CHOSUN

Microbubble Column에 의한 휘수연석의 부유선별에 관한 연구

Metadata Downloads
Author(s)
강현호
Issued Date
2010
Keyword
Microbubble Column|Flotation, 부유선별|Molybdenite, 휘수연석
Abstract
Abstract

Flotation of Molybdenite by Microbubble Column


Kang Hyun Ho
Advisor : Prof. Han, Oh-hyung, Ph.D.
Dept. of Energy & Resources Engineering
Graduate School of Chosun University



Molybdenite, commercially the most important ore mineral of molybdeum (not produced as metal in nature), is relatively abundant in compared to other metallic minerals in Korea. But, as the grade of raw ore from the domestic mines is too low (below Mo 0.5 %), it is required to develop a new separation technique, suitable for domestic mines, for the efficient separation of low grade molybdenite. Therefore, in this study, the results below were acquired by conducting a microbubble column flotation on 6 molybdenite samples changing conditions such as the kind of reagent and its amount, the amount of wash-water and air flow rate to confirm the flotation, the efficient depression of gangue mineral and the possibility of improving the flotation efficiency through an establishment of appropriate reagent and its optimal amount and elementary technology.

41.4 % Mo was obtained with 84.75 % recovery by conducting a batch flotation on the raw ore of Shin-Yeomi mine molybdenite(Mo 0.4 %). But, in the result of conducting microbubble column flotation, the efficiency of flotation was low due to the low grade of molybdenite ore(0.4 %) and fine particles of impurity. Also, 52.5 % Mo was obtained with 62.28 % recovery by conducting a column flotation on a batch flotation concentrate (Mo 28.1 %).

The product with 53.5 % Mo and Cu(impurity) contents of 0.86 % was obtained by making an experiment to improve the grade (of Mo) and depressing Cu on the first concentrate of KMC(Mo 21.8 %). However, as the recovery was low, marking 33.88 %, and contents of Cu was over 0.5 %. it is considered that the additional experiment to improve the recovery and depressing Cu should be made.

By employing microbubble column separation technique on the imported concentrate of KAF(Mo 48.7 %), a fine particle separation technique, able to recover high quality concentrate(over Mo 57 %) more than 90 % without cleaning was established. Also, as a result of separate SEM & mapping of each element on feed concentrate and tailing, in the case of Cu(impurity), limit on complete separation was identified due to the bond between Cu ultra fine particle under 6.62 ㎛ and Mo.

As a result of performing XRD and composite analysis on the first concentrate of Dong-Won NMC(Mo 17.4 %), quartz, grossular and hedenbergite existed as gangue minerals. Also, when an experiment was made without separate grinding process to confirm the possibility of microbubble column's continuous flotation process, there was a limit to improving the grade up to over Mo 36 %. Therefore, after 5 minutes grinding time, Mo 54.8 % was obtained with 88.26% recovery at a condition of DF 250 as frother (3 L/ton), sodium silicate as depressant (1 kg/ton), Lime (1 kg/ton), ATCC (10 mL), wash water of 450 mL/min. and air flow rate of 830 mL/min.

The first concentrate of Dong-Won NMC added with the flocculant in the precipitating and dewatering process of tailings in order to recycle circulation water showed Mo grade 20.4 % and had no difference with the fourth sample concerning components. However, unlike the fourth sample, on microbubble column flotation, the efficiency of flotation was low marking Mo 45.2 % and the recovery 27.46 %. Also, in the result of conducting a batch flotation on a same sample in KIGAM (by Jeon and Park), for improving the grade and recovery, it was confirmed that the amount of pH needs to be adjusted to the range of pH 5 ~ 6 (which is subacid).

It was confirmed that a final concentrate of Dong-Won NMC(Mo 50.4 %) was formed with high grade over 57 % Mo in relative coarse particle range of 60 × 140 mesh. Also, an experiment was made to confirm the possibilities of increasing the grade and recovery of Dong-Won NMC`s final concentrate. As a result, Mo 58.6 % (MoS2 97.83 %) was obtained with 87.47 % recovery at a condition of 15 minutes grinding time, kerosene as collector 0.1 L/ton, AF 65 as frother 7.2 L/ton, wash water of 630 mL/min and air flow rate of 1,197 mL/min.

In this study, it was confirmed that a microbubble column flotation needs a separate re-grinding process and a large amount of frother to maintain stable bubble layer compared to a batch flotation. However, about 50 % Mo was obtained with about 80 % recovery from 5 ~ 6 times of cleaning stage in a batch flotation, whereas more than 54 % Mo was obtained with over 85 % recovery from only 1 time of flotation in a microbubble column flotation. Also, as the raw ore with low grade of 0.4 % showed low flotation efficiency due to accompanied floating fine particles of gangue mineral compared to that in a batch flotation, it was confirmed that it is more efficient to conduct a microbubble column flotation on the 1st concentrate of batch flotation.
Alternative Title
Flotation of Molybdenite by Microbubble Column
Alternative Author(s)
Kang Hyun Ho
Department
일반대학원 에너지자원공학
Advisor
한오형
Awarded Date
2011-02
Table Of Contents
목 차

List of Tables ⅴ
List of Figures ⅶ
Abstract ⅻ

제 1 장 서 론 1

제 2 장 이론적 배경 10
제 1 절 부유선별 11
1. 부유선별 이론 11
2. 접촉각 13
3. 제타전위 15
4. 부유선별기 17
가. Denver sub-A type batch 부선기 18
나. Column 부선기 19
5. 부선시약 26
제 2 절 휘수연석의 결정 구조 31

제 3 장 시료 및 실험방법 33
제 1 절 시료의 특성 33
1. 화학성분 33
2. 입도별 특성 35
가. 신예미 광산 몰리브덴 원광 35
나. KMC 1차 정광 36
다. 광양합금철 수입 정광 37
라. 동원 NMC 1차 정광 38
마. 응집제가 혼입된 순환수를 이용한 부선공정에서 회수된
NMC 1차 정광 39
바. 동원 NMC 최종 정광 40
3. 계면특성(접촉각) 41
4. 전기계면 특성(제타전위) 44
5. 광물학적 특성 46
가. 신예미 광산 몰리브덴 원광 46
나. KMC 1차 정광 47
다. 광양합금철 수입 정광 49
라. 동원 NMC 1차 정광 50
마. 응집제가 혼입된 순환수를 이용한 부선공정에서 회수된
NMC 1차 정광 53
바. 동원 NMC 최종 정광 55
제 2 절 실험방법 57
1. 시료의 분선 59
2. 부유선별 기기 60
3. 부선시약 63
4. 실험공정도 64
가. 신예미 광산 몰리브덴 원광 시료의 부선공정 64
나. 동원 NMC 1차 정광 시료의 부선공정 65
다. 기타 시료의 부선 공정 66

제 4 장 실험결과 및 고찰 67
제 1 절 신예미 광산 몰리브덴 원광 67
1. 일반부선(Batch flotation) 67
가. 광액농도에 따른 영향 67
나. 포수제 종류에 따른 영향 69
다. 포수제 첨가량에 따른 영향 70
라. 기포제 종류에 따른 영향 71
마. 기포제 첨가량에 따른 영향 72
2. Microbubble column 부선 73
가. 분쇄시간에 따른 영향 73
나. 포수제 첨가량에 따른 영향 74
다. 세척수량에 따른 영향 75
라. 급광 품위에 따른 부선효율 비교 76
마. SEM 및 원소별 mapping 77
3. 결과 80
제 2 절 KMC 1차정광 81
1. 분쇄시간에 따른 영향 81
2. 포수제 종류에 따른 영향 83
3. 기포제 종류에 따른 영향 84
4. 억제제 종류에 따른 영향 85
5. 세척수량에 따른 영향 87
6. 결과 88
제 3 절 광양합금철 최종정광 89
1. 분쇄시간에 따른 영향 89
2. 기포제 종류에 따른 영향 91
3. 기포제 첨가량에 따른 영향 92
4. 급광량에 따른 영향 93
5. 세척수량에 따른 영향 94
6. 공기주입량에 따른 영향 95
7. SEM과 원소별 mapping 97
8. 결과 100
제 4 절 동원 NMC 1차정광 101
1. Microbubble column 부선 연속처리공정 101
가. 기포제 종류에 따른 영향 101
나. 억제제 종류에 따른 영향 103
다. 세척수 첨가량에 따른 영향 104
라. 공기주입량에 따른 영향 105
2. 분쇄를 통한 입도조절 106
가. 분쇄시간에 따른 영향 106
나. 기포제 종류에 따른 영향 107
다. 억제제 종류에 따른 영향 108
라. 세척수 첨가량에 따른 영향 109
마. 공기주입량에 따른 영향 110
바. 품위 및 회수율 향상을 위한 추가 실험 111
사. SEM과 원소별 mapping 112
3. 결과 115
제 5 절 응집제가 혼입된 동원 NMC 1차정광 116
1. 분쇄시간에 따른 영향 116
2. 포수제 종류에 따른 영향 118
3. 포수제 첨가량에 따른 영향 119
4. 기포제 종류에 따른 영향 120
5. 기포제 첨가량에 따른 영향 121
6. 세척수 첨가량에 따른 영향 122
7. SEM과 원소별 mapping 123
8. 결과 124
제 6 절 동원 NMC 최종정광 125
1. 분쇄시간에 따른 영향 125
2. 포수제 종류에 따른 영향 127
3. 포수제 첨가량에 따른 영향 128
4. 기포제 종류에 따른 영향 129
5. 기포제 첨가량에 따른 영향 130
6. 세척수량에 따른 영향 131
7. 회수율 향상을 위한 조건 변화 실험 132
8. SEM과 원소별 mapping 134
9. 결과 137

5. 결 론 138

참고문헌 140
Degree
Doctor
Publisher
조선대학교 대학원
Citation
강현호. (2010). Microbubble Column에 의한 휘수연석의 부유선별에 관한 연구.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/8859
http://chosun.dcollection.net/common/orgView/200000241023
Appears in Collections:
General Graduate School > 4. Theses(Ph.D)
Authorize & License
  • AuthorizeOpen
  • Embargo2011-03-03
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.