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I . Introduction

After the Fukushima, nuclear power plant accident occurred by the East Japan
Great Earthquake, the public’s concern and interest in the safety of nuclear power
plants has increased considerably. The cause of these concerns and interest is
because the operator does not quickly check the status of the plant in an incident
or accident situations or respond appropriately to each situation.

The status of a nuclear power plant can be confirmed from the safety-related
parameters (reactor vessel water level, neutron flux, pressurizer pressure,
pressurizer water level, steam generator pressure, steam generator water level, etc.).
In particular, to check the status of a nuclear power plant and take a proper action,
it 1s very important to measure the safety-related parameters for a very short
period in the initial event conditions that can lead to a serious accident, such as a
loss of coolant accident (LOCA) and steam generator tube rupture (SGTR). In
particular, the reactor vessel water level is essential information for confirming the
cooling capability of the nuclear reactor core, to prevent the reactor core from
melting down and to manage severe accidents effectively. In addition, it cannot be
confirmed that the reactor vessel water level is being measured properly in severe
accidents, where the reactor core integrity is uncertain. Therefore, it is important to
predict the reactor vessel water level to make provisions against severe accidents.

Many artificial intelligence techniques have been applied successfully to nuclear
engineering areas, such as signal validation [1]-[3], plant diagnostics [4]-[5], event
identification [6]-[9], etc. In this paper, the FNN and GMDH model were proposed
to predict the reactor vessel water level, which has a direct impact on the
important times (time approaching the core exit temperature exceeding 1200°F, core
uncovery time, reactor vessel failure time, etc.). To predict the water level, the
break size and other measured signals were used. The break size i1s not a

measured variable. Instead, it is a predicted variable using the trend data for a



short time early in the event proceeding to a severe accident. The LOCA
classification algorithm for determining the LOCA position and break size prediction
algorithm was explained in previous papers [10]-[12]. Because the break size can
be predicted accurately, the break size can be used as an input variable for
predicting the reactor vessel water level.

The FNN and GMDH are a data-based model that requires data to develop and
verify it. Because the real severe accident data does not exist, it is essential to
obtain the data required in the proposed model using numerical simulations. This
data was obtained by simulating severe accident scenarios for the Optimized Power

Reactor 1000 (OPR1000) using MAAP4 code [13].



0. Prediction of the reactor vessel water level

A. FNN(Fuzzy neural network) method

1. FIS(Fuzzy inference system)

In general, the conditional rule, which is described as if/then rule, is used in the
FIS, and is composed of a pair of the conditions and conclusions [14]. The fuzzy
inference engine, as shown in Fig. 1, uses fuzzy if/then rules to determine the
mapping from fuzzy sets in the input universe of discourse to fuzzy sets in the
output universe of discourse based on a fuzzy logic principle. A fuzzifier needs to
be added to the input because the inputs of the FIS are real-valued variables. The
fuzzifier maps the crisp points in to the fuzzy sets in .The membership function
in the FIS maps each element of V to a continuous membership value between
zero and one. The membership function has no restriction of shape. In general, the
Gaussian, triangular, trapezoid and bell-shaped functions are used in the formula of
the membership function. In addition, because the reactor vessel water level is a
real value, the FIS output should be a real value that requires a defuzzifier to the
FIS output. On the other hand, an FNN consists of a FIS and its neuronal training
system. To predict the water level in the reactor vessel using FNN, it is important
to find the optimal input variables among several variables, and are used to predict
the water level in the reactor vessel.

In this study, instead of the Mamdani-type FIS [14], which requires a defuzzifier
in the output unit, the Takagi-Sugeno-type FIS [15], which does not require the
defuzzifier shown in Fig. 1 because its output value is real, were used. In the FIS,
an arbitrary ¢—th fuzzy rule can be expressed as follows(first-order

Takagi-Sugeno-type):



If x,(k)is A;) AND--- AND z, (k)is A, (1)

m>?

then y; (k) is fi(zy (), z,, (k)

where
xy, .2, - input values of FIS
A, A, + membership functions

y; - output of the ¢—1th fuzzy rule

q;; - weight of the ¢—th rule and the j—th fuzzy input
r; - bias of the ¢—th fuzzy rule

n . number of fuzzy rules

m . number of input values

Fuzzy Inference
Engine

fuzzy set in V' fuzzy set in W

xinV yinW

v

Fuzzifier Defuzzifier

Fuzzy Rule Base

Fig. 1. Fuzzy inference system(Mamdani-type FIS)

The number of N input and output training data of the fuzzy model
27 (k)= x"(k),y(k)) (where x”(k)=(z,(k),z,(k),~,xz, (k) and k=1,2,---,N) were
assumed to be available and the data point in each dimension was normalized.
Generally, there is no special restriction on the shape of the membership functions.
In this paper, the symmetric Gaussian membership function was used to reduce the

number of the parameters to be optimized.
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Ayl (k) =e RS )

In Eq. (1), the function, f;(z(k)), is expressed as the first-order polynomial of

input variables and the output of each rule is expressed as follows:

m

f,(X(k)): thJxJ(k)"‘Tz (3)

i=1

The FIS expressed as Eq. (1) is called the first order Takagi—-Sugeno-type [15]
fuzzy model because the arbitrary ¢—th rule output, f;, is a real value and is
expressed as the first-order polynomial for the inputs. The output y(k) of the FIS

is calculated by summing the weighted fuzzy rule outputs y,; as follows:

y(k) = Ely (k) (4)

where

Yo (k) = w, (k) (x(k)) 5)

By = e ®) ®)
D k)

w, (k) —HA (2, (k) @)

Finally, the output y(k) is expressed as the vector product as follows:



y(k) =w"(k)q (8)

where

aq= [qll Tt py Qi " Qo T1 77 7”"]

W(k/) = [El (k/)‘rl (k/) t wn (k)xl (k) ...... wl (k)xn), (k) t
The predicted outputs for a total of N input and output data pairs induced from

Eq. (8) can be expressed as follows:

y=Wq 9)

The vector q is called a consequent parameter vector, and the matrix W consists
of input data and membership function. The output values of FIS are expressed in
a matrix, W, of Nx(m+1)n dimensions and a parameter vector q of (m+1)n

dimensions.



T Gy

Vim =Wy f n

..flai (xl s FERIe x.l;lr)
Fig. 2. Fuzzy neural network(FNN)

Fig. 2 describes the calculation structure of the FNN model. The symbols, ][]
and N, indicate multiplication and normalization calculations, which are expressed
as Eq. (7) and (6), respectively. The second symbol, [], is expressed as Eq. (5),
and the symbol X is expressed as Eq. (4), which is the summation of the

weighted fuzzy rule outputs.



Generate initial chromosomes

’l

Evaluate chromosomes

s the maximum generation
approached?

Genetic operation such as selection,
crossover, and initiation for population

!

Least squares method for consequent
parameter calculation

!

Fuzzy model identification

|

Fig. 3. Optimization procedure of the FNN model

Fig. 3 shows the optimization procedure of a FNN model that is a FIS combined
with its neuronal training system. The optimization procedure optimizes each
antecedent and consequent parameters using both the genetic algorithm and least
square method. In genetic algorithms, the variables to be optimized are encoded
within the chromosome, and the superiority regarding each chromosome is judged

by the fitness function. If the antecedent parameters are determined using a genetic

_8_



algorithm through selection, crossover and mutation, the resulting parameters
appear like Eq. (9) as a first-order combination. Therefore, the consequent

parameters can be calculated easily using the least squares method.

2. Training of fuzzy inference model

The FNN model, which was developed to predict the reactor vessel water level,
was designed by training from the given data. The proposed model should also be
optimized to maximize the prediction performance. For this purpose, a genetic
algorithm was used in this study. Actually, the genetic algorithm is the most
useful method for solving the optimization problem for a range of purposes [16],
[17].

The genetic algorithm uses a fitness function that assign each chromosome the
score (degree of optimization) in the current population, and solves the optimization
problem by the process of the laws of nature, such as selection, crossover and
mutation operators. To predict the signals using Al techniques, the prediction error
makes a difference depending on how the input signals were selected. In addition,
eliminating the unnecessary signals can reduce the time for training because it
simplifies the structure of the AI technique. On the other hand, even if the proper
input signals were selected, the prediction performance is affected by how the
time-step data is utilized. Therefore, in this study, the training data, which
contained good information using the Subtractive Clustering (SC) technique, was
selected from all acquired data [18].

The data points generally form clusters in high dimensional data space, and the
FNN model is trained using the data points, which are located in the center of
each cluster that is slightly different from the physical center of the cluster,
because the center of each cluster has the most information. The SC technique
uses the following function as a measure of the potential of each data, and it can

be defined as a function of the Euclidean distance to all other input values [18].



Plk)= Y HIEW DI g g N (10)

In Eq. (10), r is the radius of neighboring parts and it affects the potential

significantly. Through this equation, the potential of the data points is high when
surrounded by a large volume of neighboring data. The data point with the highest
potential was selected as the first cluster center. Let x (1) be the location of the
first cluster center and P'(1) be its potential value. The potential of each data

point is revised by the following formula:

P(k) - P(k) B P*(l)ele I X(k:)—x*(l) I 2/7-2

Jk=1,2,.,N, 11)

where r, is also the radius, which is normally greater than r, in Eq. (10). As
shown in Eq. (11), the data points near the first cluster center will have a greatly
reduced potential, and are unlikely to be selected as the next cluster center. When
the potential of all data points is revised according to Eq. (11), the datum with the
highest remaining potential is selected as the second cluster center, x (2). Eq. (11)
is repeated by substituting P (1) and x (1) with P(i) and x (i), respectively, until
the inequality P(i) <eP'(1) is true or the required number of training data is
obtained.

The antecedent parameters of the membership functions were optimized using a
genetic algorithm and the input signals used were selected using the correlation
coefficient matrix of the input/output signals. In addition, the least squares method
was used to calculate the consequent parameters. Many optimization methods use
some transition law to determine the next optimal point. This moves from one
point in space to the next point. On the other hand, these point-to-point methods
can be dangerous because the probability of finding the wrong peak in the search

space with many peaks i1s quite high. By contrast, the genetic algorithm is

_10_



ascending many peaks in parallel based on the abundant database of many points.
Therefore, the chances of finding a false peak are much lower than with
point—-to-point methods, and there is no concern of being stuck in a local optimal
point [16]-[17].

In this study, the training data was used to calculate the antecedent parameters
of the fuzzy rules. The test data was used to check the developed model and is
different from the training data set. The fitness function in the following equation

was intended to minimize the maximum error and RMS error:

F=exp(—uE, — pu,F,) (12)

where

B =y S w®) i)

E, = max(y(k)—y(k))

Variable y means the actual measured value, and y is its value predicted using
the FNN model. If the antecedent parameters are fixed by the genetic algorithm,
the results of the proposed model can be explained by the development of some
functions. Therefore, the least squares method was used to determine the
consequent parameter of fuzzy rules. The consequent parameter, q, was chosen to

minimize the objective function. This consists of the square error between the

actual value y and its predicted value y, and it is expressed as follows:

]Vl,

7= 3= 507 = 3 =" (e = 45=3)

k=1 2

(13)
where

_11_



y=ly(1) y(2) - y(N)I" and y=[y(1) y(2) - y(V)I"

In Eq. (13), N, is the number of training data. A solution for minimizing the

above objective function can be obtained using the following equation:
y=Wq (14)

To solve the parameter vector, q, the inverse matrix must exists in a matrix, W.
On the other hand, there is no inverse matrix generally. Therefore, the
pseudo-inverse of the matrix W was used. The parameter vector, q, is easy to

solve from the pseudo-inverse as shown below.
q=(W'W) 'W'y (15)

The parameter vector, q, can be calculated from a series of input and output data

pairs.

B. GMDH(Group method of data handling) method

In order to solve the system problem such as control, monitoring, prediction,
diagnosis and so on, a lot of mathematical methods have been studied.

The GMDH method is one of them. The GMDH method which is one of the
data-driven models such as ANN (Artificial Neural Network) can be used for the
break size prediction in this paper. Data-driven models have many advantages of
easy implementation and accuracy, and famous for superior capability in modelling
complex systems.

In this paper, the GMDH method has been used to develop a model for the

water level prediction in the reactor vessel.

_12_



1. Basic GMDH algorithm

The GMDH algorithm is a way of finding a function that well expresses a
dependent variable from independent variables. This method can find a correlation
in the data automatically to improve the prediction accuracy and select the optimal
structure of the model. The GMDH algorithm is similar to multiple regression
model, but it uses the data structure. The data set is divided into three subsets.
The reason of dividing is to prevent over-fitting and maintain model regularization
through cross—validation. Fig. 4-5 show the GMDH data structure and the GMDH

structure.

X X ot Xy M
X1 Xy Xom g
training data set
X Xt Xy Vi
verification data set — development data
xnl xn2 U xnm yn
Xx1  Xko Xim Yk
test data set
Xnt Xna 7 X Yn

Fig. 4. GMDH data structure

_13_



Input variables (x,xz, ***,X,,)

N

-

X1 X2 X1 X3 Xm-1 Xm
Partial poly. Partial poly. eee Partial poly.
Z:l ZYZ ;ml
A A
< Evaluation of partial polynomials / Self-selection >
Zn 21
A A A A A A
Partial poly. Partial poly. o0 Partial poly.
Z;l Z;Z Z;mz
A A A
< Evaluation of partial polynomials / Self-selection >

i v

i

%

Zg: i Zgzi i ZGmGi
Partial poly. 0 Partial poly.
A y
( Evaluation of partial polynomials / Self-selection )

l

Final optimized polynomial
Fig. 5. GMDH structure
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The original GMDH method employed the following general form at each level of

the successive approximation:
y=flz,x;)=A+ Br, + ij+Dxf+Ex§+inxj (16)

The coefficient parameters of the reference function which is written above such
as A,B,...,F can be obtained by using a least square method in an arbitrary pair (
z;,x;) from independent variables x= (z,,x,--;x,,). This method takes a form of
hierarchical polynomial regression network to model various complex input-output
relationships. However, more complicated function forms can be used such as ratio
terms (x,/ z;), trigonometric terms (sin(cxz), cos(cz)), exponential terms (exp(—cx))
and so on in accordance with complexity of the system. The GMDH algorithm
uses the Kolmogorov-Gabor form of a high-order polynomial. The
Kolmogorov-Gabor form that is called as Ivakhnenko polynomial can be expressed

as follows:

m m m m m m

y=ay+ ez, + Y, Eaijxixj +3 ) g T T (17)
1

i=1 i=1j=1 i=1j=1k=

where x= (z,25,--,2,,) is an input vector and a= (ay,a;a;a5,, ) is a coefficient
vector that is a weight vector of Kolmogorov-Gabor polynomial. The GMDH
algorithm can determine the structure of the model and also calculate the system
output of the most important input simultaneously. This uses the composition of
the lower-order polynomials mentioned above, which means that the GMDH
algorithm amalgamates lower order polynomials at each generation to reach the
subsequent generation. This process continues until the GMDH model begins to
show over-fitting in training or exceeds the maximum calculation time. If an

evaluation value (R) is greater than a reference value, the regression equation is

fallen behind. Otherwise, the regression equation 1is survived. The survived

_15_



regression equation value is used as a training data of the new generation. This
process 1s conducted about all possible pairs of independent variables. The
descendant with the smallest evaluation value in the evaluation of this generation
1s selected as the optimum fit. If the smallest evaluation value of the current
generation 1s smaller than that of the previous generation, the above process 1is
performed repeatedly. When over—fitting of the evaluation value (RS, ) is found
through alternation of generation, the process is stopped. That is, if the smallest
evaluation value of the current generation is larger than that of the previous
generation, the process is stopped.

As shown in Fig. 6, if over—fitting is found, the process of the algorithm is
stopped and the optimum fit of the previous generation is selected as the optmized

model that predicts the break size.

g

Rmin
A

GMDH process
stop

1 2 3 4 5 « « « o o . . g

Fig. 6. Evaluation value of each generation
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2. Main implementation steps

The GMDH algorithm generates and tests all input-output combinations. Each
element in the system that is indicated as a rectangle box in Fig. 5 executes a
function of two inputs. The coefficient parameters of Eq. (17) are decided by using
a normal least square method, and the variables of the elements are calculated. A
threshold value for comparison with the evaluation value in each generation decides
whether the outputs of the elements in a generation are acceptable. The output of
an element is eliminated in a current generation when the result is larger than the
threshold value. Those variables or elements that are useful for predicting the
proper output are used at the next generation. The generations are repeated until
the satisfactory results are obtained. This process is similar to Darwin’s theory.
The detailed main implementation steps are given below.

First step, construct each of input and output variable or data of the system.
The data structure is modeled and divided into the training and checking data sets,
and preprocess the data to normalize them.

Second step, choose the external inputs to the GMDH network. Calculate the
regression polynomial parameters for each pair of input variables involved in the
training data set using the least square method. Calculate the m(m—1)/2

high-order variables in place of the original input variables z;,x,,:: ,z,, in order

to predict the output.

Third step, the algorithm designs a group of new  variables
(m,=m, (m,_,—1)/2) in the previous step. Here, m, is the number of input
variables for generation (g). A criterion is used to evaluate the new variables in
the generation ¢g and is related with the error for the checking data, which is

defined as follows:

_17_



= for j=1,2,.m, (18)

Last step, when over-fitting is found through checking, the above mentioned
process is stopped. If the generation continues, the model will become over—fitted.
The polynomial with the minimum error criterion is selected as the final
approximate model. Otherwise, the above steps are repeated.

At the end of the GMDH algorithm, regression parameters are stored. The
estimated coefficient for the high-order polynomial is determined by tracing back
the GMDH structure until it reaches the original variables z,,z,, - ,z,, . As shown
in Fig. 7, the tree structure with the optimum fit at the top is called an

Ivakhnenko Tree.

% (Optimum Fit)

Kth generation

4th generation

A\
0

| [ X X ] 3rd generation

[ X X ] 2nd generation

6 oo 1st generation

Fig. 7. Ivakhnenko tree
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M. Accident simulation data

The proposed model was applied to predict the water level in the reactor vessel.
To train and independently test a proposed model, it is essential to obtain the data
using numerical simulations because there is little real accident data. Therefore, the
training and test data of the proposed model was acquired by simulating the severe
accident scenarios using the MAAP4 code regarding the OPR1000 nuclear power
plant.

The simulation data was divided into the break position and break size of the
loss of coolant accident (LOCA). The break position was divided into hot-leg
LOCA, cold-leg LOCA and SGTR, and the break size was divided into a total of
270 steps. In addition, the simulations were performed under the conditions that the
Safety Injection System (SIS) does not work properly. In accidents concerned with
LOCAs, because the LOCA position and size are not detected, they must be
identified and predicted. The LOCA position was identified completely and the
break size was predicted accurately in previous studies [10]-[12], with an
approximately 1% error level. Therefore, the break size signal, which is an input
signal to the FNN model, was assumed to be predicted from the algorithms of
previous studies.

Through the simulations, a total of 810 cases of severe accident scenarios were
obtained. This data was composed of 270 pieces of hot-leg LOCA, 270 pieces of
cold-leg LOCA and 270 pieces of SGTR.

_19_



IV. Verification of the proposed model

In severe accident situations, the main concern is whether or not there is
sufficient coolant in the reactor core, which is described as the reactor vessel
water level. The input variables for predicting the reactor vessel water level are
the elapsed time after reactor shutdown, the predicted break size and the
pressurizer pressure. These input variables are strongly correlated with the output

variable of the reactor vessel water level.

A. FNN model

The parameter values used are concerned with the genetic algorithm and the FIS

are as follows:

n =230 . number of fuzzy rules
crossover probability = 10096

mutation probability = 0.05%

Fig. 8-10 show the predicted reactor vessel water levels and their errors for the
test data in the hot-leg LOCA, cold-leg LOCA, and SGTR situations, respectively.
The test data is different from the data used to develop the FNN model and
consists of elapsed time, predicted break size, pressurizer pressure, and reactor
vessel water level. In this study, 100 data points in each LOCA such as hot-leg
LOCA, cold-leg LOCA and SGTR were selected as test data points. As shown in
Fig. 8 and Table 1, the prediction errors of the test data for hot-leg LOCA are
inside the 1.93m error band and their RMS error is 0.34m.
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Fig. 8. Prediction performance of the FNN model in hot-leg LOCA
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TABLE 1. Performance of the FNN model in hot-leg LOCA

Training data Test data
Break position - :
Maximum Maximum
RMS error(m) RMS error(m)
error(m) error(m)
Hot-leg 49418 0.2649 1.9270 0.3447

As shown in Fig. 9 and Table 2, the prediction

errors of the test data for the

cold-leg LOCA are inside the 2.0lm error band and their RMS error is 0.45m.
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TABLE 2. Performance of the FNN model in cold-leg LOCA

Training data Test data
Break position - :
Maximum Maximum
RMS error(m) RMS error(m)
error(m) error(m)
Cold-leg 3.4524 0.2808 2.0138 0.4468

As shown in Fig. 10 and Table 3, the prediction errors of the test data for the
SGTR are inside the 1.31m error band and their RMS error is 0.33m.
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TABLE 3. Performance of the FNN model in SGTR

Training data Test data
Break iti
real position Maximum Maximum
RMS error(m) RMS error(m)
error(m) error(m)
SGTR 1.9912 0.2346 1.3081 0.3256

Table 4 summarizes the prediction performance results of the proposed FNN
model. This table shows that the RMS errors for the training data are
approximately 0.26m, 0.28m and 0.23m for the hot-leg LOCA, cold-leg LOCA, and
SGTR, respectively. The RMS errors for the test data are approximately 0.34m,
0.45 and 0.33m for hot-leg LOCA, cold-leg LOCA, and SGTR, respectively. Even if
the prediction error is increased a little, the proposed FNN model accurately
predicts the reactor water level that is the range of 7.33m (hot-leg height).
Sometimes, although the large errors are shown, the RMS error is approximately

0.37m for the test data.

TABLE 4. Performance of the FNN model

Training data Test data
Break position
Maximum Maximum
RMS error(m) RMS error(m)
error(m) error(m)
Hot-leg 4.9418 0.2649 1.9270 0.3447
Cold-leg 3.4524 0.2808 2.0138 0.4468
SGTR 1.9912 0.2346 1.3081 0.3256
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Until now, it was assumed that the input data have no instrument error.
Therefore, the FNN model was tested using the input data with a random error to
check the effect of instrument error. The errors were assumed to be inside the 3%
band or 5% band. Table 5 shows the effect of the instrument errors.

As shown in Table 5, the FNN models have a little larger error than the case
without error. The RMS errors are 0.40m and 0.43m for 3% error band and 5%
error band, respectively. The prediction performance was not degraded much due to
the measurement uncertainty. We could predict the reactor vessel water level with
approximately RMS error of 0.4m even if the input signals have measurement

uncertainty.

TABLE 5. Effect of instrument error

Test data
With input error With input error
Break Without input error
. (3% error band) (5% error band)
position
Maximum RMS Maximum RMS Maximum RMS
error(m) | error(m) error(m) | error(m) error(m) | error(m)
Hot-leg 1.9270 0.3447 2.0773 0.4119 2.5948 0.4288
Cold-leg 2.0138 0.4468 2.0266 0.4421 2.0474 0.4776
SGTR 1.3081 0.3256 1.2630 0.3354 15735 0.3742
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B. GMDH model

In order to predict the reactor vessel water level, the input signals are selected
by considering the correlation between the measured or predicted input signals and
the reactor vessel water level. Input signals of the GMDH model were divided into

two cases. Input signals of each case are shown in Table 6.

TABLE 6. Input signals of each case

Input signals

Case 1 time, predicted break size, PRZ pressure

Case II time, predicted break size, sump water level

Fig. 11-13 show the predicted reactor vessel water levels and their errors for the
test data in the hot-leg LOCA, cold-leg LOCA, and SGTR situations, respectively.
The test data is different from the data used to develop the GMDH model and
consists of elapsed time, predicted break size, pressurizer pressure, sump water
level and reactor vessel water level. It was assumed that the input signals have no
instrument error. Therefore, the GMDH model was tested using the input data with
a random error to check the effect of instrument error.

Table 7. and Fig. 11-13 show the predicted reactor vessel water levels and their

errors using case I .
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TABLE 7. Prediction performance of the GMDH model(case I )

o Test data Test data
Training data
Break (without input error) | (with 5% input error)
position | Maximum RMS Maximum RMS Maximum RMS
error(m) | error(m) error(m) | error(m) error(m) | error(m)
Hot-leg
1.65 0.17 0.99 0.19 1.02 0.20
LOCA
Cold-leg
1.72 0.16 1.29 0.21 1.32 0.22
LOCA
SGTR 0.83 0.10 0.61 0.13 0.71 0.13

As shown in Table 7, the GMDH model(using case I) have a small error than
the FNN model. The RMS errors are approximately 0.17m without input error and
0.18m with 5% input error, respectively.

Table 8. and Fig. 14-16 show the predicted reactor vessel water levels and their

errors using case II.
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(b) reactor vessel water level error versus break size and sump water level
Fig. 16. Prediction performance of the GMDH model
in SGTR using case II
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TABLE 8. Prediction performance of the GMDH model(caseIl )

Test data Test data
Training data
Break (without input error) | (with 5% input error)
position | Maximum RMS Maximum RMS Maximum RMS
error(m) | error(m) error(m) | error(m) error(m) | error(m)
Hot-leg
1.72 0.18 091 0.21 1.47 0.33
LOCA
Cold-leg
1.32 0.18 1.09 0.22 1.06 0.22
LOCA
SGTR 0.91 0.09 0.67 0.14 0.67 0.14

As shown in Table 8, the GMDH model(using case II) have a small error than

the FNN model. The RMS errors are approximately 0.15m without input error and

0.23m with 5% input error, respectively.

The prediction performance was not degraded much due to the measurement

uncertainty. We could predict the reactor vessel water level with RMS error of

approximately 0.17m(using case I) and 0.23m(using case II) even if the input

signals have measurement uncertainty.
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V. Conclusions

In this study, the reactor vessel water level prediction model was developed in
severe accident circumstances by using FNN and GMDH method. The training data
was selected from all the acquired data using an SC method to train the proposed
FNN model with more informative data. The developed FNN and GMDH models
predicted the reactor vessel water level using some of the measured or predicted
signals except for the reactor vessel water level. The developed model was verified
based on the simulation data of OPR1000 using MAAP4 code.

The simulations showed that the performance of the developed FNN and GMDH
models were quite satisfactory but a few large errors were observed occasionally.
On the other hand, it will be possible to predict the reactor vessel water level
precisely if the developed FNN model can be optimized using a variety of data.
Also, the prediction result of the GMDH model is slightly superior to the FNN
model.

The developed prediction model will be helpful for providing effective information

for operators in severe accident situations.
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