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ABSTRACT

Design and performance evaluation of PEMFC
system based on chemical hydride for UAV

applications
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I. Introduction

A. Active humidification of PEMFC using short circuit control

Unmanned aerial vehicles (UAVs) have been used for meeting civilian demands
and military purposes 1in diverse fields, particularly for reconnaissance and
surveillance. For these missions, high endurance of UAVs for maximizing their
capability 1s preferred to attributes such as quiet operations or maneuverability.
However, conventional internal combustion engines running on gasoline and diesel
are still employed as the main source for powering the UAVs. Although the
internal combustion engine can generate power through combustion, the exhaust
emissions produced during the process cause serious environmental problems. In
addition, fossil fuels (which are the energy sources for internal combustion engines)
are on the brink of exhaustion, necessitating a new, next-generation power source
for UAVs. Recently, the fuel cell (FC) has gained attention as a new power source
because it possesses higher energy density than fossil fuels. Moreover, the FC is
ecofriendly because its byproducts are only water and heat.

Various types of FCs are available, including molten carbon FC, solid oxide
FC, alkaline FC, phosphoric acid FC, and polymer electrolyte membrane FC
(PEMFC). Among these, the PEMFC is suitable for UAVs because of the following
advantages: 1) high loading capability due to relatively lighter weight, and ease of
miniaturization; 2) low operating temperature at which ion conductivity is adequate
to generate high power; 3) use of solid-state electrolyte, thereby eliminating
sloshing problems due to vibrations during flight; and 4) higher thermal efficiency
compared to other FCs. Owing to these advantages, PEMFCs are being developed
as portable power sources, particularly for UAVs in aeronautical applications [1].

Many PEMFC-powered UAVs have been developed worldwide, such as the Ion
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Tiger by the Naval Research Laboratory [2], PUMA by the Air Force Research
Laboratory [3], Phantom Eye by Boeing [4] in the United States, Hyfish by the
German Air & Space Center [b] in Germany, FAUCON HZ2 by EnergyOr
Technologies [6] in Canada, BirdEye-650 by Aerospace Industries [7] in Israel, and
the Korea Aerospace Research Institute in Korea. Moreover, the FC system for
UAVs has been widely studied at universities such as the Washington State
University [8] in the United States, National Cheng Kung University [9] in Taiwan,
Nanyang Technological University [10] in Singapore, Korea Advanced Institute of
Science and Technology, and Chosun University in Korea [11 - 12].

The FC 1s a simple device in which hydrogen is reduced into an ion and two
electrons, and as the hydrogen ion passes through an electrolyte and combines with
oxygen, it generates electricity along with water and heat. In this process, humidity
control in the polymer electrolyte membrane is very important because water plays
the role of an ion-conducting carrier [13]. When the membrane has the correct
water content, the power output of the FC is maximized. High content (indicating
high humidity) causes water flooding, which blocks the pores of the gas diffusion
layer (GDL) and inhibits the passage of oxygen. When the FC is dry (indicating
low humidity), the electric resistance in the membrane increases, causing the
voltage to drop with increase in current [14 - 18]. Therefore, FC performance
depends strongly on its internal humidity and generally deteriorates when the latter
is much higher or lower than desired.

Owing to this dependence, a typical FC system uses an external humidifier to
control its internal humidity. However, this makes it heavy and bulky and hence
unsuitable for UAV applications. In particular, the FC system should be of small
size and less weight for small UAVs because their payload capacity is limited.
Therefore, eliminating the external humidifier in the FC releases additional payload
capacity in the UAV for other missions.

In the present study, the short circuit technique was used to control the
internal humidity of the FC. Momentary short-circuiting generated overcurrent in

the FC, causing hydrogen to react considerably with oxygen to generate water,
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thus humidifying the electrolyte membrane. A fuel-cell short circuit controller was
developed and the humidification performance was examined for different short
circuit intervals and durations. In addition, the performance characteristics of the

FC were evaluated with and without the short circuit controller.
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Table. 1 Classification of the FC according to electrolyte

PEMFC AFC PAFC MCFC SOFC
Mobilized or . o
Hydrated . Immobilized Immobilized
i Immobilized L . .
Polymeric Ion . Liquid Liquid Molten Perovskites
Electrolyte Potassium . . . .
Exchange o Phosphoric Acid Carbonate in (Ceramics)
Hydroxide in . . .
Membranes . in SiC LiAlIO,
asbestos matrix
. . Perovskite and
Electrod Carb Transition Carb Nickel and Kite /
n erovskite
ectrodes arbon metals ave Nickel Oxide P
metal cermet
. . . Electrode Electrode
Catalyst Platinum Platinum Platinum ) )
material material
. . Stainless steel Nickel ceramic
Interconnect Carbon or metal Metal Graphite .
or Nickel or steel
Operating ) ) . . )
40-80C 65-220C 205C 650TC 600-1000C
Temperature
Charge Carrier H OH H C0o3” 0~
External
No.
Reformer for No.
Yes Yes Yes For some fuels
Hydrocaron For some fuels .
and cell designs
Fuels
External shift Yes. Yes.
conversion of Plus purification | Plus purification
Yes No No
CO to to remove trace to remove trace
hydrogen CO CO and COy
Prime Cell . . .
Carbon-based Carbon-based Graphite-based Stainless—based Ceramic
Components

Product Water

Evaporative

Evaporative

Evaporative

(Gaseous product

Gaseous product

Management
Process gas +

Process gas + Process gas + Liquid cooling Internal Internal
Product Heat o . . . .

Liquid cooling Electrolyte medium or reforming + reforming +
Management . . .

medium circulation steam Process gas Process gas
generation
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B. Chemical hydride hydrogen storage for compact PEMFC system

Up to now, a polymer electrolyte membrane fuel cell (PEMFC) has been adopted
for the UAVs but the hydrogen storage density was too low to realize the high
energy density of the fuel cell system using the hydrogen as a fuel. Basically,
hydrogen has gravimetric energy density (120 MJ/kg) three times higher than
gasoline (44 M]J/kg). However, the volumetric energy density (0.01 MJ/L at STP)
is much lower than gasoline (32 MJ/L). Thus, the high-density hydrogen storage
1s important for determining the energy density of PEMFC systems for UAV
applications. In addition, the hydrogen storage method would have high storability
and good mobility [19 - 21].

Currently—available hydrogen storage method includes compressed hydrogen,
liquid and cryo-compressed hydrogen, sorbents, metal hydrides, metal-organic
frameworks (MOF), and carbon-based material [20, 28, 29, 32 -36]. However,
conventional hydrogen storage methods are still problematic because the hydrogen
storage density is low and the device is bulky and complex. Recently, it is reported
that MOF and carbon-based hydrogen storages have realized the desirable
hydrogen storage density but they require high manufacturing technologies [19]. As
a result, these hydrogen storage methods suffer from technical difficulties in
manufacture, the increased expense for the maintenance, and problems that make
the system bulky and heavy. Thus, we need an alternative method for hydrogen
storage to complement the above problems. Recently, chemical hydrides have
attracted a great interest as an alternative of hydrogen storage for UAV
applications.

In the present study, a fuel cell system using the hydrogen storage based on
the chemical hydride was developed for portable applications. There are many
chemical hydrides available including NaBH,, ZnBH,, CaBH,, LiAlH;, NaBH(OCHs)3
and so on. Chemical hydrides are stored stably as it is at the atmospheric
condition, while hydrogen can be extracted readily by chemical decomposition when

needed. The chemical hydride has advantageous to portable fuel cells because of its

_5_
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high hydrogen capacity and possibility of hydrogen storage/supply at the
atmospheric condition. Particularly, chemical hydrides can be stored and carried in
the state of an alkali solution, and hydrogen can be extracted from the solution as
well as directly in the solid state [23]. The chemical hydrides mainly consist of
alanate hydrides, alkali metal hydrides, and metal hydro-borates [22]. Among them,
sodium borohydride (NaBH,) metal that is a kind of hydro-borates has been widely
studied as the chemical hydride-based hydrogen storage because it is cheaper and
the energy density per unit volume/mass is higher than other types of chemical
hydrides [19, 22, 24 - 28]. Thus, the NaBH,; was selected as a hydrogen source for
the PEMFC system in the present study.

Hydrogen can be generated by the hydrolysis reaction of NaBH; The
hydrolysis reaction should be accelerated and stabilized to supply hydrogen stably
and continuously. There are two ways that have been widely used; one is to use a
catalyst and the other is to control pH value by acids [19, 21, 25]. When acids are
used, the hydrogen generation is reliable but the hydrogen generation rate was not
controllable without control mechanisms and the acid is difficult to handle and
store. Considering the aspect of safety, the catalytic hydrolysis of NaBH; was
selected for portable applications. Up to now, noble catalysts such as Ru, Rh, and
Pt, and non-noble catalysts such as Ni, Co, and Cu have been studied for the
catalytic hydrolysis of NaBH,. In the present study, Co-B/Ni foam was used as a
catalyst because of its relatively low cost and high performance [22, 24, 25, 28].
However, there are still problem in the catalytic hydrolysis. First, the catalyst can
be deactivated by the deposition of NaBO: that is a byproduct of the hydrolysis of
NaBH, [38 - 40]. In addition, the device for generating pure hydrogen from NaBH,
should equip the catalytic reactor, hydrogen separator, and NaBO, chamber, which
are very complex and makes the system bulky and heavy [29, 31, 40].

In the present study, the all-in-one reactor was designed in which the catalytic
reactor, hydrogen separator, and NaBO; chamber were combined in a single space.
In addition, all of balance-of-plant (BOP) such as a pump, valve, cooling fan, and

controller were integrated to develop the complete hydrogen generator. The
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developed hydrogen generator was connected to a 100 W PEMFC stack and the

performance was evaluated according to the electronic load.
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II. Experiments

A. FC control system

The schematic of the FC controller is presented in Fig. 1. It consists of (i)
DC/DC convertor to regulate the voltage to the microprocessor and sensors, (ii)
current sensor to measure the FC stack current, (iii) power-metal oxide
semiconductor field effect transistor (power-MOSFET) (IRFP4110PbF) to short
circuit the FC stack, (iv) transistors to operate the purging valve and cooling fans,
and (v) 128-bit microprocessor (Atmega 128) to control the components as
programmed. When the FC stack is short-circuited, the power should be
compensated to provide a stable output to the electric load. To achieve this, the FC
stack was connected parallel with an auxiliary lithium-polymer battery (24 V,
3-cells) in this experiment. Furthermore, the battery and FC stack simultaneously
supplied power when a sudden load was applied.

A control algorithm was programmed to control the components of the FC
stack including the cooling fans and anode purging valve, which were operated
using a pulse width modulation signal at the interval and for the duration
previously determined. The FC controller was programmed to direct the short
circuit current to the FC stack at various intervals (periods) and for different
durations. Figure 2 shows the periods and durations of short circuit in the FC
stack. Short circuit period refers to the frequency (interval) of short-circuiting or
the time between the n and n+l short signals in a periodic short circuit operation.
Short circuit duration refers to the time for which the FC stack is short-circuited.
In this study, short circuit periods of 2, 10, and 60 s were used and the short
circuit duration was fixed at 100 ms because long short circuit time causes

excessive water flooding at the cathode and damages the membrane electrode
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assembly (MEA) of the FC stack.

The performance of the FC can be altered by varying the short circuit period
and duration. When the FC is short-circuited, the voltage drops suddenly, as
shown in Fig. 2. However, in the present study, a hybrid system of the FC and
battery was used to avoid a voltage drop below the battery voltage (724 V).
Therefore, a stable power output could be provided to the load (such as an electric
motor) by maintaining a very short (7100 ms) duration of short circuit and
ensuring that the voltage was always higher than the motor’s rated voltage even

when the FC was short-circuited.
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B. Compact PEMFC system design

The developed compact PEMFC system using the hydrogen generator based on
the NaBHy; chemical hydride is shown in Fig. 3. The system consists of three
parts; the PEMFC stack, hydrogen generator, and NaBH; fuel tank. First, 100 W
lightweight PEMFC stack was used. Particularly, bipolar plates were manufactured
by metal forming so that the weight and volume of the stack could be reduced
considerably. Next, the hydrogen generator has an all-in-one reactor in which the
NaBH, hydrolysis takes place and the generated hydrogen is pressurized temporally.
The exploded view of the all-in-one reactor is shown in Fig. 4. The reactor
consists of three parts; the catalytic reactor, byproduct separator, and hydrogen
chamber. The Co-B/Ni foam catalyst was packed in the catalytic reactor as shown
in Fig. 5. The Co-B is an active material for the NaBH; hydrolysis and the Ni
foam 1s the support of Co-B. The catalyst was prepared by electroless plating. The
foam catalyst was very easy to be shaped and the replacement was very simple.

The NaBH,; solution was supplied into the catalytic reactor by the pump and
then the hydrolysis reaction took place on the catalyst, immediately generating
hydrogen. The generated hydrogen was stored temporally in the hydrogen chamber
maintaining the pressure of 5 bar. Hydrogen was supplied to the fuel cell after the
pressure was adjusted to 0.6 bar through the pressure regulator. The NaBO: was
collected in the byproduct separator and discharged through the valve into the
outside according to the amount of NaBH; supplied by the pump. The cooling fins
were attached on the reactor to cool the heat of reaction of the NaBH, hydrolysis
that is exothermic. Cooling fans were installed on the case of the fuel cell system
to maintain the constant temperature in the reactor. The NaBHs solution was
stored in the fuel tank that is easy to be detachable from the system, which

facilitated the safe storage and porterage.

_12_
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100W PEMFC

Fuel tank

Hydrogen generator module

Fig. 3 Developed compact PEMFC system using the hydrogen generator based on
the NaBH4 chemical hydride
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Catalytic reactor

Hydrogen chamber

Byproduct separator

Fig. 4 Schematic of the all-in-one reactor in which the NaBH; hydrolysis takes

place and the generated hydrogen is pressurized temporally
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Fig. 5 Co-B/Ni foam catalyst for the NaBH, hydrolysis
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C. Operating mechanism

The schematic of the control mechanism of the fuel cell system is shown in Fig.
6. Basically, all of driving parts including the pump, cooling fans, and purging
valves, were controlled by the controller of the fuel cell system. The operating
algorithm consists of three modes; the start-up, normal operation, and shutdown
mode. First, when the system was initiated to be operated, the start-up mode was
activated and the NaBH, solution that is stored in the fuel tank was supplied by
the pump into the reactor. The fuel was injected continuously when the pressure in
the reactor was lower than 3 Bar, while at the pressure higher than 3 bar, the fuel
injection was stopped, going on to the normal operation mode.

The hydrogen generator was controlled according to the reactor pressure under
the normal operation mode. At the pressure lower than 4 bar, the NaBH4 solution
was supplied by the pump, while the fuel supply stopped when the pressure
reached 4 bar. On the other hand, when the pressure suddenly exceeded the safety
limit, the hydrogen was discharged through the purging valve that is connected to
the reactor. The safety limit was set to D bar in this case but it is changeable
according to applications. If the reactor kept the pressure of 4 -5 bar, the pump
and purging valve were stopped and the reactor was ready to supply hydrogen to
the fuel cell.

In the operation process of the hydrogen generator, the NaBH; solution was
reacted on Co-B/Ni foam catalyst, generating hydrogen and NaBQO,. The NaBO-
was discharged through the purging valve at an interval of the predetermined
period according to the control algorithm. The generated hydrogen passed through
the washing tank to remove sodium ions in hydrogen and was supplied to the fuel
cell. When the fuel was exhausted or the system was terminated compulsorily, the
shutdown mode was initiated; the fuel injection stopped and the catalyst was
washed with the water in the washing tank that was pressurized by the hydrogen

pressure.

_16_
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D. FC system performance and suitability evaluation

Figure 7 shows the experimental setup for evaluating the performance of the
FC stack with a short circuit controller. We selected a 200 W. FC stack featuring
open—cathode and dead-ended anode operations to evaluate the FC controller. The
oxidizer was supplied from ambient air using air-fans installed on the FC
stack(open—-cathode). The FC stack was pressurized by hydrogen gas(dead-ended
anode), which was purged periodically to prevent water flooding. High-purity
hydrogen was used without an additional humidifier for examining the effect of
short—circuiting on the performance of the FC stack. The hydrogen pressure was
regulated to 60kPa for all experiments. The hydrogen flow rate was measured
using a flow meter(TSM-120) to calculate the amount of hydrogen consumed
during the FC stack operation.

An electronic load (ESL-600) was used to obtain the I-V characteristics of
the FC stack. The temperature, voltage, and current in the FC stack were recorded
using a DAQ board (NI Corp.) and monitored via LabView software during the
entire operation. Before evaluating the short circuit control, the cooling fans and
purging valve controls were optimized to remove the heat generated by FC reaction
and prevent water flooding, respectively. Two cooling fans were installed at the FC
stack and the solenoid-type purging valve was connected to the end of its
Ho-outport. The air flux of the cooling fans was 1.2773 m’/min. The performance
of the FC stack was evaluated at various conditions of (a) rpm of the cooling fans
and (b) opening frequency of the purging value, and the results in the scenarios
with and without the application of short circuit control were compared.

The suitability of the developed fuel cell system with chemical hydride hydrogen
generator to the UAV applications was evaluated in the present study. First, the
performance of hydrogen generator based on the selected catalyst was evaluated.
Then, the possibility to be restarted after stopped for several hours was tested. In
addition, the operation stability of hydrogen generator according to the reactor

pressure was evaluated. The possibility of the stable hydrogen supply was

_18_
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examined by the long-term test. The hydrogen generator was integrated with the
100 W PEMFC stack and the power output was measured according to the
electronic load. In addition, it was evaluated that the hydrogen generator stably
supplied hydrogen to the fuel cell at various power demands. Finally, the hydrogen
generator was compared with the compressed hydrogen that has high purity of
99.999% and was verified to be suitable as a hydrogen storage method for UAV

applications.
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III. Results and discussion

A. Effect of controlling cooling fans and anode purging valve

Before applying humidification by short circuit control, the cooling fans and
anode purging valve were optimized. Figure 8 shows the response characteristic of
the FC stack according to the cooling fan control. The rotating speeds of the
cooling fans were varied in the range of 10 - 80% of their maximum rpm, and the
speed of response of the FC stack to the applied power load was different at
different speeds of the cooling fans. At 10%, 309, 5096, and 80% of the maximum
rpm, the times taken by the FC stack to generate 70 W of power were observed
to be 5.2, 3.3, 2.2, and 1.5 s, respectively, indicating that the response time reduced
as the speed of the cooling fan increased, because more oxygen was supplied to
the FC in proportion to the fan speed.

Figure 9 shows the voltage drop in the FC stack as a function of the purging
period (25-100 s) at a load of 3 A. The FC stack was also evaluated at different
purging durations in the range of 100-500 ms. Voltage drop refers to the
difference between the voltages at the start and end of the purging period.
Generally, the voltage in the FC stack decreases with time until the purging valve
1s reopened. At this point, the voltage is recovered, causing the spouting of water
in the FC stack. As seen in Fig. 10, the voltage drop increased with increase in
the purging period. For example, the voltage drops at purging periods of 25 and
100 s were 0.26-0.36 V and 1.19-1.60 V, respectively. In contrast, increase in the
purging duration at a longer purging period reversed the voltage drop
characteristics. When the purging period was fixed at 25 s, the voltage drops at
purging durations of 100 and 500 ms were 0.26 and 0.36 V, respectively, indicating

a slight increase in the voltage drop with increase in the purging duration.
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However, for a purging period of 100 s, the voltage drop at purging durations of
100 and 500 ms were 1.60 and 1.19 V, respectively, indicating a decrease in the
voltage drop.

The above results indicate that the voltage drop can be reduced by shortening
the purging period or extending the purging duration at a longer purging period.
This can be explained by the reaction of hydrogen with water inside the GDL. The
water inside the FC stack was dispelled by the hydrogen pressure supplied when
the purging valve was opened. In this situation, the inner condition of the FC stack
1s determined by the period and duration of the purging valve operation. At short
purging periods, the hydrogen gas is purged before being consumed while passing
through the GDL. Thus, the FC stack does not have sufficient time to react,
causing its performance to degrade because hydrogen is frequently purged.
Conversely, when the purging period is long enough to generate power smoothly,
water flooding is caused, again resulting in performance degradation. One of the
solutions to this problem is increasing the purging duration, as seen from the
reduction in the voltage drop when the duration was increased from 100 to 500 ms

at a purging period of 100 s.
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B. Performance improvement using short circuit technique

Figure 10 illustrates the improvement achieved in the FC stack performance
using short circuit control. In this experiment, short circuit current was applied at
2 s to the FC stack, and its performance was compared to that without short
circuit control. It was seen that performance was better at high load than at low
load. At 3 A load, the power output of the FC stack with short circuit control (98
W) did not show a great improvement over that without (107 W), but at 9 A load,
the improvement was much greater, with the output increasing from 218 to 252 W
when short circuit control was applied, a 16% improvement over the performance
without short circuit control.

Figure 11 shows the hydrogen flow rate upon operating the FC stack at 3 A
load, during which hydrogen gas was purged at different periods of short-circuiting
using the purging valve. Compared to operation without short circuit control, as
much as 05 L/min more hydrogen was consumed during operation at 2 s. The
measurement of hydrogen consumption across short circuit periods revealed 8.9%
more consumption with short circuit control (3.54 L/min) than without (3.25 L/min).
Furthermore, water was observed to be dispelled through the purging valve at high
loads, indicating that sufficient water was generated using short circuit control.

Figure 12 shows the I-V performance curves for the short circuit periods of 2,
10, and 60 s. The open-circuit voltage (in the case without short circuit control)
was lower (386 V) than those in the cases with short circuit control (> 42.0 V)
because dry hydrogen gas was directly supplied in the former case, causing
inadequate humidification in the FC stack. Thus, activation loss is expected to be
greater when short circuit control is not applied. When loads were applied, the
voltage decreased with increasing load, but the ohmic loss (a slope of the I-V
curve) was slightly lower in cases with short circuit control than in those without.
For example, for a load of 2-4 A, the ohmic loss was 0.90 & when short circuit
control was applied at 2 s and 1.64 Q without short circuit control, implying that

the inner resistance of the FC stack was reduced by the water generated by short
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circuit control. At high loads (> 4 A), the effect of short circuit control increased
with decrease in the period of short circuit. When a load of 8 A was applied, the
power output at short circuit periods of 2, 10, and 60 s were 218.8, 225.9, and 232.3
W, respectively. Thus, the power output was seen to improve with a reduction in
the short circuit frequency from the level without short circuit control (207.8 W).

Figure 13 shows hydrogen consumption as a function of current at different
short circuit periods. At low loads (0-4 A), hydrogen consumption increased with
an increase in the short circuit period. At loads of 0-2 A, hydrogen consumption
doubled (0.49 - 1.09 L/min) at a short circuit interval of 2 s from that when no
short circuit control was applied, whereas at high loads (> 6 A), it was nearly the
same regardless of short circuit control, except when applied at 2 s. At a load of 8
A, 326 L/min of hydrogen was consumed without short circuit control, and during
short-circuiting at 10 and 60 s, 3.26 and 3.24 L/min were consumed, respectively,
which are almost equal to the case without short circuit control. However,
hydrogen consumption was slightly higher at a short circuit period of 2 s, implying
that a very small short circuit interval results in excessive hydrogen consumption,
although it improves the performance of the FC stack.

At high current loads, hydrogen consumption was similar in cases with and
without short circuit control. Thus, at low loads, short circuit control should be
applied in long intervals or not at all, because the improvement in performance
relative to hydrogen consumption 1s not significant over different short circuit
periods. In contrast, at high loads, the short circuit period should be reduced to

maximize the power output even if it results in greater hydrogen consumption.
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C. Performance of hydrogen generator

The experimental result on reactivity and reusability of the used catalyst is
shown in Fig. 14. The 15 wt.% NaBH; solution of 80 mL was injected for 400
seconds and then after washing the catalyst it remained as it is for 1 hour. Next,
the system was restarted and the performance of hydrogen generation between the
first and the second time was compared. The start-up time for the pressure to
reach 3 bar at the second time became longer than that at the first time. However,
the reactor pressure stably maintained 4 bar at the normal operation mode. The
fuel was injected again to the reactor when the reactor pressure decreased down to
4 bar. The NaBH; solution of 0.13 mL was injected when the pump was operated
once for 50 milliseconds. If the operating time at the pressure lower than 4 bar
became long, the number of the fuel injection also increased to recover the
pressure. If the pressure was higher than 5 bar, hydrogen was discharged through
the purging valve. Therefore, the reactor maintained the pressure range of 4-5
bar.

The frequency of the fuel injection and the borate purging to recover the
pressure in the reactor is shown in Fig. 15. The duration when the pressure kept
lower than 4 bar became long from (a) to (d). The number of the fuel injection
increased with increasing the duration to recover the pressure in the reactor. When
the pressure exceeded 5 bar due to the excessive fuel supply, the number of the
borate purging also increased to maintain the pressure to be lower than 5 bar as
the number of the fuel injection increased from (a) to (d). Although the pressure
varied sharply, it could be controlled within the determined range by controlling the

operation frequency of the pump and the valve.
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D. Operating characteristics during the long-term test

Operating characteristics of the hydrogen generator during the long-term test
at the different hydrogen supply rate is shown in Fig. 16. The results were divided
into the section (a) and (b) according to the hydrogen supply rate of 1.2 L/min and
1.7 L/min, respectively. The hydrogen generated in the reactor was discharged at
the controlled flow rate through the regulator and orifice. Looking at the start-up
time of the section (a), the response time was required to fill the reactor with
hydrogen until the pressure reached 3 bar. After the start-up time passed, the
system mode changed from the start-up to the normal operation mode. For the
start-up time, the fuel more than desired was supplied, which caused the reactor to
be over—pressurized into the pressure higher than 5 bar at 50 seconds in Fig. 15(a).
Immediately, the pressure was controlled to 5 bar through the purging valve,
resulting that the hydrogen supply rate was maintained to 1.2 L/min. In addition,
the reactor temperature increased by 90°C due to the heat of reaction of the
excessive fuel with the catalyst.

After the system was stopped for 30 minutes, the hydrogen supply rate
increased to 1.7 L/min at the section (b). Thus, the pressure in the reactor was
dropped more sharply because hydrogen more than the section (a) was discharged.
Thus, the number of the fuel injection increased more compared to the section (a)
and the purging valve was also opened more frequently. The reactor maintained
the temperature near to 70°C which was relatively low compared to the section (a).
The cooling fans of the reactor were fully operated due to the rapid rise of
temperature and the NaBO: under the elevated temperature was discharged more
frequently through the purging valve. Thus, the temperature at the section (b) was
lower than that at the section (a). Although the reactor was operated for a long
time, the temperature was maintained to be suitable to sustain the hydrolysis of
NaBH; and to prevent the fuel from evaporating that caused hydrogen
contaminated. In addition, it can be seen that the hydrogen generation was stable

when the required hydrogen supply rate changed during the operation.
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E. Integrated performance with 100 W PEMFC

The performance of the PEMFC operated by the hydrogen generator is shown
in Fig. 17. The output power of the PEMFC as the electronic load increased is
shown in Fig. 17 (a). The reactor pressure and hydrogen supply rate during the
PEMFC operation is shown in Fig. 17 (b). The electronic load was increased
sequentially from 0 to 100 W and maintained 100 W after 180 seconds. Periodic
peaks of hydrogen supply rate were observed, which was to prevent the fuel cell
from water flooding by operating the purging valve that is connected to the
hydrogen venting port. The fuel injection frequency increased as increasing the
electronic load because the required hydrogen supply rate also increased. The
PEMFC consumed approximately 1.2 L/min of hydrogen to generate the electric
power of 100 W. As the increase of the electronic load, the hydrogen supply rate
increased and thus the hydrogen pressure in the reactor was dropped sharply.
Therefore, the fuel injection frequency also increased. The purging valve was open
more frequently according to the rapid rise of the pressure and then the borate
was discharged. The minimum operating pressure was dropped from 3.0 bar to 2.75
bar as the increase of the electronic load except for the pressure drop caused by
opening the purging valve for the NaBO; disposal. That was because the hydrogen
supply rate increased, however, the reactor was still buffering the rapid
consumption of hydrogen according to the electronic load. Therefore, the system
was operated stably according to the electronic load.

Compressed hydrogen with a high purity of 99.999% was used for comparison
with the hydrogen generator. The performance of PEMFC was measured using the
hydrogen generator and the compressed hydrogen, respectively. The performance
comparison of the hydrogen generator with the pure hydrogen is shown in Fig. 18.
It can be seen that there were no considerable differences in voltage and output
power between two cases. Form the result, it was verified that the PEMFC system
using the chemical hydride-based hydrogen generator makes it possible that the

stable hydrogen supply for the fuel cell-powered UAV.

_36_

Collection @ chosun



—— Current
454 — Voltage [A]
4{]_ e FU'HEF 1 -.-—.-||-1m
22y 80
sZw; g
o5 25 g0 o
s 3 20 =
7 -40
154
10- o
5-
ﬂ I 1 ] L] 1 u
0 50 100 150 200 250 300
Time (sec)
! Pressure <o
64 Flow Borate [B] L35
Pl.l .
Diice PUDNg 27sbar | .o z
ﬁ -2.5 g
w o
E "2.{} FD-
i 15 ©
a, 3
| L1.0 2
) HENI
0 : i 0.0
0 100 200 300

Time (sec)

Fig. 17 Performance of the PEMFC system using the hydrogen generator: (a) the
output power of the PEMFC as the electronic load increased and (b) the

reactor pressure and hydrogen supply rate during the fuel cell operation

_37_

ZICollection @ chosun



- \oltage HG
-= Power_HG
404 Voltage HT - 100
8- Power HT
- 80
> 35« ;3:
%‘-‘ -Eﬂ =
S 0 2

Eu L L} | ¥ 1 ] | | ﬂ
00 05 1.0 15 20 25 3.0 35 40 45

Current (A)

Fig. 18 Performance comparison of the hydrogen generator with the pure hydrogen

_38_

Collection @ chosun



IV. Conclusion

In this study, fuel cell system for UAVs are designed. First, the PEMFC stack
was short-circuited to humidify the electrolyte membrane and improve power
output for UAV applications. A PEMFC of dead-ended anode/open-cathode type
with dry hydrogen and not humidified externally was used. A short circuit
controller using a power-MOSFET was developed for the experiment. From the
results, the following conclusions were drawn:

1) Voltage drop varied with the control of the purging valve. At short purge
periods (0 -25 s), the voltage drop reduced as the purge duration decreased. On the
contrary, at long purge periods (75-100 s), it reduced with increase in the
duration.

2) Power output was improved by short—circuiting the FC. At low loads (0 -3
A), the improvement in the power output was not significant but at high loads
(7-10 A), it was quite noticeable, demonstrating a 16% increase from that at no
load or no short circuit.

3) When the FC was short-circuited, hydrogen consumption doubled at low
loads (0-2 A) but remained approximately the same as when the FC was not
short—circuited at high loads (6 -8 A).

4) FC performance was improved further by reducing the short circuit period.
When the FC was short-circuited at 2 s, hydrogen consumption was 8% more but
the power output increased by 16% at a load of 8 A. To enhance the power output
without using a short circuit controller, more FCs must be stacked, making the FC
system heavy, bulky, and thereby unsuitable for UAV applications. Therefore, using
a short circuit controller increases the specific power density of the FC stack and

results in a compact FC system.
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And second, the compact PEMFC system using the chemical hydride as a
hydrogen source was developed. The fuel cell system consists of three parts;
PEMFC stack, hydrogen generator, and fuel tank. The hydrogen generator had an
all-in-one reactor in which the NaBH,; hydrolysis took place and the generated
hydrogen was stored temporally. The NaBH; solution was stored in the fuel tank
that is easy to be detachable from the system, which facilitates the safe storage
and porterage. The performance of the hydrogen generator was evaluated at
various operation conditions. The NaBH,; solution was injected into the reactor
when the reactor pressure was less than 4 bar. On the other hand, when the
pressure was higher than 5 bar, hydrogen was discharged through the purging
valve. Therefore, the reactor maintained the pressure range of 4-5 bar. The fuel
injection frequency and hydrogen supply rate increased as increasing the electronic
load. The PEMFC consumed approximately 1.2 L/min of hydrogen to generate the
electric power of 100 W. As the increase of the electronic load, the hydrogen
supply rate increased and thus the reactor pressure was dropped sharply.
Therefore, the fuel injection frequency also increased. The purging valve was
operated more frequently according to the rapid increase of the pressure. Based on
this control mechanism, the hydrogen supply to the fuel cell was stabilized to be

suitable for UAV applications.
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