Predicted ground vibration		F	Ratio of increas	se
(m)	(kg)	VT VC	V _V	VL	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$
5		1.932	2.158	2.188	10.50	-1.35	-13.24
10	-	0.536	0.578	0.620	7.34	-7.13	-15.62
20		0.149	0.155	0.175	4.08	-13.24	-18.05
40		0.041	0.042	0.050	0.69	-19.70	-20.53
60		0.019	0.019	0.024	-1.34	-23.64	-22.01
80	0.5	0.011	0.011	0.014	-2.81	-26.52	-23.06
100	0.5	0.008	0.007	0.009	-3.96	-28.80	-23.89
120		0.005	0.005	0.007	-4.91	-30.69	-24.57
140		0.004	0.004	0.005	-5.72	-32.31	-25.15
160		0.003	0.003	0.004	-6.43	-33.73	-25.65
180		0.003	0.002	0.003	-7.06	-35.00	-26.10
200		0.002	0.002	0.003	-7.63	-36.14	-26.49
5		5.665	6.517	6.305	13.07	3.26	-11.28
10		1.572	1.746	1.786	10.00	-2.26	-13.62
20		0.436	0.468	0.506	6.83	-8.09	-16.01
40		0.121	0.125	0.143	3.54	-14.25	-18.45
60		0.057	0.058	0.068	1.56	-18.02	-19.90
80	1.0	0.034	0.034	0.041	0.14	-20.77	-20.94
100	1.0	0.022	0.022	0.027	-0.98	-22.94	-21.75
120		0.016	0.016	0.019	-1.91	-24.75	-22.42
140		0.012	0.012	0.015	-2.69	-26.30	-22.98
160		0.009	0.009	0.011	-3.38	-27.65	-23.48
180		0.007	0.007	0.009	-3.99	-28.86	-23.91
200		0.006	0.006	0.008	-4.54	-29.95	-24.31
5		16.254	19.237	17.782	15.51	7.57	-9.40
10		4.509	5.155	5.036	12.53	2.30	-11.70
20		1.251	1.381	1.426	9.44	-3.27	-14.04
40		0.347	0.370	0.404	6.25	-9.16	-16.44
60		0.164	0.171	0.193	4.33	-12.76	-17.87
80	5	0.096	0.099	0.114	2.94	-15.39	-18.89
100		0.064	0.065	0.076	1.85	-17.47	-19.69
120		0.045	0.046	0.055	0.96	-19.19	-20.34
140		0.034	0.034	0.041	0.19	-20.67	-20.90
160]	0.027	0.027	0.032	-0.48	-21.97	-21.38
180]	0.021	0.021	0.026	-1.07	-23.12	-21.81
200		0.018	0.017	0.022	-1.61	-24.16	-22.20

Table 5.1 The influence of charge per delay on the predicted ground vibration velocity for Case No. 1

Distance	Charge	Predicted ground vibration			Ratio of increase		
Distance per delay		velocity (cm/s)			(%)		
(111)	(kg)	V_{T}	$V_{\rm V}$	V_L	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$
5		44.906	54.628	48.323	17.80	11.54	-7.61
10		12.457	14.637	13.686	14.90	6.50	-9.87
20		3.455	3.922	3.876	11.90	1.17	-12.18
40		0.958	1.051	1.098	8.79	-4.47	-14.54
60		0.453	0.486	0.525	6.92	-7.91	-15.94
80	15	0.266	0.282	0.311	5.57	-10.43	-16.94
100	15	0.176	0.184	0.207	4.51	-12.42	-17.73
120		0.126	0.130	0.149	3.64	-14.07	-18.37
140		0.094	0.097	0.112	2.89	-15.48	-18.92
160		0.074	0.075	0.088	2.24	-16.72	-19.40
180		0.059	0.060	0.071	1.67	-17.83	-19.82
200		0.049	0.049	0.059	1.15	-18.83	-20.20

Table 5.1 Continues

	1			
Charge per	Rate of velocity	Distance	Maximum ratio	
delay (kg)	components	(m)	of increase (%)	
		5~46	10.50	
0 5	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}}) / \mathbf{v}_{\mathrm{V}}$	47~200	-7.63	
0.5	$(V_V - V_L)/V_V$	5~200	-(1.35~36.14)	
	$(V_T - V_L)/V_T$	5~200	-(13.24~26.49)	
		5~82	13.07	
1.6	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}}) / \mathbf{v}_{\mathrm{V}}$	83~200	-4.54	
	$(\mathbf{V} - \mathbf{V})/\mathbf{V}$	5~7	3.26	
	$(V_{\rm V} - V_{\rm L})/V_{\rm V}$	8~200	-29.95	
	$(V_T - V_L)/V_T$	5~200	-(11.28~24.31)	
	$(\mathbf{V} = \mathbf{V}) / \mathbf{V}$	5~145	15.51	
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}}) / \mathbf{v}_{\mathrm{V}}$	146~200	-1.61	
5		5~13	7.57	
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{L}})/ \mathbf{v}_{\mathrm{V}} $	14~200	-24.16	
	$(V_T - V_L)/V_T$	5~200	-(9.40~22.20)	
	$(V_V - V_T)/V_V$	5~200	17.80~1.15	
15		5~23	11.54	
61	$(V_{\rm V} - V_{\rm L})/V_{\rm V}$	24~200	-18.83	
	$(V_T - V_L)/V_T$	5~200	-(7.61~20.20)	

Table 5.2 Maximum ratio of increase on rate of velocity components for Case No. 1

Figure 5.1 Relationship between predicted ground vibration velocity(component) and distance for Case No. 1: charge per delay=(a) 0.5kg, (b) 1.6kg, (c) 5kg, (d) 15kg.

Figure 5.2 Relationship between ratio of increase and distance for Case No. 1 (component velocity).

5.1.2 Case No. 2(지연시차 0ms, 중간기폭)

Case No. 2의 SRSD의 성분별(T, V, L) 평균(50%) 지반진동 예측식은 Table 4.4와 같 다.

지반진동 예측 결과 접선성분(T)은 수직성분(V)보다 발파원과 거리가 가까운 경우에 는 진동이 적게 발생되나 감쇠가 적어 멀리 전파하므로 수직성분(V)보다 발파원과 거리 가 먼 경우에는 진동은 크게 발생된다. 수직성분(V)은 접선성분(T)보다 발파원과 거리가 가까운 경우에는 진동이 크게 발생되나 감쇠가 커서 멀리 전파하지 못하므로 접선성분 (T)보다 발파원과 거리가 먼 경우에는 진동은 적게 발생된다. 진행성분(L)은 다른 성분 들에 비해 발파원과 거리가 가까운 경우에는 진동이 가장 크게 발생되고 감쇠도 적어 진 동이 멀리 전파되어 발파원과 거리가 먼 경우에는 진동에서도 가장 크게 발생된다 (Figure 4.3(a)).

Case No. 2의 성분별(T, V, L) 지반진동을 예측하기 위해 SRSD의 평균 지반진동 예측 식으로 거리에 따른 예측 진동치를 Figure 5.3과 같이 도시하였다.

Table 5.3은 Analysis No. 2에서 거리에 따른 성분별(T, V, L) 예측진동치와 증감율을 나타낸 표이다.

Case No. 2에서 성분별(T, V, L) 입자속도의 평균 지반진동 예측식을 통한 5~200m의 이격거리에서 진동속도를 예측한 결과 진행성분의 진동수준이 높게 예측되었다. 그리고 장약량이 1.8kg 이내에서 접선성분과 수직성분의 진동수준이 역전되는 경향이 다르지만 대부분 발파원과 거리가 가까운 경우에는 수직성분이 발파원과 거리가 먼 경우에는 접선 성분의 진동수준이 높게 예측되었고, 1.8kg 이상에서 수직성분의 진동수준이 접선성분의 진동수준보다 높게 예측되었다.

(1) 지발당 장약량이 0.5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 107m 구간에서는 최대 11.55% 높게 예측되었고, 108~200m 구간에서는 최대 2.52% 낮 게 예측되었다. 그리고 진행성분 예측진동속도에 비해 최소 17.99%에서 최대 41.88% 낮 게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 최소 33.39%에서 최 대 38.40% 낮게 예측되었다(Table 5.4, Figure 5.4). (2) 지발당 장약량이 1.6kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 192m 구간에서는 최대 13.58% 높게 예측되었고, 193~200m 구간에서는 최대 0.16% 낮 게 예측되었다. 그리고 진행성분 예측진동속도에 비해 최소 14.61%에서 최대 37.82% 낮 게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 최소 32.62%에서 최 대 37.60% 낮게 예측되었다(Table 5.4, Figure 5.4).

(3) 지발당 장약량이 5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 최 대 15.53%에서 최소 2.10% 높게 예측되었고, 진행성분 예측진동속도에 비해 최소 11.39%에서 최대 33.95% 낮게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도 에 비해 최소 31.86%에서 최대 36.82% 낮게 예측되었다(Table 5.4, Figure 5.4).

(4) 지발당 장약량이 15kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 최 대 17.37%에서 최소 4.23% 높게 예측되었고, 진행성분 예측진동속도에 비해 최소 8.37% 에서 최대 30.32% 낮게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 최소 31.14%에서 최대 36.07% 낮게 예측되었다(Table 5.4, Figure 5.4).

Distance	Charge	Predicte	d ground v	vibration	F	Ratio of increas	se
(m)	(kg)	V _T	Vv	VL	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$
5		1.867	2.111	2.490	11.55	-17.99	-33.39
10		0.544	0.598	0.730	9.06	-22.15	-34.32
20		0.158	0.169	0.214	6.51	-26.45	-35.25
40		0.046	0.048	0.063	3.88	-30.91	-36.19
60		0.022	0.023	0.031	2.30	-33.60	-36.75
80		0.013	0.014	0.018	1.17	-35.53	-37.14
100	0.5	0.009	0.009	0.012	0.29	-37.05	-37.45
120	•	0.007	0.006	0.009	-0.44	-38.31	-37.70
140	-	0.005	0.005	0.007	-1.06	-39.38	-37.91
160		0.004	0.004	0.005	-1.60	-40.31	-38.10
180		0.003	0.003	0.004	-2.08	-41.14	-38.26
200		0.003	0.003	0.004	-2.52	-41.88	-38.40
5		5.256	6.083	6.971	13.58	-14.61	-32.62
10		1.531	1.723	2.044	11.15	-18.65	-33.54
20	-	0.446	0.488	0.599	8.65	-22.83	-34.47
40		0.130	0.138	0.176	6.09	-27.16	-35.40
60		0.063	0.066	0.086	4.55	-29.77	-35.95
80	1.6	0.038	0.039	0.052	3.45	-31.65	-36.35
100	1.0	0.025	0.026	0.035	2.58	-33.12	-36.65
120		0.018	0.019	0.025	1.87	-34.34	-36.90
140		0.014	0.014	0.019	1.26	-35.38	-37.11
160		0.011	0.011	0.015	0.73	-36.29	-37.29
180		0.009	0.009	0.012	0.26	-37.09	-37.46
200		0.007	0.007	0.010	-0.16	-37.82	-37.60
5		14.491	17.155	19.109	15.53	-11.39	-31.86
10		4.220	4.859	5.603	13.15	-15.31	-32.78
20		1.229	1.376	1.643	10.71	-19.38	-33.70
40		0.358	0.390	0.482	8.20	-23.59	-34.63
60		0.174	0.186	0.235	6.70	-26.12	-35.18
80	5	0.104	0.110	0.141	5.62	-27.95	-35.57
100	5	0.070	0.074	0.095	4.78	-29.38	-35.87
120		0.051	0.053	0.069	4.08	-30.57	-36.12
140		0.038	0.040	0.052	3.49	-31.58	-36.33
160		0.030	0.031	0.041	2.97	-32.46	-36.51
180		0.025	0.025	0.034	2.51	-33.24	-36.68
200		0.020	0.021	0.028	2.10	-33.95	-36.82

Table 5.3 The influence of charge per delay on the predicted ground vibration velocity for Case No. 2

Distance	Charge	Predicte	Predicted ground vibration			Ratio of increase		
Distance	per delay	ve	locity (cm/	/s)	(%)			
(111)	(kg)	$V_{\rm T}$	$V_{\rm V}$	V_L	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$	
5		38.525	46.621	50.522	17.37	-8.37	-31.14	
10		11.218	13.204	14.814	15.04	-12.19	-32.05	
20		3.266	3.740	4.343	12.65	-16.15	-32.97	
40		0.951	1.059	1.274	10.20	-20.24	-33.90	
60		0.462	0.506	0.621	8.73	-22.71	-34.44	
80	15	0.277	0.300	0.373	7.67	-24.48	-34.83	
100	15	0.186	0.200	0.252	6.85	-25.88	-35.13	
120		0.135	0.143	0.182	6.16	-27.03	-35.38	
140		0.102	0.108	0.139	5.58	-28.02	-35.59	
160		0.081	0.085	0.109	5.08	-28.87	-35.77	
180		0.065	0.069	0.089	4.63	-29.63	-35.93	
200		0.054	0.057	0.074	4.23	-30.32	-36.07	

Table 5.3 Continues

Charge per delay (kg)	Rate of velocity components	Distance (m)	Maximum ratio of increase (%)
		5~107	11.55
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}})/ \mathbf{v}_{\mathrm{V}} $	108~200	-2.52
0.5	$(V_V - V_L)/V_V$	5~200	-(17.99~41.88)
	Rate of velocity components Dis (V_V-V_T)/V_V $(V_V-V_T)/V_V$ 5- $(V_V-V_L)/V_V$ 5- $(V_V-V_L)/V_T$ 5- $(V_V-V_L)/V_V$ 5-	5~200	-(33.39~38.40)
	(x , x ,)/ x ,	5~192	13.58
1.0	$(V_{\rm V} - V_{\rm T})/V_{\rm V}$	193~200	-0.16
1.6	1.6 $\frac{(V_{\rm V}-V_{\rm T})/V_{\rm V}}{(V_{\rm V}-V_{\rm L})/V_{\rm V}}$	5~200	-(14.61~37.82)
	$(V_T - V_L)/V_T$	5~200	-(32.62~37.60)
	$(V_V - V_T)/V_V$	5~200	15.53~2.10
5	$(V_V - V_L)/V_V$	5~200	-(11.39~33.95)
	$(V_T - V_L)/V_T$	5~200	-(31.86~36.82)
	$(V_V - V_T)/V_V$	5~200	17.37~4.23
15	$(V_V - V_L)/V_V$	5~200	-(8.37~30.32)
	$(V_T - V_L)/V_T$	5~200	-(31.14~36.07)

Table 5.4 Maximum ratio of increase on rate of velocity components for Case No. 2

Figure 5.3 Relationship between predicted ground vibration velocity(component) and distance for Case No. 2: charge per delay=(a) 0.5kg, (b) 1.6kg, (c) 5kg, (d) 15kg.

Figure 5.4 Relationship between ratio of increase and distance for Case No. 2 (component velocity).

5.1.3 Case No. 3(지연시차 0ms, 역기폭)

Case No. 3의 SRSD의 성분별(T, V, L) 평균(50%) 지반진동 예측식은 Table 4.6과 같 다.

지반진동 예측 결과 접선성분(T)은 수직성분(V)보다 발파원과 거리가 가까운 경우에 는 진동이 적게 발생되나 감쇠가 적어 멀리 전파하므로 수직성분(V)보다 발파원과 거리 가 먼 경우에는 진동은 크게 발생된다. 수직성분(V)은 접선성분(T)보다 발파원과 거리가 가까운 경우에는 진동이 크게 발생되나 감쇠가 커서 멀리 전파하지 못하므로 접선성분 (T)보다 발파원과 거리가 먼 경우에는 진동은 적게 발생된다. 진행성분(L)은 수직성분 (V)에 비해 발파원과 거리가 가까운 경우에는 진동이 적게 발생되나 다른 성분들에 비해 감쇠가 가장 적어 가장 멀리 전파되어 발파원과 거리가 먼 경우에는 진동은 가장 크게 발생된다.(Figure 4.5(a)).

Case No. 3의 성분별(T, V, L) 지반진동을 예측하기 위해 SRSD의 평균 지반진동 예측 식으로 거리에 따른 예측 진동치를 Figure 5.5와 같이 도시하였다.

Table 5.5는 Case No. 3에서 거리에 따른 성분별(T, V, L) 예측진동치와 증감율을 나타낸 표이다.

Case No. 3에서 성분별(T, V, L) 입자속도의 평균 지반진동 예측식을 통한 5~200m의 이격거리에서 진동속도를 예측한 결과 장약량이 4.3kg 이내에서 진행성분과 수직성분의 진동수준이 역전되는 경향이 다르지만 대부분 발과원과 거리가 가까운 경우에는 수직성 분이 발과원과 거리가 먼 경우에는 진행성분의 진동수준이 높게 예측되었고, 4.3kg 이상 에서 진행성분의 진동수준이 수직성분의 진동수준보다 높게 예측되었다. 그리고 접선성 분은 가장 낮은 진동수준이 예측되었다.

(1) 지발당 장약량이 0.5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 최 대 9.90%에서 최소 6.51% 높게 예측되었고, 진행성분 예측진동속도에 비해 최소 11.47% 에서 최대 61.19% 낮게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 최소 23.71%에서 최대 72.42% 낮게 예측되었다(Table 5.6, Figure 5.6). (2) 지발당 장약량이 1.6kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 최 대 10.42%에서 최소 7.05% 높게 예측되었고, 진행성분 예측진동속도에 비해 최소 5.17% 에서 최대 52.09% 낮게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 최소 17.40%에서 최대 63.63% 낮게 예측되었다(Table 5.6, Figure 5.6).

(3) 지발당 장약량이 5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 최 대 10.93%에서 최소 7.58% 높게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5m 에서는 최대 0.66% 높게 예측되었고, 6~200m 구간에서는 최대 43.66% 낮게 예측되었 다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 최소 11.53%에서 최대 55.45% 낮게 예측되었다(Table 5.6, Figure 5.6).

(4) 지발당 장약량이 15kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 최 대 11.42%에서 최소 8.09% 높게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~ 9m 구간에서는 최대 5.97% 높게 예측되었고, 10~200m 구간에서는 최대 35.98% 낮게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 최소 6.15%에서 최대 47.95% 낮게 예측되었다(Table 5.6, Figure 5.6).

Distance	Charge per delay	Predicte	d ground v locity (cm/	vibration /s)	Ratio of increase		
(m)	(kg)	VT	Vv	VL	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$
5		1.619	1.796	2.002	9.90	-11.47	-23.71
10		0.434	0.478	0.571	9.27	-19.47	-31.67
20	•	0.116	0.127	0.163	8.64	-28.04	-40.15
40	-	0.031	0.034	0.046	8.01	-37.23	-49.17
60		0.014	0.016	0.022	7.63	-42.91	-54.72
80	0.5	0.008	0.009	0.013	7.37	-47.08	-58.77
100	0.5	0.005	0.006	0.009	7.16	-50.40	-61.99
120		0.004	0.004	0.006	6.99	-53.17	-64.67
140		0.003	0.003	0.005	6.85	-55.54	-66.97
160		0.002	0.002	0.004	6.72	-57.64	-68.99
180		0.002	0.002	0.003	6.61	-59.50	-70.79
200		0.001	0.002	0.003	6.51	-61.19	-72.42
5		4.887	5.455	5.737	10.42	-5.17	-17.40
10		1.309	1.452	1.636	9.80	-12.72	-24.96
20		0.351	0.386	0.467	9.17	-20.81	-33.00
40		0.094	0.103	0.133	8.54	-29.48	-41.56
60		0.044	0.047	0.064	8.17	-34.83	-46.83
80	1.6	0.025	0.027	0.038	7.90	-38.77	-50.68
100	1.0	0.016	0.018	0.025	7.70	-41.90	-53.73
120		0.012	0.013	0.018	7.53	-44.51	-56.28
140		0.009	0.009	0.014	7.39	-46.76	-58.46
160		0.007	0.007	0.011	7.26	-48.73	-60.38
180		0.005	0.006	0.009	7.15	-50.49	-62.08
200		0.004	0.005	0.007	7.05	-52.09	-63.63
5		14.425	16.195	16.089	10.93	0.66	-11.53
10		3.865	4.309	4.588	10.31	-6.47	-18.71
20		1.036	1.147	1.309	9.69	-14.12	-26.35
40		0.277	0.305	0.373	9.06	-22.31	-34.49
60		0.128	0.141	0.179	8.69	-27.37	-39.49
80	5	0.074	0.081	0.106	8.43	-31.08	-43.15
100	5	0.049	0.053	0.071	8.22	-34.04	-46.05
120		0.034	0.037	0.051	8.05	-36.51	-48.47
140		0.026	0.028	0.039	7.91	-38.63	-50.54
160		0.020	0.022	0.030	7.79	-40.49	-52.36
180		0.016	0.017	0.025	7.68	-42.16	-53.98
200		0.013	0.014	0.020	7.58	-43.66	-55.45

Table 5.5 The influence of charge per delay on the predicted ground vibration velocity for Case No. 3

D: 1	Charge	Predicte	Predicted ground vibration			Ratio of increase		
Distance	per delay	velocity (cm/s)			(%)			
(m)	(kg)	VT	Vv	V_L	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$	
5		40.963	46.243	43.484	11.42	5.97	-6.15	
10		10.976	12.305	12.401	10.80	-0.78	-12.99	
20		2.941	3.274	3.537	10.18	-8.02	-20.26	
40		0.788	0.871	1.009	9.56	-15.77	-28.00	
60		0.365	0.402	0.484	9.19	-20.56	-32.76	
80	15	0.211	0.232	0.288	8.93	-24.08	-36.24	
100	15	0.138	0.151	0.192	8.72	-26.88	-39.00	
120		0.098	0.107	0.138	8.56	-29.21	-41.30	
140		0.073	0.080	0.104	8.42	-31.22	-43.28	
160		0.057	0.062	0.082	8.29	-32.98	-45.01	
180		0.045	0.049	0.066	8.19	-34.56	-46.56	
200		0.037	0.040	0.055	8.09	-35.98	-47.95	

Table 5.5 Continues

Charge per delay (kg)	Rate of velocity components	Distance (m)	Maximum ratio of increase (%)	
	$(V_V - V_T)/V_V$	5~200	9.90~6.51	
0.5	$(V_V - V_L)/V_V$	5~200	-(11.47~61.19)	
	$\begin{array}{c c} \mbox{Charge per delay (kg)} & \mbox{Rate of velocity components} & \mbox{(m)} \\ \mbox{(m)} & \mbox{(Vv-V_T)/Vv} & \mbox{5}{\sim}2 \\ \mbox{(Vv-V_L)/Vv} & \mbox{5}{\sim}2 \\ \mbox{(Vv-V_L)/VT} & \mbox{5}{\sim}2 \\ \mbox{(Vv-V_L)/Vv} & \mbox{5}{\sim}2 \\ \mbox{6}{\sim}2 \\ \mbox{6}{\sim}$	5~200	-(23.71~72.42)	
	$(V_V - V_T)/V_V$	5~200	$10.42 \sim 7.05$	
1.6	$(V_V - V_L)/V_V$	5~200	-(5.17~52.09)	
	$(V_T - V_L)/V_T$	5~200	-(17.40~63.63)	
	$(V_V - V_T)/V_V$	5~200	$10.93 \sim 7.58$	
F		5	0.66	
G	$\begin{array}{c c c c c c c } & Pate of velocity & Distance \\ kg) & components & (m) \\ \hline & (V_V-V_T)/V_V & 5\sim 200 \\ \hline & (V_V-V_L)/V_V & 5\sim 200 \\ \hline & (V_V-V_L)/V_T & 5\sim 200 \\ \hline & (V_V-V_L)/V_V & 5\sim 200 \\ \hline & (V_V-V_L)/V_V & 5\sim 200 \\ \hline & (V_V-V_L)/V_T & 5\sim 200 \\ \hline & (V_V-V_L)/V_V & 5\sim 20 $	6~200	-43.66	
	$(V_T - V_L)/V_T$	5~200	-(11.53~55.45)	
	$(V_V - V_T)/V_V$	5~200	11.42~8.09	
15		5~9	5.97	
GI	$(v_{\rm V} - v_{\rm L})/v_{\rm V}$	10~200	-35.98	
	$(V_T - V_L)/V_T$	5~200	-(6.15~47.95)	

Table 5.6 Maximum ratio of increase on rate of velocity components for Case No. 3

Figure 5.5 Relationship between predicted ground vibration velocity(component) and distance for Case No. 3: charge per delay=(a) 0.5kg, (b) 1.6kg, (c) 5kg, (d) 15kg.

Figure 5.6 Relationship between ratio of increase and distance for Case No. 3 (component velocity).

5.1.4 Case No. 4(지연시차 20ms, 정기폭)

Case No. 4의 SRSD의 성분별(T, V, L) 평균(50%) 지반진동 예측식은 Table 4.8과 같 다.

지반진동 예측 결과 접선성분(T)은 다른 성분에 비해 발파원과 거리가 가까운 경우에 는 진동이 가장 적지만 감쇠가 다른 성분에 비해 적어 멀리 전파하므로 발파원과 거리가 먼 경우에는 진동은 가장 크게 발생된다. 수직성분(V)은 다른 성분들에 비해 발파원과 거리가 가까운 경우에는 진동이 가장 크지만 감쇠도 다른 성분에 비해 가장 커서 멀리 전파하지 못하므로 발파원과 거리가 먼 경우에는 진동이 급격히 줄어든다. 진행성분(L) 은 수직성분(V)에 비해 발파원과 거리가 가까운 경우에는 진동이 적지만 감쇠가 적어 수 직성분(V)보다 멀리 전파된다(Figure 4.7(a)).

Case No. 4의 성분별(T, V, L) 지반진동을 예측하기 위해 SRSD의 평균 지반진동 예측 식으로 거리에 따른 예측 진동치를 Figure 5.7과 같이 도시하였다.

Table 5.7은 Case No. 4에서 거리에 따른 성분별(T, V, L) 예측진동치와 증감율을 나타낸 표이다.

Case No. 4에서 성분별(T, V, L) 입자속도의 평균 지반진동 예측식을 통한 5~200m의 이격거리에서 진동속도를 예측한 결과 접선성분 진동수준과 수직성분 진동수준이 역전 되는 경향이 다르지만 대부분 발파원과 거리가 가까운 경우에는 수직성분의 진동수준이 발파원과 거리가 먼 경우에는 접선성분의 진동수준이 높게 예측되었다.

(1) 지발당 장약량이 0.5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 20m 구간에서는 최대 55.31% 높게 예측되었고, 21~200m 구간에서는 최대 265.93% 낮 게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~22m 구간에서는 최대 49.45% 높게 예측되었고, 23~200m 구간에서는 최대 175.86% 낮게 예측되었다. 접선성분 예측 진동속도는 진행성분 예측속도에 비해 5~15m 구간에서는 최대 13.11% 낮게 예측되었 고, 16~200m 구간에서는 최대 24.61% 높게 예측되었다(Table 5.8, Figure 5.8).

(2) 지발당 장약량이 1.6kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~

36m 구간에서는 최대 67.92% 높게 예측되었고, 37~200m 구간에서는 최대 162.68% 낮 게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~39m 구간에서는 최대 61.31% 높게 예측되었고, 40~200m 구간에서는 최대 111.10% 낮게 예측되었다. 접선성분 예측 진동속도는 진행성분 예측속도에 비해 5~27m 구간에서는 최대 20.59% 낮게 예측되었 고, 28~200m 구간에서는 최대 19.63% 높게 예측되었다(Table 5.8, Figure 5.8).

(3) 지발당 장약량이 5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 64m 구간에서는 최대 76.81% 높게 예측되었고, 65~200m 구간에서는 최대 89.84% 낮게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~69m 구간에서는 최대 70.23% 높 게 예측되었고, 70~200m 구간에서는 최대 62.44% 낮게 예측되었다. 접선성분 예측진동 속도는 진행성분 예측속도에 비해 5~48m 구간에서는 최대 28.39% 낮게 예측되었고, 4 9~200m 구간에서는 최대 14.44% 높게 예측되었다(Table 5.8, Figure 5.8).

(4) 지발당 장약량이 15kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 112m 구간에서는 최대 83.05% 높게 예측되었고, 113~200m 구간에서는 최대 38.81% 낮 게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~120m 구간에서는 최대 76.88% 높게 예측되었고, 121~200m 구간에서는 최대 26.17% 낮게 예측되었다. 접선성분 예측 진동속도는 진행성분 예측속도에 비해 5~83m 구간에서는 최대 36.38% 낮게 예측되었 고, 84~200m 구간에서는 최대 9.11% 높게 예측되었다(Table 5.8, Figure 5.8).

Distance	Charge per delay	Predicte ve	d ground v locity (cm/	vibration (s)	Ratio of increase		
(m)	(kg)	VT	Vv	VL	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$
5		4.935	11.043	5.582	55.31	49.45	-13.11
10		1.674	2.523	1.754	33.66	30.46	-4.81
20	•	0.568	0.576	0.551	1.51	4.35	2.88
40		0.193	0.132	0.173	-46.21	-31.57	10.01
60		0.102	0.056	0.088	-84.23	-58.55	13.94
80	0.5	0.065	0.030	0.054	-117.05	-80.98	16.62
100	0.5	0.046	0.019	0.038	-146.49	-100.54	18.64
120		0.035	0.013	0.028	-173.49	-118.09	20.26
140		0.027	0.009	0.021	-198.61	-134.11	21.60
160		0.022	0.007	0.017	-222.22	-148.95	22.74
180		0.018	0.005	0.014	-244.60	-162.81	23.74
200		0.016	0.004	0.012	-265.93	-175.86	24.61
5		12.227	38.112	14.744	67.92	61.31	-20.59
10		4.147	8.707	4.633	52.37	46.79	-11.73
20		1.406	1.989	1.456	29.30	26.80	-3.53
40		0.477	0.454	0.458	-4.96	-0.69	4.07
60		0.253	0.192	0.232	-32.25	-21.33	8.25
80	1.0	0.162	0.104	0.144	-55.81	-38.50	11.11
100	1.0	0.114	0.065	0.099	-76.94	-53.47	13.27
120		0.086	0.044	0.073	-96.32	-66.90	14.99
140		0.068	0.032	0.056	-114.35	-79.16	16.42
160		0.055	0.024	0.045	-131.31	-90.51	17.64
180		0.046	0.018	0.037	-147.37	-101.12	18.70
200		0.039	0.015	0.031	-162.68	-111.10	19.63
5		29.737	128.256	38.178	76.81	70.23	-28.39
10		10.085	29.301	11.998	65.58	59.05	-18.96
20		3.420	6.694	3.770	48.90	43.68	-10.23
40		1.160	1.529	1.185	24.15	22.53	-2.14
60		0.616	0.645	0.602	4.42	6.64	2.32
80	5	0.393	0.349	0.372	-12.61	-6.57	5.36
100		0.278	0.217	0.257	-27.88	-18.09	7.66
120		0.209	0.147	0.189	-41.89	-28.42	9.49
140		0.164	0.106	0.146	-54.92	-37.86	11.01
160		0.133	0.080	0.117	-67.17	-46.59	12.31
180		0.111	0.062	0.096	-78.78	-54.75	13.44
200		0.094	0.050	0.081	-89.84	-62.44	14.44

Table 5.7 The influence of charge per delay on the predicted ground vibration velocity for Case No. 4

Distance	Charge	Predicted ground vibration			Ratio of increase		
	per delay	ve	elocity (cm/	/s)		(%)	
(m)	(kg)	V_{T}	V_V	V_L	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$
5		70.057	413.248	95.545	83.05	76.88	-36.38
10		23.760	94.410	30.025	74.83	68.20	-26.37
20		8.058	21.569	9.436	62.64	56.25	-17.09
40		2.733	4.928	2.965	44.54	39.82	-8.50
60		1.452	2.078	1.507	30.12	27.49	-3.76
80	15	0.927	1.126	0.932	17.66	17.23	-0.53
100	15	0.654	0.700	0.642	6.50	8.28	1.91
120		0.492	0.475	0.473	-3.74	0.25	3.85
140		0.387	0.342	0.366	-13.27	-7.08	5.47
160		0.314	0.257	0.293	-22.23	-13.86	6.85
180		0.262	0.200	0.241	-30.72	-20.20	8.05
200		0.222	0.160	0.202	-38.81	-26.17	9.11

Table 5.7 Continues

Charge per	Rate of velocity	Distance	Maximum ratio
delay (kg)	components	(m)	of increase (%)
0.5		5~20	55.31
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}})/\mathbf{v}_{\mathrm{V}}$	21~200	-265.93
		5~22	49.45
0.5	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{L}})/\mathbf{v}_{\mathrm{V}}$	23~200	-175.86
	$(\mathbf{v} \mathbf{v})/\mathbf{v}$	5~15	-13.11
	$(\mathbf{v}_{\mathrm{T}} - \mathbf{v}_{\mathrm{L}})/\mathbf{v}_{\mathrm{T}}$	16~200	24.61
		5~36	67.92
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}})/\mathbf{v}_{\mathrm{V}}$	37~200	-162.68
1.6		5~39	61.31
1.6	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{L}})/\mathbf{v}_{\mathrm{V}}$	40~200	-111.10
		5~27	-20.59
	$(\mathbf{v}_{\mathrm{T}} - \mathbf{v}_{\mathrm{L}}) / \mathbf{v}_{\mathrm{T}}$	28~200	19.63
	$(\mathbf{V} = \mathbf{V})/\mathbf{V}$	5~64	76.81
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}}) / \mathbf{v}_{\mathrm{V}}$	65~200	-89.84
5	$(\mathbf{V} - \mathbf{V}) / \mathbf{V}$	5~69	70.23
5	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{L}})/\mathbf{v}_{\mathrm{V}}$	70~200	-62.44
	$(\mathbf{V}_{-}\mathbf{V}_{-})/\mathbf{V}_{-}$	5~48	-28.39
	$(\mathbf{v}_{\mathrm{T}} - \mathbf{v}_{\mathrm{L}})/\mathbf{v}_{\mathrm{T}}$	$49 \sim 200$	14.44
	$(\mathbf{V} - \mathbf{V})/\mathbf{V}$	5~112	83.05
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}})/\mathbf{v}_{\mathrm{V}}$	113~200	-38.81
15		5~120	76.88
15	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{L}})/\mathbf{v}_{\mathrm{V}}$	121~200	-26.17
	$(\mathbf{V}_{-}\mathbf{V}_{-})/\mathbf{V}_{-}$	5~83	-36.38
	$(\mathbf{v}_{\mathrm{T}} - \mathbf{v}_{\mathrm{L}})/\mathbf{v}_{\mathrm{T}}$	84~200	9.11

Table 5.8 Maximum ratio of increase on rate of velocity components for Case No. 4

Figure 5.7 Relationship between predicted ground vibration velocity(component) and distance for Case No. 4: charge per delay=(a) 0.5kg, (b) 1.6kg, (c) 5kg, (d) 15kg.

Figure 5.8 Relationship between ratio of increase and distance for Case No. 4 (component velocity).

5.1.5 Case No. 5(지연시차 20ms, 중간기폭)

Case No. 5의 SRSD의 성분별(T, V, L) 평균(50%) 지반진동 예측식은 Table 4.10과 같 다.

지반진동 예측 결과 접선성분(T)은 다른 성분에 발파원과 거리가 가까운 경우에는 진 동이 가장 적지만 감쇠가 적어 다른 성분에 비해 멀리 전파되어 발파원과 거리가 먼 경 우에는 진동은 가장 크게 발생된다. 수직성분(V)은 진행성분(L)에 비해 발파원과 거리가 가까운 경우에는 진동이 적지만 감쇠가 진행성분(L)에 비해 적어 발파원과 거리가 먼 경 우에는 진동이 크게 발생된다. 진행성분(L)은 발파원과 거리가 가까운 경우에는 진동이 가장 크게 발생되지만 감쇠도 가장 커서 발파원과 거리가 먼 경우에는 진동은 가장 적게 발생된다(Figure 4.9(a)).

Case No. 5의 성분별(T, V, L) 지반진동을 예측하기 위해 SRSD의 평균 지반진동 예측 식으로 거리에 따른 예측 진동치를 Figure 5.9와 같이 도시하였다.

Table 5.9는 Case No. 5에서 거리에 따른 성분별(T, V, L) 예측진동치와 증감율을 나타낸 표이다.

Case No. 5에서 성분별(T, V, L) 입자속도의 평균 지반진동 예측식을 통한 5~200m의 이격거리에서 진동속도를 예측한 결과 장약량이 19kg 이내에서는 진행성분 진동수준과 접선성분 진동수준이 역전되는 경향이 다르지만 대부분 발파원과 거리가 가까운 경우에 는 진행성분의 진동수준이 발파원과 거리가 먼 경우에는 접선성분의 진동수준이 높게 예 측되었고, 장약량이 19kg 이상에서는 진행성분의 진동수준이 높게 예측되었다. 수직성분 은 접선성분에 비해 발파원과 거리가 가까운 경우에는 높은, 발파원과 거리가 먼 경우에 는 낮은 진동수준이 예측되었다.

(1) 지발당 장약량이 0.5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 31m 구간에서는 최대 51.03% 높게 예측되었고, 32~200m 구간에서는 최대 106.39% 낮 게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~73m 구간에서는 최대 5.51% 낮게 예측되었고, 74~200m 구간에서는 최대 1.99% 높게 예측되었다. 접선성분 예측진 동속도는 진행성분 예측속도에 비해 5~32m 구간에서는 최대 115.48% 낮게 예측되었고, 33~200m 구간에서는 최대 52.52% 높게 예측되었다(Table 5.10, Figure 5.10). (2) 지발당 장약량이 1.6kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 55m 구간에서는 최대 60.97% 높게 예측되었고, 56~200m 구간에서는 최대 64.51% 낮게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~130m 구간에서는 최대 6.74% 낮 게 예측되었고, 131~200m 구간에서는 최대 0.85% 높게 예측되었다. 접선성분 예측진동 속도는 진행성분 예측속도에 비해 5~58m 구간에서는 최대 173.50% 낮게 예측되었고, 59~200m 구간에서는 최대 39.73% 높게 예측되었다(Table 5.10, Figure 5.10).

(3) 지발당 장약량이 5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 98m 구간에서는 최대 68.75% 높게 예측되었고, 99~200m 구간에서는 최대 31.73% 낮게 예측되었다. 그리고 진행성분 예측진동속도에 비해 최대 7.97%에서 최소 0.29% 낮게 예 측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 5~102m 구간에서는 최 대 245.46% 낮게 예측되었고, 103~200m 구간에서는 최대 23.87% 높게 예측되었다 (Table 5.10, Figure 5.10).

(4) 지발당 장약량이 15kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 170m 구간에서는 최대 74.77% 높게 예측되었고, 171~200m 구간에서는 최대 6.33% 낮 게 예측되었다. 그리고 진행성분 예측진동속도에 비해 최대 9.16%에서 최소 1.40% 낮게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 5~178m 구간에서는 최대 332.72% 낮게 예측되었고, 179~200m 구간에서는 최대 4.64% 높게 예측되었다 (Table 5.10, Figure 5.10).

Distance	Charge	Predicte	d ground v	vibration	Ratio of increase		
(m)	(kg)	V _T	V _V	VL	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$
5		1.790	3.656	3.858	51.03	-5.51	-115.48
10		0.611	0.953	0.991	35.84	-4.06	-62.17
20		0.209	0.248	0.255	15.92	-2.62	-22.06
40	-	0.071	0.065	0.066	-10.18	-1.21	8.14
60	_	0.038	0.029	0.030	-29.05	-0.39	22.21
80		0.024	0.017	0.017	-44.38	0.18	30.86
100	0.5	0.017	0.011	0.011	-57.51	0.63	36.91
120		0.013	0.008	0.008	-69.11	0.99	41.45
140		0.010	0.006	0.006	-79.59	1.29	45.04
160	-	0.008	0.004	0.004	-89.19	1.56	47.97
180		0.007	0.003	0.003	-98.08	1.79	50.42
200		0.006	0.003	0.003	-106.39	1.99	52.52
5		4.410	11.298	12.060	60.97	-6.74	-173.50
10		1.506	2.944	3.100	48.86	-5.27	-105.84
20		0.514	0.767	0.797	32.98	-3.83	-54.92
40		0.176	0.200	0.205	12.18	-2.40	-16.60
60		0.094	0.091	0.093	-2.87	-1.57	1.26
80	1.0	0.060	0.052	0.053	-15.08	-0.99	12.25
100	1.6	0.042	0.034	0.034	-25.54	-0.54	19.92
120		0.032	0.024	0.024	-34.79	-0.17	25.69
140		0.025	0.018	0.018	-43.15	0.14	30.24
160		0.020	0.014	0.014	-50.80	0.40	33.95
180		0.017	0.011	0.011	-57.89	0.64	37.07
200		0.014	0.009	0.009	-64.51	0.85	39.73
5		10.664	34.120	36.839	68.75	-7.97	-245.46
10		3.642	8.892	9.469	59.05	-6.48	-160.00
20		1.244	2.317	2.434	46.33	-5.02	-95.68
40		0.425	0.604	0.626	29.68	-3.57	-47.28
60		0.227	0.275	0.283	17.63	-2.73	-24.72
80		0.145	0.157	0.161	7.85	-2.14	-10.84
100	5	0.103	0.102	0.104	-0.53	-1.69	-1.15
120		0.077	0.072	0.073	-7.94	-1.32	6.13
140		0.061	0.053	0.054	-14.63	-1.01	11.88
160		0.050	0.041	0.041	-20.75	-0.74	16.58
180		0.041	0.033	0.033	-26.43	-0.50	20.51
200		0.035	0.027	0.027	-31.73	-0.29	23.87

Table 5.9 The influence of charge per delay on the predicted ground vibration velocity for Case No. 5

D:-+	Charge	Predicte	Predicted ground vibration			Ratio of increase		
Distance	per delay	ve	velocity (cm/s)		(%)			
(111)	(kg)	V_{T}	$V_{\rm V}$	VL	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$	
5		24.985	99.042	108.115	74.77	-9.16	-332.72	
10		8.533	25.812	27.789	66.94	-7.66	-225.68	
20		2.914	6.727	7.142	56.68	-6.18	-145.11	
40		0.995	1.753	1.836	43.24	-4.71	-84.48	
60		0.531	0.798	0.829	33.51	-3.87	-56.22	
80	15	0.340	0.457	0.472	25.62	-3.27	-38.84	
100	15	0.240	0.296	0.305	18.86	-2.81	-26.70	
120		0.181	0.208	0.213	12.88	-2.44	-17.58	
140		0.143	0.154	0.158	7.48	-2.12	-10.38	
160		0.116	0.119	0.121	2.53	-1.85	-4.50	
180		0.097	0.095	0.096	-2.05	-1.61	0.43	
200		0.082	0.077	0.078	-6.33	-1.40	4.64	

Table 5.9 Continues

Charge per	Rate of velocity	Distance	Maximum ratio
delay (kg)	components	(m)	of increase (%)
	$(\mathbf{U} \mathbf{V}) / \mathbf{V}$	5~31	51.03
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}}) / \mathbf{v}_{\mathrm{V}}$	32~200	-106.39
0.5	(VV-)/V	5~73	-5.51
0.5	$(\mathbf{v} \nabla - \mathbf{v} \Gamma) / \mathbf{v} \nabla$	74~200	1.99
	$(\mathbf{V}_{-}-\mathbf{V}_{-})/\mathbf{V}_{-}$	5~32	-115.48
	(VT ⁻ VL)/VT	33~200	52.52
	$(\mathbf{V} \mathbf{V})/\mathbf{V}$	5~55	60.97
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}}) / \mathbf{v}_{\mathrm{V}}$	56~200	-64.51
1.6		5~130	-6.74
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{L}}) / \mathbf{v}_{\mathrm{V}}$	131~200	0.85
	$(\mathbf{V}_{-}-\mathbf{V}_{-})/\mathbf{V}_{-}$	5~58	-173.50
	$(V_{\rm T}-V_{\rm L})/V_{\rm T}$	59~200	39.73
	$(\mathbf{V} \mathbf{V})/\mathbf{V}$	5~98	68.75
	$(\mathbf{v} \mathbf{v}^{-} \mathbf{v} \mathbf{T}) / \mathbf{v} \mathbf{v}$	99~200	-31.73
5	1.6 $(V_{V}-V_{L})/V_{V}$ - $(V_{T}-V_{L})/V_{T}$ - $(V_{V}-V_{L})/V_{T}$ - $(V_{V}-V_{L})/V_{V}$ - $(V_{V}-V_{L})/V_{V}$ - $(V_{T}-V_{L})/V_{T}$ - $(V_{T}-V_{L})/V_{T})/V_{T}$ - $(V_{T}-V_{L})/V_{$	5~200	-(7.97~0.29)
	$(\mathbf{V} = \mathbf{V})/\mathbf{V}$	5~102	-245.46
	$(\mathbf{v}_{\mathrm{T}} - \mathbf{v}_{\mathrm{L}}) / \mathbf{v}_{\mathrm{T}}$	103~200	23.87
		5~170	74.77
15	$(V_{\rm V} - V_{\rm T})/V_{\rm V}$	171~200	-6.33
	$(V_V - V_L)/V_V$	5~200	-(9.16~1.40)
		5~178	-332.72
	$(V_{\rm T} - V_{\rm L})/V_{\rm T}$	179~200	4.64

Figure 5.9 Relationship between predicted ground vibration velocity(component) and distance for Case No. 5: charge per delay=(a) 0.5kg, (b) 1.6kg, (c) 5kg, (d) 15kg.

Figure 5.10 Relationship between ratio of increase and distance for Case No. 5 (component velocity).

5.1.6 Case No. 6(지연시차 20ms, 역기폭)

Case No. 6의 SRSD의 성분별(T, V, L) 평균(50%) 지반진동 예측식은 Table 4.12과 같 다.

지반진동 예측 결과 접선성분(T)은 다른 성분에 비해 발파원과 거리가 가까운 경우에 는 진동이 가장 적게 발생되고 감쇠가 적어 다른 성분이 비래 멀리 전파되어 발파원과 거리가 먼 경우에는 진동은 가장 크게 발생된다. 수직성분(V)은 진행성분(L)보다 발파원 과 거리가 가까운 경우에는 진동이 적게 발생되고 감쇠도 커서 진동이 멀리 전파되지 못 한다. 진행성분(L)은 다른 성분에 비해 발파원과 거리가 가까운 경우에는 진동은 가장 크게 발생되지만 접선성분(T)보다 감쇠가 커서 발파원과 거리가 먼 경우에는 진동은 적 게 발생된다.(Figure 4.11(a)).

Case No. 6의 성분별(T, V, L) 지반진동을 예측하기 위해 SRSD의 평균 지반진동 예측 식으로 거리에 따른 예측 진동치를 Figure 5.11과 같이 도시하였다.

Table 5.11은 Case No. 6에서 거리에 따른 성분별(T, V, L) 예측진동치와 증감율을 나타낸 표이다.

Case No. 6에서 성분별(T, V, L) 입자속도의 평균 지반진동 예측식을 통한 5~200m의 이격거리에서 진동속도를 예측한 결과 장약량이 20.7kg 이내에서는 진행성분 진동수준 과 접선성분 진동수준이 역전되는 경향이 다르지만 대부분 발파원과 거리가 가까운 경우 에는 진행성분의 진동수준이 발파원과 거리가 먼 경우에는 접선성분의 진동수준이 높게 예측되었고, 장약량이 20.7kg 이상에서는 진행성분의 진동수준이 높게 예측되었다. 수직 성분은 접선성분에 비해 발파원과 거리가 가까운 경우에는 높은, 발파원과 거리가 먼 경 우에는 낮은 진동수준이 예측되었다.

(1) 지발당 장약량이 0.5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 18m 구간에서는 최대 27.64% 높게 예측되었고, 19~200m 구간에서는 최대 81.97% 낮게 예측되었다. 그리고 진행성분 예측진동속도에 비해 최소 10.16%에서 최대 18.59% 낮게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 5~31m 구간에서는 최 대 52.24% 낮게 예측되었고, 32~200m 구간에서는 최대 34.83% 높게 예측되었다(Table 5.12, Figure 5.12).
(2) 지발당 장약량이 1.6kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 32m 구간에서는 최대 37.43% 높게 예측되었고, 33~200m 구간에서는 최대 57.35% 낮게 예측되었다. 그리고 진행성분 예측진동속도에 비해 최소 8.88%에서 최대 17.22% 낮게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 5~55m 구간에서는 최 대 74.03% 낮게 예측되었고, 56~200m 구간에서는 최대 25.50% 높게 예측되었다(Table 5.12, Figure 5.12).

(3) 지발당 장약량이 5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 57m 구간에서는 최대 45.74% 높게 예측되었고, 58~200m 구간에서는 최대 36.46% 낮게 예측되었다. 그리고 진행성분 예측진동속도에 비해 최소 7.65%에서 최대 15.89% 낮게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 5~98m 구간에서는 최 대 98.40% 낮게 예측되었고, 99~200m 구간에서는 최대 15.07% 높게 예측되었다(Table 5.12, Figure 5.12).

(4) 지발당 장약량이 15kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 99m 구간에서는 최대 52.70% 높게 예측되었고, 100~200m 구간에서는 최대 18.95% 낮 게 예측되었다. 그리고 진행성분 예측진동속도에 비해 최소 6.47%에서 최대 14.63% 낮 게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 5~170m 구간에서 는 최대 125.11% 낮게 예측되었고, 171~200m 구간에서는 최대 3.63% 높게 예측되었다 (Table 5.12, Figure 5.12).

Distance	Charge per delay	Predicte	d ground v locity (cm/	vibration /s)	H	Ratio of increase (%)		
(m)	(kg)	VT	Vv	VL	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$	
5		1.995	2.757	3.037	27.64	-10.16	-52.24	
10	_	0.672	0.781	0.872	13.95	-11.70	-29.81	
20	-	0.226	0.221	0.250	-2.33	-13.26	-10.68	
40		0.076	0.063	0.072	-21.69	-14.84	5.63	
60		0.040	0.030	0.035	-34.67	-15.77	14.03	
80		0.026	0.018	0.021	-44.71	-16.44	19.54	
100	0.5	0.018	0.012	0.014	-53.02	-16.96	23.56	
120		0.014	0.008	0.010	-60.15	-17.39	26.70	
140		0.011	0.006	0.008	-66.45	-17.75	29.26	
160	-	0.009	0.005	0.006	-72.10	-18.06	31.40	
180		0.007	0.004	0.005	-77.24	-18.34	33.23	
200		0.006	0.003	0.004	-81.97	-18.59	34.83	
5		4.971	7.945	8.651	37.43	-8.88	-74.03	
10		1.674	2.250	2.484	25.60	-10.40	-48.39	
20		0.564	0.637	0.713	11.52	-11.95	-26.52	
40		0.190	0.180	0.205	-5.22	-13.51	-7.87	
60		0.100	0.086	0.099	-16.45	-14.43	1.73	
80	1.0	0.064	0.051	0.059	-25.13	-15.09	8.02	
100	1.6	0.045	0.034	0.039	-32.31	-15.61	12.62	
120		0.034	0.024	0.028	-38.48	-16.03	16.21	
140		0.027	0.018	0.021	-43.92	-16.39	19.13	
160		0.022	0.014	0.017	-48.81	-16.70	21.58	
180		0.018	0.012	0.014	-53.25	-16.97	23.67	
200		0.015	0.010	0.011	-57.35	-17.22	25.50	
5		12.158	22.408	24.122	45.74	-7.65	-98.40	
10		4.095	6.346	6.927	35.47	-9.15	-69.16	
20		1.379	1.797	1.989	23.26	-10.68	-44.23	
40		0.465	0.509	0.571	8.75	-12.22	-22.98	
60	-	0.246	0.243	0.275	-0.99	-13.14	-12.03	
80		0.156	0.144	0.164	-8.52	-13.79	-4.85	
100	5	0.110	0.096	0.110	-14.75	-14.30	0.39	
120		0.083	0.069	0.079	-20.10	-14.72	4.48	
140		0.065	0.052	0.060	-24.82	-15.07	7.81	
160		0.053	0.041	0.047	-29.05	-15.38	10.60	
180		0.044	0.033	0.038	-32.91	-15.65	12.99	
200		0.037	0.027	0.032	-36.46	-15.89	15.07	

Table 5.11 The influence of charge per delay on the predicted ground vibration velocity for Case No. 6

Distance	Charge per delay	Predicted ground vibration velocity (cm/s)			Ratio of increase (%)		
(111)	(kg)	VT	Vv	VL	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$
5		28.802	60.894	64.837	52.70	-6.47	-125.11
10		9.701	17.247	18.619	43.75	-7.96	-91.94
20		3.267	4.885	5.347	33.11	-9.47	-63.66
40		1.100	1.383	1.536	20.45	-11.00	-39.54
60		0.582	0.661	0.740	11.97	-11.90	-27.11
80	15	0.371	0.392	0.441	5.40	-12.55	-18.98
100	15	0.261	0.261	0.295	-0.02	-13.05	-13.02
120		0.196	0.187	0.213	-4.69	-13.46	-8.38
140		0.154	0.141	0.161	-8.80	-13.81	-4.61
160		0.125	0.111	0.127	-12.49	-14.12	-1.44
180		0.104	0.090	0.102	-15.86	-14.39	1.27
200		0.088	0.074	0.085	-18.95	-14.63	3.63

Table 5.11 Continues

Charge per delay (kg)	Charge per delay (kg)Rate of velocity components		Maximum ratio of increase (%)	
		5~18	27.64	
	$(V_{\rm V} - V_{\rm T}) / V_{\rm V}$	19~200	-81.97	
0.5	$(V_V - V_L)/V_V$	5~200	-(10.16~18.59)	
		5~31	-52.24	
	$(\mathbf{v}_{\mathrm{T}} - \mathbf{v}_{\mathrm{L}}) / \mathbf{v}_{\mathrm{T}}$	32~200	34.83	
		5~32	37.43	
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}})/ \mathbf{v}_{\mathrm{V}} $	33~200	-57.35	
1.6	$(V_V - V_L)/V_V$	5~200	-(8.88~17.22)	
		5~55	-74.03	
	$(\mathbf{v}_{\mathrm{T}} - \mathbf{v}_{\mathrm{L}}) / \mathbf{v}_{\mathrm{T}}$	56~200	25.50	
	$(\mathbf{V} = \mathbf{V}) / \mathbf{V}$	5~57	45.74	
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}})/ \mathbf{v}_{\mathrm{V}} $	58~200	-36.46	
5	$(V_V - V_L)/V_V$	5~200	-(7.65~15.89)	
		5~98	-98.40	
	$(\mathbf{v}_{\mathrm{T}} - \mathbf{v}_{\mathrm{L}}) / \mathbf{v}_{\mathrm{T}}$	99~200	15.07	
		5~99	52.70	
15	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}})/ \mathbf{v}_{\mathrm{V}} $	100~200	-18.95	
	$(V_V - V_L)/V_V$	5~200	-(6.47~14.63)	
	$(\mathbf{V}_{-},\mathbf{V}_{-})/\mathbf{V}_{-}$	5~170	-125.11	
	(V T ⁻ V L)/ V T	171~200	3.63	

Note) (+) : increase, (-) : decrease

Figure 5.11 Relationship between predicted ground vibration velocity(component) and distance for Case No. 6: charge per delay=(a) 0.5kg, (b) 1.6kg, (c) 5kg, (d) 15kg.

Figure 5.12 Relationship between ratio of increase and distance for Case No. 6 (component velocity).

5.1.7 Case No. 7(지연시차 25ms, 정기폭)

Case No. 7의 SRSD의 성분별(T, V, L) 평균(50%) 지반진동 예측식은 Table 4.14와 같 다.

지반진동 예측 결과 접선성분(T)은 다른 성분에 비해 발파원과 거리가 가까운 경우에 는 진동이 가장 적게 발생되지만 감쇠가 가장 적어 발파원과 거리가 먼 경우에는 진동은 가장 크게 발생된다. 수직성분(V)은 다른 성분에 비해 발파원과 거리가 가까운 경우에는 진동이 가장 크게 발생되나 감쇠가 가장 커서 멀리 전파하지 못해 발파원과 거리가 먼 경우에는 진동은 가장 적게 발생된다. 진행성분(L)은 수직성분(V)보다 발파원과 거리가 가까운 경우에는 진동은 적게 발생된다 감쇠도 적어 발파원과 거리가 먼 경우에는 진동 은 크게 발생된다(Figure 4.13(a)).

Case No. 7의 성분별(T, V, L) 지반진동을 예측하기 위해 SRSD의 평균 지반진동 예측 식으로 거리에 따른 예측 진동치를 Figure 5.13과 같이 도시하였다.

Table 5.13은Case No. 7에서 거리에 따른 성분별(T, V, L) 예측진동치와 증감율을 나 타낸 표이다.

Case No. 7에서 성분별(T, V, L) 입자속도의 평균 지반진동 예측식을 통한 5~200m의 이격거리에서 진동속도를 예측한 결과 접선성분 진동수준과 수직성분 진동수준이 역전 되는 경향이 다르지만 대부분 발파원과 거리가 가까운 경우에는 수직성분의 진동수준이 발파원과 거리가 먼 경우에는 접선성분의 진동수준이 높게 예측되었다. 진행성분은 접선 성분에 비해 발파원과 거리가 가까운 경우에는 높은, 발파원과 거리가 먼 경우에는 낮은 진동수준이 예측되었다.

(1) 지발당 장약량이 0.5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 18m 구간에서는 최대 36.98% 높게 예측되었고, 19~200m 구간에서는 최대 137.79% 낮 게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~18m 구간에서는 최대 25.11% 높게 예측되었고, 19~200m 구간에서는 최대 68.60% 낮게 예측되었다. 접선성분 예측진 동속도는 진행성분 예측속도에 비해 5~17m 구간에서는 최대 18.84% 낮게 예측되었고, 18~200m 구간에서는 최대 29.10% 높게 예측되었다(Table 5.14, Figure 5.14). (2) 지발당 장약량이 1.6kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 32m 구간에서는 최대 48.89% 높게 예측되었고, 33~200m 구간에서는 최대 92.87% 낮게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~33m 구간에서는 최대 34.11% 높 게 예측되었고, 34~200m 구간에서는 최대 48.35% 낮게 예측되었다. 접선성분 예측진동 속도는 진행성분 예측속도에 비해 5~30m 구간에서는 최대 28.92% 낮게 예측되었고, 3 1~200m 구간에서는 최대 23.08% 높게 예측되었다(Table 5.14, Figure 5.14).

(3) 지발당 장약량이 5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 57m 구간에서는 최대 58.37% 높게 예측되었고, 58~200m 구간에서는 최대 57.11% 낮게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~58m 구간에서는 최대 41.87% 높 게 예측되었고, 59~200m 구간에서는 최대 30.88% 낮게 예측되었다. 접선성분 예측진동 속도는 진행성분 예측속도에 비해 5~54m 구간에서는 최대 39.62% 낮게 예측되었고, 5 5~200m 구간에서는 최대 16.70% 높게 예측되었다(Table 5.14, Figure 5.14).

(4) 지발당 장약량이 15kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 98m 구간에서는 최대 65.84% 높게 예측되었고, 99~200m 구간에서는 최대 28.92% 낮게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~101m 구간에서는 최대 48.49% 높 게 예측되었고, 102~200m 구간에서는 최대 15.98% 낮게 예측되었다. 접선성분 예측진 동속도는 진행성분 예측속도에 비해 5~93m 구간에서는 최대 50.78% 낮게 예측되었고, 94~200m 구간에서는 최대 10.04% 높게 예측되었다(Table 5.14, Figure 5.14).

Distance	Charge per delay	Predicte	d ground v locity (cm/	vibration /s)	Ratio of increase (%)		
(m)	(kg)	VT	Vv	VL	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$
5		1.451	2.303	1.725	36.98	25.11	-18.84
10		0.506	0.626	0.546	19.12	12.78	-7.85
20		0.176	0.170	0.173	-3.80	-1.59	2.13
40		0.062	0.046	0.055	-33.22	-18.33	11.18
60		0.033	0.022	0.028	-54.15	-29.37	16.08
80	0.5	0.021	0.013	0.017	-70.98	-37.82	19.39
100	0.5	0.015	0.008	0.012	-85.28	-44.75	21.87
120	•	0.012	0.006	0.009	-97.85	-50.68	23.84
140		0.009	0.004	0.007	-109.14	-55.88	25.47
160		0.007	0.003	0.005	-119.43	-60.52	26.85
180		0.006	0.003	0.005	-128.94	-64.74	28.04
200		0.005	0.002	0.004	-137.79	-68.60	29.10
5		3.513	6.874	4.529	48.89	34.11	-28.92
10		1.225	1.867	1.433	34.40	23.25	-17.00
20		0.427	0.507	0.454	15.81	10.61	-6.18
40		0.149	0.138	0.144	-8.05	-4.12	3.64
60		0.080	0.064	0.073	-25.03	-13.83	8.96
80	1.0	0.052	0.037	0.045	-38.68	-21.27	12.55
100	1.0	0.037	0.025	0.031	-50.28	-27.37	15.24
120		0.028	0.017	0.023	-60.47	-32.58	17.38
140		0.022	0.013	0.018	-69.63	-37.16	19.14
160		0.018	0.010	0.014	-77.98	-41.24	20.64
180		0.015	0.008	0.012	-85.69	-44.95	21.94
200		0.013	0.007	0.010	-92.87	-48.35	23.08
5		8.352	20.061	11.661	58.37	41.87	-39.62
10		2.912	5.450	3.690	46.57	32.29	-26.71
20		1.015	1.481	1.168	31.42	21.14	-14.99
40		0.354	0.402	0.370	11.98	8.15	-4.36
60		0.191	0.188	0.188	-1.85	-0.42	1.40
80		0.123	0.109	0.117	-12.96	-6.98	5.29
100	5	0.088	0.072	0.081	-22.41	-12.37	8.21
120		0.067	0.051	0.060	-30.72	-16.96	10.52
140		0.053	0.038	0.046	-38.17	-21.00	12.43
160		0.043	0.030	0.037	-44.98	-24.61	14.05
180		0.036	0.024	0.030	-51.26	-27.88	15.46
200		0.031	0.020	0.026	-57.11	-30.88	16.70

Table 5.13 The influence of charge per delay on the predicted ground vibration velocity for Case No. 7

Distance	Charge	Predicte	d ground v	vibration	F	Ratio of increas	e
Distance	per delay	velocity (cm/s)			(%)		
(III)	(kg)	VT	Vv	VL	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$
5		19.249	56.343	29.024	65.84	48.49	-50.78
10		6.712	15.307	9.184	56.15	40.00	-36.84
20		2.340	4.159	2.906	43.73	30.12	-24.18
40		0.816	1.130	0.920	27.78	18.60	-12.70
60		0.441	0.527	0.469	16.43	11.01	-6.48
80	15	0.285	0.307	0.291	7.31	5.20	-2.28
100	15	0.203	0.202	0.201	-0.45	0.43	0.87
120		0.154	0.143	0.148	-7.26	-3.65	3.37
140		0.122	0.107	0.115	-13.38	-7.23	5.43
160		0.099	0.083	0.092	-18.97	-10.42	7.18
180		0.083	0.067	0.076	-24.12	-13.32	8.70
200		0.071	0.055	0.064	-28.92	-15.98	10.04

Table 5.13 Continues

Note) V_T=transverse component velocity, V_V=vertical component velocity, V_L=longitudinal component velocity

Charge per	Rate of velocity	Distance	Maximum ratio
delay (kg)	components	(m)	of increase (%)
	$(\mathbf{x} + \mathbf{x})/\mathbf{x}$	5~18	36.98
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}})/\mathbf{v}_{\mathrm{V}}$	19~200	-137.79
0 E		5~18	25.11
0.5	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{L}})/ \mathbf{v}_{\mathrm{V}} $	19~200	-68.60
	$(V_{-}V_{-})/V_{-}$	5~17	-18.84
	(VT VL//VT	18~200	29.10
	$(\mathbf{V}_{}\mathbf{V}_{-})/\mathbf{V}_{}$	5~32	48.89
	$(\mathbf{v}_V \mathbf{v}_T)/\mathbf{v}_V$	33~200	-92.87
16	$(\mathbf{V}_{},\mathbf{V}_{-})/\mathbf{V}_{}$	5~33	34.11
1.0	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{L}})/ \mathbf{v}_{\mathrm{V}} $	34~200	-48.35
	$(\mathbf{V}_{-}-\mathbf{V}_{-})/\mathbf{V}_{-}$	5~30	-28.92
	$(\mathbf{v}_{\mathrm{T}} - \mathbf{v}_{\mathrm{L}})/ \mathbf{v}_{\mathrm{T}} $	31~200	23.08
	$(V_{}V_{-})/V_{}$	5~57	58.37
	$(\mathbf{v}_V \mathbf{v}_T)/\mathbf{v}_V$	58~200	-57.11
5	$(\mathbf{V}_{}\mathbf{V}_{-})/\mathbf{V}_{}$	5~58	41.87
5		$59 \sim 200$	-30.88
	$(\mathbf{V}_{-}-\mathbf{V}_{-})/\mathbf{V}_{-}$	5~54	-39.62
	$(\mathbf{v}_{\mathrm{T}} - \mathbf{v}_{\mathrm{L}})/ \mathbf{v}_{\mathrm{T}} $	$55 \sim 200$	16.70
	$(\mathbf{V} - \mathbf{V}) / \mathbf{V}$	5~98	65.84
	$(\mathbf{v}_V \mathbf{v}_T)/\mathbf{v}_V$	99~200	-28.92
15	$(V_{}V_{-})/V_{}$	5~101	48.49
15	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{L}})/ \mathbf{v}_{\mathrm{V}} $	102~200	-15.98
	$(\mathbf{V} - \mathbf{V})/\mathbf{V}$	5~93	-50.78
	$(\mathbf{v}_{\mathrm{T}} - \mathbf{v}_{\mathrm{L}})/\mathbf{v}_{\mathrm{T}}$	94~200	10.04

Table 5.14 Maximum ratio of increase on rate of velocity components for Case No. 7

Note) (+) : increase, (-) : decrease

Figure 5.13 Relationship between predicted ground vibration velocity(component) and distance for Case No. 7: charge per delay=(a) 0.5kg, (b) 1.6kg, (c) 5kg, (d) 15kg.

Figure 5.14 Relationship between ratio of increase and distance for Case No. 7 (component velocity).

5.1.8 Case No. 8(지연시차 25ms, 중간기폭)

Case No. 8의 SRSD의 성분별(T, V, L) 평균(50%) 지반진동 예측식은 Table 4.16과 같 다.

지반진동 예측 결과 접선성분(T)은 다른 성분에 비해 발파원과 거리가 가까운 경우에 는 진동이 가장 적게 발생되지만 감쇠가 가장 적어 발파원과 거리가 먼 경우에는 진동은 가장 크게 발생된다. 수직성분(V)은 다른 성분에 비해 발파원과 거리가 가까운 경우에는 진동이 크게 발생되지만 감쇠가 커서 발파원과 거리가 먼 경우에는 진동은 가장 적게 발 생된다. 진행성분(L)은 접선성분(L)에 비해 발파원과 거리가 가까운 경우에는 진동이 월 등히 크게 발생되나 감쇠도 월등히 커서 발파원과 거리가 먼 경우에는 진동은 적게 발생 된다(Figure 4.15(a)).

Case No. 8의 성분별(T, V, L) 지반진동을 예측하기 위해 SRSD의 평균 지반진동 예측 식으로 거리에 따른 예측 진동치를 Figure 5.15와 같이 도시하였다.

Table 5.15는 Case No. 8에서 거리에 따른 성분별(T, V, L) 예측진동치와 증감율을 나타낸 표이다.

Case No. 8에서 성분별(T, V, L) 입자속도의 평균 지반진동 예측식을 통한 5~200m의 이격거리에서 진동속도를 예측한 결과 장약량에 따라 진동수준이 역전되는 경향이 다르 지만 대부분 발파원과 거리가 가까운 경우에는 수직성분, 진행성분, 접선성분 순으로 높 은 진동수준이 예측되고, 발파원과 거리가 먼 경우에는 접선성분, 진행성분, 수직성분 순 으로 높은 진동수준이 예측되었다.

(1) 지발당 장약량이 0.5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 26m 구간에서는 최대 74.24% 높게 예측되었고, 27~200m 구간에서는 최대 430.45% 낮 게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~6m 구간에서는 최대 1.44% 높 게 예측되었고, 7~200m 구간에서는 최대 18.52% 낮게 예측되었다. 접선성분 예측진동 속도는 진행성분 예측속도에 비해 5~28m 구간에서는 최대 282.59% 낮게 예측되었고, 29~200m 구간에서는 최대 77.66% 높게 예측되었다(Table 5.16, Figure 5.16). (2) 지발당 장약량이 1.6kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 46m 구간에서는 최대 84.01% 높게 예측되었고, 47~200m 구간에서는 최대 229.25% 낮 게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~11m 구간에서는 최대 4.27% 높게 예측되었고, 12~200m 구간에서는 최대 15.12% 낮게 예측되었다. 접선성분 예측진 동속도는 진행성분 예측속도에 비해 5~51m 구간에서는 최대 498.71% 낮게 예측되었고, 52~200m 구간에서는 최대 65.04% 높게 예측되었다(Table 5.16, Figure 5.16).

(3) 지발당 장약량이 5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 82m 구간에서는 최대 89.98% 높게 예측되었고, 83~200m 구간에서는 최대 106.37% 낮 게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~21m 구간에서는 최대 6.96% 높게 예측되었고, 22~200m 구간에서는 최대 11.89% 낮게 예측되었다. 접선성분 예측진 동속도는 진행성분 예측속도에 비해 5~90m 구간에서는 최대 828.39% 낮게 예측되었고, 91~200m 구간에서는 최대 45.78% 높게 예측되었다(Table 5.16, Figure 5.16).

(4) 지발당 장약량이 15kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 5~ 143m 구간에서는 최대 93.61% 높게 예측되었고, 144~200m 구간에서는 최대 31.53% 낮 게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~36m 구간에서는 최대 9.48% 높게 예측되었고, 37~200m 구간에서는 최대 8.86% 낮게 예측되었다. 접선성분 예측진 동속도는 진행성분 예측속도에 비해 5~156m 구간에서는 최대 1317.17% 낮게 예측되었 고, 157~200m 구간에서는 최대 17.24% 높게 예측되었다(Table 5.16, Figure 5.16).

Distance	Charge per delay	Predicte	d ground v locity (cm/	vibration /s)	Ratio of increase (%)		
(m)	(kg)	VT	Vv	VL	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$
5		4.606	17.881	17.623	74.24	1.44	-282.59
10	-	1.551	3.411	3.481	54.52	-2.03	-124.36
20		0.523	0.651	0.687	19.71	-5.63	-31.57
40		0.176	0.124	0.136	-41.74	-9.36	22.85
60		0.093	0.047	0.053	-97.64	-11.59	43.54
80	0.5	0.059	0.024	0.027	-150.23	-13.21	54.76
100	0.5	0.042	0.014	0.016	-200.47	-14.48	61.90
120	•	0.031	0.009	0.010	-248.92	-15.53	66.89
140		0.025	0.006	0.007	-295.93	-16.42	70.60
160		0.020	0.005	0.005	-341.75	-17.20	73.47
180		0.017	0.003	0.004	-386.54	-17.90	75.77
200		0.014	0.003	0.003	-430.45	-18.52	77.66
5		11.479	71.787	68.723	84.01	4.27	-498.71
10		3.866	13.696	13.573	71.77	0.89	-251.09
20	-	1.302	2.613	2.681	50.17	-2.60	-105.89
40		0.439	0.498	0.530	12.02	-6.22	-20.74
60		0.232	0.189	0.205	-22.68	-8.40	11.64
80	1.6	0.148	0.095	0.105	-55.32	-9.97	29.20
100	1.0	0.104	0.056	0.062	-86.50	-11.20	40.38
120		0.078	0.036	0.040	-116.58	-12.22	48.19
140		0.061	0.025	0.028	-145.76	-13.09	53.98
160		0.050	0.018	0.021	-174.20	-13.84	58.48
180		0.041	0.014	0.016	-202.00	-14.52	62.08
200		0.035	0.011	0.012	-229.25	-15.12	65.04
5		28.077	280.151	260.661	89.98	6.96	-828.39
10		9.456	53.448	51.483	82.31	3.68	-444.43
20		3.185	10.197	10.168	68.76	0.28	-219.26
40		1.073	1.945	2.008	44.86	-3.24	-87.22
60	- 5	0.568	0.738	0.778	23.11	-5.35	-37.01
80		0.361	0.371	0.397	2.65	-6.88	-9.79
100		0.255	0.218	0.235	-16.90	-8.08	7.54
120		0.191	0.141	0.154	-35.75	-9.07	19.65
140		0.150	0.097	0.107	-54.04	-9.91	28.65
160		0.122	0.071	0.078	-71.86	-10.65	35.62
180		0.101	0.053	0.059	-89.29	-11.30	41.20
200		0.086	0.042	0.046	-106.37	-11.89	45.78

Table 5.15 The influence of charge per delay on the predicted ground vibration velocity for Case No. 8

Distance	Charge	Predicte	d ground v	vibration	F	Ratio of increas	e
Distance	per delay	velocity (cm/s)			(%)		
(III)	(kg)	VT	Vv	VL	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$
5		66.510	1041.241	942.559	93.61	9.48	-1317.17
10		22.401	198.651	186.165	88.72	6.29	-731.06
20		7.545	37.899	36.770	80.09	2.98	-387.35
40		2.541	7.230	7.262	64.85	-0.44	-185.79
60		1.345	2.744	2.812	50.99	-2.50	-109.15
80	15	0.856	1.379	1.434	37.95	-3.98	-67.59
100	15	0.603	0.809	0.851	25.50	-5.15	-41.13
120		0.453	0.523	0.555	13.48	-6.11	-22.65
140		0.356	0.362	0.387	1.82	-6.93	-8.92
160		0.288	0.263	0.283	-9.54	-7.65	1.72
180		0.240	0.199	0.215	-20.64	-8.29	10.24
200		0.203	0.154	0.168	-31.53	-8.86	17.24

Table 5.15 Continues

Note) V_T=transverse component velocity, V_V=vertical component velocity, V_L=longitudinal component velocity

Charge per	Rate of velocity	Distance	Maximum ratio
delay (kg)	components	(m)	of increase (%)
	$(\mathbf{V} - \mathbf{V}) / \mathbf{V}$	5~26	74.24
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}}) / \mathbf{v}_{\mathrm{V}}$	27~200	-430.45
0.5	$(\mathbf{V} - \mathbf{V}) / \mathbf{V}$	5~6	1.44
0.0	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{L}})/ \mathbf{v}_{\mathrm{V}} $	7~200	-18.52
	$(V_{-}-V_{-})/V_{-}$	5~28	-282.59
		$29 \sim 200$	77.66
	$(V_{}V_{-})/V_{}$	5~46	84.01
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}})/ \mathbf{v}_{\mathrm{V}} $	47~200	-229.25
16	$(\mathbf{V}_{}\mathbf{V}_{-})/\mathbf{V}_{}$	5~11	4.27
1.0	$(\mathbf{v} \vee - \mathbf{v} \perp) / \mathbf{v} \vee$	$12 \sim 200$	-15.12
	$(\mathbf{V}_{-}-\mathbf{V}_{-})/\mathbf{V}_{-}$	5~51	-498.71
	$(\mathbf{v}_{\mathrm{T}} - \mathbf{v}_{\mathrm{L}})/\mathbf{v}_{\mathrm{T}}$	52~200	65.04
	$(\mathbf{V} = \mathbf{V})/\mathbf{V}$	5~82	89.98
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}})/ \mathbf{v}_{\mathrm{V}} $	83~200	-106.37
5	$(\mathbf{V} - \mathbf{V}) / \mathbf{V}$	5~21	6.96
5	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{L}})/ \mathbf{v}_{\mathrm{V}} $	22~200	-11.89
	$(\mathbf{V}_{-}-\mathbf{V}_{-})/\mathbf{V}_{-}$	5~90	-828.39
	$(\mathbf{v}_{\mathrm{T}} - \mathbf{v}_{\mathrm{L}})/\mathbf{v}_{\mathrm{T}}$	91~200	45.78
	$(\mathbf{V} \mathbf{V}) / \mathbf{V}$	5~143	93.61
15	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{T}})/ \mathbf{v}_{\mathrm{V}} $	144~200	-31.53
		5~36	9.48
	$(\mathbf{v}_{\mathrm{V}} - \mathbf{v}_{\mathrm{L}})/\mathbf{v}_{\mathrm{V}}$	37~200	-8.86
		5~156	-1317.17
	$(\mathbf{v}_{\mathrm{T}} - \mathbf{v}_{\mathrm{L}}) / \mathbf{v}_{\mathrm{T}}$	157~200	17.24

Table 5.16 Maximum ratio of increase on rate of velocity components for Case No. 8

Note) (+) : increase, (-) : decrease

Figure 5.15 Relationship between predicted ground vibration velocity(component) and distance for Case No. 8: charge per delay=(a) 0.5kg, (b) 1.6kg, (c) 5kg, (d) 15kg.

Figure 5.16 Relationship between ratio of increase and distance for Case No. 8 (component velocity).

5.1.9 Case No. 9(지연시차 25ms, 역기폭)

Case No. 9의 SRSD의 성분별(T, V, L) 평균(50%) 지반진동 예측식은 Table 4.18과 같 다.

지반진동 예측 결과 접선성분(T)은 진행성분(L)에 비해 발파원과 거리가 가까운 경우 에는 진동이 적게 발생되지만 감쇠가 적어서 발파원과 거리가 먼 경우에는 진동은 크게 발생된다. 수직성분(V)은 다른 성분에 비해 발파원과 거리가 가까운 경우에는 진동이 가 장 적게 발생되지만 감쇠가 가장 적어서 발파원과 거리가 먼 경우에는 진동은 가장 크게 발생된다. 진행성분(L)은 다른 성분에 비해 발파원과 거리가 가까운 경우에는 진동이 가 장 크게 발생되지만 감쇠도 가장 커서 발파원과 거리가 먼 경우에는 진동은 가장 적게 발생된다(Figure 4.17(a)).

Case No. 9의 성분별(T, V, L) 지반진동을 예측하기 위해 SRSD의 평균 지반진동 예측 식으로 거리에 따른 예측 진동치를 Figure 5.17과 같이 도시하였다.

Table 5.17은 Case No. 9에서 거리에 따른 성분별(T, V, L) 예측진동치와 증감율을 나타낸 표이다.

Case No. 9에서 성분별(T, V, L) 입자속도의 평균 지반진동 예측식을 통한 5~200m의 이격거리에서 진동속도를 예측한 결과 장약량에 따라 진동수준이 역전되는 경향이 다르 지만 대부분 발파원과 거리가 가까운 경우에는 진행성분의 진동수준이, 발파원과 거리가 먼 경우에는 접선성분의 진동수준이 높게 예측되었다. 수직성분은 장약량이 증가할수록 다른 성분에 비해 진동 감쇠율이 증가할 것으로 예측되었다.

(1) 지발당 장약량이 0.5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 최 대 16.75%에서 최소 4.52% 낮게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~ 46m 구간에서는 최대 30.61% 낮게 예측되었고, 47~200m 구간에서는 최대 16.11% 높게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 5~17m 구간에서는 최 대 11.87% 낮게 예측되었고, 18~200m 구간에서는 최대 19.73% 높게 예측되었다(Table 5.18 Figure 5.18). (2) 지발당 장약량이 1.6kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 최 대 18.80%에서 최소 6.36% 낮게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~ 82m 구간에서는 최대 40.05% 낮게 예측되었고, 83~200m 구간에서는 최대 10.04% 높게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 5~31m 구간에서는 최 대 17.88% 낮게 예측되었고, 32~200m 구간에서는 최대 15.42% 높게 예측되었다(Table 5.18 Figure 5.18).

(3) 지발당 장약량이 5kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 최 대 20.85%에서 최소 8.19% 낮게 예측되었다. 그리고 진행성분 예측진동속도에 비해 5~ 146m 구간에서는 최대 49.96% 낮게 예측되었고, 147~200m 구간에서는 최대 3.68% 높 게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도에 비해 5~54m 구간에서는 최대 24.08% 낮게 예측되었고, 55~200m 구간에서는 최대 10.97% 높게 예측되었다 (Table 5.18 Figure 5.18).

(4) 지발당 장약량이 15kg일 때

5~200m까지의 거리에서 수직성분 예측진동속도는 접선성분 예측진동속도에 비해 최 대 22.86%에서 최소 9.99% 낮게 예측되었고, 진행성분 예측진동속도에 비해 최대 60.18%에서 최소 2.88% 낮게 예측되었다. 접선성분 예측진동속도는 진행성분 예측속도 에 비해 5~95m 구간에서는 최대 30.37% 낮게 예측되었고, 96~200m 구간에서는 최대 6.46% 높게 예측되었다(Table 5.18 Figure 5.18).

Distance	Charge per delay	Predicte	d ground v locity (cm/	vibration /s)	H	Ratio of increase		
(m)	(kg)	VT	Vv	VL	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$	
5		5.680	4.865	6.354	-16.75	-30.61	-11.87	
10	-	1.343	1.175	1.412	-14.35	-20.18	-5.11	
20		0.318	0.284	0.314	-11.99	-10.59	1.25	
40	-	0.075	0.069	0.070	-9.69	-1.76	7.22	
60		0.032	0.030	0.029	-8.36	3.07	10.55	
80		0.018	0.017	0.015	-7.43	6.36	12.83	
100	0.5	0.011	0.010	0.010	-6.71	8.83	14.57	
120		0.008	0.007	0.006	-6.13	10.80	15.96	
140		0.006	0.005	0.005	-5.64	12.44	17.12	
160		0.004	0.004	0.003	-5.22	13.83	18.11	
180		0.003	0.003	0.003	-4.85	15.04	18.97	
200		0.003	0.003	0.002	-4.52	16.11	19.73	
5		19.040	16.027	22.445	-18.80	-40.05	-17.88	
10		4.503	3.870	4.988	-16.36	-28.87	-10.75	
20		1.065	0.935	1.108	-13.96	-18.59	-4.06	
40		0.252	0.226	0.246	-11.62	-9.12	2.24	
60		0.108	0.098	0.102	-10.27	-3.94	5.74	
80		0.060	0.054	0.055	-9.32	-0.41	8.15	
100	1.6	0.037	0.034	0.034	-8.59	2.24	9.98	
120		0.026	0.024	0.023	-8.00	4.36	11.44	
140		0.019	0.017	0.016	-7.50	6.11	12.66	
160]	0.014	0.013	0.012	-7.07	7.60	13.71	
180	1	0.011	0.010	0.009	-6.69	8.90	14.61	
200		0.009	0.008	0.007	-6.36	10.04	15.42	
5		62.275	51.530	77.274	-20.85	-49.96	-24.08	
10		14.729	12.444	17.171	-18.36	-37.99	-16.58	
20]	3.484	3.005	3.816	-15.93	-26.98	-9.53	
40		0.824	0.726	0.848	-13.54	-16.84	-2.91	
60	5	0.355	0.316	0.352	-12.17	-11.29	0.78	
80		0.195	0.175	0.188	-11.21	-7.52	3.32	
100		0.123	0.111	0.116	-10.46	-4.68	5.24	
120		0.084	0.076	0.078	-9.86	-2.41	6.78	
140		0.061	0.056	0.056	-9.35	-0.53	8.07	
160		0.046	0.042	0.042	-8.92	1.06	9.16	
180]	0.036	0.033	0.032	-8.53	2.45	10.12	
200		0.029	0.027	0.026	-8.19	3.68	10.97	

Table 5.17 The influence of charge per delay on the predicted ground vibration velocity for Case No. 9

Distance	Charge per delay	Predicted ground vibration velocity (cm/s)		Ratio of increase (%)			
(111)	(kg)	VT	$V_{\rm V}$	VL	$(V_V - V_T)/V_V$	$(V_V - V_L)/V_V$	$(V_T - V_L)/V_T$
5		195.218	158.896	254.512	-22.86	-60.18	-30.37
10		46.172	38.371	56.555	-20.33	-47.39	-22.49
20		10.920	9.266	12.567	-17.85	-35.63	-15.08
40		2.583	2.238	2.793	-15.43	-24.80	-8.12
60		1.111	0.975	1.158	-14.03	-18.88	-4.25
80	15	0.611	0.540	0.621	-13.05	-14.84	-1.58
100	15	0.384	0.342	0.382	-12.30	-11.81	0.44
120		0.263	0.235	0.257	-11.69	-9.39	2.06
140		0.191	0.172	0.184	-11.17	-7.38	3.41
160		0.144	0.130	0.138	-10.73	-5.68	4.56
180		0.113	0.102	0.107	-10.34	-4.19	5.57
200		0.091	0.083	0.085	-9.99	-2.88	6.46

Table 5.17 Continues

Note) V_T=transverse component velocity, V_V=vertical component velocity, V_L=longitudinal component velocity

Charge per	Rate of velocity	Distance	Maximum ratio
delay (kg)	components	(m)	of increase (%)
	$(V_V - V_T)/V_V$	5~200	-(16.75~4.52)
	$(V_V - V_L)/V_V$	5~46	-30.61
Charge per delay (kg) 0.5 1.6 5 15		47~200	16.11
	$(V_T - V_L)/V_T$	5~17	-11.87
		18~200	19.73
	$(V_V - V_T)/V_V$	5~200	-(18.80~6.36)
		5~82	-40.05
1.6	$(V_{\rm V} - V_{\rm L})/V_{\rm V}$	83~200	10.04
	$(V_T - V_L)/V_T$	5~31	-17.88
		32~200	15.42
	$(V_V - V_T)/V_V$	5~200	-(20.85~8.19)
5	$(V_V - V_L)/V_V$	5~146	-49.96
		147~200	3.68
	$(V_T - V_L)/V_T$	5~54	-24.08
		55~200	10.97
	$(V_V - V_T)/V_V$	5~200	-(22.86~9.99)
15	$(V_V - V_L)/V_V$	5~200	-(60.18~2.88)
61	$(V_T - V_L)/V_T$	5~95	-30.37
		96~200	6.46

Note) (+) : increase, (-) : decrease

Figure 5.17 Relationship between predicted ground vibration velocity(component) and distance for Case No. 9: charge per delay=(a) 0.5kg, (b) 1.6kg, (c) 5kg, (d) 15kg.

Figure 5.18 Relationship between ratio of increase and distance for Case No. 9 (component velocity).

5.1.10 지연시차, 기폭위치에 따른 성분별 지반진동 예측 비교

지반진동에서 접선성분의 경우 S파(횡파)가, 수직성분에는 Rayleigh파(표면파)가 진행 성분의 경우 P파(종파)가 우세하다. 보통 폭발위치가 깊지 않거나 암반이 대단히 균질한 경우가 아니면 입체파는 방출에너지의 절반 이하로 작게 나타나고 나머지 암석의 표면이 나 내부의 자유면을 따라 이동하는 표면파가 된다. 그러므로 지표 부근에서 실시한 발파 작업에 의한 지반진동에는 입체파보다 표면파에 더 많은 에너지가 작용한다.

지연시차와 기폭위치에 따른 성분별 지반진동을 예측, 비교해 본 결과는 다음과 같다. 지연시차가 0ms이고 정기폭(Case No. 1) 발파방법과 지연시차가 0ms이고 역기폭 (Case No. 3) 발파방법은 장약량이 증가할수록 발파원과 거리가 가까우면 Rayleigh파로 이루어진 수직성분(V)의 진동수준이 우세하고, 발파원과 거리가 멀어 질수록 P파로 이루 어진 진행성분(L)의 진동수준이 우세하게 예측되었다. 이는 장약량이 증가할수록 폭약의 방출에너지가 커지므로 속도는 느리지만 발파원과 거리가 가까운 경우 암석의 표면을 따 라 이동하는 Rayleigh파에 의한 영향을 많이 받는 것으로 판단된다. 그러나 지연시차가 0ms이고 중간기폭(Case No. 2) 발파방법은 장약량이 증가하여도 발파원과 거리에 상관 없이 P파로 이루어진 진행성분(L)의 진동수준이 우세하게 예측되었다. 이는 발파에 의한 암석의 파쇄나 이동 등에 의해 Rayleigh파의 전파 경로가 차단된 것으로 판단된다. S파 로 이루어진 접선성분(T)의 경우 진동수준이 낮게 예측되는데 이는 고체만 통과하는 S 파의 특성상 현장암반의 구조적 특징(불연속면 분포 등)을 유추할 수 있다(Table 5.19~ 22).

지연시차가 20ms이고 정기폭(Case No. 4) 발파방법과 지연시차가 25ms이고 정기폭 (Case No. 7) 발파방법은 발파원과 거리가 가까우면 Rayleigh파로 이루어진 수직성분 (V)의 진동수준이 우세하고, 발파원과 거리가 멀어 질수록 S파로 이루어진 접선성분(T) 의 진동수준이 우세하게 예측되었다. 이는 두 발파방법 모두 정기폭으로써 폭발원의 위 치가 다른 기폭방법보다 지표면에 가까워서 발파원과 거리가 가까운 경우 전파속도는 느 리지만 크기가 가장 큰 Rayleigh파로 이루어진 수직성분(V)의 진동수준이 우세하고, 장 약량이 증가할수록 수직성분(V)의 영향범위도 증가한다(Table 5.19~22).

지연시차가 20ms이고 중간기폭(Case No. 5) 발파방법과 지연시차가 25ms이고 중간기 폭(Case No. 8) 발파방법은 발파원과 거리에 따라 Rayleigh파로 이루어진 수직성분(V), P파로 이루어진 진행성분(L), S파로 이루어진 접선성분(T) 순으로 진동수준이 우세하게 예측되었다. 중간기폭은 발파원과 거리에 따라 세 성분에 의해 좌우되는 것을 알 수 있 다. 그러나 정기폭보다 지표면과의 거리가 멀기 때문에 Rayleigh파로 이루어진 수직성분 (V)의 영향범위가 더 작은 것을 알 수 있다(Table 5.19~22).

지연시차가 20ms이고 역기폭(Case No. 7) 발파방법과 지연시차가 25ms이고 역기폭 (Case No. 9) 발파방법은 발파원과 거리가 가까우면 P파로 이루어진 진행성분(L)의 진동 수준이 우세하고, 발파원과 거리가 멀어 질수록 S파로 이루어진 접선성분(T)의 진동수준 이 우세하게 예측되었다. 이는 두 발파방법 모두 역기폭으로써 폭발원의 위치가 다른 기 폭방법보다 지표면에 가장 멀기 때문에 발파원과 거리가 가까운 경우 가장 크지만 전파 속도는 느린 Rayleigh파로 이루어진 수직성분(V)의 경우 암반내부를 이동하다 크기가 감쇠된다. 그리고 가장 작지만 전파속도가 빠른 P파로 이루어진 진행성분(L)이 발파원과 거리가 가까운 경우에는 우세하고, P파보다 전파속도는 느리지만 크기가 큰 S파로 이루 어진 접선성분(T)이 발파원과 거리가 먼 경우에서는 우세하게 예측되었다. 장약량이 증 가할수록 진행성분(V)의 영향범위도 증가한다(Table 5.19~22).

Case No. 1~3의 기폭방법에 따른 성분별 지반진동 예측과 Case No. 4~9의 기폭방법 에 따른 성분별 지반진동 예측 결과는 다르게 나타났다. 이는 Case No. 1~3의 경우 단 일공에 의한 발파조건이고, Case No. 4~9의 경우 2~3공의 발파조건이다. 이는 지연시 차에 의한 발파공 사이의 지반진동 중첩에 의한 결과로 판단된다.

Figure 5.19~22는 지연시차와 기폭위치에 따른 진동증가율을 비교한 막대그래프 이다.

Case	Delay time	Priming	Distance	Level of ground vibration		
No.	(ms)	location	(m)	High	Medium	Low
1	0		5~46	L	V	Т
1		Тор	47~200	L	Т	V
0	0	Middle	5~107	L	V	Т
Ζ	0		108~200	L	Т	V
3	0	Bottom	5~200	L	V	Т
		T	5~15	V	L	Т
4	20		16~20	V	Т	L
4	20	Top	21~22	Т	V	L
			23~200	Т	L	V
	20	Middle	5~31	L	V	Т
5			32	L	Т	V
5			33~73	Т	L	V
			$74 \sim 200$	Т	V	L
	20	Bottom	5~18	L	V	Т
6			19~31	L	Т	V
			32~200	Т	L	V
	25	Тор	5~17	V	L	Т
7			18	V	Т	L
			19~200	Т	L	V
	25	Middle	5~6	V	L	Т
8			7~26	L	V	Т
			$27 \sim 28$	L	Т	V
			29~200	Т	L	V
	25	Bottom	5~17	L	Т	V
9			18~46	Т	L	V
			47~200	Т	V	L

Table 5.19 Advantage components by distance according to Case No. (charge per delay=0.5kg)

Note) T : transverse V : vertical L : longitudinal

(b) $(V_V - V_L)/V_V$

Figure 5.19 Comparison to ratio of increase by Case No.(charge per delay=0.5kg).

(c) $(V_L-V_T)/V_L$

Figure 5.19 Continues.

Case	Delay time	Priming	Distance	Level of ground vibration		
No.	(ms)	location	(m)	High	Medium	Low
1			5~7	V	L	Т
	0	Тор	8~82	L	V	Т
			83~200	L	Т	V
2	0	Middle	5~192	L	V	Т
			$193 \sim 200$	L	Т	V
3	0	Bottom	5~200	L	V	Т
			5~27	V	L	Т
4	20	Тор	28~36	V	Т	L
4	20		37~39	Т	V	L
			40~200	Т	L	V
	20	Middle	5~55	L	V	Т
5			56~58	L	Т	V
5			59~130	Т	L	V
			$131 \sim 200$	Т	V	L
	20	Bottom	5~32	L	V	Т
6			33~55	L	Т	V
			$56 \sim 200$	Т	L	V
	25	Тор	5~30	V	L	Т
7			31~32	V	Т	L
1			33	Т	V	L
			34~200	Т	L	V
	25	Middle	5~11	V	L	Т
8			12~46	L	V	Т
0			47~51	L	Т	V
			52~200	Т	L	V
	25	Bottom	5~31	L	Т	V
9			32~82	Т	L	V
			83~200	Т	V	L
Note) T : transverse V : vertical L : longitudinal						

Table 5.20 Advantage components by distance according to Case No. (charge per delay=1.6kg)

(b) $(V_V - V_L)/V_V$

Figure 5.20 Comparison to ratio of increase by Case No.(charge per delay=1.6kg).

(c) $(V_L-V_T)/V_L$

Figure 5.20 Continues.

Case	Delay time	Priming	Distance	Level of ground vibration		
No.	(ms)	location	(m)	High	Medium	Low
1			5~13	V	L	Т
	0	Тор	14~145	L	V	Т
			$146 \sim 200$	L	Т	V
2	0	Middle	5~200	L	V	Т
	0	Bottom	5	V	L	Т
3			6~200	L	V	Т
			5~48	V	L	Т
4	20		49~64	V	Т	L
4	20	Top	65~69	Т	V	L
			70~200	Т	L	V
			5~98	L	V	Т
5	20	Middle	99~102	L	Т	V
			103~200	Т	L	V
	20	Bottom	5~57	L	V	Т
6			58~98	L	Т	V
			$99 \sim 200$	Т	L	V
	25	Тор	5~54	V	L	Т
7			55~57	V	Т	L
1			58	Т	V	L
			59~200	Т	L	V
	25	Middle	5~21	V	L	Т
8			22~82	L	V	Т
0			83~90	L	Т	V
			91~200	Т	L	V
	25	Bottom	5~54	L	Т	V
9			$55 \sim 146$	Т	L	V
			$147 \sim 200$	Т	V	L
Note) T : transverse V : vertical L : longitudinal						

Table 5.21 Advantage components by distance according to Case No. (charge per delay=5kg)

(b) $(V_V - V_L)/V_V$

Figure 5.21 Comparison to ratio of increase by Case No.(charge per delay=5kg).

(c) $(V_L-V_T)/V_L$

Figure 5.21 Continues.

Case	Delay time	Priming	Distance	Level of ground vibration		
No.	(ms)	location	(m)	High	Medium	Low
1	0	T	5~23	V	L	Т
1		Тор	24~200	L	V	Т
2	0	Middle	5~200	L	V	Т
	0	Bottom	5~9	V	L	Т
J			$10 \sim 200$	L	V	Т
			5~83	V	L	Т
4	20	m	84~112	V	Т	L
4	20	Top	113~120	Т	V	L
			121~200	Т	L	V
	20	Middle	5~170	L	V	Т
5			171~178	L	Т	V
			179~200	Т	L	V
	20	Bottom	5~99	L	V	Т
6			100~170	L	Т	V
			171~200	Т	L	V
	25	Тор	5~93	V	L	Т
7			94~98	V	Т	L
1			99~101	Т	V	L
			102~200	Т	L	V
	25	Middle	5~36	V	L	Т
8			37~143	L	V	Т
			144~156	L	Т	V
			$157 \sim 200$	Т	L	V
	25	Bottom	5~95	L	Т	V
9			96~146	Т	L	V
Note) T : transverse V : vertical L : longitudinal						

Table 5.22 Advantage components by distance according to Case No. (charge per delay=15kg)

(b) $(V_V - V_L)/V_V$

Figure 5.22 Comparison to ratio of increase by Case No.(charge per delay=15kg).

Figure 5.22 Continues.

5.2 최대입자속도(PPV)와 최대벡터합(PVS)에 의한

지반진동 예측

지연시차와 기폭위치에 따른 최대입자속도(PPV)와 최대벡터합(PVS)의 평균(50%) 지 반진동 예측식은 Table 4.3, 4.5, 4.7, 4.9, 4.11, 4.13, 4.15, 4.17, 4.19와 같다.

최대입자속도(PPV)와 최대벡터합(PVS)의 평균 지반진동 예측식으로 지연시차와 기폭 위치별 노모그램 분석(Figure 4.2, 4, 6, 8, 10, 12, 14, 16, 18)을 실시하였다.

환산거리가 1~100m/kg^{1/2}의 범위에서 PPV와 PVS의 Case No. 별로 종합 비교한 결과 는 다음과 같다(Figure 5.23, 5.24, 5.25).

지연시차가 0ms인 경우 역기폭(Case No. 3) 발파방법의 진동수준이 제일 낮았고, 중간 기폭(Case No. 2) 발파방법의 진동수준이 제일 높게 예측되었다. 이는 역기폭의 경우 폭 발력이 주변 암반의 파쇄에 크게 영향을 미친 결과로 판단된다.

지연시차가 20ms인 경우 정기폭(Case No. 4) 발파방법의 진동수준이 제일 높게 예측 되었다. 중간기폭(Case No. 5) 발파방법과 역기폭(Case No. 6) 발파방법의 진동수준은 역전되는 구간이 다르지만 환산거리가 29.3m/kg^{1/2}(PVS의 경우 29.8m/kg^{1/2})이내에서는 역기폭 발파방법의 진동수준이 환산거리 29.4m/kg^{1/2}(PVS의 경우 29.9m/kg^{1/2})이상에서 는 중간기폭 발파방법의 진동수준이 제일 낮게 예측되었다. 지연시차가 25ms인 경우 중 간기폭(Case No. 8) 발파방법의 진동수준이 제일 높게 예측되었고, 정기폭(Case No. 7) 발파방법의 진동수준이 제일 낮게 예측되었다. 그러나 환산거리가 증가할수록 역기폭 (Case No. 9) 발파방법의 진동수준이 정기폭 발파방법의 진동수준보다 더 낮아질 것으로 예측된다.

지연시차와 기폭위치에 따른 최대입자속도(PPV)와 최대벡터합(PVS)의 지반진동 예측 결과를 종합해 보면 지연시차가 Oms인 Case No. 1~3의 진동수준이 낮게 예측되었다. 이는 단일공 발파로써 발파공 사이의 지반진동의 보강 혹은 상쇄 간섭이 없는 조건에 의 한 결과로 판단된다.

지연시차가 20ms와 25ms인 Case No. 4~9를 종합 비교해 환산거리가 낮은 범위에서 는 보면 진동수준이 가장 낮은 지연시차가 25ms이고 정기폭(Case No. 7)을 제외하고, 지 연시차가 20ms인 발파방법이 진동제어 측면에 유리하게 예측되었다. 그리고 환산거리가 증가함에 따라 지연시차가 25ms인 중간기폭, 역기폭 발파방법이 지연시차가 20ms인 발 파방법보다 지반진동의 감쇠가 증가하여 지연시차가 20ms의 발파방법보다 진동제어 측 면에 유리하게 예측되었다. 이를 보면 지연시차가 20ms와 25ms중에서 25ms 발파방법이 지반진동의 상쇄간섭이 발생하는 시차일 것으로 판단된다.

지연시차가 0ms인 Case No. 1~3을 제외하고, 지연시차가 20, 25ms인 Case No. 4~9 에 대해 분석한 결과 최대입자속도의 경우 장약량이 10.93kg 이내에서는 지연시차가 20ms이고 중간기폭(Case No. 5), 지연시차가 25ms이고 정기폭(Case No. 7) 그리고 지연 시차가 25ms이고 역기폭(Case No. 9)인 발파방법이 낮은 진동수준이 나타나는 것으로 분석되었고, 장약량이 10.93kg 이상에서는 지연시차가 20ms이고 중간기폭(Case No. 5), 지연시차가 20ms이고 역기폭(Case No. 6) 그리고 지연시차가 25ms이고 정기폭(Case No. 7)인 발파방법이 낮은 진동수준이 나타나는 것으로 분석되었다.

최대벡터합의 경우 장약량이 11.19kg 이내에서는 지연시차가 20ms이고 중간기폭(Case No. 5), 지연시차가 25ms이고 정기폭(Case No. 7) 그리고 지연시차가 25ms이고 역기폭 (Case No. 9)인 발파방법이 낮은 진동수준이 나타나는 것으로 분석되었고, 장약량이 11.19kg 이상에서는 지연시차가 20ms이고 중간기폭(Case No. 5), 지연시차가 20ms이고 역기폭(Case No. 6) 그리고 지연시차가 25ms이고 정기폭(Case No. 7)인 발파방법이 낮 은 진동수준이 나타나는 것으로 분석되었다.

SRSD의 성분별 평균(50%) 지반진동 예측식에서 1~100kg/w^{1/2} 범위의 환산거리에서 최대벡터합에 대해 최대입자속도의 지반진동수준을 비교해 본 결과 지연시차가 20ms이 고 중간기폭(Case No. 5) 발파방법은 최대 7.04%, 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법은 최대 17.87%, 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법은 최대 20.76% 그리고 지연시차가 20ms이고 역기폭(Case No. 6) 발파방법은 최대 21.23% 낮은 진동수준을 보인다.

Figure 5.23 Overall comparison of Case No. based on the scaled distance.

Figure 5.24 Comparison to predicted ground vibration velocity by Case No.(PPV).

(c) SD=100kg/w^{1/2}

Figure 5.24 Continues.

Figure 5.25 Comparison to predicted ground vibration velocity by Case No.(PVS).

(c) SD=100kg/w^{1/2}

Figure 5.25 Continues.

5.2.1 최대입자속도(PPV)에 의한 지반진동 예측

최대입자속도에 의한 지반진동을 예측하기 위해 SRSD의 평균 지반진동 예측식으로 거리에 따른 예측 진동치를 Figure 5.26과 같이 도시하였고, Table 5.23은 예측진동치와 증감율을 나타낸 표이다.

최대입자속도(PPV)의 평균 지반진동 예측식을 통한 5~200m의 이격거리에서 진동속 도를 예측한 결과 장약량이 3.0kg 이내에서 발파원과 거리가 가까울수록 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법의 진동수준, 발파원과 거리가 멀어질수록 지연 시차가 25ms이고 역기폭(Case No. 9) 발파방법의 진동수준이 가장 낮게 예측되었다. 그 리고 장약량이 3.0kg 이상에서는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법의 진동수준이 가장 낮게 예측되었다.

(1) 지발당 장약량이 0.5kg일 때

5~200m까지의 거리에서 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법의 예측 진동속도는 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법의 예측진동속도에 비해 5~80m 구간에서는 최대 196.15% 낮게 예측되었고, 81~200m 구간에서는 최대 29.74% 높게 예측되었다. 그리고 지연시차가 20ms이고 중간기폭(Case No. 5) 발파방법의 예측 진동속도에 비해 5~92m 구간에서는 최대 69.24% 낮게 예측되었고, 93~200m 구간에서 는 최대 12.88% 높게 예측되었다. 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법의 예측진동속도는 지연시차가 20ms이고 중간기폭(Case No. 5) 발파방법의 예측진동속도 에 비해 5~71m 구간에서는 최대 42.85% 높게 예측되었고, 72~200m 구간에서는 최대 24.00% 낮게 예측되었다(Table 5.24, Figure 5.27).

(2) 지발당 장약량이 1.6kg일 때

5~200m까지의 거리에서 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법의 예측 진동속도는 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법의 예측진동속도에 비해 5~114m 구간에서는 최대 271.55% 낮게 예측되었고, 145~200m 구간에서는 최대 11.85% 높게 예측되었다. 그리고 지연시차가 20ms이고 중간기폭(Case No. 5) 발파방법 의 예측진동속도에 비해 5~166m 구간에서는 최대 87.92% 낮게 예측되었고, 167~200m 구간에서는 최대 3.26% 높게 예측되었다. 지연시차가 25ms이고 역기폭(Case No. 9) 발 파방법의 예측진동속도는 지연시차가 20ms이고 중간기폭(Case No. 5) 발파방법의 예측 진동속도에 비해 5~128m 구간에서는 최대 49.42% 높게 예측되었고, 129~200m 구간에 서는 최대 9.74% 낮게 예측되었다(Table 5.24, Figure 5.27).

(3) 지발당 장약량이 5kg일 때

5~200m까지의 거리에서 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법의 예측 진동속도는 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법의 예측진동속도에 비해 최대 364.00%에서 최소 10.08% 낮게 예측되었고, 지연시차가 20ms이고 중간기폭(Case No. 5)의 예측진동속도에 비해 최대 108.21%에서 최소 7.19% 낮게 예측되었다. 지연시차 가 25ms이고 역기폭(Case No. 9) 발파방법의 예측진동속도는 지연시차가 20ms이고 중 간기폭(Case No. 5)의 예측진동속도에 비해 최대 55.13%에서 최소 2.63% 높게 예측되었 다.(Table 5.24, Figure 5.27).

(4) 지발당 장약량이 15kg일 때

5~200m까지의 거리에서 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법의 예측 진동속도는 지연시차가 20ms이고 중간기폭(Case No. 5)의 예측진동속도에 비해 최대 129.85%에서 최소 18.33% 낮게 예측되었고, 지연시차가 20ms이고 역기폭(Case No. 6) 발파방법의 예측진동속도에 비해 최대 43.90%에서 최소 28.82% 낮게 예측되었다. 지연 시차가 20ms이고 중간기폭(Case No. 5)의 예측진동속도는 지연시차가 20ms이고 역기폭 (Case No. 6) 발파방법의 예측진동속도에 비해 5~113m 구간에서는 최대 37.40% 높게 예측되었고, 114~200m 구간에서는 최대 8.87% 낮게 예측되었다(Table 5.24, Figure 5.27).

	Chargo	Predicte	ed ground v	ibration		Ratio of increase	
Distance	por dolay	V	elocity (cm/	s)		(%)	
(m)	(kg)	$\mathrm{PPV}_{\mathrm{No.5}}$	$\mathrm{PPV}_{\mathrm{No.7}}$	$\mathrm{PPV}_{\mathrm{No.9}}$	$(PPV_{No.7}-PPV_{No.9})$	$(PPV_{No.7}-PPV_{No.5})$	$(PPV_{No.9}-PPV_{No.5})$
	(Kg)	(20, M)	(25, T)	(25, B)	/PPV _{No.7}	/PPV _{No.7}	/PPV _{No.9}
5		4.780	2.824	8.364	-196.15	-69.24	42.85
10		1.220	0.817	1.846	-126.00	-49.39	33.90
20		0.311	0.236	0.407	-72.47	-31.87	23.54
40		0.079	0.068	0.090	-31.62	-16.40	11.56
60		0.036	0.033	0.037	-12.37	-8.21	3.70
80	0 E	0.020	0.020	0.020	-0.44	-2.75	-2.30
100	0.5	0.013	0.013	0.012	7.93	1.30	-7.20
120		0.009	0.010	0.008	14.25	4.49	-11.39
140		0.007	0.007	0.006	19.25	7.10	-15.05
160		0.005	0.006	0.004	23.35	9.31	-18.32
180		0.004	0.005	0.003	26.79	11.21	-21.29
200		0.003	0.004	0.003	29.74	12.88	-24.00
5		15.030	7.998	29.717	-271.55	-87.92	49.42
10		3.836	2.313	6.558	-183.54	-65.88	41.50
20		0.979	0.669	1.447	-116.38	-46.42	32.33
40		0.250	0.193	0.319	-65.13	-29.25	21.73
60		0.112	0.094	0.132	-40.97	-20.15	14.77
80	1.0	0.064	0.056	0.070	-26.01	-14.09	9.46
100	1.6	0.041	0.038	0.043	-15.51	-9.59	5.12
120		0.029	0.027	0.029	-7.58	-6.06	1.42
140		0.021	0.021	0.021	-1.30	-3.15	-1.83
160		0.016	0.016	0.016	3.84	-0.70	-4.72
180		0.013	0.013	0.012	8.15	1.41	-7.34
200		0.010	0.011	0.010	11.85	3.26	-9.74
5		46.173	22.176	102.896	-364.00	-108.21	55.13
10		11.786	6.413	22.707	-254.09	-83.79	48.10
20		3.008	1.854	5.011	-170.22	-62.23	39.96
40		0.768	0.536	1.106	-106.21	-43.20	30.55
60		0.345	0.260	0.457	-76.05	-33.12	24.38
80	_	0.196	0.155	0.244	-57.37	-26.41	19.67
100	5	0.126	0.104	0.150	-44.25	-21.43	15.82
120		0.088	0.075	0.101	-34.35	-17.51	12.53
140		0.065	0.057	0.072	-26.51	-14.29	9.66
160		0.050	0.045	0.054	-20.09	-11.58	7.09
180		0.040	0.036	0.042	-14.70	-9.24	4.76
200		0.032	0.030	0.033	-10.08	-7.19	2.63

Table 5.23 The influence of charge per delay on the predicted ground vibration velocity for PPV

Note) PPV_{No.5}=PPV of Case No. 5, PPV_{No.7}=PPV of Case No. 7, PPV_{No.9}=PPV of Case No. 9, 20=20ms, 25=25ms

T=top priming, M=middle priming, B=bottom priming

	Charge	Predicted ground vibration			Ratio of increase			
Distance	por dolay	V	elocity (cm/	s)	(%)			
(m)	(ltar)	$\mathrm{PPV}_{\mathrm{No.5}}$	$\mathrm{PPV}_{\mathrm{No.6}}$	PPV _{No.7}	$(PPV_{No.7}-PPV_{No.5})$	$(PPV_{No.7}-PPV_{No.6})$	$(PPV_{No.5}-PPV_{No.6})$	
	(Kg)	(20, M)	(20, B)	(25, T)	/PPV _{No.7}	/PPV _{No.7}	/PPV _{No.5}	
5		136.256	85.301	59.280	-129.85	-43.90	37.40	
10		34.780	24.159	17.142	-102.89	-40.93	30.54	
20		8.878	6.842	4.957	-79.09	-38.03	22.93	
40		2.266	1.938	1.433	-58.09	-35.19	14.48	
60		1.019	0.926	0.694	-46.96	-33.56	9.12	
80	15	0.578	0.549	0.415	-39.54	-32.41	5.11	
100		0.373	0.366	0.278	-34.05	-31.53	1.88	
120		0.260	0.262	0.201	-29.72	-30.81	-0.84	
140		0.192	0.198	0.152	-26.17	-30.21	-3.20	
160		0.148	0.155	0.120	-23.17	-29.69	-5.29	
180		0.117	0.125	0.097	-20.59	-29.23	-7.16	
200		0.095	0.104	0.080	-18.33	-28.82	-8.87	

Table 5.23 Continues

Note) PPV_{No.5}=PPV of Case No. 5, PPV_{No.6}=PPV of Case No. 6, PPV_{No.7}=PPV of Case No. 7, 20=20ms, 25=25ms T=top priming, M=middle priming, B=bottom priming

rable of the function of the back of the bound of the bound of the back of the bound of the bound of the back of the bound of the bound of the back of the bound of the bound of the back of the bound of the bound of the back of the bound of the back of the ba	Table	5.24	Maximum	ratio	of	increase	on	rate	of	velocity	components	for	PPV
--	-------	------	---------	-------	----	----------	----	------	----	----------	------------	-----	-----

Charge per	Rate of velocity	Distance	Maximum ratio
delay (kg)	components	(m)	of increase (%)
	(DDV -DDV)/DDV	5~80	-196.15
	(FF V _{N0.7} - FF V _{N0.9})/ FF V _{N0.7}	$81 \sim 200$	29.74
0 5		$5 \sim 92$	-69.24
0.5	(PP v _{N0.7} =PP v _{N0.5})/PP v _{N0.7}	$93 \sim 200$	12.88
		5~71	42.85
	(PP v _{N0.9} -PP v _{N0.5})/PP v _{N0.9}	$72 \sim 200$	-24.00
		5~144	-271.55
1.6	(PP v _{N0.7} -PP v _{N0.9})/PP v _{N0.7}	$145 \sim 200$	11.85
		$5 \sim 166$	-87.92
	(PP v _{N0.7} =PP v _{N0.5})/PP v _{N0.7}	$167 \sim 200$	3.26
		5~128	49.42
	(PP v _{N0.9} -PP v _{N0.5})/PP v _{N0.9}	$129 \sim 200$	-9.74
	$(\mathrm{PPV}_{\mathrm{No.7}}\text{-}\mathrm{PPV}_{\mathrm{No.9}})/\mathrm{PPV}_{\mathrm{No.7}}$	5~200	-(364.00~10.08)
5	$(\mathrm{PPV}_{\mathrm{No.7}}\text{-}\mathrm{PPV}_{\mathrm{No.5}})/\mathrm{PPV}_{\mathrm{No.7}}$	5~200	-(108.21~7.19)
	$(PPV_{No.9}-PPV_{No.5})/PPV_{No.9}$	5~200	55.13~2.63
15	$(PPV_{No.7}-PPV_{No.5})/PPV_{No.7}$	5~200	-(129.85~18.33)
	$(\mathrm{PPV}_{\mathrm{No.7}}\text{-}\mathrm{PPV}_{\mathrm{No.6}})/\mathrm{PPV}_{\mathrm{No.7}}$	5~200	-(43.90~28.82)
10	$(PPV_{N,z}-PPV_{N,z})/PPV_{N,z}$	5~113	37.40
	(11 V No.5 11 V No.6)/ FF V No.5	$114 \sim 200$	-8.87

Note) (+) : increase, (-) : decrease

(b) charge per delay = 5, 15kg

Figure 5.26 Relationship between predicted ground vibration velocity(PPV) and distance for different delay time and priming location.

Figure 5.27 Relationship between ratio of increase and distance for different delay time and priming location(PPV).

5.2.2 최대벡터합(PVS)에 의한 지반진동 예측

최대벡터합에 의한 지반진동을 예측하기 위해 SRSD의 평균 지반진동 예측식으로 거 리에 따른 예측 진동치를 Figure 5.28과 같이 도시하였고, Table 5.26은 예측진동치와 증 감율을 나타낸 표이다.

최대벡터합(PVS)의 평균 지반진동 예측식을 통한 5~200m의 이격거리에서 진동속도 를 예측한 결과 장약량이 2.6kg 이내에서 발파원과 거리가 가까울수록 지연시차가 25ms 이고 정기폭(Case No. 7) 발파방법의 진동수준, 발파원과 거리가 멀어지수록 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법의 진동수준이 가장 낮게 예측되었다. 그리고 장 약량이 2.6kg이상에서는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법의 진동수준 이 가장 낮게 예측되었다.

(1) 지발당 장약량이 0.5kg일 때

5~200m까지의 거리에서 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법의 예측 진동속도는 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법의 예측진동속도에 비해 5~86m 구간에서는 최대 203.41% 낮게 예측되었고, 87~200m 구간에서는 최대 28.02% 높게 예측되었다. 그리고 지연시차가 20ms이고 중간기폭(Case No. 5) 발파방법의 예측 진동속도에 비해 5~81m 구간에서는 최대 84.90% 낮게 예측되었고, 82~200m 구간에서 는 최대 17.87% 높게 예측되었다. 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법의 예측진동속도는 지연시차가 20ms이고 중간기폭(Case No. 5) 발파방법의 예측진동속도 에 비해 5~92m 구간에서는 최대 39.06% 높게 예측되었고, 93~200m 구간에서는 최대 14.09% 낮게 예측되었다(Table 5.26, Figure 5.29).

(2) 지발당 장약량이 1.6kg일 때

5~200m까지의 거리에서 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법의 예측 진동속도는 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법의 예측진동속도에 비해 5~153m 구간에서는 최대 280.66% 낮게 예측되었고, 154~200m 구간에서는 최대 9.69% 높게 예측되었다. 그리고 지연시차가 20ms이고 중간기폭(Case No. 5) 발파방법의 예측 진동속도에 비해 5~146m 구간에서는 최대 110.14% 낮게 예측되었고, 147~200m 구간 에서는 최대 6.66% 높게 예측되었다. 지연시차가 25ms이고 역기폭(Case No. 9) 발파방 법의 예측진동속도는 지연시차가 20ms이고 중간기폭(Case No. 5) 발파방법의 예측진동 속도에 비해 5~164m 구간에서는 최대 44.80% 높게 예측되었고, 165~200m 구간에서는 최대 3.35% 낮게 예측되었다(Table 5.26, Figure 5.29).

(3) 지발당 장약량이 5kg일 때

5~200m까지의 거리에서 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법의 예측 진동속도는 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법의 예측진동속도에 비해 최대 375.37%에서 최소 12.78% 낮게 예측되었고, 지연시차가 20ms이고 중간기폭(Case No. 5) 발파방법의 예측진동속도에 비해 최대 138.20%에서 최소 5.80% 낮게 예측되었다. 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법의 예측진동속도는 지연시차가 20ms 이고 중간기폭(Case No. 5) 발파방법의 예측진동속도에 비해 최대 49.89%에서 최소 6.19% 높게 예측되었다(Table 5.26, Figure 5.29).

(4) 지발당 장약량이 15kg일 때

5~200m까지의 거리에서 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법의 예측 진동속도는 지연시차가 20ms이고 중간기폭(Case No. 5) 발파방법의 예측진동속도에 비 해 최대 168.80%에서 최소 19.39% 낮게 예측되었고, 지연시차가 20ms이고 역기폭(Case No. 6) 발파방법의 예측진동속도에 비해 최대 48.00%에서 최소 32.50% 낮게 예측되었다. 지연시차가 20ms이고 중간기폭(Case No. 5) 발파방법의 예측진동속도는 지연시차가 20ms이고 역기폭(Case No. 6) 발파방법의 예측진동속도에 비해 5~115m 구간에서는 최 대 44.94% 높게 예측되었고, 116~200m 구간에서는 최대 10.98% 낮게 예측되었다(Table 5.26, Figure 5.29).

	Chargo	Predicte	ed ground v	ibration	Ratio of increase			
Distance	por dolov	V	elocity (cm/	s)	(%)			
(m)	(kg)	$PVS_{No.5}$	$\mathrm{PVS}_{\mathrm{No.7}}$	PVS _{No.9}	(PVS _{No.7} -PVS _{No.9})	(PVS _{No.7} -PVS _{No.5})	(PVS _{No.9} -PVS _{No.5})	
	(Kg)	(20, M)	(25, T)	(25, B)	/PVS _{No.7}	/PVS _{No.7}	/PVS _{No.9}	
5	-	5.685	3.074	9.328	-203.41	-84.90	39.06	
10	_	1.441	0.908	2.102	-131.54	-58.75	31.44	
20	_	0.365	0.268	0.474	-76.69	-36.30	22.86	
40		0.093	0.079	0.107	-34.84	-17.02	13.22	
60		0.041	0.039	0.045	-15.12	-7.03	7.02	
80	0.5	0.023	0.023	0.024	-2.90	-0.47	2.36	
100	0.5	0.015	0.016	0.015	5.68	4.34	-1.41	
120		0.011	0.011	0.010	12.15	8.10	-4.60	
140		0.008	0.009	0.007	17.28	11.17	-7.38	
160		0.006	0.007	0.005	21.47	13.74	-9.85	
180		0.005	0.006	0.004	25.00	15.95	-12.07	
200		0.004	0.005	0.003	28.02	17.87	-14.09	
5		17.981	8.557	32.571	-280.66	-110.14	44.80	
10		4.558	2.526	7.339	-190.49	-80.42	37.89	
20		1.155	0.746	1.653	-121.68	-54.90	30.12	
40		0.293	0.220	0.373	-69.17	-32.99	21.39	
60		0.131	0.108	0.156	-44.43	-21.64	15.78	
80		0.074	0.065	0.084	-29.10	-14.18	11.55	
100	1.6	0.048	0.044	0.052	-18.34	-8.71	8.13	
120		0.033	0.032	0.035	-10.22	-4.44	5.24	
140		0.025	0.024	0.025	-3.79	-0.96	2.73	
160		0.019	0.019	0.019	1.48	1.97	0.49	
180		0.015	0.016	0.015	5.90	4.47	-1.52	
200		0.012	0.013	0.012	9.69	6.66	-3.35	
5		55.553	23.322	110.865	-375.37	-138.20	49.89	
10		14.082	6.886	24.979	-262.77	-104.51	43.62	
20		3.570	2.033	5.628	-176.84	-75.59	36.57	
40		0.905	0.600	1.268	-111.26	-50.75	28.64	
60		0.405	0.294	0.530	-80.36	-37.89	23.55	
80	1	0.229	0.177	0.286	-61.22	-29.43	19.72	
100	5	0.147	0.120	0.177	-47.78	-23.23	16.61	
120	1	0.103	0.087	0.119	-37.64	-18.38	13.99	
140	1	0.076	0.066	0.086	-29.61	-14.44	11.71	
160	1	0.058	0.052	0.064	-23.03	-11.12	9.68	
180	1	0.046	0.043	0.050	-17.51	-8.28	7.85	
200	1	0.037	0.035	0.040	-12.78	-5.80	6.19	

Table 5.25 The influence of charge per delay on the predicted ground vibration velocity for PVS

Note) $PVS_{No.5}$ =PVS of Case No. 5, $PVS_{No.7}$ =PVS of Case No. 7, $PVS_{No.9}$ =PVS of Case No. 9, 20=20ms, 25=25ms

T=top priming, M=middle priming, B=bottom priming

	Charge	Predicted ground vibration			Ratio of increase			
Distance	por dolay	V	elocity (cm/	s)	(%)			
(m)	(ltar)	PVS _{No.5}	PVS _{No.6}	PVS _{No.7}	(PVS _{No.7} -PVS _{No.5})	(PVS _{No.7} -PVS _{No.6})	(PVS _{No.5} -PVS _{No.6})	
	(Kg)	(20, M)	(20, B)	(25, T)	/PVS _{No.7}	/PVS _{No.7}	/PVS _{No.5}	
5		164.838	90.762	61.324	-168.80	-48.00	44.94	
10		41.785	26.246	18.106	-130.78	-44.96	37.19	
20		10.592	7.590	5.346	-98.14	-41.97	28.35	
40		2.685	2.195	1.578	-70.12	-39.05	18.26	
60		1.203	1.062	0.773	-55.60	-37.37	11.71	
80	15	0.681	0.635	0.466	-46.06	-36.19	6.75	
100		0.438	0.426	0.315	-39.06	-35.28	2.72	
120		0.305	0.307	0.228	-33.59	-34.54	-0.71	
140		0.225	0.233	0.174	-29.14	-33.92	-3.71	
160		0.173	0.184	0.138	-25.40	-33.39	-6.37	
180		0.137	0.149	0.112	-22.19	-32.92	-8.78	
200		0.111	0.123	0.093	-19.39	-32.50	-10.98	

Table 5.25 Continues

Note) PVS_{Na5}=PVS of Case No. 5, PVS_{Na6}=PVS of Case No. 6, PVS_{Na7}=PVS of Case No. 7, 20=20ms, 25=25ms T=top priming, M=middle priming, B=bottom priming

Charge per	Rate of velocity	Distance	Maximum ratio
delay (kg)	components	(m)	of increase (%)
	(DVC DVC)/DVC	5~86	-203.41
	$(P V S_{N0.7}^{-} P V S_{N0.9})/P V S_{N0.7}$	87~200	28.02
0 5		5~81	-84.90
0.0	$(PV S_{N_0,7} - PV S_{N_0,5})/PV S_{N_0,7}$	82~200	17.87
	(DVC DVC)/DVC	5~92	39.06
	$(PV S_{N_0,9} - PV S_{N_0,5})/PV S_{N_0,9}$	93~200	-14.09
		5~153	-280.66
1.6	$(PVS_{No.7} - PVS_{No.9})/PVS_{No.7}$	154~200	9.69
		5~146	-110.14
	$(PVS_{No.7} - PVS_{No.5})/PVS_{No.7}$	147~200	6.66
		5~164	44.80
	$(PVS_{No.9} - PVS_{No.5})/PVS_{No.9}$	165~200	-3.35
	(PVS _{No.7} -PVS _{No.9})/PVS _{No.7}	5~200	-(375.37~12.78)
5	(PVS _{No.7} -PVS _{No.5})/PVS _{No.7}	5~200	-(138.20~5.80)
	(PVS _{No.9} -PVS _{No.5})/PVS _{No.9}	5~200	49.89~6.19
	(PVS _{No.7} -PVS _{No.5})/PVS _{No.7}	5~200	-(168.80~19.39)
15	(PVS _{No.7} -PVS _{No.6})/PVS _{No.7}	5~200	-(48.00~32.50)
15	(DVC DVC)/DVC	5~115	44.94
	$(\Gamma \vee \Im_{N_0.5} - \Gamma \vee \Im_{N_0.6})/\Gamma \vee \Im_{N_0.5}$	116~200	-10.98

Note) (+) : increase, (-) : decrease

(b) charge per delay = 5, 15kg

Figure 5.28 Relationship between predicted ground vibration velocity(PVS) and distance for different delay time and priming location.

Figure 5.29 Relationship between ratio of increase and distance for different delay time and priming location(PVS).

5.3 표준발파공법을 통한 발파방법 적용에 대한 고찰

앞 절에서는 성분별(T, V, L) 입자속도, 최대입자속도(PPV) 및 최대벡터합(PVS)의 평 균(50%) 지반진동 예측식을 통하여 지연시차와 기폭위치에 따른 지반진동의 특성을 알 아보았다.

실제 국토해양부에서 제정한 "도로공사 노천발파 설계시공 지침 및 요령"에서는 계측 된 지반진동의 최대입자속도(PPV)에 의한 회귀분석을 통해 거리별 허용장약량을 결정하 고 있다. 그러나 본 연구는 지연시차와 기폭위치에 따른 지반진동의 변화가 많이 나타나 고 있으므로 지발당 장약량에 따른 거리별 발파방법을 달리하여 지반진동을 줄일 수 있 을 것으로 판단된다.

지연시차와 기폭위치에 의한 최대입자속도의 지반진동 예측 결과 지발당 장약량에 따 라 진동수준이 역전되는 경향은 다르지만 대부분 발파원과 거리가 가까울수록 지연시차 가 25ms이고 정기폭(Case No. 7) 발파방법과 발파원과 거리가 멀어질수록 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법이 진동제어 측면에서 유리한 발파방법으로 예측 되었다.

장약량에 따라 낮은 진동수준을 보이는 방법을 찾아내기 위해 "도로공사 노천발파 설 계시공 지침 및 요령"에 제시된 장약량을 사용하여 거리를 구하였다. Table 5.27과 5.28 에서 사용된 장약량은 소규모 진동제어발파에서 표준패턴 장약량인 1kg, 응용패턴 장약 량인 0.5, 0.625, 0.64, 1.5kg, 중규모 진동제어발파에서 표준패턴 장약량인 3kg, 응용패턴 장약량인 1.6, 2.8kg, 일반발파에서 표준패턴 장약량인 7.5kg, 응용패턴 장약량인 5, 6.4kg, 대규모 발파에서 표준패턴 장약량인 20kg, 응용패턴 장약량인 15, 18kg이다.

진동수준이 역전되는 거리에 따라 진동제어에 유리한 발파방법은 다음과 같다.

소규모 진동제어발파 패턴의 장약량 0.5kg인 경우 80m 이내에는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법, 81m 이상이면 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법, 장약량이 0.625kg인 경우 90m 이내에는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법, 91m 이상이면 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법, 장 약량이 0.64kg인 경우 91m 이내에는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방 법, 91m 이상이면 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법, 장약량이 1kg인 경우 114m 이내에는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법, 115m 이상이 면 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법, 장약량이 26 140m 이 내에는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법, 141m 이상이면 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법이 진동제어 측면에 유리한 발파방법으로 분석되었다.

중규모 진동제어발파 패턴의 장약량 1.6kg인 경우 144m 이내에는 지연시차가 25ms이 고 정기폭(Case No. 7), 145m 이상이면 지연시차가 25ms이고 역기폭(Case No. 9) 발파 방법, 장약량이 2.8kg인 경우 191m 이내에는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법, 192m 이상이면 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법, 장약량이 3kg인 경우 198m 이내에는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법, 199m 이상이면 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법이 진동제어 측면에 유리한 발파방법으로 분석되었다.

일반발파 패턴의 장약량 5kg인 경우 255m 이내에는 지연시차가 25ms이고 정기폭 (Case No. 7) 발파방법, 256m 이상이면 지연시차가 25ms이고 역기폭(Case No. 9) 발파 방법, 장약량이 6.4kg인 경우 289m 이내에는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법, 290m 이상이면 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법, 장약량이 7.5kg인 경우 313m 이내에는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법, 314m 이상이면 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법이 진동제어 측면에 유리한 발파방법으로 분석되었다.

대규모 발파 패턴의 장약량 15kg인 경우 443m 이내에는 지연시차가 25ms이고 정기폭 (Case No. 7) 발파방법, 444m 이상이면 지연시차가 25ms이고 역기폭(Case No. 9) 발파 방법, 장약량이 18kg인 경우 485m 이내에는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법, 486m 이상이면 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법 그리고 장 약량이 20kg인 경우 511m 이내에는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방 법, 512m 이상이면 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법이 진동제어 측면 에서 유리하게 분석되었다.

위와 같이 장약량에 따라 진동수준이 역전되는 교차점 거리를 이용하여 Figure 5.30과 같은 그래프를 도시하고 아래와 같은 하나의 식을 산출하였다.

 $Y = 10^{(2.05631 + 0.50174 \log X)}$

여기서, X는 지발당 장약량(kg/delay)이고, Y는 지연시차가 25ms이고 정기폭(Case

No. 7) 발파방법과 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법의 진동수준이 역 전되는 교차점(m)으로써, 교차점 이전은 25ms이고 정기폭(Case No. 7) 발파방법, 교차점 이후는 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법의 지반진동 값이 적어 진동 제어 측면에서 유리한 발파방법이다. 예를 들어 지발당 장약량이 12kg일 때에는 396m 이내의 거리에서는 지연시차가 25ms이고 정기폭 발파방법, 397m 이후의 거리에서는 지 연시차가 25ms이고 역기폭 발파방법이 진동제어 측면에서 유리한 발파방법이다.

보안물건이 근접해 있어 허용된 지발당 장약량이 적을 경우 위와 같은 방법으로 발파 설계를 적용하면 발파공경이 작고, 공간격, 최소저항선 등이 좁아져서 정기폭을 사용할 경우 발파공 윗부분의 지반운동으로 인해 cut off가 발생될 우려가 있다. 그러나 정기폭 이 역기폭보다 충격파가 자유면에 도달하는 시간이 빠르므로 자유면에서 반사하는 반사 파의 세기가 크다는 이유 때문에 정기폭이 발파위력이 크고, 순폭성도 우수하다고 보고 되고 있다. 그런 이유로 정기폭의 단점이 우려되지 않은 경우에는 정기폭 발파방법도 발 파설계에 충분히 반영할 수 있을 것으로 판단된다.

만약, 발파현장에서 지연시차가 25ms인 뇌관을 사용하지 못할 경우 위와 같은 방법으 로 지연시차가 20ms인 발파방법으로 거리에 따른 진동제어에 유리한 발파방법을 분석해 보았다. 그 결과 장약량이 0.5kg은 20m, 0.625kg과 0.64kg은 23m, 1kg은 29m, 1.5kg은 35m, 1.6kg은 37m, 2.8kg은 49m, 3kg은 50m, 5kg은 65m, 6.4kg은 74m, 7.5kg은 80m, 15kg은 113m, 18kg은 124m, 20kg은 131m 이내에서 역기폭 발파방법이 진동제어 측면에 서 유리하게 분석되었다. 그리고 장약량이 0.5kg은 21m, 0.625kg과 0.64kg은 24m, 1kg은 30m, 1.5kg은 36m, 1.6kg은 38m, 2.8kg은 50m, 3kg은 51m, 5kg은 66m, 6.4kg은 75m, 7.5kg은 81m, 15kg은 114m, 18kg은 125m, 20kg은 132m 이상에서 중간기폭 발파방법이 진동제어 측면에서 유리하게 분석되었다.

위와 같이 지연시차가 20ms인 발파방법에서 장약량에 따라 진동수준이 역전되는 교차 점 거리를 이용하여 Figure 5.31과 같은 그래프를 도시하고 아래와 같은 하나의 식을 산 출하였다.

$$Y = 10^{(1.46015 + 0.50539 \log X)}$$

이 식을 이용하여 지연시차가 20ms인 발파방법을 발파설계에 반영할 수 있을 것으로 판단된다.

Classification of		Charge	Distance	Predicted gro	Cross		
Classifica	uon or	per delay	Distance	velocity	(cm/s)	Cross	
surface blas	sting type	(kg)	(m)	Case No. 7(25,T)	Case No. 9(25,B)	point	
			70	0.046638	0.056489		
			90	0.029742	0.032661		
	Standard	1	114	0.019481	0.019508	114	
	pattern	1	115	0.019178	0.019141	114	
			130	0.015399	0.014651		
			150	0.011920	0.010725		
			40	0.068289	0.089880		
	Application		60	0.033048	0.037135		
	application	0.5	80	0.019747	0.019834	20	
	pattern	0.5	81	0.019313	0.019304	80	
	(1)		100	0.013245	0.012194		
			120	0.009557	0.008195		
Type III			50	0.055927	0.070474		
	Application		70	0.030623	0.033843		
X 7' 1 /'	ripplication	0.005	90	0.019529	0.019568	00	
Vibration	pattern	0.625	91	0.019147	0.019102	90	
control blasting	(2)		110	0.013636	0.012634		
small scale			130	0.010111	0.008778		
			50	0.057126	0.072320		
	Application		70	0.031280	0.034729		
	Application	0.64	91	0.019557	0.019602	01	
	pattern	0.64	92	0.019178	0.019141	91	
	(3)		110	0.013928	0.012965		
			130	0.010328	0.009008		
			100	0.035405	0.040385		
	Application		120	0.025546	0.027139		
	asttom	1 5	140	0.019386	0.019394	140	
	pattern (4)	1.5	141	0.019141	0.019095	140	
			160	0.015265	0.014496		
			180	0.012363	0.011213		
			150	0.031863	0.035519		
			170	0.025467	0.027037		
	Standard	2	198	0.019384	0.019391	109	
	pattern	3	199	0.019210	0.019180	198	
			210	0.017447	0.017057		
			230	0.014825	0.013989		
Type IV			100	0.037510	0.043328		
	Application		120	0.027065	0.029117		
Vibration	pattorn	16	144	0.019529	0.019568	144	
VIDIALIOII		1.0	145	0.019289	0.019275	144	
control blasting	(1)		160	0.016172	0.015552		
middle scale			180	0.013098	0.012030		
			150	0.029955	0.032946		
	Application		170	0.023942	0.025078		
	nattern	28	191	0.019437	0.019455	101	
		2.0	192	0.019256	0.019235	1.71	
	(2)		210	0.016402	0.015821		
			230	0.013937	0.012975		

Table 5.27 The influence of charge per delay on the predicted ground vibration velocity for all Case No. (Type III and IV)

Note) 25=25ms, T=top priming, B=bottom priming

Classification of		Charge	Distance	Predicted gro	und vibration	Cross			
Classifica		per delay	Distance	velocity	(cm/s)	Cross			
surface blas	sting type	(kg)	(m)	Case No. 7(25,T)	Case No. 9(25,B)	point			
			270	0.025264	0.026774				
			290	0.022230	0.022912	010			
	Standard	75	313	0.019392	0.019400				
	pattern	1.5	314	0.019281	0.019266	313			
			330	0.017640	0.017288				
			350	0.015877	0.015206				
			210	0.027559	0.029766				
Type V	Application		230	0.023418	0.024411				
	reprication	=	255	0.019469	0.019494	OFF			
General	pattern) D	256	0.019333	0.019328	200			
blasting	(1)		270	0.017575	0.017210				
			290	0.015465	0.014727				
			250	0.025158	0.026638				
	Application pattern (2)		270	0.021921	0.022524				
		64	289	0.019408	0.019420	289			
		0.4	290	0.019289	0.019275	269			
			310	0.017118	0.016666				
			330	0.015306	0.014543				
	Standard pattern		470	0.022533	0.028415				
						490	0.020914	0.026340	
		20	511	0.019400	0.024403	511			
		20	512	0.019333	0.024317				
			530	0.018173	0.022834				
			550	0.017007	0.021346				
			400	0.023247	0.029331				
Type VI	Application		420	0.021303	0.026839				
	reprication	15	443	0.019364	0.024357	442			
Large scale	pattern	15	444	0.019286	0.024257	445			
blasting	(1)		460	0.018102	0.022744				
			480	0.016774	0.021048				
			440	0.023075	0.029111				
	Application		460	0.021311	0.026848				
	ripplication	10	485	0.019384	0.024383	405			
	pattern	18	486	0.019313	0.024292	480			
	(2)		500	0.018356	0.023068				
			520	0.017111	0.021479				

Table 5.28 The influence of charge per delay on the predicted ground vibration velocity for all Case No. (Type V and VI)

Note) 25=25ms, T=top priming, B=bottom priming

Figure 5.30 Relationship between charge per delay and monitoring distance where the two levels of peak particle velocity from Case No. 7 and Case No. 9 are reversed(all Case No.).

Figure 5.31 Relationship between charge per delay and monitoring distance where the two levels of peak particle velocity from Case No. 5 and Case No. 6 are reversed(only 20ms delay time).

5.4 파쇄입도 분석을 통한 발파방법 적용에 대한 고찰

지연시차와 기폭위치에 의한 최대입자속도의 지반진동 예측 결과 지연시차가 20ms인 경우 중간기폭(Case No. 5) 발파방법과 역기폭(Case No. 6) 발파방법, 지연시차가 25ms 인 경우 정기폭(Case No. 7) 발파방법과 역기폭(Case No. 9) 발파방법이 진동 수준이 낮 게 예측되었다.

이에 지연시차가 20ms이고 역기폭(Case No. 6) 발파방법과 지연시차가 25ms이고 역 기폭(Case No. 9) 발파방법으로 실규모 발파를 실시한 후 파쇄입도 분석을 실시하였다. 두 방법 모두 발파조건은 천공장 12m, 최소저항선 2.5m, 공간격 2.3m, 지발당 장약량 40kg, 총 발파공수 40공으로 동일하다.

파쇄입도 분석은 Split Engineering사의 Split Desktop을 사용하였다.

Figure 5.32는 지연시차가 20ms이고 역기폭(Case No. 6) 발파방법을 적용한 실규모 발 파 후 파쇄암과 디지털 처리를 한 사진이다.

파쇄입도 분석 결과 Rosin-Rammler model 및 Schuhmann model의 평균 파쇄입도 (X₅₀)는 각각 15.05cm와 17.53cm이며 Rosin-Rammler model에 비하여 Schuhmann model이 R²=0.9965로 상대적으로 높은 상관성을 가지는 것으로 분석되었다. 파쇄암석 전 체 무게(%)에 해당하는 각각의 입도분석 결과 평균 파쇄입도는 16.97cm이고, 최대 파쇄 입도는 53.58cm로 분석되었다(Table 5.29).

Figure 5.33은 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법을 적용한 실규모 발 파 후 파쇄암과 디지털 처리를 한 사진이다.

파쇄입도 분석 결과 Rosin-Rammler model 및 Schuhmann model의 평균 파쇄입도 (X₅₀)는 각각 22.95cm와 26.60cm이며 Rosin-Rammler model에 비하여 Schuhmann model이 R²=0.9989로 상대적으로 높은 상관성을 가지는 것으로 분석되었다. 파쇄암석 전 체 무게(%)에 해당하는 각각의 입도분석 결과 평균 파쇄입도는 25.90cm이고, 최대 파쇄 입도는 84.54cm로 분석되었다(Table 5.30).

두 발파방법의 파쇄입도 분석결과를 보면 평균 파쇄입도는 지연시차가 20ms인 발파방 법이 25ms인 발파방법보다 52.62%, 최대 파쇄입도는 57.78 %정도 더 작게 발생하였다. 이를 보면 지연시차가 20ms인 발파방법이 25ms인 발파방법보다 작은 파쇄암을 발생한 다고 알 수 있다. 그러나 파쇄암 입도는 발파방법도 중요하지만 암반의 역학적, 구조적 (불연속면 분포 등) 특성에 의해 좌우될 가능성도 매우 높다.

(a) Fragmentation(b) Digital image processingFigure 5.32 Digital image processing of fragmentation(delay time=20ms).

Table 5.29 Result of fragmentation analysis(delay time=20ms)

(a) Fragmentation(b) Digital image processingFigure 5.33 Digital image processing of fragmentation(delay time=25ms).

Table 5.29 Result of fragmentation analysis(delay time=25ms)

6. 결론

본 연구는 연구지역의 암반 특성을 파악하기 위해 암석샘플을 채취하여 실내암석실험 을 실시하였고, 발파공 사이의 지연시차와 기폭위치에 따라 발파에 의한 진동의 전파 특 성을 파악하기 위해서 공간격, 저항선, 천공장 그리고 장약량 등을 달리하여 총 37회의 시험발파(1~3공)를 실시하여 지반진동 예측식을 도출하였다. 그리고 도출된 평균(50%) 지반진동 예측식을 이용하여 발파공간 지연시차(20, 25ms)와 기폭위치(정기폭, 중간기폭, 역기폭)에 따른 성분별(T, V, L) 입자속도, 최대입자속도(PPV) 및 최대벡터합(PVS)의 노모그램 분석과 지반진동 예측을 통해 진동특성을 규명하였고, 국토해양부의 "도로공사 노천발파 설계 시공 지침 및 요령"에 제시된 표준발파공법의 공법별 경계 기준 장약량인 0.5, 1.6, 5, 15kg을 적용하여 지연시차와 기폭위치에 따른 진동 증가율을 비교분석하였 다. 그리하여 장약량에 따라 진동제어에 유리한 발파방법을 제안하여 발파설계의 인자로 사용할 수 있도록 하였다. 이상의 결과를 요약하면 다음과 같다.

1. 본 연구지역에서 총 37회의 시험발파를 통해 이격거리 7~227m 지점에서 총 1025개 의 자료를 획득하였다. 계측결과는 접선성분 입자속도의 경우 0.127~112mm/s, 수직성분 입자속도의 경우 0.127~188mm/s, 진행성분 입자속도의 경우 0.1278~206mm/s, 최대입 자속도의 경우 0.191~206mm/s, 최대벡터합의 경우 0.197~234mm/s로 계측되었다.

2. 지연시차와 기폭위치에 따른 성분별 지반진동을 예측결과를 종합 비교해본 결과는 다음과 같다.

(1) 지연시차가 0ms인 경우 정기폭 발파방법과 역기폭 발파방법은 장약량이 증가하 면 발파원에서 가까울수록 수직성분(V), 멀어질수록 진행성분(L)의 진동수준이 우세하게 예측되었다. 이는 장약량이 증가하면 폭약의 방출에너지가 커지므로 속 도는 느리지만 발파원에서 가까운 경우 암석의 표면을 따라 이동하는 Rayleigh파 에 의한 영향을 많이 받는 것으로 판단된다. 그러나 중간기폭 발파방법은 장약량 과 거리에 상관없이 진행성분(L)의 진동수준이 우세하게 예측되었다. 이는 발파에 의한 암석의 파쇄나 이동 등에 의해 Rayleigh파의 전파 경로가 차단된 것으로 판 단된다. 접선성분(T)의 경우 진동수준이 낮게 예측되는데 이는 고체만 통과하는 S파의 특성상 현장암반의 구조적 특징(불연속면 분포 등)을 유추할 수 있다.
(2) 정기폭인 경우 지연시차가 20ms 발파방법과 25ms 발파방법은 발파원에서 가까 운 경우 수직성분(V), 멀어지는 경우 접선성분(T)의 진동수준이 우세하게 예측되었다. 이는 정기폭이 폭발원의 위치가 다른 기폭방법보다 지표면에 가까워서 근거리의 경우 전파속도는 느리지만 크기가 가장 큰 Rayleigh파로 이루어진 수직성분(V)의 진동수준이 우세하고, 장약량이 증가할수록 수직성분(V)의 영향범위도 증가한다.

- (3) 중간기폭인 경우 지연시차가 20ms 발파방법과 25ms 발파방법은 발파원과 거리 에 따라 수직성분(V), 진행성분(L), 접선성분(T) 순으로 진동수준이 우세하게 예 측되었다. 중간기폭은 거리에 따라 세 성분에 의해 좌우되는 것을 알 수 있다. 그 러나 정기폭보다 지표면과의 거리가 멀기 때문에 Rayleigh파로 이루어진 수직성 분(V)의 영향범위가 더 작은 것을 알 수 있다.
- (4) 역기폭인 경우 지연시차가 20ms 발파방법과 25ms이고 역기폭 발파방법은 발파 원에서 가까운 경우 진행성분(L), 멀어지는 경우 접선성분(T)의 진동수준이 우세 하게 예측되었다. 이는 역기폭이 폭발원의 위치가 다른 기폭방법보다 지표면에 가 장 멀기 때문에 근거리의 경우 가장 크지만 전파속도는 느린 Rayleigh파로 이루어 진 수직성분(V)의 경우 암반내부를 이동하다 크기가 감쇠된다. 그리고 가장 작지 만 전파속도가 빠른 P파로 이루어진 진행성분(L)이 발파원에서 가까운 거리에서 는 우세하고, P파보다 전파속도는 느리지만 크기가 큰 S파로 이루어진 접선성분 (T)이 발파원에서 멀어지는 거리에서는 우세하게 예측되었다. 장약량이 증가할수 록 진행성분(V)의 영향범위도 증가한다.
- (5) 지연시차 0ms인 발파방법에 따른 지반진동 예측과 지연시차 20, 25ms인 발파방 법에 따른 성분별 지반진동 예측 결과는 상이하게 나타났다. 이는 지연시차가 0ms인 발파방법의 경우 단일공에 의한 발파조건이고, 지연시차가 20, 25ms 발파 방법의 경우 2~3공의 발파조건이다. 이는 지연시차에 의한 발파공 사이의 지반진 동 중첩에 의한 결과로 판단된다.

3. 지연시차와 기폭위치에 따른 최대입자속도(PPV)와 최대벡터합(PVS)의 지반진동을 예측결과를 종합 비교해본 결과는 다음과 같다.

(1) 지연시차가 0ms인 Case No. 1~3의 진동수준이 낮게 예측되었다. 이는 단일공
 발파로써 발파공 사이에서 발생하는 지반진동의 보강 혹은 상쇄 간섭이 없는 조

건에 의한 결과로 판단된다.

- (2) 지연시차가 20ms와 25ms인 발파방법에서 환산거리가 낮은 범위의 경우 진동수 준이 가장 낮은 지연시차가 25ms이고 정기폭(Case No. 7)을 제외하고, 지연시차 가 20ms인 발파방법이 진동제어 측면에 유리하게 예측되었다. 그리고 환산거리가 증가함에 따라 지연시차가 25ms인 중간기폭, 역기폭 발파방법이 지연시차가 20ms인 발파방법보다 지반진동의 감쇠가 증가하여 지연시차가 20ms의 발파방법 보다 진동제어 측면에 유리하게 예측되었다. 이를 보면 지연시차가 20ms와 25ms 중에서 25ms 발파방법이 지반진동의 상쇄간섭이 발생하는 시차일 것으로 판단된 다.
- (3) 최대입자속도(최대벡터합)의 평균 지반진동 예측식을 통한 5~200m의 이격거리 에서 진동속도를 예측한 결과 장약량이 3.0kg(최대벡터합의 경우 2.6kg) 이내에서 발파원에서 가까운 거리에서는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방 법의 진동수준, 발파원에서 멀어지는 거리에서는 지연시차가 25ms이고 역기폭 (Case No. 9) 발파방법의 진동수준이 가장 낮게 예측되었다. 그리고 장약량이 3.0kg(최대벡터합의 경우 2.6kg) 이상에서는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법의 진동수준이 가장 낮게 예측되었다.

4. 지연시차와 기폭위치에 의한 최대입자속도의 지반진동 예측 결과 지발당 장약량에 따라 진동수준이 역전되는 경향은 다르지만 대부분 발파원과 가까운 거리에서는 지연시 차가 25ms이고 정기폭(Case No. 7) 발파방법과 발파원과 멀어지는 거리에서는 지연시차 가 25ms이고 역기폭(Case No. 9) 발파방법이 진동제어 측면에서 유리한 발파방법으로 예측되었다. 장약량에 따라 진동수준이 역전되는 교차점 거리를 아래와 같은 하나의 식 을 산출하였다.

$Y = 10^{(2.05631 + 0.50174 \log X)}$

여기서, X는 지발당 장약량(kg/delay)이고, Y는 지연시차가 25ms이고 정기폭(Case No. 7) 발파방법과 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법의 진동수준이 역 전되는 교차점(m)으로써, 교차점 이전은 25ms이고 정기폭(Case No. 7) 발파방법, 이후는 지연시차가 25ms이고 역기폭(Case No. 9) 발파방법의 지반진동 값이 적어 진동제어 측 면에서 유리한 발파방법으로 발파설계시 인자로 사용할 수 있을 것으로 사료된다.

5. 파쇄입도 분석결과를 보면 평균 파쇄입도는 지연시차가 20ms 발파방법이 25ms 발 파방법보다 52.62%, 최대 파쇄입도는 57.78 %정도 더 작게 발생하였다. 이를 보면 시차 에 따른 파쇄입도는 시차가 짧을수록 파쇄입도는 개선되는 것을 알 수 있다. 그러나 파 쇄암 입도는 발파방법도 중요하지만 암반의 역학적, 구조적(불연속면 분포 등) 특성에 의 해 좌우될 가능성도 매우 높다.

6. 보안물건이 근접해 있어 허용된 지발당 장약량이 적을 경우 위와 같은 방법으로 발 파설계를 적용하면 발파공경이 작고, 공간격, 최소저항선 등이 좁아져서 정기폭을 사용 할 경우 발파공 윗부분의 지반운동으로 인해 cut off가 발생될 우려가 있다. 그러나 정기 폭이 역기폭보다 충격파가 자유면에 도달하는 시간이 빠르므로 자유면에서 반사하는 반 사파의 세기가 크다는 이유 때문에 정기폭이 발파위력이 크고, 순폭성도 우수하다고 보 고되고 있다. 그런 이유로 정기폭의 단점이 우려되지 않은 경우에는 정기폭 발파방법도 발파설계에 충분히 반영할 수 있을 것으로 판단된다.

7. 본 연구는 군산의 편암지역에서 기존에 상용화되고 있는 뇌관의 지연시차인 20ms와 25ms를 이용하여 지반진동을 규명하였다. 이는 다른 지역에서 지연시차와 기폭위치에 따라 진동의 합성에 의한 증폭 혹은 감쇠가 발생할 가능성이 있는 지역적인 한계성을 보이나 추후에 위와 같은 실험조건으로 다양한 지역에서 실험을 실시한 결과가 추가된다면 발과설계 적용시 가장 유용한 자료가 될 수 있을 것으로 판단된다. 그리고 전자뇌관 등 의 지연시차 구현이 다양한 뇌관의 사용이 늘어남으로 다양한 지연시차에 따른 지반진동 에 대한 연구가 필요할 것으로 사료된다.

참 고 문 헌

강추원, 2009, 제2판 발파공학 A to Z, 구미서관.

강추원, 2005, 주 주파수를 고려한 협동장약 특성에 관한 연구, 한국암반공학회지, Vol. 15, No. 4, pp. 316-323.

강추원, 김종인, 박정봉, 2005, 협동장약을 고려한 MS 지발 발과 특성 연구, 대한화 약발파공학회지, Vol. 23, No. 3, pp. 11-18.

강추원, 김승현, 박현식, 2006, 중첩 모델링을 통한 발파진동의 특성에 관한 연구, 한 국암반공학회지, Vol. 16, No. 4, pp. 326-333.

김재극, 1992, 산업화약과 발파공학 개정판, 서울대학교 출판부.

김재웅, 강추원, 고진석, 2012, 발파공내 기폭위치가 지반진동에 미치는 영향, 대한화 약발파공학회지, Vol. 30, No. 1, pp. 29-36.

두준기, 2000, 지발뇌관의 시차와 다단발파에 대한 고찰, 대한화약발파공학회지, Vol. 18. No. 4, pp. 29-41.

문창일, 2000, 장공계단발파에서 Primer의 위치가 발파진동에 미치는 영향, 조선대학 교 석사학위논문.

손석범, 강추원, 노영배, 고진석, 2011, 기폭위치에 따른 주파수 분석, 대한화약발파공 학회지, Vol. 29, No. 2, pp. 51-58.

송영석, 이윤재, 민형동, Dave Kay, 2004, 석회석 광산에서 전자뇌관의 적용성에 관 한 연구, 대한화약발파공학회지, Vol. 22, No. 2, pp. 1-11.

안명석, 2000, 건설현장에서 안정성 향상을 위한 지반진동·소음·비산먼지 측정자료의 분석에 관한 연구(영남지역의 퇴적암·화성암층에서 발파 및 항타작업을 중심으로), 동 아대학교 박사학위논문.

안명석, 박종남, 1999, 대구 규장암 지역의 발파진동 측정자료에 의한 K 및 n의 변화 추이에 대한 고찰, 한국자원공학회지, Vol. 36, pp. 313-318.

양형식, 1992, 발파진동학, 구미서관.

양형식, 김남수, 장형두, 정회석, 고영훈, 김정균, 2010, 스코리아층을 포함한 암반 발 파 특성 연구, 대한화약발파공학회 추계학술발표회, pp. 159-165.

윤지선, 최성현, 배상훈, 2008, 연주식 발파공법 개발에 대한 기초적 연구(리듬감 부 여에 관하여), 대한화약발파공학회지, Vol. 26, No. 1, pp. 39-48. 정두성, 강추원, 고진석, 장호민, 류복현, 2010, 지연시차에 따른 발파진동의 주파수 특성 예측, 한국암반공학회지, Vol. 20, No. 2, pp. 112-118.

최형빈, 원연호, 2010, 전자뇌관과 전기뇌관을 사용한 시추공 발파시험에서의 지반진 동 특성에 관한 비교 연구, 대한화약발파공학회지, Vol. 28, No. 2, pp. 37-49.

Adams, T. F., Demuth, R. B., Margolin, L. G., and Nichols, B. D., 1983, Simulation of Rock Blasting with the Shale Code. Proceedings of the First International Symposium on Rock Fragmentation by Blasting, pp. 361–373.

Altas Power Company, 1987, Explosives and Rock Blasting, pp.157-201, 321-406.

Ambraseys, N. R., and Hendron, A. J., 1968, Dynamic Behavior of Rock Masses, in Rock Mechanics in Engineering Practice, pp. 203–227.

Archibald, J., 1976, Blasting Vibration Laboratory Manual. Kingston, Ontario, Canada: Queen's University, Mining Engineering Department.

Ash, R. L., 1973, The Influence of Geological Discontinuities on Rock Blasting, Unpublished doctoral dissertation, University of Minnesota.

Barker, D. B., Fourney, W. L, and Dally, J. W., 1978, Photoelastic Investigation of Fragmentation Mechanics, Part I-Borehole Crack Network, University of Maryland., March.

Barker, D. B., Fourney, W. L, and Dally, J. W., 1978, Photoelastic Investigation of Fragmentation Mechanics, Part II-Flaw Initiated Network, University of Maryland., August.

Bicholls, H., Johnson, c., Duvall, W., 1971, Blasting Vibrations and Their Effects on Structures, Bulletin 656.

Bollinger G. A., 1971, Blasting Vibration Analysis, pp. 58-88.

Calvin J. Konya, and Edward J. Walter, 1990, Surface Blast Design, pp. 35-58.

Chiappetta, R. F., Bauer, A., and Burchell, S. L., 1983, The Use of High Speed Motion Picture Photography in Blast Evaluation and Design, Proceedings of the 9th Annual Conference on Explosives and Blasting Techniques, Society of Explosives Engineers.

Devine, J. R., 1966, Avoiding Damage to Residences from Blasting Vibrations, Highway Research Record 135, pp. 35–44. Dowding C. H., 1984, Blast Vibration Monitoring and Control, Prentice Hall, pp. 7-40, 264–276.

Dupont Co., 1977, Blaster' Hand Book, Technical Services Division, E.I. Dupont, pp. 494.

Dupont Co., 1980, Blaster's Hand Book, 16th Edition, pp.423-446.

Duvall, W., and Fogelson, D. E., Review of Criteria for Estimating Damage to Residences from Blasting Vibrations, USBM, 1962.

Duvall, W., Johnson, C., Meyer, A., and Devine, J., 1963, Vibrations from Instantaneous and Millisecond Delayed Blasts, RI 6151.

Fourney, W. L., and Barker, D, B., 1983, Effect of Time Delay on Fragmentation in Explosives, Proceedings of the First International Symposium on Rock Fragmentation by Blasting, pp. 225–249.

Hino, U., 1956, Fragmentation of Rock through Blasting, Quarterly of the Colorado School of Mines, pp. 51, 189.

Johansson, C. H., and Persson, P. A., 1970, Detonics of High Explosives, New York, Academic Press.

Kutter, H. K., and Fairhurst, C., 1971, On the Fracture Process in Blasting, Int. J. Rock Mech. Min. Sci., B, pp. 181–202.

Langefors U. and Kihlström B., 1978, The modern technique of Rock Blasting, Third edition, pp. 258–293.

McHugh, S., 1983, Computational Simulations of Dynamically Induced Fracture and Fragmentation, Proceedings of the First International Symposium on Rock by Blasting, pp. 407–418.

Obert, L., and Duvall, W.I., 1949, A Gague and recording Equipment for Measuring Dynamic Strain in Rock, USBM, RI 4581.

Obert, L., and Duvall, W. I., 1950, Generation and Propagation of Straain Waves in Rock, USBM, RI 4663.

Persson, P. A., Lundborg, N., and Johansson, C. H., 1970, The Basic Mechanism in Rock Blasting. Proceedings of the 2nd Congress of the International Society for Rock Mechanics, Belgrade. Pit Slope Manual, 1977, Perimeter Blasting(Canmet, Report 77–44), Canada Center for Mineral and Energy Technology, Canada.

Winzer, S. R., Furth, W., and Ritter, A., 1979, Initiator Firing Times and Their Relationship to Blasting Performance, Proceedings of the 20th Symposium on Rock Mechanics, pp. 461–470.

Zhenyu Wang, Cheng Fang, Yinlu Chen, Weifeng Cheng, 2013, A comparative study of delay time identification by vibration energy analysis in millisecond blasting, International Journal of Rock Mechanics & Mining Sciences, Vol. 60, pp. 389–400.

Appendix

(Measurement results)

Blasting N	o.1 Delay tir	ne=20ms, Pri	ming location	n=Top, Blast	ing holes=2h	ole		
N.		Ground vil	pration veloc	ity (mm/s)		Distance	Weight	
INO.	Т	V	L	PPV	PVS	(m)	(kg)	
1	75.469	79.983	41.822	79.983	113.741	27	14	
2	54.339	83.399	34.819	83.399	88.691	31	14	
3	40.992	80.203	81.203	81.203	87.572	34	14	
4	80.203	69.857	45.750	80.203	107.047	40	14	
5	42.310	50.728	32.964	50.728	58.347	44	14	
6	41.400	48.400	30.600	48.400	58.290	46	14	
7	25.400	42.500	35.700	42.500	42.911	48	14	
8	17.900	39.600	34.100	39.600	52.851	49	14	
9	31.574	36.795	33.282	36.795	46.443	50	14	
10	26.300	40.400	23.900	40.400	43.836	51	14	
11	33.400	32.600	23.000	33.400	38.467	54	14	
12	14.900	37.300	18.400	37.300	41.099	58	14	
13	12.700	29.700	13.100	29.700	32.121	62	14	
14	13.200	28.700	18.500	28.700	32.960	67	14	
15	7.620	26.300	11.900	26.300	29.641	71	14	
16	7.110	24.500	12.200	24.500	25.480	74	14	
17	11.600	24.600	11.900	24.600	25.882	77	14	
18	9.680	22.400	6.970	22.400	23.419	80	14	
19	5.840	20.400	11.800	20.400	21.963	82	14	
20	9.220	21.100	4.890	21.100	23.072	85	14	
21	13.400	14.900	8.320	14.900	19.014	93	14	
22	14.000	17.600	12.400	17.600	17.863	96	14	
23	8.620	14.200	5.560	14.200	16.494	100	14	
24	8.430	9.290	8.640	9.290	12.123	108	14	
25	6.840	8.840	3.940	8.840	11.147	114	14	
26	6.110	8.600	5.240	8.600	10.058	117	14	
27	6.430	5.030	12.000	12.000	13.438	123	14	
28	11.200	6.180	4.290	11.200	11.668	129	14	
29	8.750	7.190	4.940	8.750	9.202	130	14	
30	5.730	3.100	6.520	6.520	8.706	137	14	
31	3.220	2.830	2.480	3.220	4.213	142	14	
32	3.320	1.810	2.050	3.320	3.536	147	14	
33	1.810	2.270	1.870	2.270	2.614	153	14	
34	2.490	2.110	2.350	2.490	2.506	157	14	
Blasting N	o.2 Delay tir	ne=20ms, Pri	ming location	n=Top, Blast	ing holes=3h	ole		
1	57.633	84.961	64.074	84.961	85.897	25	14	
2	49.215	81.960	40.894	81.96	88.553	28	14	
3	40.968	80.984	30.598	80.984	82.499	32	14	
4	31.793	66.758	24.790	66.758	69.964	39	14	
5	8.369	27.743	14.982	27.743	30.009	44	14	
6	11.566	27.523	11.102	27.523	28.961	46	14	
7	9.020	21.600	12.600	21.600	23.313	49	14	
8	10.800	21.000	12.700	21.000	23.251	50	14	
9	9.700	12.400	12.400	12.400	20.040	51	14	
10	7.490	14.100	14.900	14.900	19.757	52	14	
Blasting No.2 Delay time=20ms, Priming location=Top, Blasting holes=3hole								
---	---------------	--------------	---------------	--------------	--------------	----------	--------	--
N.		Ground vil	pration veloc	ity (mm/s)		Distance	Weight	
INO.	Т	V	L	PPV	PVS	(m)	(kg)	
11	7.620	14.200	11.900	14.200	17.207	55	14	
12	4.700	8.130	11.800	11.800	13.891	60	14	
13	7.030	7.100	11.000	11.000	11.307	64	14	
14	7.380	5.100	11.000	11.000	11.251	69	14	
15	4.700	4.570	9.650	9.650	9.711	74	14	
16	3.430	4.320	7.110	7.110	7.937	78	14	
17	5.080	4.190	7.620	7.620	8.124	80	14	
18	4.450	3.810	6.990	6.990	7.625	82	14	
19	8.890	10.400	3.490	10.400	12.373	86	14	
20	7.640	4.840	5.110	7.640	8.127	97	14	
21	6.240	3.620	10.000	10.000	10.296	97	14	
22	6.700	3.020	5.780	6.700	7.669	100	14	
23	7.000	3.510	4.370	7.000	7.407	103	14	
24	6.190	3.350	5.560	6.190	8.392	114	14	
25	5.590	2.970	5.430	5.590	6.251	120	14	
26	2.520	3.350	4.570	4.570	4.732	123	14	
27	5.020	4.890	3.840	5.020	6.275	129	14	
28	3.790	2.750	2.300	3.790	4.227	134	14	
29	3.940	2.560	2.560	3.940	4.614	136	14	
30	3.030	4.890	2.830	4.890	4.968	142	14	
31	3.670	2.330	3.640	3.670	5.101	148	14	
32	2.440	2.780	3.790	3.790	4.324	152	14	
33	2.520	1.030	2.620	2.620	3.620	158	14	
34	1.970	1.680	2.910	2.910	3.006	163	14	
Blasting N	o.3 Delay tir	ne=25ms, Pri	ming location	n=Top, Blast	ing holes=3h	ole		
1	34.819	65.978	50.898	65.978	67.221	23	14	
2	24.644	34.770	22.204	34.770	41.007	28	14	
3	14.054	32.598	18.739	32.598	33.018	30	14	
4	16.397	30.842	15.543	30.842	32.615	35	14	
5	9.492	19.764	7.832	19.764	22.759	42	14	
6	6.393	13.469	4.978	13.469	14.956	45	14	
7	5.050	13.700	8.250	13.700	14.018	50	14	
8	3.430	10.300	7.630	10.300	12.828	51	14	
9	4.590	5.830	6.430	6.430	8.848	53	14	
10	4.320	8.000	6.220	8.000	9.117	55	14	
11	2.160	5.970	6.100	6.100	7.735	65	14	
12	4.600	5.940	7.810	7.810	8.013	64	14	
13	3.590	2.480	5.180	5.180	5.293	68	14	
14	3.560	3.300	3.560	3.560	4.408	73	14	
15	3.970	4.650	2.890	4.650	4.822	77	14	
16	4.320	1.910	4.570	4.570	4.933	81	14	
17	3.160	2.620	2.540	3.160	3.681	86	14	
18	2.540	1.910	2.920	2.920	3.116	88	14	
19	1.780	1.910	2.540	2.540	3.074	90	14	
20	2.410	1.650	2.920	2.920	3.422	95	14	

Blasting No.3 Delay time=25ms, Priming location=Top, Blasting holes=3hole							
N.		Ground vil	oration veloc	ity (mm/s)		Distance	Weight
INO.	Т	V	L	PPV	PVS	(m)	(kg)
21	2.380	2.680	2.840	2.840	3.977	101	14
22	2.570	1.320	2.730	2.730	3.052	105	14
23	2.940	1.400	1.410	2.940	3.039	109	14
24	2.640	1.080	0.873	2.640	2.801	118	14
25	2.540	2.670	2.000	2.670	3.107	124	14
26	2.460	1.430	1.140	2.460	2.714	127	14
27	2.600	3.160	1.750	3.160	3.619	133	14
28	1.860	1.460	2.080	2.080	2.231	138	14
29	1.870	2.020	2.030	2.030	3.238	140	14
30	2.640	2.210	2.100	2.640	3.152	148	14
31	2.170	1.510	1.710	2.170	2.374	152	14
32	2.140	1.490	2.020	2.140	2.556	157	14
33	1.920	1.790	1.700	1.920	2.057	163	14
34	1.750	0.937	0.921	1.750	1.827	167	14
Blasting N	o.4 Delay tir	ne=25ms, Pri	ming location	n=Top, Blast	ing holes=2h	ole	
1	3.928	17.788	4.416	17.788	18.348	25	6.4
2	4.343	1.391	2.147	4.343	4.623	31	6.4
3	1.330	3.710	2.710	3.710	4.292	34	6.4
4	1.560	1.490	2.840	2.840	3.160	38	6.4
5	2.680	1.900	1.860	2.680	3.266	45	6.4
6	2.510	0.810	1.480	2.510	2.557	48	6.4
7	1.952	1.562	2.440	2.440	3.142	51	6.4
8	2.270	1.250	1.030	2.270	2.320	55	6.4
9	2.160	0.794	1.840	2.160	2.891	59	6.4
10	1.160	1.290	2.020	2.020	2.267	61	6.4
11	2.130	1.020	1.080	2.130	2.151	59	6.4
12	1.380	1.460	1.640	1.640	2.260	70	6.4
13	1.980	0.841	1.370	1.980	2.123	75	6.4
14	1.586	1.025	1.854	1.854	2.052	80	6.4
15	1.100	1.440	1.460	1.460	1.909	84	6.4
16	1.710	0.794	0.746	1.710	1.830	89	6.4
17	1.300	1.460	0.730	1.460	1.601	91	6.4
18	1.240	1.080	0.714	1.240	1.551	95	6.4
19	1.171	0.683	0.634	1.171	1.354	97	6.4
20	1.320	0.476	1.020	1.320	1.340	102	6.4
21	0.635	1.020	0.683	1.020	1.285	109	6.4
22	0.708	0.683	1.171	1.171	1.228	113	6.4
23	0.460	1.130	0.683	1.130	1.211	117	6.4
24	0.444	0.778	0.746	0.778	1.093	126	6.4
25	0.778	0.762	0.762	0.778	1.098	132	6.4
26	0.381	0.381	0.762	0.762	0.889	135	6.4
27	0.381	0.381	0.635	0.635	0.696	141	6.4
28	0.635	0.381	0.381	0.635	0.660	146	6.4
29	0.381	0.635	0.254	0.635	0.648	148	6.4
30	0.254	0.333	0.587	0.587	0.630	154	6.4

Blasting No.4 Delay time=25ms, Priming location=Top, Blasting holes=2hole							
NT		Ground vil	oration veloc	ity (mm/s)		Distance	Weight
INO.	Т	V	L	PPV	PVS	(m)	(kg)
31	0.508	0.254	0.254	0.508	0.568	160	6.4
32	0.397	0.444	0.413	0.444	0.536	164	6.4
33	0.381	0.254	0.381	0.381	0.421	170	6.4
34	0.254	0.254	0.254	0.254	0.381	175	6.4
Blasting N	o.5 Delay tir	ne=0ms, Prin	ning location	=Top, Blastir	ng holes=1ho	le	
1	15.226	32.208	20.301	32.208	35.553	30	14
2	13.249	20.276	8.174	20.276	20.930	34	14
3	9.272	13.225	13.493	13.493	19.230	38	14
4	8.174	13.859	6.246	13.859	14.800	46	14
5	6.564	7.515	5.514	7.515	10.744	50	14
6	6.149	9.126	5.075	9.126	10.516	53	14
7	3.520	5.370	2.910	5.370	6.688	59	14
8	2.920	3.680	3.810	3.810	5.673	60	14
9	2.330	4.160	3.290	4.160	5.565	62	14
10	2.290	1.870	4.940	4.940	5.325	65	14
11	2.380	1.370	4.780	4.780	4.980	69	14
12	3.950	1.380	2.750	3.950	4.154	74	14
13	2.970	2.560	3.700	3.700	4.668	79	14
14	2.950	2.620	3.010	3.010	4.216	84	14
15	2.600	1.290	3.080	3.080	3.863	88	14
16	2.330	1.650	2.480	2.480	3.493	92	14
17	1.400	1.210	3.300	3.300	3.438	95	14
18	2.170	1.460	2.750	2.750	2.932	98	14
19	1.750	1.190	2.220	2.220	2.603	100	14
20	1.860	1.250	2.160	2.160	2.564	106	14
21	0.921	1.190	2.080	2.080	2.103	111	14
22	1.440	1.490	0.460	1.490	1.821	116	14
23	0.429	1.460	1.590	1.590	1.633	120	14
24	1.130	1.170	0.889	1.170	1.594	129	14
25	1.220	1.110	0.857	1.220	1.500	135	14
26	1.000	0.730	1.160	1.160	1.402	138	14
27	0.714	1.110	0.714	1.110	1.232	144	14
28	0.429	1.170	0.730	1.170	1.205	149	14
29	0.349	0.746	0.714	0.746	1.053	151	14
30	0.365	0.508	0.413	0.508	0.561	157	14
31	0.190	0.460	0.317	0.460	0.560	163	14
32	0.317	0.317	0.381	0.381	0.539	167	14
33	0.206	0.349	0.238	0.349	0.425	173	14
34	0.206	0.270	0.317	0.317	0.348	178	14
Blasting N	o.6. Delay ti	me=20ms, Pr	iming locatio	n=Middle, Bl	asting holes	=2hole	
1	12.810	31.915	18.886	31.915	37.925	35	14
2	6.588	21.716	5.197	21.716	22.211	39	14
3	8.613	12.737	14.738	14.738	17.466	43	14

Blasting N	ting No.6. Delay time=20ms, Priming location=Middle, Blasting holes=2hole						
N.		Ground vil	oration veloc	ity (mm/s)		Distance	Weight
INO.	Т	V	L	PPV	PVS	(m)	(kg)
4	8.174	11.712	7.027	11.712	14.139	50	14
5	4.416	9.662	5.612	9.662	10.413	55	14
6	6.027	6.027	6.149	6.149	9.814	58	14
7	5.940	2.510	2.600	5.940	6.081	61	14
8	3.110	1.860	4.870	4.870	5.564	65	14
9	2.980	2.000	4.600	4.600	5.246	67	14
10	2.290	2.410	4.320	4.320	5.399	69	14
11	1.670	2.710	4.210	4.210	4.949	72	14
12	3.330	3.910	3.870	3.910	6.304	75	14
13	2.940	2.050	3.510	3.510	4.020	79	14
14	1.520	1.840	3.830	3.830	3.835	82	14
15	2.160	2.590	2.560	2.590	3.831	86	14
16	3.290	1.210	2.830	3.290	3.509	89	14
17	2.520	1.430	2.410	2.520	3.167	94	14
18	2.140	2.210	2.600	2.600	2.859	100	14
19	1.480	1.050	2.760	2.760	2.800	102	14
20	1.240	0.905	2.750	2.750	2.777	106	14
21	0.762	1.560	2.380	2.380	2.502	110	14
22	0.825	1.250	1.840	1.840	1.917	114	14
23	1.110	1.670	1.140	1.670	1.767	118	14
24	1.730	1.100	0.667	1.730	1.752	123	14
25	0.841	0.810	1.510	1.510	1.517	129	14
26	1.000	1.000	1.320	1.320	1.738	135	14
27	0.667	1.220	1.030	1.220	1.583	141	14
28	1.160	0.587	0.921	1.160	1.450	149	14
29	1.080	0.857	0.698	1.080	1.399	153	14
30	0.889	1.060	0.762	1.060	1.191	159	14
31	0.492	0.444	0.683	0.683	0.799	164	14
32	0.365	0.460	0.603	0.603	0.686	169	14
33	0.365	0.413	0.492	0.492	0.547	175	14
34	0.429	0.444	0.286	0.444	0.562	180	14
Blasting N	o.7 Delay tin	ne=20ms, Pri	ming location	n=Middle, Bla	asting holes=	3hole	
1	8.906	19.569	30.646	30.646	31.610	39	14
2	8.174	16.006	8.174	16.006	19.215	43	14
3	6.930	11.736	9.760	11.736	14.168	48	14
4	5.100	7.808	8.638	8.638	11.309	54	14
5	3.538	4.758	5.954	5.954	7.136	59	14
6	4.197	5.490	5.392	5.490	7.556	62	14
7	4.450	4.330	4.850	4.850	7.008	65	14
8	2.830	3.020	3.710	3.710	4.904	68	14
9	4.100	2.370	3.020	4.100	4.794	71	14
10	3.430	2.540	3.560	3.560	4.378	74	14
11	2.190	3.160	3.860	3.860	4.360	77	14
12	3.890	2.870	2.020	3.890	4.295	82	14
13	3.780	3.080	2.480	3.780	4.159	87	14

Blasting No.7 Delay time=20ms, Priming location=Middle, Blasting holes=3hole							
No		Ground vil	oration veloc	ity (mm/s)		Distance	Weight
10.	Т	V	L	PPV	PVS	(m)	(kg)
14	2.790	2.840	2.950	2.950	3.842	92	14
15	2.760	3.570	1.870	3.570	3.795	96	14
16	2.700	2.300	2.620	2.700	3.631	100	14
17	2.590	2.620	3.140	3.140	3.438	103	14
18	1.890	2.700	1.290	2.700	2.984	105	14
19	2.460	2.590	1.670	2.590	2.750	108	14
20	1.760	1.350	2.220	2.220	2.502	112	14
21	1.220	2.030	2.170	2.170	2.355	119	14
22	2.160	2.160	1.980	2.160	3.058	123	14
23	2.110	1.540	1.400	2.110	2.557	127	14
24	2.050	1.320	2.000	2.050	2.396	136	14
25	1.560	1.350	2.000	2.000	2.610	142	14
26	1.700	1.970	1.320	1.970	2.260	145	14
27	1.430	0.937	1.840	1.840	1.871	151	14
28	1.830	1.670	1.320	1.830	2.469	156	14
29	1.330	1.700	1.680	1.700	2.240	158	14
30	1.380	1.290	0.857	1.380	1.584	164	14
31	0.905	0.714	1.210	1.210	1.266	169	14
32	1.190	0.746	0.619	1.190	1.239	174	14
33	0.556	1.080	0.683	1.080	1.086	180	14
34	0.921	0.825	0.698	0.921	1.225	185	14
Blasting N	0.8 Delay tir	no-20ma Dri	ming location	-Middle Bl	acting holes=	-2holo	
8	0.0 Delay til.	ne-20ms, Fm	ming location	I-Mildule, Dia	asung noies-	-211016	
1	12.054	44.310	66.588	66.588	67.753	45	14
1 2	12.054 13.298	44.310 41.358	66.588 24.644	66.588 41.358	67.753 47.669	45 48	14 14
1 2 3	12.054 13.298 10.516	44.310 41.358 36.698	66.588 24.644 24.595	66.588 41.358 36.698	67.753 47.669 39.164	45 48 53	14 14 14
1 2 3 4	12.054 13.298 10.516 11.248	44.310 41.358 36.698 29.329	66.588 24.644 24.595 23.180	66.588 41.358 36.698 29.329	67.753 47.669 39.164 30.585	45 48 53 59	14 14 14 14
1 2 3 4 5	12.054 13.298 10.516 11.248 4.465	44.310 41.358 36.698 29.329 14.030	66.588 24.644 24.595 23.180 15.030	66.588 41.358 36.698 29.329 15.030	67.753 47.669 39.164 30.585 19.788	45 48 53 59 64	14 14 14 14 14 14
	12.054 13.298 10.516 11.248 4.465 6.220	44.310 41.358 36.698 29.329 14.030 11.000	66.588 24.644 24.595 23.180 15.030 13.700	66.588 41.358 36.698 29.329 15.030 13.700	67.753 47.669 39.164 30.585 19.788 18.477	45 48 53 59 64 67	14 14 14 14 14 14 14
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	12.054 13.298 10.516 11.248 4.465 6.220 5.710	44.310 41.358 36.698 29.329 14.030 11.000 12.500	66.588 24.644 24.595 23.180 15.030 13.700 15.100	66.588 41.358 36.698 29.329 15.030 13.700 15.100	67.753 47.669 39.164 30.585 19.788 18.477 16.148	45 48 53 59 64 67 74	14 14 14 14 14 14 14 14 14
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ \end{array} $	12.054 13.298 10.516 11.248 4.465 6.220 5.710 4.587	44.310 41.358 36.698 29.329 14.030 11.000 12.500 12.834	66.588 24.644 24.595 23.180 15.030 13.700 15.100 11.541	66.588 41.358 36.698 29.329 15.030 13.700 15.100 12.834	67.753 47.669 39.164 30.585 19.788 18.477 16.148 15.407	45 48 53 59 64 67 74 75	14 14 14 14 14 14 14 14 14 14
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ \end{array} $	12.054 13.298 10.516 11.248 4.465 6.220 5.710 4.587 2.410	44.310 41.358 36.698 29.329 14.030 11.000 12.500 12.834 6.350	66.588 24.644 24.595 23.180 15.030 13.700 15.100 11.541 10.200	66.588 41.358 36.698 29.329 15.030 13.700 15.100 12.834 10.200	67.753 47.669 39.164 30.585 19.788 18.477 16.148 15.407 11.239	45 48 53 59 64 67 74 75 78	14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ \end{array} $	12.054 13.298 10.516 11.248 4.465 6.220 5.710 4.587 2.410 3.430	44.310 41.358 36.698 29.329 14.030 11.000 12.500 12.834 6.350 7.940	66.588 24.644 24.595 23.180 15.030 13.700 15.100 11.541 10.200 9.110	66.588 41.358 36.698 29.329 15.030 13.700 15.100 12.834 10.200 9.110	67.753 47.669 39.164 30.585 19.788 18.477 16.148 15.407 11.239 10.073	45 48 53 59 64 67 74 75 78 80	14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 1 $	12.054 13.298 10.516 11.248 4.465 6.220 5.710 4.587 2.410 3.430 3.780	44.310 41.358 36.698 29.329 14.030 11.000 12.500 12.834 6.350 7.940 5.730	66.588 24.644 24.595 23.180 15.030 13.700 15.100 11.541 10.200 9.110 7.920	66.588 41.358 36.698 29.329 15.030 13.700 15.100 12.834 10.200 9.110 7.920	67.753 47.669 39.164 30.585 19.788 18.477 16.148 15.407 11.239 10.073 9.448	45 48 53 59 64 67 74 75 78 80 84	14 14 14 14 14 14 14 14 14 14 14 14 14
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $	12.054 13.298 10.516 11.248 4.465 6.220 5.710 4.587 2.410 3.430 3.780 2.350	44.310 41.358 36.698 29.329 14.030 11.000 12.500 12.834 6.350 7.940 5.730 3.570	66.588 24.644 24.595 23.180 15.030 13.700 15.100 11.541 10.200 9.110 7.920 7.330	66.588 41.358 36.698 29.329 15.030 13.700 15.100 12.834 10.200 9.110 7.920 7.330	67.753 47.669 39.164 30.585 19.788 18.477 16.148 15.407 11.239 10.073 9.448 7.740	45 48 53 59 64 67 74 75 78 80 84 89	14 14
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ \end{array} $	12.054 13.298 10.516 11.248 4.465 6.220 5.710 4.587 2.410 3.430 3.780 2.350 2.000	44.310 41.358 36.698 29.329 14.030 11.000 12.500 12.834 6.350 7.940 5.730 3.570 4.910	66.588 24.644 24.595 23.180 15.030 15.100 11.541 10.200 9.110 7.920 7.330 6.130	66.588 41.358 36.698 29.329 15.030 13.700 15.100 12.834 10.200 9.110 7.920 7.330 6.130	67.753 47.669 39.164 30.585 19.788 18.477 16.148 15.407 11.239 10.073 9.448 7.740 7.301	45 48 53 59 64 67 74 75 78 80 84 89 94	14 14
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ \end{array} $	12.054 13.298 10.516 11.248 4.465 6.220 5.710 4.587 2.410 3.430 3.780 2.350 2.000 2.190	44.310 44.310 41.358 36.698 29.329 14.030 11.000 12.500 12.834 6.350 7.940 5.730 3.570 4.910 5.490	66.588 24.644 24.595 23.180 15.030 15.100 11.541 10.200 9.110 7.920 7.330 6.130 4.570	66.588 41.358 36.698 29.329 15.030 13.700 15.100 12.834 10.200 9.110 7.920 7.330 6.130 5.490	67.753 47.669 39.164 30.585 19.788 18.477 16.148 15.407 11.239 10.073 9.448 7.740 7.301 6.907	45 48 53 59 64 67 74 75 78 80 80 84 89 94 99	14 14
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \end{array} $	12.054 13.298 10.516 11.248 4.465 6.220 5.710 4.587 2.410 3.430 2.350 2.000 2.190 3.520	44.310 44.310 41.358 36.698 29.329 14.030 11.000 12.500 12.834 6.350 7.940 5.730 3.570 4.910 5.490 3.290	66.588 24.644 24.595 23.180 15.030 13.700 15.100 11.541 10.200 9.110 7.320 7.330 6.130 4.570 4.780	66.588 41.358 36.698 29.329 15.030 13.700 15.100 12.834 10.200 9.110 7.920 7.330 6.130 5.490 4.780	67.753 47.669 39.164 30.585 19.788 18.477 16.148 15.407 11.239 10.073 9.448 7.740 7.301 6.907 5.810	45 48 53 59 64 67 74 75 78 80 84 89 94 99 103	14 14
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ \end{array} $	12.054 13.298 10.516 11.248 4.465 6.220 5.710 4.587 2.410 3.430 3.780 2.350 2.000 2.190 3.520 4.760	44.310 44.310 41.358 36.698 29.329 14.030 11.000 12.500 12.834 6.350 7.940 5.730 3.570 4.910 5.490 3.290 3.140	66.588 24.644 24.595 23.180 15.030 13.700 15.100 11.541 10.200 9.110 7.920 7.330 6.130 4.570 4.780 4.440	66.588 41.358 36.698 29.329 15.030 13.700 15.100 12.834 10.200 9.110 7.920 7.330 6.130 5.490 4.780 4.760	67.753 47.669 39.164 30.585 19.788 18.477 16.148 15.407 11.239 10.073 9.448 7.740 7.301 6.907 5.810 5.478	45 48 53 59 64 67 74 75 78 80 84 89 94 99 103 107	14 14 14
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ \end{array} $	12.054 13.298 10.516 11.248 4.465 6.220 5.710 4.587 2.410 3.430 3.780 2.350 2.000 2.190 3.520 4.760 2.750	44.310 44.310 41.358 36.698 29.329 14.030 11.000 12.500 12.834 6.350 7.940 5.730 3.570 4.910 5.490 3.290 3.140 3.980	66.588 24.644 24.595 23.180 15.030 13.700 15.100 11.541 10.200 9.110 7.920 7.330 6.130 4.570 4.780 4.440 4.290	66.588 41.358 36.698 29.329 15.030 13.700 15.100 12.834 10.200 9.110 7.920 7.330 6.130 5.490 4.780 4.760 4.290	asting flotes 67.753 47.669 39.164 30.585 19.788 18.477 16.148 15.407 11.239 10.073 9.448 7.740 7.301 6.907 5.810 5.478 5.579 5.579	45 48 53 59 64 67 74 75 78 80 80 84 89 94 99 103 107 110	14 14
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ \end{array} $	12.054 12.054 13.298 10.516 11.248 4.465 6.220 5.710 4.587 2.410 3.430 3.780 2.350 2.000 2.190 3.520 4.760 2.750 1.870	44.310 44.310 41.358 36.698 29.329 14.030 11.000 12.500 12.834 6.350 7.940 5.730 3.570 4.910 5.490 3.290 3.140 3.980 2.860	66.588 24.644 24.595 23.180 15.030 13.700 15.100 11.541 10.200 9.110 7.920 7.330 6.130 4.570 4.440 4.290 3.910	66.588 41.358 36.698 29.329 15.030 13.700 15.100 12.834 10.200 9.110 7.920 7.330 6.130 5.490 4.780 4.760 4.290 3.910	asting flotes 67.753 47.669 39.164 30.585 19.788 18.477 16.148 15.407 11.239 10.073 9.448 7.740 7.301 6.907 5.810 5.478 5.579 4.340	45 48 53 59 64 67 74 75 78 80 84 89 94 99 103 107 110 114	14 14
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ \end{array} $	12.054 13.298 10.516 11.248 4.465 6.220 5.710 4.587 2.410 3.430 3.780 2.350 2.000 2.190 3.520 4.760 2.750 1.870 2.600	44.310 44.310 41.358 36.698 29.329 14.030 11.000 12.500 12.834 6.350 7.940 5.730 3.570 4.910 5.490 3.290 3.140 3.980 2.860 3.810	66.588 24.644 24.595 23.180 15.030 13.700 15.100 11.541 10.200 9.110 7.920 7.330 6.130 4.570 4.780 4.440 4.290 3.910 1.380	66.588 41.358 36.698 29.329 15.030 13.700 15.100 12.834 10.200 9.110 7.920 7.330 6.130 5.490 4.780 4.760 4.290 3.910 3.810	asting Holes 67.753 47.669 39.164 30.585 19.788 18.477 16.148 15.407 11.239 10.073 9.448 7.740 7.301 6.907 5.810 5.478 5.579 4.340 4.591 1.501	45 48 53 59 64 67 74 75 78 80 84 89 94 99 103 107 110 114 116	14 14
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ \end{array} $	12.054 13.298 10.516 11.248 4.465 6.220 5.710 4.587 2.410 3.430 3.780 2.350 2.000 2.190 3.520 4.760 2.750 1.870 2.600 1.700	44.310 44.310 41.358 36.698 29.329 14.030 11.000 12.500 12.834 6.350 7.940 5.730 3.570 4.910 5.490 3.290 3.140 3.980 2.860 3.810 3.620	66.588 24.644 24.595 23.180 15.030 13.700 15.100 11.541 10.200 9.110 7.320 7.330 6.130 4.570 4.780 4.440 4.290 3.910 1.380 2.100	66.588 41.358 36.698 29.329 15.030 13.700 15.100 12.834 10.200 9.110 7.920 7.330 6.130 5.490 4.780 4.760 4.290 3.910 3.810 3.620	asting flotes 67.753 47.669 39.164 30.585 19.788 18.477 16.148 15.407 11.239 10.073 9.448 7.740 7.301 6.907 5.810 5.579 4.340 4.591 4.137	45 48 53 59 64 67 74 75 78 80 84 89 94 99 103 107 110 114 116 119	14 14
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ \end{array} $	12.054 13.298 10.516 11.248 4.465 6.220 5.710 4.587 2.410 3.430 2.350 2.000 2.190 3.520 4.760 2.750 1.870 2.600 1.710	44.310 44.310 41.358 36.698 29.329 14.030 11.000 12.500 12.834 6.350 7.940 5.730 3.570 4.910 5.490 3.290 3.140 3.980 2.860 3.810 3.620 3.020	66.588 24.644 24.595 23.180 15.030 13.700 15.100 11.541 10.200 9.110 7.320 7.330 6.130 4.570 4.780 4.440 4.290 3.910 1.380 2.100 3.190	Antolate Diamond 66.588 41.358 36.698 29.329 15.030 13.700 15.100 12.834 10.200 9.110 7.920 7.330 6.130 5.490 4.760 4.290 3.910 3.810 3.620 3.190	asting flotes 67.753 47.669 39.164 30.585 19.788 18.477 16.148 15.407 11.239 10.073 9.448 7.740 7.301 6.907 5.810 5.478 5.579 4.340 4.591 4.137 3.955 1.005	45 48 53 59 64 67 74 75 78 80 84 89 94 99 103 107 110 114 116 119 127	14 14
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ \end{array} $	12.054 13.298 10.516 11.248 4.465 6.220 5.710 4.587 2.410 3.430 3.780 2.350 2.000 2.190 3.520 4.760 2.750 1.870 2.600 1.710 1.540	44.310 44.310 41.358 36.698 29.329 14.030 11.000 12.500 12.834 6.350 7.940 5.730 3.570 4.910 5.490 3.290 3.140 3.980 2.860 3.810 3.620 3.020 3.350	Image role and of 66.588 24.644 24.595 23.180 15.030 13.700 15.100 11.541 10.200 9.110 7.320 7.330 6.130 4.570 4.780 4.440 4.290 3.910 1.380 2.100 3.190 1.790	66.588 41.358 36.698 29.329 15.030 13.700 15.100 12.834 10.200 9.110 7.920 7.330 6.130 5.490 4.780 4.760 4.290 3.910 3.810 3.620 3.190 3.350	asting flotes 67.753 47.669 39.164 30.585 19.788 18.477 16.148 15.407 11.239 10.073 9.448 7.740 7.301 6.907 5.810 5.478 5.579 4.340 4.591 4.137 3.955 3.710	45 48 53 59 64 67 74 75 78 80 84 89 94 99 103 107 110 114 116 119 127 131	14 14

Blasting No.8 Delay time=20ms, Priming location=Middle, Blasting holes=2hole							
N.		Ground vil	oration veloc	ity (mm/s)		Distance	Weight
INO.	Т	V	L	PPV	PVS	(m)	(kg)
24	3.020	2.250	2.170	3.020	3.582	144	14
25	2.170	2.480	2.460	2.480	3.370	149	14
26	2.830	2.240	2.250	2.830	3.482	152	14
27	1.780	1.890	2.410	2.410	3.005	158	14
28	2.940	2.730	1.320	2.730	3.065	164	14
29	0.952	2.300	1.430	2.300	2.406	165	14
30	2.060	1.830	1.700	2.060	2.127	172	14
31	1.400	1.080	1.440	1.440	2.011	177	14
32	0.460	1.760	1.220	1.760	1.863	182	14
33	1.060	1.460	1.240	1.460	1.648	188	14
34	0.952	1.270	0.825	1.270	1.334	192	14
Blasting N	No.9 Delay tir	ne=25ms, Pri	ming location	n=Middle, Bla	asting holes=	2hole	
1	39.650	62.415	81.642	81.642	89.488	43	14
2	15.592	43.530	24.229	43.530	51.094	50	14
3	16.665	35.282	34.184	35.282	48.568	53	14
4	12.639	29.768	27.596	29.768	40.460	59	14
5	6.344	17.983	12.786	17.983	20.150	54	14
6	4.810	15.400	16.600	16.600	17.096	58	14
7	6.393	15.396	15.250	15.396	21.380	72	14
8	6.600	13.700	14.100	14.100	20.369	74	14
9	3.780	8.480	10.100	10.100	11.166	77	14
10	3.300	8.130	10.200	10.200	11.382	80	14
11	3.790	6.670	7.790	7.790	10.292	84	14
12	4.350	5.080	8.590	8.590	9.151	89	14
13	2.710	6.240	8.480	8.480	8.599	94	14
14	2.790	5.760	6.000	6.000	8.654	100	14
15	6.400	4.380	4.570	6.400	7.273	103	14
16	2.790	3.600	5.570	5.570	6.712	108	14
17	2.980	3.980	6.300	6.300	6.392	111	14
18	2.270	3.350	5.790	5.790	6.141	114	14
19	2.350	3.080	4.980	4.980	5.733	116	14
20	4.670	2.910	4.810	4.810	5.009	120	14
21	3.490	2.140	3.170	3.490	4.026	128	14
22	3.620	2.270	1.600	3.620	3.882	133	14
23	3.780	2.640	2.570	3.780	3.809	137	14
24	3.270	2.250	3.050	3.270	3.745	145	14
25	3.480	2.170	2.730	3.480	3.686	151	14
26	2.840	3.060	3.060	3.060	3.592	154	14
27	2.410	2.980	2.290	2.980	3.617	160	14
28	2.510	1.400	2.460	2.510	2.874	165	14
29	2.270	1.790	2.020	2.270	3.252	170	14
30	1.020	1.460	2.080	2.080	2.115	173	14
31	2.050	1.680	1.810	2.050	2.596	178	14
32	1.160	1.140	1.700	1.700	2.210	183	14
33	1.240	0.968	1.440	1.440	1.671	189	14

Blasting No.9 Delay time=25ms, Priming location=Middle, Blasting holes=2hole								
		Ground vil	oration veloc	ity (mm/s)		Distance	Weight	
No.	Т	V	L	PPV	PVS	(m)	(kg)	
34	1.210	1.140	1.290	1.290	1.641	194	14	
Blasting N	o.10 Delay ti	ime=25ms, Pi	riming locatio	on=Middle, B	lasting holes	=2hole		
1	76.006	71.516	63.586	76.006	99.087	46	14	
2	18.910	57.779	32.794	57.779	59.922	50	14	
3	35.868	40.236	38.235	40.236	55.028	56	14	
4	32.720	35.429	40.187	40.187	56.030	58	14	
5	17.031	24.034	30.085	30.085	36.968	64	14	
6	6.030	26.800	12.700	26.800	29.901	70	14	
7	8.250	26.200	23.400	26.200	27.939	73	14	
8	18.129	22.302	22.619	22.619	28.851	75	14	
9	6.350	16.500	14.400	16.500	18.010	80	14	
10	4.060	13.200	15.400	15.400	19.245	83	14	
11	5.780	8.320	15.400	15.400	16.454	87	14	
12	7.290	13.700	15.200	15.200	19.578	92	14	
13	6.110	7.460	14.700	14.700	15.716	97	14	
14	3.940	13.000	10.000	13.000	14.238	103	14	
15	12.300	5.980	6.790	12.300	13.502	106	14	
16	12.000	5.970	8.950	12.000	12.389	111	14	
17	6.220	6.650	11.600	11.600	11.689	114	14	
18	9.490	4.620	3.870	9.490	10.094	118	14	
19	5.590	6.600	8.130	8.130	9.621	120	14	
20	5.160	5.540	7.480	7.480	9.574	124	14	
21	7.030	6.210	2.080	7.030	9.255	131	14	
22	5.350	6.990	6.870	6.990	8.753	136	14	
23	4.680	7.000	3.730	7.000	8.485	140	14	
24	5.190	6.180	3.620	6.180	8.414	149	14	
25	5.640	5.460	5.350	5.640	8.202	155	14	
26	6.910	5.250	2.830	6.910	7.964	158	14	
27	5.350	4.410	5.910	5.910	7.915	164	14	
28	5.190	3.160	3.220	5.190	6.573	169	14	
29	3.940	5.350	1.050	5.350	5.454	171	14	
30	4.100	2.270	3.170	4.100	4.844	177	14	
31	2.460	1.640	1.780	2.460	2.507	183	14	
32	2.350	1.760	1.750	2.350	2.440	187	14	
33	1.250	1.460	1.460	1.460	1.577	193	14	
34	1.240	1.320	0.968	1.320	1.481	198	14	
Blasting N	o.11 Delay ti	ime=20ms, Pi	riming locatio	on=Bottom, B	Blasting holes	s=2hole		
1	5.734	9.345	12.176	12.176	12.900	48	14	
2	11.900	3.620	7.240	11.900	12.509	51	14	
3	3.140	5.400	9.380	9.380	10.337	54	14	
4	3.940	2.330	9.520	9.520	9.725	57	14	
5	4.856	8.467	4.709	8.467	9.639	61	14	
6	3.684	7.808	7.808	7.808	8.832	66	14	

Blasting N	Blasting No.11 Delay time=20ms, Priming location=Bottom, Blasting holes=2hole							
N.		Ground vil	oration veloc	ity (mm/s)		Distance	Weight	
INO.	Т	V	L	PPV	PVS	(m)	(kg)	
7	6.246	7.222	4.099	7.222	8.197	69	14	
8	5.320	2.790	7.000	7.000	8.006	72	14	
9	5.380	3.570	2.680	5.380	6.458	77	14	
10	4.600	3.210	5.450	5.450	5.679	80	14	
11	4.100	2.490	4.710	4.710	5.945	86	14	
12	3.001	4.538	4.124	4.538	5.145	90	14	
13	1.870	3.920	3.890	3.920	5.457	94	14	
14	1.910	3.180	2.970	3.180	4.701	99	14	
15	2.240	3.330	3.440	3.440	4.555	104	14	
16	2.890	2.020	3.100	3.100	4.483	108	14	
17	2.620	2.400	3.250	3.250	4.364	113	14	
18	2.830	3.270	3.196	3.270	4.127	117	14	
19	3.030	2.330	3.000	3.030	3.959	122	14	
20	2.950	2.590	2.210	2.950	3.848	127	14	
21	1.320	2.830	3.490	3.490	3.518	133	14	
22	3.020	1.940	1.520	3.020	3.377	139	14	
23	1.650	0.889	2.540	2.540	2.878	143	14	
24	2.100	2.000	1.790	2.100	2.752	150	14	
25	1.240	1.160	1.380	1.38	1.662	157	14	
26	1.300	1.700	2.190	2.190	2.548	162	14	
27	1.910	1.520	1.910	1.910	2.351	167	14	
28	1.650	1.520	1.910	1.910	2.332	174	14	
29	1.220	0.873	1.890	1.890	2.127	176	14	
30	1.860	1.220	1.730	1.860	2.651	182	14	
31	1.520	1.780	1.780	1.780	2.082	187	14	
32	1.270	1.780	1.270	1.780	1.890	192	14	
33	1.380	1.100	1.700	1.700	1.983	198	14	
34	1.350	1.140	1.570	1.570	1.678	202	14	
Blasting N	lo.12 Delay ti	ime=20ms, Pi	riming location	on=Bottom, H	Blasting holes	s=2hole		
1	5.100	11.492	19.496	19.496	19.649	50	14	
2	5.246	12.298	7.222	12.298	12.363	53	14	
3	7.637	10.248	7.857	10.248	12.790	57	14	
4	8.442	7.784	6.100	8.442	9.502	63	14	
5	4.099	5.246	4.172	5.246	6.804	68	14	
6	5.173	4.880	3.440	5.173	5.467	71	14	
7	2.510	4.020	4.430	4.430	5.457	78	14	
8	2.540	3.810	4.270	4.270	5.758	80	14	
9	1.830	3.460	2.410	3.460	4.288	84	14	
10	2.540	2.540	3.300	3.300	3.860	87	14	
11	2.060	3.590	2.440	3.590	3.727	92	14	
12	2.590	3.160	2.670	3.160	3.837	97	14	
13	2.670	2.670	2.250	2.670	3.578	102	14	
14	3.180	1.650	2.410	3.180	3.554	108	14	
15	1.730	2.970	2.400	2.970	3.489	111	14	
16	1.640	2.700	2.050	2.700	3.259	117	14	

Blasting No.12 Delay time=20ms, Priming location=Bottom, Blasting holes=2hole							
No		Ground vil	oration veloc	ity (mm/s)		Distance	Weight
INO.	Т	V	L	PPV	PVS	(m)	(kg)
17	2.030	1.910	2.030	2.030	3.119	119	14
18	2.400	1.810	1.920	2.400	2.832	123	14
19	2.320	1.350	2.410	2.410	2.740	125	14
20	1.350	2.160	1.670	2.160	2.678	130	14
21	2.410	1.140	1.650	2.410	2.669	137	14
22	1.540	1.830	2.300	2.300	2.378	142	14
23	1.840	2.300	1.210	2.300	2.432	146	14
24	1.920	1.060	2.130	2.130	2.648	155	14
25	2.030	1.910	1.650	2.030	2.471	161	14
26	2.030	1.400	1.440	2.030	2.372	164	14
27	1.540	1.300	1.890	1.890	2.245	170	14
28	1.860	0.968	0.778	1.860	1.926	175	14
29	1.780	1.130	1.400	1.780	2.064	177	14
30	1.430	1.650	1.300	1.650	2.113	184	14
31	1.100	1.250	1.540	1.540	1.928	189	14
32	1.590	1.210	1.430	1.590	1.885	194	14
33	1.030	1.480	1.080	1.480	1.850	200	14
34	1.030	0.794	1.050	1.050	1.420	204	14
Blasting N	o.13 Delay ti	ime=20ms, Pı	riming location	on=Bottom, E	Blasting holes	s=2hole	
1	8.833	15.982	17.251	17.251	22.557	55	14
2	5.490	12.517	8.174	12.517	14.494	60	14
3	6.027	12.493	6.978	12.493	14.305	65	14
4	9.980	9.077	6.661	9.980	13.023	68	14
5	5.612	4.319	3.440	5.612	5.839	72	14
6	2.680	3.430	5.130	5.130	5.156	75	14
7	5.124	3.343	3.733	5.124	5.398	80	14
8	1.520	3.050	3.670	3.670	4.832	85	14
9	3.050	2.290	1.520	3.050	3.302	90	14
10	2.570	2.510	3.080	3.080	3.914	92	14
11	1.780	2.160	2.920	2.920	3.410	97	14
12	2.170	1.490	2.700	2.700	2.766	103	14
13	2.710	1.380	1.210	2.710	2.778	107	14
14	2.620	1.210	2.050	2.620	3.147	113	14
15	2.030	1.520	2.540	2.540	3.120	117	14
16	2.620	2.170	2.670	2.670	2.797	122	14
17	2.000	1.620	1.700	2.000	2.662	125	14
18	2.290	1.270	1.270	2.290	2.622	129	14
19	1.940	1.380	1.870	1.940	2.517	131	14
20	1.400	1.910	1.910	1.910	2.460	135	14
21	2.160	0.762	1.600	2.160	2.454	143	14
22	2.050	1.240	1.510	2.050	2.370	148	14
23	1.680	1.350	1.680	1.680	2.388	152	14
24	1.510	1.370	1.350	1.510	1.975	161	14
25	0.889	1.830	0.857	1.830	1.943	167	14
26	1.520	1.170	1.130	1.520	1.902	170	14

Blasting No.13 Delay time=20ms, Priming location=Bottom, Blasting holes=2hole							
N		Ground vil	oration veloc	ity (mm/s)		Distance	Weight
INO.	Т	V	L	PPV	PVS	(m)	(kg)
27	0.841	1.650	0.667	1.650	1.880	176	14
28	1.780	0.937	0.937	1.780	1.850	182	14
29	1.400	1.270	1.560	1.560	1.649	184	14
30	1.430	1.350	1.100	1.430	1.817	190	14
31	1.400	1.100	1.110	1.400	1.469	195	14
32	0.857	0.714	1.300	1.300	1.425	200	14
33	1.080	0.778	0.841	1.080	1.135	206	14
34	0.921	0.905	1.000	1.000	1.294	210	14
Blasting N	lo.14 Delay ti	ime=20ms, Pı	riming location	on=Bottom, H	Blasting holes	s=2hole	
1	0.976	2.416	1.293	2.416	2.576	58	6.4
2	1.330	0.667	1.670	1.670	2.150	61	6.4
3	0.921	0.921	1.620	1.620	1.770	64	6.4
4	1.560	0.651	0.683	1.560	1.622	68	6.4
5	1.460	1.510	1.190	1.510	2.234	72	6.4
6	1.440	0.619	0.968	1.440	1.705	77	6.4
7	0.635	1.170	1.400	1.400	1.678	81	6.4
8	0.635	0.444	1.380	1.380	1.467	85	6.4
9	1.342	0.805	0.878	1.342	1.749	89	6.4
10	1.080	0.683	1.140	1.140	1.486	93	6.4
11	1.020	1.050	0.873	1.050	1.453	98	6.4
12	1.330	0.683	1.110	1.330	1.342	102	6.4
13	1.240	0.460	0.698	1.240	1.247	105	6.4
14	1.190	0.349	0.762	1.190	1.203	109	6.4
15	0.651	0.508	1.030	1.030	1.192	114	6.4
16	1.030	0.762	0.889	1.030	1.161	117	6.4
17	0.781	0.439	1.025	1.025	1.037	120	6.4
18	0.586	0.659	0.634	0.659	0.929	128	6.4
19	0.429	0.556	0.778	0.778	0.906	131	6.4
20	0.667	0.460	0.556	0.667	0.815	136	6.4
21	0.254	0.635	0.635	0.635	0.898	141	6.4
22	0.492	0.603	0.397	0.603	0.780	145	6.4
23	0.610	0.244	0.512	0.610	0.715	151	6.4
24	0.512	0.415	0.366	0.512	0.634	160	6.4
25	0.444	0.397	0.365	0.444	0.642	166	6.4
26	0.254	0.381	0.508	0.508	0.635	172	6.4
27	0.429	0.508	0.508	0.508	0.604	179	6.4
28	0.381	0.254	0.254	0.381	0.475	185	6.4
29	0.381	0.254	0.254	0.381	0.475	189	6.4
30	0.381	0.349	0.349	0.381	0.472	194	6.4
31	0.381	0.254	0.254	0.381	0.402	199	6.4
32	0.127	0.286	0.206	0.286	0.353	204	6.4
33	0.254	0.127	0.127	0.254	0.311	210	6.4
34	0.159	0.191	0.190	0.191	0.197	214	6.4

Blasting No.15 Delay time=25ms, Priming location=Bottom, Blasting holes=2hole								
N.		Ground vil	oration veloc	ity (mm/s)		Distance	Weight	
INO.	Т	V	L	PPV	PVS	(m)	(kg)	
1	16.641	19.447	19.447	19.447	27.172	61	14	
2	7.784	14.835	10.931	14.835	17.331	65	14	
3	12.688	13.030	9.492	13.030	18.296	68	14	
4	12.932	10.321	12.078	12.932	15.831	73	14	
5	11.224	7.686	7.320	11.224	12.123	77	14	
6	10.614	6.783	6.710	10.614	10.973	83	14	
7	3.320	6.020	7.780	7.780	7.870	88	14	
8	6.210	2.490	4.490	6.210	7.220	91	14	
9	4.490	3.680	7.180	7.180	7.295	95	14	
10	4.350	2.540	6.940	6.940	6.998	99	14	
11	3.760	5.720	4.450	5.720	7.375	104	14	
12	3.620	3.540	4.050	4.050	5.424	109	14	
13	3.920	2.650	4.290	4.290	5.034	114	14	
14	3.680	4.440	4.190	4.440	4.926	119	14	
15	4.520	2.490	4.460	4.520	4.862	123	14	
16	3.130	3.570	4.130	4.130	4.703	127	14	
17	3.030	3.460	4.000	4.000	4.501	131	14	
18	3.790	2.840	1.620	3.790	4.463	135	14	
19	3.350	2.320	3.760	3.760	4.214	138	14	
20	2.560	1.940	3.750	3.750	4.202	141	14	
21	3.540	1.940	1.160	3.540	3.618	147	14	
22	3.110	2.460	2.510	3.110	4.273	153	14	
23	2.100	3.220	2.760	3.220	3.879	158	14	
24	2.520	2.430	3.330	3.330	3.648	164	14	
25	2.560	1.700	3.170	3.170	3.224	170	14	
26	3.060	1.840	2.590	3.060	3.278	176	14	
27	3.050	2.080	1.980	3.050	3.251	181	14	
28	2.560	1.480	2.140	2.560	3.198	189	14	
29	2.110	0.968	1.840	2.110	2.197	193	14	
30	1.840	1.980	1.600	1.980	2.248	198	14	
31	0.968	0.810	1.380	1.380	1.391	203	14	
32	0.698	0.619	0.857	0.857	1.059	207	14	
33	0.444	0.508	0.714	0.714	0.838	213	14	
34	0.683	0.524	0.651	0.683	0.900	218	14	
Blasting N	o.16 Delay ti	me=25ms, Pi	riming location	on=Bottom, E	Blasting holes	s=2hole		
1	4.904	6.490	11.663	11.663	12.567	66	14	
2	4.319	7.027	5.490	7.027	7.780	71	14	
3	4.758	4.392	5.319	5.319	6.093	74	14	
4	5.148	2.611	3.416	5.148	5.406	79	14	
5	3.977	2.220	4.563	4.563	5.676	84	14	
6	1.620	2.000	4.680	4.680	5.218	88	14	
7	2.080	1.570	4.870	4.870	5.063	92	14	
8	4.197	2.147	3.562	4.197	4.520	95	14	
9	3.320	1.560	3,160	3.320	3.816	100	14	
10	2.780	1.480	2.160	2.780	3.472	104	14	

Blasting No.16 Delay time=25ms, Priming location=Bottom, Blasting holes=2hole							
N.		Ground vil	pration veloc	ity (mm/s)		Distance	Weight
INO.	Т	V	L	PPV	PVS	(m)	(kg)
11	1.970	2.710	1.680	2.710	3.437	108	14
12	1.160	1.980	2.380	2.380	3.133	114	14
13	1.600	1.700	2.110	2.110	2.535	118	14
14	1.840	1.380	1.940	1.940	2.991	125	14
15	1.700	1.250	1.840	1.840	2.473	128	14
16	1.650	1.170	1.050	1.650	2.251	134	14
17	1.080	1.650	1.030	1.650	1.949	137	14
18	1.250	1.590	1.060	1.590	1.908	140	14
19	1.030	1.700	1.400	1.700	1.891	143	14
20	1.320	1.640	0.889	1.640	1.824	148	14
21	1.640	0.921	1.410	1.640	1.789	155	14
22	1.480	1.080	1.100	1.480	1.739	160	14
23	1.270	1.020	1.020	1.270	1.709	164	14
24	1.490	1.270	1.000	1.490	1.670	173	14
25	1.130	0.762	0.968	1.130	1.579	179	14
26	0.984	0.984	1.330	1.330	1.556	182	14
27	0.873	1.330	0.825	1.330	1.452	188	14
28	1.380	1.110	1.110	1.380	1.390	194	14
29	0.619	0.508	1.130	1.130	1.358	196	14
30	0.841	1.020	0.873	1.020	1.277	202	14
31	0.921	1.130	0.714	1.130	1.263	208	14
32	1.100	0.413	0.619	1.100	1.159	212	14
33	0.762	0.730	0.937	0.937	1.077	218	14
34	0.619	0.714	0.730	0.730	0.982	222	14
Blasting N	lo.17 Delay ti	me=25ms, Pi	riming location	on=Bottom, E	Blasting holes	s=2hole	
1	1.244	3.050	1.147	3.05	3.219	70	6.4
2	1.620	2.220	0.683	2.220	2.309	75	6.4
3	1.640	1.370	0.778	1.640	2.012	78	6.4
4	1.840	1.290	1.050	1.840	1.993	82	6.4
5	1.780	0.524	0.619	1.780	1.888	85	6.4
6	1.320	1.270	0.587	1.320	1.798	89	6.4
7	1.440	1.210	0.841	1.440	1.669	96	6.4
8	1.440	0.905	0.762	1.440	1.623	99	6.4
9	0.873	1.380	1.020	1.380	1.550	103	6.4
10	1.240	0.730	1.020	1.240	1.577	107	6.4
11	0.732	1.220	0.439	1.22	1.436	112	6.4
12	1.210	0.825	1.020	1.210	1.404	118	6.4
13	1.196	0.781	0.781	1.196	1.481	122	6.4
14	1.020	0.667	1.170	1.170	1.339	129	6.4
15	0.968	1.060	0.968	1.060	1.417	132	6.4
16	0.825	1.060	0.635	1.060	1.159	140	6.4
17	1.020	0.381	0.413	1.020	1.052	140	6.4
18	0.921	0.667	0.794	0.921	1.067	144	6.4
19	0.810	0.841	0.603	0.841	1.113	147	6.4
20	0.794	0.635	0.603	0.794	0.972	151	6.4

Blasting No.17 Delay time=25ms, Priming location=Bottom, Blasting holes=2hole								
NT		Ground vil	oration veloci	ity (mm/s)		Distance	Weight	
NO.	Т	V	L	PPV	PVS	(m)	(kg)	
21	0.732	0.805	0.610	0.805	0.920	159	6.4	
22	0.397	0.540	0.746	0.746	0.844	164	6.4	
23	0.830	0.366	0.488	0.830	0.841	168	6.4	
24	0.508	0.492	0.254	0.508	0.657	177	6.4	
25	0.413	0.429	0.444	0.444	0.580	183	6.4	
26	0.365	0.429	0.365	0.429	0.579	186	6.4	
27	0.390	0.342	0.342	0.390	0.513	192	6.4	
28	0.254	0.381	0.381	0.381	0.442	198	6.4	
29	0.206	0.349	0.191	0.349	0.362	200	6.4	
30	0.333	0.206	0.302	0.333	0.390	206	6.4	
31	0.159	0.333	0.254	0.333	0.335	212	6.4	
32	0.254	0.127	0.254	0.254	0.311	216	6.4	
33	0.159	0.222	0.191	0.222	0.317	222	6.4	
34	0.159	0.222	0.206	0.222	0.310	227	6.4	
Blasting N	o.18 Delay ti	me=0ms, Pri	ming location	n=Top, Blast	ing holes=1h	ole		
1	11.700	13.200	17.700	17.700	21.200	19	6.4	
2	24.500	18.600	8.460	24.500	26.700	20	6.4	
3	11.300	17.200	22.400	22.400	26.500	25	6.4	
4	11.600	9.790	14.000	14.000	16.300	28	6.4	
5	8.860	11.600	9.350	11.600	14.900	31	6.4	
6	8.270	2.600	7.870	8.270	8.340	34	6.4	
7	11.790	8.880	8.540	11.790	14.080	36	6.4	
8	1.780	4.060	4.700	4.700	4.760	39	6.4	
9	2.930	5.490	2.860	5.490	6.050	40	6.4	
10	2.780	5.490	1.320	5.490	5.760	42	6.4	
11	8.000	3.810	5.720	8.000	8.180	44	6.4	
12	5.720	3.760	3.030	5.720	6.050	45	6.4	
13	8.130	5.590	3.870	8.130	9.730	47	6.4	
14	5.490	3.970	5.700	5.700	8.020	48	6.4	
15	6.570	6.830	5.620	6.830	8.810	50	6.4	
16	6.430	3.620	5.710	6.430	8.660	54	6.4	
17	4.060	9.270	4.640	9.270	9.730	56	6.4	
18	2.980	1.510	2.100	2.980	3.510	70	6.4	
19	4.510	1.590	3.220	4.510	5.120	74	6.4	
20	5.610	1.850	4.440	5.610	6.390	77	6.4	
21	2.710	3.710	3.120	3.710	3.900	80	6.4	
22	1.680	2.170	3.070	3.070	3.270	84	6.4	
Blasting N	o.19 Delav ti	me=0ms, Pri	ming location	n=Top, Blast	ing holes=1h	ole		
1	29.800	55.000	51.900	55.000	68.900	7	14	
2	18,500	47.900	26,700	47.900	52,800	16	14	
3	26,700	30,300	20,500	30,300	41.900	20	14	
4	25,900	19,400	31,900	31,900	37.600	23	14	
5	32.600	34.700	23.700	34.700	40.900	26	14	

Blasting No.19 Delay time=0ms, Priming location=Top, Blasting holes=1hole									
NT		Ground vil	oration veloc	ity (mm/s)		Distance	Weight		
NO.	Т	V	L	PPV	PVS	(m)	(kg)		
6	18.500	21.800	15.700	21.800	26.800	29	14		
7	14.800	14.900	10.500	14.900	19.200	33	14		
8	10.800	8.510	15.100	15.100	18.700	38	14		
9	18.700	13.300	11.700	18.700	19.300	43	14		
10	9.650	10.000	14.100	14.100	14.800	44	14		
11	14.600	18.000	14.400	18.000	19.500	47	14		
12	6.130	11.400	11.500	11.500	16.300	50	14		
13	6.600	5.130	6.810	6.810	8.020	52	14		
14	5.270	9.810	5.370	9.810	9.880	61	14		
15	6.030	7.940	6.300	7.940	9.110	63	14		
16	3.810	11.400	8.890	11.400	12.200	64	14		
17	6.710	7.130	6.420	7.130	8.190	67	14		
18	5.000	6.470	6.420	6.470	7.690	73	14		
19	4.930	3.100	3.510	4.930	5.200	76	14		
20	2.460	5.080	4.830	5.080	5.750	79	14		
21	6.780	2.640	8.390	8.390	8.820	83	14		
22	2.680	1.810	5.050	5.050	5.250	87	14		
23	3.490	3.170	3.470	3.490	5.320	91	14		
24	2.390	3.250	3.320	3.320	4.220	99	14		
25	1.720	1.970	2.770	2.770	3.710	105	14		
Blasting N	lo.20 Delay ti	ime=0ms, Pri	ming location	n=Top, Blast	ing holes=1h	ole			
1	95.000	73.700	48.300	95.000	97.000	7	6.4		
2	33.300	38.700	43.400	43.400	58.400	10	6.4		
3	42.200	37.100	25.000	42.200	47.900	14	6.4		
4	10.300	15.600	19.900	19.900	20.500	19	6.4		
5	15.700	21.000	15.700	21.000	26.700	29	6.4		
6	9.510	10.300	7.560	10.300	12.400	33	6.4		
7	8.380	4.410	7.570	8.380	9.530	35	6.4		
8	7.250	9.760	4.270	9.760	11.000	39	6.4		
9	7.300	4.590	3.270	7.300	7.350	41	6.4		
10	5.190	4.840	7.940	7.940	8.060	43	6.4		
11	3.640	4.830	8.330	8.330	10.000	46	6.4		
12	3.640	2.750	5.570	5.570	6.230	49	6.4		
13	4.050	3.970	6.190	6.190	6.960	50	6.4		
14	3.150	3.470	4.320	4.320	5.300	54	6.4		
15	2.250	4.660	2.030	4.660	5.270	56	6.4		
16	3.560	3.560	6.480	6.480	7.240	60	6.4		
17	4.730	5.560	5.420	5.560	7.840	65	6.4		
18	2.680	3.050	2.440	3.050	4.070	69	6.4		
19	3,470	2.050	3.270	3,470	4.390	73	6.4		
20	3.320	3,000	2.340	3.320	3,560	75	6.4		
Blasting N	lo.21 Delav ti	me=0ms. Pri	ming location	n=Middle. Bl:	asting holes=	1hole			
1	22,100	38,900	38,900	38 900	42,500	10	6.4		

Blasting No.21 Delay time=0ms, Priming location=Middle, Blasting holes=1hole								
NI -		Ground vil	oration veloci	ity (mm/s)		Distance	Weight	
INO.	Т	V	L	PPV	PVS	(m)	(kg)	
2	16.600	25.000	28.700	28.700	34.900	16	6.4	
3	27.700	12.700	7.410	27.700	29.200	24	6.4	
4	13.500	14.100	23.700	23.700	24.300	28	6.4	
5	15.700	5.020	14.300	15.700	15.800	31	6.4	
6	1.640	5.110	6.450	6.450	7.190	34	6.4	
7	2.790	8.000	9.780	9.780	9.790	36	6.4	
8	3.150	8.860	2.170	8.860	9.070	39	6.4	
9	8.130	7.240	6.220	8.130	8.570	42	6.4	
10	2.130	2.510	5.140	5.140	5.270	47	6.4	
11	3.100	1.490	4.730	4.730	4.750	53	6.4	
12	1.680	2.070	2.460	2.460	2.750	59	6.4	
13	1.020	0.830	1.540	1.540	1.570	62	6.4	
14	3.000	1.680	2.930	3.000	3.470	66	6.4	
15	1.460	0.880	1.880	1.880	2.050	71	6.4	
16	2.860	1.680	2.370	2.860	3.450	77	6.4	
17	4.690	2.150	3.440	4.690	5.260	81	6.4	
18	1.390	0.900	1.150	1.390	1.510	82	6.4	
19	2.510	2.640	2.100	2.640	3.120	83	6.4	
20	1.420	0.930	1.830	1.830	1.850	86	6.4	
21	1.440	1.730	2.710	2.710	3.080	88	6.4	
22	1.070	0.980	1.050	1.070	1.360	88	6.4	
Blasting N	o.22 Delay ti	ime=0ms, Pri	ming location	n=Middle, Bla	asting holes=	1hole		
1	30.600	52.600	18.300	52.600	56.600	14	14	
2	24.400	7.990	12.400	24.400	24.600	17	14	
3	22.900	24.200	15.000	24.200	30.400	21	14	
4	10.000	18.900	22.000	22.000	29.200	26	14	
5	12.600	16.600	20.300	20.300	21.700	32	14	
6	11.700	15.600	15.600	15.600	19.900	36	14	
7	10.300	9.400	10.700	10.700	14.000	42	14	
8	6.970	7.030	12.600	12.600	13.200	47	14	
9	6.420	5.540	10.830	10.830	11.100	53	14	
10	7.380	9.450	8.460	9.450	10.700	56	14	
11	6.370	5.370	8.050	8.050	9.400	59	14	
12	3.540	4.900	5.300	5.300	6.060	63	14	
13	2.290	4.170	3.660	4.170	4.590	70	14	
14	1.950	3.250	1.560	3.250	3.730	78	14	
15	1.730	2.610	2.760	2.760	3.380	82	14	
Blasting N	o.23 Delay ti	ime=0ms, Pri	ming location	n=Middle, Bla	asting holes=	1hole		
1	34.400	21.100	31.000	34.400	46.600	8	6.4	
2	16.400	31.700	29.300	31.700	33.800	12	6.4	
3	20.400	17.700	21.300	21.300	25.200	17	6.4	
4	19.900	23.400	18.000	23.400	29.800	21	6.4	
5	10.200	11.400	19.800	19.800	20.600	28	6.4	

Blasting 1	No.23 Delay time=0ms, Priming location=Middle, Blasting holes=1hole							
N.		Ground vil	oration veloc	ity (mm/s)		Distance	Weight	
1NO.	Т	V	L	PPV	PVS	(m)	(kg)	
6	9.140	7.370	11.900	11.900	12.700	35	6.4	
7	5.830	3.780	3.980	5.830	7.020	39	6.4	
8	3.430	4.100	6.980	6.980	8.150	43	6.4	
9	2.980	5.510	5.440	5.510	6.500	46	6.4	
10	6.730	3.940	4.830	6.730	7.380	48	6.4	
11	3.370	6.300	3.030	6.300	6.840	51	6.4	
12	4.200	3.050	5.340	5.340	6.380	63	6.4	
13	4.510	3.610	3.510	4.510	5.620	69	6.4	
14	1.510	2.270	2.420	2.420	2.860	74	6.4	
15	1.950	1.780	1.760	1.950	2.540	80	6.4	
Blasting 1	No.24 Delay ti	ime=0ms, Pri	ming location	n=Bottom, Bl	asting holes	=1hole		
1	22.400	23.200	40.800	40.800	49.600	11	6.4	
2	26.900	23.500	29.000	29.000	38.900	12	6.4	
3	21.200	23.900	11.700	23.900	26.600	13	6.4	
4	7.560	14.500	7.870	14.500	16.500	15	6.4	
5	11.600	13.100	7.240	13.100	18.100	23	6.4	
6	9.650	9.270	10.300	10.300	13.200	26	6.4	
7	6.110	8.320	2.670	8.320	9.650	28	6.4	
8	5.400	6.300	4.370	6.300	8.090	31	6.4	
9	4.110	6.640	2.000	6.640	7.280	33	6.4	
10	8.000	6.140	2.330	8.000	8.020	37	6.4	
11	2.030	5.560	7.350	7.350	9.090	41	6.4	
12	2.110	2.440	3.910	3.910	4.160	48	6.4	
13	3.410	3.540	4.570	4.570	6.300	54	6.4	
14	2.920	2.250	4.270	4.270	5.370	57	6.4	
15	2.710	2.240	4.760	4.760	5.240	60	6.4	
16	1.380	0.940	1.330	1.380	2.080	61	6.4	
17	1.440	1.680	2.710	2.710	3.050	63	6.4	
18	1.830	1.320	2.070	2.070	2.480	65	6.4	
19	1.950	1.270	2.440	2.440	2.610	67	6.4	
20	1.490	2.100	2.660	2.660	2.980	67	6.4	
21	1.760	1.070	2.290	2.290	2.680	71	6.4	
22	1.220	1.000	1.610	1.610	1.750	75	6.4	
23	1.200	1.170	1.710	1.710	1.940	79	6.4	
24	0.880	0.830	1.000	1.000	1.240	86	6.4	
25	1.030	1.170	1.120	1.170	1.290	89	6.4	
26	1.560	0.880	1.050	1.560	1.820	90	6.4	
Blasting 1	No.25 Delay ti	ime=0ms, Pri	ming location	n=Bottom, Bl	asting holes=	=1hole		
1	25.000	39.000	52.600	52.600	54.800	9	14	
2	29.600	30.600	36.100	36.100	42.800	11	14	
3	24.300	16.400	35.300	35.300	42.000	15	14	
4	23.200	13.300	23.900	23.900	33.500	17	14	
5	25.300	13.000	16.900	25.300	27.300	19	14	

Blasting No.25 Delay time=0ms, Priming location=Bottom, Blasting holes=1hole									
). T		Ground vil	oration veloc	ity (mm/s)		Distance	Weight		
INO.	Т	V	L	PPV	PVS	(m)	(kg)		
6	28.800	22.700	19.400	28.800	29.800	22	14		
7	15.500	24.400	27.100	27.100	36.900	25	14		
8	10.200	16.100	13.000	16.100	16.800	27	14		
9	7.670	6.240	8.560	8.560	11.200	29	14		
10	11.900	16.100	10.800	16.100	19.200	32	14		
11	9.520	9.400	5.940	9.520	12.100	37	14		
12	6.300	5.680	4.440	6.300	8.530	41	14		
13	9.160	9.490	6.980	9.490	11.800	44	14		
14	4.270	3.300	5.300	5.300	5.720	47	14		
15	6.350	6.100	10.200	10.200	10.700	50	14		
16	4.350	5.460	9.670	9.670	9.730	55	14		
17	3.250	3.750	4.400	4.400	5.290	58	14		
18	4.250	6.120	4.100	6.120	7.270	61	14		
19	2.320	5.830	3.730	5.830	6.120	64	14		
20	2.560	6.540	4.270	6.540	6.840	67	14		
21	1.440	3.490	2.980	3.490	4.350	71	14		
22	2.860	4.140	3.500	4.140	5.060	73	14		
23	2.710	3.100	2.880	3.100	3.900	76	14		
24	1.760	1.900	2.100	2.100	2.810	81	14		
Blasting N	o.26 Delay ti	ime=0ms, Pri	ming location	n=Top, Blast	ing holes=1h	ole			
1	15.200	32.500	10.800	32.500	33.700	17	6.4		
2	11.700	13.200	17.700	17.700	21.200	19	6.4		
3	7.240	7.870	9.140	9.140	12.200	28	6.4		
4	8.270	2.600	7.870	8.270	8.340	34	6.4		
5	5.190	4.840	7.940	7.940	8.060	39	6.4		
6	3.640	2.750	5.570	5.570	6.230	42	6.4		
7	5.330	2.920	3.300	5.330	5.830	43	6.4		
8	2.780	5.490	1.320	5.490	5.760	49	6.4		
9	3.150	3.470	4.320	4.320	5.300	54	6.4		
10	2.250	4.660	2.030	4.660	5.270	56	6.4		
Blasting N	o.27 Delay ti	ime=0ms, Pri	ming location	n=Top, Blast	ing holes=1h	ole			
1	58.500	59.600	78.200	78.200	83.500	19	14		
2	35.200	43.400	36.200	43.400	56.500	22	14		
3	35.100	48.100	45.600	48.100	58.400	24	14		
4	38.200	34.900	18.000	38.200	41.000	29	14		
5	27.100	26.800	17.000	27.100	34.600	36	14		
6	23.100	14.200	17.500	23.100	30.600	40	14		
7	27.900	27.700	19.300	27.900	30.800	43	14		
8	27.600	16.600	16.900	27.600	31.900	46	14		
9	13.000	11.400	20.600	20.600	24.500	51	14		
10	22.600	14.900	16.400	22.600	23.900	53	14		
11	15.600	12.300	8.760	15.600	19.300	57	14		
12	9.530	8.760	9.400	9.530	13.400	60	14		

Blasting N	Blasting No.27 Delay time=0ms, Priming location=Top, Blasting holes=1hole									
NT		Ground vil	oration veloci	ity (mm/s)		Distance	Weight			
INO.	Т	V	L	PPV	PVS	(m)	(kg)			
13	13.270	11.640	11.250	13.270	13.970	65	14			
14	12.590	10.130	9.350	12.590	12.610	69	14			
15	7.750	5.970	9.650	9.650	11.400	73	14			
16	6.850	6.090	6.550	6.850	9.140	80	14			
17	3.480	3.480	3.240	3.480	5.220	85	14			
18	3.070	5.080	6.370	6.370	7.200	89	14			
19	3.490	3.170	3.470	3.490	5.320	91	14			
20	2.390	3.250	3.320	3.320	4.220	99	14			
Blasting N	o.28 Delay ti	ime=0ms, Pri	ming location	n=Middle, Bl	asting holes=	1hole				
1	12.300	65.800	43.700	65.800	69.200	14	6.4			
2	27.700	36.100	42.900	42.900	59.200	16	6.4			
3	17.300	33.000	12.700	33.000	36.500	26	6.4			
4	12.700	22.700	29.800	29.800	32.400	29	6.4			
5	10.200	12.100	34.200	34.200	35.400	32	6.4			
6	6.860	4.190	20.100	20.100	21.200	35	6.4			
7	9.030	7.010	10.180	10.180	12.770	38	6.4			
8	8.130	7.240	6.220	8.130	8.570	42	6.4			
9	2.980	5.510	5.440	5.510	6.500	46	6.4			
10	6.730	3.940	4.830	6.730	7.380	48	6.4			
11	3.370	6.300	3.030	6.300	6.840	51	6.4			
12	4.060	4.060	8.760	8.760	9.760	53	6.4			
Blasting N	o.29 Delay ti	ime=0ms, Pri	ming location	n=Middle, Bl	asting holes=	1hole	•			
1	112.000	125.000	206.000	206.000	234.000	13	14			
2	63.000	93.900	183.000	183.000	196.000	15	14			
3	69.700	67.900	138.000	138.000	156.000	18	14			
4	50.300	29.300	107.000	107.000	117.000	21	14			
5	60.300	44.700	72.100	72.100	87.300	23	14			
6	40.500	29.200	52.800	52.800	59.800	27	14			
7	15.400	29.600	18.300	29.600	36.500	32	14			
8	13.000	30.200	11.700	30.200	32.000	35	14			
9	25.000	20.700	15.600	25.000	30.100	38	14			
10	17.300	20.600	13.500	20.600	26.000	43	14			
11	18.370	11.270	19.840	19.840	22.990	45	14			
12	13.700	7.240	12.600	13.700	18.500	48	14			
13	12.930	12.350	12.200	12.930	16.640	51	14			
14	8.050	11.320	8.960	11.320	13.390	55	14			
15	6.370	5.370	8.050	8.050	9.400	59	14			
16	7.690	4.540	5.390	7.690	9.210	63	14			
17	3.660	4.120	5.730	5.730	7.550	70	14			
18	4.740	5.050	5.760	5.760	7.390	72	14			
19	3.540	4.900	5.300	5.300	6.060	85	14			
20	2.560	2.240	4.570	4.570	5.670	93	14			
21	2.290	4.170	3.660	4.170	4.590	99	14			

Blasting N	g No.30 Delay time=0ms, Priming location=Bottom, Blasting holes=1hole								
N		Ground vil	oration veloci	ity (mm/s)		Distance	Weight		
INO.	Т	V	L	PPV	PVS	(m)	(kg)		
1	37.800	118.000	71.200	118.000	123.000	11	6.4		
2	44.800	55.400	53.000	55.400	64.000	15	6.4		
3	16.600	36.400	15.200	36.400	41.500	22	6.4		
4	14.400	26.300	26.500	26.500	31.000	25	6.4		
5	11.600	11.600	20.700	20.700	22.200	29	6.4		
6	12.700	7.490	15.500	15.500	16.000	34	6.4		
7	8.390	10.460	13.740	13.740	14.440	37	6.4		
8	8.130	5.050	15.200	15.200	16.400	41	6.4		
9	2.130	3.090	13.240	13.240	13.340	43	6.4		
10	7.750	3.940	8.260	8.260	9.160	45	6.4		
11	3.930	6.170	2.150	6.170	6.620	47	6.4		
12	3.810	3.560	4.320	4.320	5.860	50	6.4		
Blasting N	lo.31 Delay ti	ime=0ms, Pri	ming location	n=Bottom, Bl	asting holes	=1hole			
1	70.000	188.000	88.600	188.000	207.000	9	14		
2	50.000	119.000	171.000	171.000	175.000	13	14		
3	86.600	59.400	118.000	118.000	138.000	15	14		
4	35.400	47.900	99.300	99.300	112.000	17	14		
5	34.000	57.400	67.300	67.300	83.300	19	14		
6	36.200	46.900	66.800	66.800	68.600	22	14		
7	37.600	29.700	45.600	45.600	56.200	26	14		
8	27.300	27.900	29.700	29.700	40.700	29	14		
9	27.800	34.300	29.600	34.300	42.300	31	14		
10	31.600	26.900	15.900	31.600	35.000	37	14		
11	31.200	23.500	16.800	31.200	35.200	39	14		
12	20.600	17.500	15.700	20.600	24.900	42	14		
13	22.100	15.600	20.600	22.100	24.700	44	14		
14	12.100	7.590	15.490	15.490	16.780	47	14		
15	11.370	9.610	14.640	14.640	15.900	49	14		
16	16.400	14.100	12.100	16.400	16.700	51	14		
17	7.540	11.150	9.440	11.150	13.140	55	14		
18	5.760	9.960	8.320	9.960	12.170	59	14		
19	4.080	6.800	5.890	6.800	8.040	65	14		
20	5.200	8.240	7.100	8.240	9.440	68	14		
21	3.050	5.000	6.200	6.200	7.770	71	14		
22	3.280	3.350	5.010	5.010	6.190	74	14		
23	2.860	4.140	3.500	4.140	5.060	78	14		
24	1.440	3.490	2.980	3.490	4.350	82	14		
Blasting N	lo.32 Delav ti	me=0ms, Pri	ming location	n=Top, Blast	ing holes=1h	ole	_		
1	112.000	141.000	198.000	198.000	216.000	7	6.4		
2	43.400	87.600	192,000	192.000	193.000	9	6.4		
3	101.000	48,400	144.000	144.000	169.000	10	6.4		
4	37.200	45.800	83,100	83,100	85,200	13	6.4		
5	33.800	24.500	51.900	51.900	52.900	16	6.4		

Blasting N	Blasting No.32 Delay time=0ms, Priming location=Top, Blasting holes=1hole								
No		Ground vil	oration veloc	ity (mm/s)		Distance	Weight		
INO.	Т	V	L	PPV	PVS	(m)	(kg)		
6	21.000	28.600	32.800	32.800	41.200	24	6.4		
7	8.640	7.750	6.350	8.640	11.600	27	6.4		
8	7.870	6.980	7.110	7.870	8.970	29	6.4		
9	4.110	4.100	4.020	4.110	5.670	30	6.4		
10	4.060	3.810	3.300	4.060	5.360	33	6.4		
11	2.790	2.790	3.170	3.170	3.650	36	6.4		
12	2.540	2.540	3.480	3.480	3.760	39	6.4		
13	1.400	2.290	2.790	2.790	3.350	41	6.4		
14	1.100	1.460	2.570	2.570	3.030	45	6.4		
15	1.290	0.920	2.560	2.560	2.870	48	6.4		
16	1.290	1.570	3.050	3.050	3.640	50	6.4		
17	1.900	1.140	2.410	2.410	2.920	53	6.4		
18	1.140	1.400	2.290	2.290	2.410	56	6.4		
19	0.680	0.680	1.790	1.790	1.810	59	6.4		
20	1.340	8.300	2.420	8.300	2.450	63	6.4		
21	1.150	0.730	2.100	2.100	2.150	66	6.4		
22	0.730	1.490	1.070	1.490	1.830	73	6.4		
23	0.730	1.050	0.660	1.050	1.070	76	6.4		
24	0.360	0.440	0.620	0.620	0.800	80	6.4		
25	0.340	0.760	0.540	0.760	0.780	83	6.4		
26	0.420	0.270	0.620	0.620	0.700	86	6.4		
Blasting N	lo.33 Delay ti	me=0ms, Pri	ming location	n=Top, Blast	ing holes=1h	ole			
1	7.490	15.100	8.890	15.100	17.200	24	14		
2	0.950	7.870	7.730	7.870	12.900	29	14		
3	0.910	8.000	7.870	8.000	13.200	34	14		
4	11.300	5.460	8.000	11.300	11.800	39	14		
5	6.970	7.240	8.830	8.830	10.300	43	14		
6	4.830	7.870	6.600	7.870	8.430	46	14		
7	4.320	6.730	6.350	6.730	7.890	48	14		
8	5.080	4.970	4.020	5.080	7.140	50	14		
9	3.910	3.750	4.250	4.250	5.810	51	14		
10	3.190	3.590	3.970	3.970	5.180	56	14		
11	4.190	2.920	4.060	4.190	4.990	58	14		
12	4.190	2.160	4.440	4.440	4.880	59	14		
13	2.670	3.430	2.920	3.430	3.810	61	14		
14	3.180	3.300	3.300	3.300	3.760	63	14		
15	2.110	1.980	2.860	2.860	3.100	66	14		
16	2.050	3.070	1.810	3.070	3.450	69	14		
17	1.270	1.710	2.780	2.780	2.880	71	14		
18	1.510	2.120	2.490	2.490	2.940	73	14		
19	2.660	0.630	2.290	2.660	2.900	78	14		
20	1.270	1.070	1.440	1.440	1.920	82	14		
21	1.290	1.510	1.150	1.510	1.690	84	14		
22	0.680	1.440	1.220	1.440	1.640	86	14		
23	0.500	0.640	1.420	1.420	1.590	88	14		

Blasting N	Blasting No.33 Delay time=0ms, Priming location=Top, Blasting holes=1hole								
N.		Ground vil	oration veloc	ity (mm/s)		Distance	Weight		
INO.	Т	V	L	PPV	PVS	(m)	(kg)		
24	0.460	0.660	1.180	1.180	1.390	90	14		
25	0.560	1.370	0.980	1.370	1.380	92	14		
26	0.710	1.240	1.150	1.240	1.330	94	14		
27	0.440	0.630	1.250	1.250	1.300	97	14		
Blasting N	lo.34 Delay ti	ime=0ms, Pri	ming location	n=Middle, Bla	asting holes=	1hole			
1	11.000	22.200	49.300	49.300	51.800	14	6.4		
2	6.730	14.500	45.300	45.300	46.200	16	6.4		
3	13.600	14.500	18.800	18.800	20.600	20	6.4		
4	9.140	12.300	13.300	13.300	14.600	24	6.4		
5	8.640	8.640	13.200	13.200	14.400	26	6.4		
6	6.650	5.840	7.750	7.750	9.760	28	6.4		
7	6.380	2.920	5.650	6.380	7.020	31	6.4		
8	5.710	4.190	3.300	5.710	6.910	34	6.4		
9	5.540	4.220	5.080	5.540	6.670	36	6.4		
10	3.520	4.320	5.050	5.050	5.980	40	6.4		
11	5.080	2.540	2.920	5.080	5.570	42	6.4		
12	2.410	4.320	2.670	4.320	5.410	45	6.4		
13	2.290	3.180	3.180	3.180	4.490	50	6.4		
14	2.290	3.810	2.790	3.810	4.420	52	6.4		
15	2.130	3.970	4.490	4.490	5.270	54	6.4		
16	1.710	2.190	3.700	3.700	4.060	56	6.4		
17	2.540	1.270	3.940	3.940	4.290	58	6.4		
18	2.490	1.890	3.240	3.240	4.130	60	6.4		
19	2.490	1.710	3.020	3.020	3.710	63	6.4		
20	1.250	1.440	2.680	2.680	2.950	67	6.4		
21	1.100	2.660	1.900	2.660	3.160	70	6.4		
22	1.290	1.930	1.760	1.930	2.530	74	6.4		
23	1.270	1.140	2.540	2.540	2.670	76	6.4		
24	1.640	1.270	1.840	1.840	2.460	80	6.4		
25	1.190	1.440	1.730	1.730	2.110	83	6.4		
26	1.900	1.140	1.270	1.900	2.280	85	6.4		
27	1.150	1.070	2.200	2.200	2.370	88	6.4		
28	0.900	0.540	2.270	2.270	2.270	90	6.4		
29	1.240	1.030	1.240	1.240	1.930	94	6.4		
30	0.890	1.140	1.900	1.900	1.980	97	6.4		
31	1.540	1.100	1.290	1.540	1.610	100	6.4		
32	0.540	0.590	1.320	1.320	1.440	102	6.4		
33	0.370	0.570	1.130	1.130	1.250	105	6.4		
34	0.340	0.830	0.490	0.830	0.850	108	6.4		
35	0.370	0.560	0.490	0.560	0.700	110	6.4		
36	0.200	0.300	0.310	0.310	0.380	114	6.4		
Blasting N	lo.35 Delay ti	ime=0ms, Pri	ming location	n=Middle, Bla	asting holes=	1hole			
1	8.380	23.200	13.600	23.200	23.800	22	14		

Blasting N	Blasting No.35 Delay time=0ms, Priming location=Middle, Blasting holes=1hole								
N.		Ground vil	pration veloc	ity (mm/s)		Distance	Weight		
INO.	Т	V	L	PPV	PVS	(m)	(kg)		
2	15.700	18.200	21.600	21.600	23.700	26	14		
3	13.700	10.500	13.500	13.700	17.900	31	14		
4	10.900	8.250	11.800	11.800	16.500	34	14		
5	12.100	6.600	11.400	12.100	16.300	36	14		
6	8.760	15.100	8.890	15.100	16.200	38	14		
7	11.000	5.710	8.760	11.000	12.300	42	14		
8	6.350	10.000	6.980	10.000	10.200	44	14		
9	9.910	6.100	8.890	9.910	11.300	44	14		
10	8.640	5.210	9.020	9.020	10.800	46	14		
11	8.700	7.700	8.650	8.700	10.500	49	14		
12	5.870	6.970	9.720	9.720	10.900	51	14		
13	6.750	5.060	8.130	8.130	9.190	54	14		
14	6.860	8.640	6.220	8.640	8.880	57	14		
15	4.830	5.460	7.240	7.240	8.250	59	14		
16	4.240	5.060	6.060	6.060	7.780	61	14		
17	4.440	2.920	6.600	6.600	7.890	64	14		
18	1.900	4.950	2.410	4.950	5.250	67	14		
19	1.900	4.830	2.790	4.830	5.000	70	14		
20	1.900	4.570	3.430	4.570	4.980	73	14		
21	2.790	4.060	3.560	4.060	4.670	76	14		
22	4.190	2.540	4.190	4.190	4.430	79	14		
23	1.710	3.220	2.610	3.220	3.450	81	14		
24	1.910	1.780	2.030	2.030	3.030	84	14		
25	2.070	2.980	2.270	2.980	3.380	87	14		
26	1.020	2.920	2.160	2.920	3.260	90	14		
27	1.680	2.440	1.810	2.440	2.820	93	14		
28	1.600	1.460	2.390	2.390	2.650	96	14		
29	1.240	1.730	2.100	2.100	2.520	98	14		
30	1.370	1.880	1.710	1.880	2.210	100	14		
31	1.070	1.070	1.680	1.680	2.110	102	14		
32	1.270	0.760	1.150	1.270	1.720	105	14		
33	0.710	1.170	1.240	1.240	1.620	108	14		
34	0.440	1.050	0.780	1.050	1.270	112	14		
35	0.320	0.480	1.060	1.060	1.150	115	14		
Blasting N	o.36 Delay ti	me=0ms, Pri	ming location	n=Bottom, Bl	asting holes	=1hole			
1	10.200	15.500	25.000	25.000	28.700	16	6.4		
2	8.760	10.300	27.300	27.300	27.900	18	6.4		
3	9.910	10.300	12.500	12.500	15.400	21	6.4		
4	5.840	7.490	12.400	12.400	13.100	24	6.4		
5	7.350	6.460	6.990	7.350	10.700	26	6.4		
6	4.700	7.110	10.200	10.200	10.800	28	6.4		
7	6.480	5.460	6.100	6.480	8.480	30	6.4		
8	6.220	3.810	3.680	6.220	7,270	33	6.4		
9	4.240	2.400	5.790	5.790	6,560	35	6.4		
10	3.430	3.300	3.170	3.430	4.880	39	6.4		

Blasting N	No.36 Delay ti	ime=0ms, Pri	ming location	n=Bottom, Bl	asting holes=	=1hole	
N.		Ground vil	oration veloc	ity (mm/s)		Distance	Weight
INO.	Т	V	L	PPV	PVS	(m)	(kg)
11	2.160	2.290	3.050	3.050	3.890	42	6.4
12	2.410	2.410	2.670	2.670	3.060	45	6.4
13	2.290	1.940	2.240	2.290	3.210	50	6.4
14	1.400	1.780	2.540	2.540	2.760	54	6.4
15	1.680	2.150	2.020	2.150	2.460	56	6.4
16	1.420	1.200	1.070	1.420	1.890	60	6.4
17	0.710	0.730	1.290	1.290	1.420	65	6.4
18	0.980	6.590	1.610	6.590	1.880	68	6.4
19	1.830	1.100	1.560	1.830	1.840	72	6.4
20	0.850	1.220	0.980	1.220	1.560	78	6.4
21	0.350	0.510	1.010	1.010	1.030	81	6.4
22	0.440	0.550	1.200	1.200	1.200	83	6.4
23	0.460	0.760	0.680	0.760	0.990	87	6.4
24	0.230	0.400	0.490	0.490	0.520	90	6.4
25	0.200	0.300	0.390	0.390	0.440	95	6.4
Blasting N	No.37 Delay ti	ime=0ms, Pri	ming location	n=Bottom, Bl	asting holes=	=1hole	
1	6.100	9.140	6.100	9.140	10.600	34	14
2	7.720	5.980	7.730	7.730	11.200	38	14
3	7.680	3.710	7.730	7.730	9.030	41	14
4	7.110	3.810	6.100	7.110	8.530	46	14
5	6.350	3.430	4.950	6.350	7.390	49	14
6	4.350	4.220	5.940	5.940	6.690	52	14
7	4.760	3.410	5.000	5.000	5.320	54	14
8	2.920	4.440	4.570	4.570	5.140	56	14
9	2.400	2.670	4.290	4.290	5.000	59	14
10	2.290	1.400	4.320	4.320	4.840	62	14
11	3.300	3.300	3.810	3.810	4.950	65	14
12	0.830	0.630	3.250	3.250	4.040	69	14
13	2.410	2.490	3.210	3.210	3.970	72	14
14	1.780	2.290	3.680	3.680	3.760	75	14
15	1.400	2.160	2.920	2.920	3.410	78	14
16	1.080	1.210	3.100	3.100	3.240	81	14
17	1.520	1.910	2.540	2.540	2.910	84	14
18	1.910	2.160	1.780	2.160	2.510	87	14
19	1.520	1.020	2.160	2.160	2.380	90	14
20	0.900	1.200	2.490	2.490	2.520	93	14
21	1.000	1.370	1.900	1.900	2.020	96	14
22	0.930	1.900	1.610	1.900	2.220	100	14
23	1.910	1.140	1.270	1.910	1.920	104	14
24	0.880	0.680	1.780	1.780	1.810	107	14
25	0.610	0.730	1.640	1.640	1.640	110	14
26	0.950	0.680	0.930	0.950	1.320	113	14
27	0.460	0.880	0.590	0.880	0.990	117	14
28	0.420	0.710	0.780	0.780	0.880	120	14
29	0.290	0.320	0.770	0.770	0.820	123	14
30	0.260	0.590	0.390	0.590	0.410	127	14

감사의 글

어느덧 10년간의 대학원 생활을 마치려는 시점에서 저에게 언제나 힘과 용기를 북돋 아 주신 모든 분들께 좁은 지면으로나마 감사의 마음을 전하고자 하는 점 너그러운 마 음으로 용서를 바랍니다.

먼저 석사 및 박사 과정 동안 부족한 저를 연구에 매진할 수 있도록 아낌없는 격려 와 지도를 해주신 강추원 교수님께 깊은 감사와 존경의 마을을 드립니다. 연구와 업무 로 매우 바쁘신 가운데 저의 미진한 논문의 심사를 위해 세심한 검토와 고견을 제시해 주신 한국지질자원연구원 류창하 박사님, ㈜SK건설 이효 박사님, 군산대학교 이연규 교수님, 본교의 고진석 교수님께 고개 숙여 깊이 감사드립니다. 그리고 학부 및 학위과 정동안 따뜻한 배려와 많은 가르침을 주신 한오형 교수님, 박천영 교수님, 강성승 교수 님께도 진심으로 감사드립니다.

저희 암석역학실험실에 항상 따뜻한 관심과 애정으로 많은 가르침을 주신 원우회 선 배님들이신 노영배 선배님, 박정봉 선배님, 문창일 선배님, 위장복 선배님, 박기동 선배 님, 강석곤 선배님, 이섭 선배님, 김연수 선배님, 이창원 선배님, 이창훈 선배님, 이수연 선배님, 김수로 선배님, 최강일 선배님, 김윤택 선배님 등 많은 원우회 선배님들께 감 사드립니다. 그리고 본 논문이 완성하기 위해 많은 도움을 주신 최태홍 선배님, 김종인 선배님, 김재웅 선배님, 박현식 선배님께 다시 한번 고마움을 전합니다.

실험실 생활동안 늘 가족처럼 따듯한 격려와 가르침을 주신 나의 영원한 브라더 호 민형, 나이는 어리지만 학부 졸업과 석사과정 동기인 사랑하는 나의 동생 승현, 나이는 동갑이지만 석사 후배인 까칠한 절친 규용, 중학교 후배이면서 나의 오른팔인 동조, 실 험실 일꾼이었지만 지금은 사회의 일꾼인 홍표, 상곤, 도형, 배드민턴으로 자꾸 나를 이겨보려는 두성, 실험실을 나보다 먼저 들어온 하림, 아끼는 후배이자 와이프 고향 후 배인 승은, 듬직한 후배 장원 등 이름은 거론되지 않았지만 여러 후배들에게도 고마움 을 전합니다.

그리고 본 논문을 위한 현장, 암석실험 및 자료정리에 열과 성을 다해 도움을 준 현 재 실험실원인 성민, 태준, 양호와 같이 논문을 쓰면서 회귀분석과 그래프 작성을 위해 눈이 빠진 지수에게도 고마움을 전합니다.

언제나 나를 지켜봐주고 물심양면으로 도와준 고등학교 절친들인 재웅, 우희, 형석, 창한, 수철, 승범, 강호, 세홍 그리고 대학교 동문인 새알회 회원 필선, 호석, 영문, 준 영, 영석, 용철, 정용, 재욱, 성환, 을호, 바쁜 대학원 생활에서 나의 유일한 취미인 배 드민턴 동호회인 만호, 목련 클럽 형님, 누님, 동생, 네 가족인 모여 계절마다 여행을 떠나는 사계 모임인 수연누나 가족, 세진 가족, 수정 가족에게도 고마움을 전합니다.

막내아들을 위해 무한한 사랑과 헌신을 주신 우리 아버지, 어머니, 큰 사위가 하는 일에 무조건적 응원을 해주시고 축하해 주시는 장인어른, 장모님 존경하고 사랑합니다. 그 큰 은혜에 진심으로 감사드리며 이 논문을 바칩니다. 항상 건강하시길 바랍니다.

우리 집안의 대들보 형님, 형수님, 엄마 같은 큰누나, 작은누나, 큰매형, 작은 매형, 조카 재호, 근태, 수빈, 은빈, 진호, 세영 처제 가족, 처갓집의 기둥인 처남 가족, 우리 집에 없어서는 안 될 실질적인 살림꾼이자 지원군인 세화 처제에게도 고마움을 전합니 다.

마지막으로 나의 분신이자 세상에서 어떠한 것과도 바꿀 수 없는 사랑하는 첫째 딸 다윤, 아빠의 일을 술술 풀리게 하는 복덩이 둘째 딸 다영, 내가 제일 어려운 시절에 연인으로 시작하여 두 딸의 엄마가 된 나의 사랑하는 아내 김세연에게 정말로 말로 표 현할 수 없는 고마움을 전하고 사랑합니다.

저작물 이용 허용서									
학과	에너지 자원공학과	학번	20067319	과정	박사				
성명	한글 : 류 복	현 한문 : 树	叩福鉉 영告	E : Ryu, Bok-	-Hyun				
주소	광주광 (소	역시 광산구 신가동, 수완지	수등로 123번 이구 호반베르디	길 21, 101동 2 디움1차 아파트	2003호 .)				
연락처	E-MAIL : pog	gryu@hanma	ail.net						
한글 : 발파공 사이의 지연시차와 기폭위치가 지반진동에 미치는 영향 논문제목 영어 : Influence of delay time and priming location on the blast-induced ground vibration									
본인이 저작한 위의 저작물에 대하여 다음과 같은 조건아래 조선대학교가 저작물									
을 이용할 수	있도록 허락하는	고 동의합니다							
		- 다	<u>0</u> –						
 저작물의 복제, 기억장 위의 목적 저작물의 내 배포·전경 재작물에 표시가 없을 해당 저작 에는 1개월 조선대학을 의한 권리 추 소속대학을 물의 전송··· 	 저작물의 DB구축 및 인터넷을 포함한 정보통신망에의 공개를 위한 저작물의 복제, 기억장치에의 저장, 전송 등을 허락함 위의 목적을 위하여 필요한 범위 내에서의 편집 · 형식상의 변경을 허락함. 다만, 저작물의 내용변경은 금지함. 배포 · 전송된 저작물의 영리적 목적을 위한 복제, 저장, 전송 등은 금지함. 저작물에 대한 이용기간은 5년으로 하고, 기간종료 3개월 이내에 별도의 의사 표시가 없을 경우에는 저작물의 이용기간을 계속 연장함. 해당 저작물의 저작권을 타인에게 양도하거나 또는 출판을 허락을 하였을 경우 에는 1개월 이내에 대학에 이를 통보함. 조선대학교는 저작물의 이용허락 이후 해당 저작물로 인하여 발생하는 타인에 의한 권리 침해에 대하여 일체의 법적 책임을 지지 않음 소속대학의 협정기관에 저작물의 제공 및 인터넷 등 정보통신망을 이용한 저작 물의 전송 · 출력을 허락함. 								
	동의	여부 : 동의(√) 반대()					
		2014	1 2월						
		저작자	:류 복 현	(인)					
	조선	[대학교	총장 구	비하					