CHOSUN

편심 브레이스 골조의 교체가능한 링크빔의 설계

Metadata Downloads
Author(s)
아베베 다니엘 예쉬와웍
Issued Date
2016
Abstract
Eccentrically braced frames (EBFs) are lateral force resisting system developed to resist earthquake loads in a predictable manner. They are designed and detailed to have ductile behavior only in the link that yields either in shear or flexural or combined shear and flexural depending on the link length. The link should have the capacity of resisting load under repeated load so that the seismic energy will be absorbed.
The maintenance and repairing cost of the damaged members after earthquake is an expensive operation if the damaged member is not isolated from the main structures. The functionality of building may also be affected in the process of repairing the damaged members which will in turn increases the overall economic loss. However, if the dissipative members are isolated from the other structures, they can be maintained or replaced after an earthquake. These decreases the repairing cost and the interruption of building use won’t affected. Thus, in existing conventional eccentrically braced frames, the active links was not isolated from other structural components. These can be taken as a main limitation of conventional eccentrically braced frames.
In order to address the limitation of contentional eccentrically braced frames, researchers came up with the concept of EBFs with removable links and a number of research work have been done on this issue. Researches shows that, in order to control the plastic deformation at the link, the link should be designed weaker in strength or less cross-sectional area than the collector beam. However; links with less cross-section with collector beam, results in difficulties during slab construction and may require deck support over replaceable links.
Link-to-column connection in eccentrically braced frames (EBFs), tend to fracture in the link flange prior to large link rotations due to column connection attracts greater moment because the axial stiffness of the column is stiffer than the flexural stiffness of the beam. AISC provisions also warns designers of this problem which is an indication it is an ongoing research.

In this research, replaceable links with reduced web section and links with reduced web and flange sections were proposed and investigated in order to address the limitations of EBFs listed above. The merit of the aimed links are: First, since the proposed links are isolated from the main structural components such as collector beam and columns, they are easily replaced or maintained in post earthquake. Second, these links have weaker in strength than the collector beam since the section is reduced but have equal cross-section which makes easer for the slab construction. Finally, the reduced sections of web reduces stress and strain values in the links flange at the connection. On the other hand, the perforations (holes) in web increases the plastic strain and stress at the edge of perforations, thus fracture is concentrated at the web so that the fracture at the link flange-to-column welds will be avoided.
The effectiveness of the proposed links were evaluated using non-linear finite element method and quasi-static loading test to evaluate the cyclic inelastic performance considering different parameters. The parameters considered includes: section compactness, percent of reduced web area, link length and effect of stiffeners. The effects of these parameters on the plastic rotation, overstrength factor and the deformation mode were presented. The results obtained from FE analysis and experiment shows that the replaceable links both with reduced web sections and reduced web and flange sections satisfies the plastic rotation level recommended by AISC—341-10 provision. Design equations were recommended for the proposed links considering the geometry and engineering mechanics. The equation were verified by the analysis and experimental results. In addition, the analysis model developed by different researchers were applied for the proposed links and it is found that the developed model can also applied for links with reduced sections.|편심브레이스프레임(Eccentrically braced frames (EBFs))은 지진하중에 견딜 수 있도록 개발된 구조물의 지진저항시스템 중의 하나이다. 편심브레이스프레임이 갖는 링크빔(Link beam) 구간은 전단, 휨, 또는 전단과 휨이 동시에 발생하는 구조물에 충분한 연성거동을 할 수 있도록 설계되어있다. 따라서 링크부분은 지진에너지가 흡수될 수 있도록 반복하중에 대해서 효과적으로 에너지가 흡수 될 수 있도록 설계되어야 한다.
한편 지진발생 후 부재에 손상이 발생한 경우, 손상 부재가 주요 구조물로부터 격리되지 않은 경우 주구조체 전체의 교체로 인해 유지보수비용 측면에서 많은 비용이 발생한다. 이는 건축물의 기능을 손상전의 상태로 복구하는 과정에서 경제적 손실을 증가시킨다. 그러나 링크빔이 다른 구조물로부터 격리되어 있는 경우, 지진 후에 손상된 부분만 간단히 교체함으로서 구조물 전체를 손상전의 상태로 복구하는 것이 가능하다. 이는 수리비용을 획기적으로 절감할 수 있으며, 대규모의 지진발생 이후에도 건축물을 즉시 사용할 수 있는 기능을 제공한다. 일반적으로 사용되는 기존의 편심브레이스 프레임의 링크빔 부분은 주구조체로부터 분리되어 있지 않아 교체 가능한 지진저항시스템으로서 복구에 한계를 가지고 있다.
기존의 편심 브레이스프레임의 한계를 해결하기 위해, 많은 연구자들은 교체 가능한 링크부를 갖는 EBF시스템을 개발하고자 다양한 디테일을 제안하고 그 구조적 성능검증을 위한 연구를 활발히 진행하고 있다. 지금까지의 연구 결과에 따르면 링크부의 소성 변형을 제어하기 위해서 링크빔의 재료강도를 약하게 하거나 링크빔에 연결된 컬렉터 빔에 비해 보의 높이를 작게 설계하는 것으로 해결책을 찾고 있다 .
그러나 콜렉터 빔과의 보의 높이를 감소시킨 링크빔은 슬래브를 시공하기가 어려우며, 교체 가능한 디테일을 형성하기 위해서 별도의 장치를 필요로 하고 있다.
한편, 편심 브레이스 프레임(EBF)이 기둥부재와 연결되어 될 때 기둥의 축 방향 강성이 보의 굽힘 강성보다 더 높을 경우 링크부의 회전능력이 충분히 발휘되기 전에 링크 플랜지에서 파손되는 경향이 있어 AISC 규정에서도 주의 깊은 사용을 권장하고 있다.
본 논문에서는 앞서 언급한 EBFs의 적용 한계를 해결하기 위해 웨브와 플렌지의 단면적을 감소시켜 충분한 에너지소산능력을 발휘하면서도 시공성과 교체가능성을 확보된 새로운 형태의 링크부를 제안하였다. 제안된 링크빔에 대한 이점은 다음과 같다. 첫번째 보 또는 기둥과 같은 주요 구조요소로부터 분리가 가능하도록 설계되어 지진 후에도 쉽게 교체가 가능하다. 두번째 링크빔의 높이를 감소시킨 것이 아니라 웨브와 플랜지내의 단면적을 감소시킴으로 주요 보 부재보다 강도는 약해지지만 교차단면은 동일하게 유지되어 슬래브 시공을 원활하게 할 수 있다. 마지막으로 웨브와 플랜지의 단면적 감소비를 조절하여 링크부의 공칭강도를 자유롭게 설계 할 수 있다, 또한 링크 플랜지와 기둥간 용접부의 파괴를 방지하여 웨브의 오픈 홀 가장자리에서 응력집중이 발생하도록 유도할 수 있다.
제안된 링크의 성능을 확인하기 위해 section compactness , 웨브와 플랜지의 단면 감소량, 링크부의 길이, 보강재의 유무 등을 고려하여 비선형 유한요소해석과 정적가력실험을 실시하여 비탄성거동을 평가하였다. 특히, 링크부의 소성 회전 및 초과강도계수에 대해서 검토를 수행하였다. 본 논문에서 제안한 링크부에 대하여 FE해석과 재하실험결과를 검토한 결과, AISC—341-10 조항에서 제공하는 소성회전 등급을 만족하는 결과를 얻었다. 또한 제안한 링크부의 기하학적인 형상에 따른 설계식과 설계프로세스를 제안하고, 해석 및 실험적 검증을 수행하여 충분한 에너지소산능력을 가진 링크빔으로서의 적용 가능성을 확인하였다.
Alternative Title
Design of replaceable reduced link sections for eccentrically braced frames
Alternative Author(s)
Daniel Yeshewawork Abebe
Affiliation
조선대학교 일반대학원
Department
일반대학원 건축공학과
Advisor
최재혁
Awarded Date
2017-02
Table Of Contents
1. Introduction 1
1.1 General 1
1.2 Statement of the problem 3
1.3 Research Motivation, Objective and Scope 9
1.3.1 Motivation and Objective 9
1.3.2 Research Scope 10
1.4 Organization of Dissertation 11

2. Background and Literature Review 12
2.1 History and Background of EBFs 12
2.2 General Behavior of EBFs 15
2.2.1 Requirements of Links in EBFs 15
2.2.2 Rotation Demand of Links 17
2.2.3 Strength and forces in the link 19
2.3 Design Requirements of EBFs 22
2.4 Previous studies on EBFs 27
2.4.1 Okazaki et. al. (2003, 2006 ,2007 and 2009) 29
2.4.2 Nabil et. al. research 32
2.4.3 Reduced Link Section 35
2.5 The behavior of plates with circular hole under shear loading 38
3. Development and design replaceable reduced link sections 40
3.1 Development of replaceable reduced link section 40
3.1.1 Replaceable links with reduced web fabricated from a W-section with end-plate connections 40
3.1.2 Replaceable links with reduced web fabricated from a C-section with web and flange-bolted connections 41
3.1.3 Replaceable links with reduced web and flange section fabricated from a W-section with end-plate connections 42
3.1.4 Replaceable links with reduced web and reduced flange section fabricated from a C-section with web and flange-bolted connections 43
3.2 Applications of developed links 44
3.3 Design Procedure of reduced links section 46
3.3.1 Arrangement of perforations 46
3.3.1.1 Basler’s Recommendation 46
3.3.1.2 Thorburn’s Recommendation 46
3.3.1.3 Timler’s Recommendation 47
3.3.2 Design Procedure of Reduced Web Links Section 48
3.3.2.1 Design Procedure of reduced web links 56
3.3.3 Design Procedure of Reduced Web and Flange Links Section 58
3.4 Summary 66


4. Experimental Evaluation 67
4.1 Introduction 67
4.2 Test plan and process 69
4.2.1 Detail of Test Specimens 69
4.2.2 Material Property of test specimen 77
4.2.3 Loading Test Equipment System 79
4.2.3.1 Test Subassemblage 79
4.2.3.2 Instrumentation of Experiments 83
4.2.4 Loading Sequence 85
4.3 Test Results 86
4.3.1 Observations on Each of Test Specimens 86
4.3.1.1 Links with reduced web section 86
4.3.1.2 Links with reduced web and flange section 93
4.3.2 Cumulative Inelastic Rotation 99
4.3.3 Effect of Stiffeners 101
4.3.4 Effect of Percent Reduced Web Area 104
4.4 Summary of Experimental Results 106
4.4.1 Plastic Rotation Capacity 106
4.4.2 Overstrength Factor (Ω) 108
4.4.3 Equivalent Viscous Damping 110
4.5 Summary 115

5. Non-linear FE Analysis 116
5.1 General 116
5.2 Non-linear Finite Element Analysis 116
5.2.1 Material Modeling 116
5.2.1.1 Calibration of a cyclic material hardening model 120
5.2.1.2 Meshing Type and Size Used 123
5.2.2 Loading and Boundary Condition 124
5.3 Comparison of Analysis and Test results 127
5.3.1 Hysteresis response and failure/deformation modes 127
5.3.1.1 Reduced web link sections 127
5.3.1.2 Reduced web and flange link sections 137
5.3.2 Comparison of Initial Stiffness 141
5.3.3 Comparison of Plastic rotations 144
5.3.3.1 Failure Index (FI) 144
5.3.4 Overstrength Factor (Ω) 150
5.4 Summary 153

6. Parametric Study on Reduced Link Section 154
6.1 General 154
6.2 Link Length factor 155
6.2.1 Hysteresis response of FE analysis result considering link length factor (ρ) 157
6.2.2 Plastic rotation capacity, Overstrength factor and Initial stiffness of FE analysis result considering link length factor (ρ) 160
6.3 Percent of reduced web area 162
6.3.1 Results on the effect of reduced web area 162
6.3.1.1 Effect of percent of reduced web area on hysteresis response and initial stiffness 162
6.3.1.2 Effect of percent of reduced web area on plastic rotation and overstrength factor 167
6.4 Stiffeners 171
6.4.1 Results on the effect of stiffeners 171
6.5 Unequal end-moment (Link-to-column connections) 173
6.5.1 General 173
6.5.2 FE Analysis on link-to-column connection 177
6.5.2.1 Material Modeling 177
6.5.2.2 Loading and boundary condition 181
6.5.3 FE Results of link-to-column connection 182
6.5.3.1 Hysteresis Response and Plastic Rotation Capacity 182
6.5.3.2 Comparison of Deformed shape 191
6.5.3.2.1 Stress Triaxiality ratio (τ) 191
6.5.3.2.2 PEEQ Index 192
6.5.3.2.3 Rupture Index(RI) 192
6.5.3.3 End Moments Rations in Link-to-column Connections 198
6.5.3.4 Equivalent Viscous Damping (ξ) and effective stiffness 201
6.6 Summary 203

7. Design Recommendations 204
7.1 Introduction 204
7.2 Design Strength and Link Length of RLS 205
7.2.1 Reduced web link section 205
7.2.1.1 Plastic shear strength 205
7.2.1.2 Ultimate shear strength 207
7.2.2 Reduced web andf lange link section 211
7.2.2.1 Plastic shear strength 211
7.2.2.2 Ultimate shear strength 212
7.3 Summary 216

8. Summary and Recommendations 217
8.1 Introduction 217
8.2 Summary 217
8.3 Recommendations 223


【References】 225


Appendix A. Coupon test result report 234
Appendix B. Experimental Investigation and Different Measured Responses 238
B.1 Sample Welding Design 238
B.2 Quasi-static Loading Test 240
B.3 Results of Responses Measured by Different Displacement Meters 242
Appendix C. Results of Parametric Study 248
Appendix D. Initial Stiffness of EBF 259
D.1 Initial stiffness of EBFs estimated by Richard, 2010 259
D.2 FE simulation of D-brace frames 261
D.3 FE Analysis Results of D-brace frames 261
D.4 Estimation of initial stiffness EBFs 266
Appendix E. Analytical Model of SDOF System of EBFs 267
Degree
Doctor
Publisher
조선대학교 일반대학원
Citation
아베베 다니엘 예쉬와웍. (2016). 편심 브레이스 골조의 교체가능한 링크빔의 설계.
Type
Dissertation
URI
https://oak.chosun.ac.kr/handle/2020.oak/13211
http://chosun.dcollection.net/common/orgView/200000266213
Appears in Collections:
General Graduate School > 4. Theses(Ph.D)
Authorize & License
  • AuthorizeOpen
  • Embargo2017-02-21
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.